UG-EE-June, 2024

 SUBJECT : Statistics (4 Year)\qquad (in words) \qquad
Name \qquad Date of Birth \qquad
Father's Name \qquad Mother's Name \qquad
Date of Examination \qquad
(Signature of the Candidate)
(Signature of the Invigilator)

CANDIDATES MUST READ THE FOLLOWING INFORMATION/INSTRUCTIONS BEFORE STARTING THE QUESTION PAPER.

1. All questions are compulsory.

2. The candidates must return the question booklet as well as OMR Answer-Sheet to the Invigilator concerned before leaving the Examination Hall, failing which a case of use of unfairmeans / mis-behaviour will be registered against him / her, in addition to lodging of an FIR with the police. Further the answer-sheet of such a candidate will not be evaluated.
3. Keeping in view the transparency of the examination system, carbonless OMR Sheet is provided to the candidate so that a copy of OMR Sheet may be kept by the candidate.
4. Question Booklet along with answer key of all the A, B, C \& D code shall be got uploaded on the University Website immediately after the conduct of Entrance Examination. Candidates may raise valid objection/complaint if any, with regard to discrepancy in the question booklet/answer key within 24 hours of uploading the same on the University Website. The complaint be sent by the students to the Controller of Examinations by hand or through email. Thereafter, no complaint in any case, will be considered.
5. The candidate must not do any rough work or writing in the OMR Answer-Sheet. Rough work, if any, may be done in the question booklet itself. Answers must not be ticked in the question booklet.
6. There will be no negative marking. Each correct answer will be awarded one full mark. Cutting, erasing, overwriting and more than one answer in OMR Answer-Sheet will be treated as incorrect answer.
7. Use only Black or Blue Ball Point Pen of good quality in the OMR Answer-Sheet.
8. Before answering the questions, the candidates should ensure that they have been supplied correct and complete booklet. Complaints, if any, regarding misprinting etc. will not be entertained $\mathbf{3 0}$ minutes after starting of the examination.
UG-EE-June, 2024/(Statistics-4 Yr.)(SET-Y)/(A)
9. How many subsets can be formed from the following set :
$\{1,2,3 \ldots \ldots n\}$
(1) n
(2) n^{2}
(3) $2 n$
(4) 2^{n}
10. If $A=\{1,2,3\}, B=\{3,4\}, C=\{4,5,6\}$, then $A \cup(B \cap C)$ is :
(1) $\{3\}$
(2) $\{1,2,3,4\}$
(3) $\{1,2,3,5\}$
(4) $\{1,2,3,4,5,6\}$
11. In rule method, the null set is represented by :
(1) $\}$
(2) ϕ
(3) $\{x: x=x\}$
(4) $\{x: x \neq x\}$
12. Let $U=\{1,2,3, \ldots .10\}, A=\{1,2,5\}, B=\{6,7\}$, then $A \cap B^{\prime}$ is (Where $A^{\prime} \& B^{\prime}$ represent compliment of A and B respectively) :
(1) A
(2) B^{\prime}
(3) A^{\prime}
(4) B
13. In a group of 70 people, 37 like coffee, 52 like tea and each person likes at least one of the two drives. How many like both coffee and tea ?
(1) 17
(2) 18
(3) 19
(4) 20
14. The inequality $\frac{2}{x}<3$ is true, when x belongs to :
(1) $\left[\frac{2}{3}, \infty\right)$
(2) $\left(-\infty, \frac{2}{3}\right]$
(3) $\left(\frac{2}{3}, \infty\right) \cup(-\infty, 0)$
(4) None of these
15. If $A=\{1,2,4\}$, then the identity relation on A is :
(1) $\{(1,1)\}$
(2) $\{(1,1)(1,2)\}$
(3) $\{(2,2),(1,4)\}$
(4) $\{(1,1),(2,2),(4,4)\}$
16. Let $A=\{x, y, z\}$ and $B=\{1,2\}$, then the number of relations from A into B are :
(1) 2^{5}
(2) 2^{6}
(3) 2^{3}
(4) 2^{2}
17. The radian measure corresponding to $-47^{\circ} 30^{\prime}$ is :
(1) $-\frac{15}{72} \pi$
(2) $\frac{15}{72} \pi$
(3) $-\frac{19}{72} \pi$
(4) $\frac{19}{72} \pi$
18. The value of $\sin \left(\frac{7 \pi}{6}\right)$ is :
(1) $-\frac{\sqrt{3}}{2}$
(2) $\frac{1}{2}$
(3) $-\frac{1}{\sqrt{2}}$
(4) $\frac{\sqrt{3}}{2}$
19. The additive inverse of $(2+3 i)^{2}$ is :
(1) $-5+12 i$
(2) $-9+12 i$
(3) $5-12 i$
(4) $9-12 i$
20. Multiplicative inverse of $4+7 i$ is :
(1) $(-4-7 i)$
(2) $-4+7 i$
(3) $-\frac{4}{65}+\frac{7}{65} i$
(4) $\frac{4}{65}-\frac{7}{65} i$
21. How many terms are there in A. P. $20,22,24,26, \ldots ., 100$?
(1) 40
(2) 41
(3) 42
(4) 43
22. The sum of the first 15 terms of the A. P. $5,10,15,20, \ldots \ldots$ is :
(1) 400
(2) 425
(3) 600
(4) 525
23. If $\left[\begin{array}{rr}1 & 0 \\ 3 & -4\end{array}\right]+\left[\begin{array}{rr}a & 1 \\ -1 & b\end{array}\right]=\left[\begin{array}{rr}2 & 1 \\ 2 & -2\end{array}\right]$, then value of a and b are :
(1) $1,-2$
(2) $-1,2$
(3) $-1,-2$
(4) 1,2
24. Inverse matrix of $\left[\begin{array}{cc}2 & -3 \\ -4 & 2\end{array}\right]$ is :
(1) $-\frac{1}{8}\left[\begin{array}{ll}2 & 3 \\ 4 & 2\end{array}\right]$
(2) $-\frac{1}{8}\left[\begin{array}{ll}2 & 4 \\ 3 & 2\end{array}\right]$
(3) $\frac{1}{8}\left[\begin{array}{ll}2 & 3 \\ 4 & 2\end{array}\right]$
(4) $\frac{1}{8}\left[\begin{array}{ll}2 & 4 \\ 3 & 2\end{array}\right]$
25. The minor of -3 in the determinant $\left|\begin{array}{rrr}2 & -3 & 1 \\ 4 & 0 & 5 \\ -1 & 6 & 7\end{array}\right|$ is :
(1) 30
(2) 33
(3) 28
(4) 32
26. Let A be a square matrix of order 3×3, then $|\mathrm{KA}|$ is :
(1) $3 \mathrm{~K}|\mathrm{~A}|$
(2) $\mathrm{K} \mid \mathrm{Al}$
(3) $\mathrm{K}^{2}|\mathrm{~A}|$
(4) $\mathrm{K}^{3}|\mathrm{~A}|$
27. Matrices A and B will be inverse of each other only if :
(1) $\mathrm{AB}=\mathrm{BA}$
(2) $\mathrm{AB}=\mathrm{BA}=0$
(3) $\mathrm{AB}=\mathrm{BA}=\mathrm{I}$
(4) $\mathrm{AB}=\mathrm{I}, \mathrm{BA}=0$
28. Which of the following is not a property of inverse of a matrix ?
(1) $\left(A^{-1}\right)^{-1}=A$
(2) $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$
(3) $(A B)^{-1}=A^{-1} B^{-1}$
(4) $\operatorname{Adj}\left(A^{-1}\right)=(\operatorname{Adj} A)^{-1}$
29. For any positive integer $n, \lim _{x \rightarrow a} \frac{x^{n}-a^{n}}{x-a}$ is :
(1) 0
(2) 1
(3) $n a^{n}$
(4) $n a^{n-1}$
30. $\operatorname{Lim}_{x \rightarrow 0} \frac{\sin 4 x}{\sin 2 x}$ is equal to :
(1) 0
(2) 1
(3) 2
(4) 3
31. $\operatorname{Lim}(\sec \theta-\tan \theta)=$?
$\theta \rightarrow \frac{\pi}{2}$
(1) 0
(2) 1
(3) -1
(4) ∞
32. If $f(x)=x \sin x$, then $f^{\prime}\left(\frac{\pi}{2}\right)$ is :
(1) 0
(2) 1
(3) -1
(4) $\frac{1}{2}$
33. Derivative of $e^{x^{2}}$ is :
(1) $e^{x^{2}}$
(2) $2 x$
(3) $2 . e^{x^{2}}$
(4) $2 x^{e^{x^{2}}}$
34. A function $f(x)$ is not continuous at $x=1$ if :
(1) $\operatorname{Lim}_{x \rightarrow} f(x) \neq f(1)$
(2) $\operatorname{Lim}_{x \rightarrow 1} f(x)=f(1)$
(3) $f^{1}(1) \neq 0$
(4) None of these
35. If $f(x)=\left\{\begin{array}{cll}x+\lambda & ; x<3 \\ 4 & ; x=3 \\ 3 x-5 & ; x>3\end{array}\right.$ is continuous at $x=3$, then the value of λ is :
(1) 1
(2) -2
(3) -1
(4) 0
36. If f and g be two real functions continuous at a real number ' C ', then which one of the following is not true?
(1) $f+g$ is continuous at $x=c$
(2) $f-g$ is continuous at $x=c$
(3) $f . g$ is continuous at $x=c$
(4) $\frac{f}{g}$ is continuous at $x=c$, if $g(0) \neq 0$
37. If $x-y=\pi$, then $\frac{d y}{d x}=$?
(1) 0
(2) 1
(3) 2
(4) 3
38. If $x=a(t-\sin t)$ and $y=a(1-\cos t)$ then $\frac{d y}{d x}=$?
(1) $\sec t$
(2) $\operatorname{cosec} t$
(3) $\tan \frac{t}{2}$
(4) $\cot \frac{t}{2}$

A
31. If $x=t^{2}$ and $y=t^{3}$, then $\frac{d^{2} y}{d x^{2}}=$?
(1) $\frac{3}{4 t}$
(2) \sqrt{t}
(3) t
(4) $\frac{3}{2 \sqrt{t}}$
32. The rate of change of the area of a circle with respect to its radius ' r ' where $r=3 \mathrm{~cm}$, is :
(1) 2π
(2) 4π
(3) 6π
(4) 10π
33. The point, at which the tangent to the curve $y=\sqrt{4 x-3}-1$ has its slope $\frac{2}{3}$, is :
(1) $(1,2)$
(2) $(2,1)$
(3) $(2,3)$
(4) $(3,2)$
34. If $f^{\prime}(x)=x^{2}+5$ and $f(0)=-1$, then $f(x)=$?
(1) $\frac{1}{3} x^{3}+5 x-1$
(2) $\frac{1}{3} x^{3}+5 x+1$
(3) $x^{3}+5 x+1$
(4) $x^{3}+5 x-1$
35. The value of $\int_{-2}^{2}\left(p x^{3}+q x+r\right) d x$, is :
(1) r
(2) $2 r$
(3) $3 r$
(4) $4 r$
36. $\int \frac{\sin x+\cos x}{\sqrt{1+\sin 2 x}} d x=$?
(1) $\sin x+c$
(2) $x+c$
(3) $\cos x+c$
(4) $x^{2}+c$
37. Area bounded by the curve $y=\log x, x$-axis and the ordinates $x=1, x=2$ is :
(1) $\log 4$ sq. unit
(2) $(\log 4-1)$ sq. unit
(3) $(\log 4+1)$ sq. unit
(4) $(\log 4-2)$ sq. unit
38. The general solution of $x^{2} \frac{d y}{d x}=6$ is :
(1) $y=\frac{-6}{x}+c$
(2) $y=\frac{6}{x}+c$
(3) $y=\frac{12}{x}+c$
(4) $y=x+c$
39. The order and degree of differential equation $\frac{d^{4} y}{d x^{4}}-4 \frac{d^{3} y}{d x}+8 \frac{d^{2} y}{d x^{2}}-8 \frac{d y}{d x}+4 y=0$
are: are :
(1) $(4,4)$
(3) $(1,1)$
(2) $(4,1)$
(4) $(1,4)$
40. The maximum value of :

$$
P=x+3 y
$$

Such that :

$$
\begin{aligned}
& 2 x+y \leq 20 \\
& x+2 y \leq 20 \\
& x \geq 0, y \geq 0, \text { is }
\end{aligned}
$$

(1) 10
(2) 60
(3) 30
(4) 25

UG-EE-June, 2024/(Statistics-4 Yr.)(SET-Y)/(A)

A
41. Which of the following can not be the probability of occurrence of an event?
(1) $\frac{2}{3}$
(2) $\frac{3}{2}$
(3) 0
(4) 1
42. In an experiment of rolling a fair die and unbiased coin, the sample space is :
(1) $\{\mathrm{H} 1, \mathrm{H} 2, \mathrm{H} 3, \mathrm{H} 4, \mathrm{H} 5, \mathrm{H} 6\}$
(2) $\{\mathrm{T} 1, \mathrm{~T} 2, \mathrm{~T} 3, \mathrm{~T} 4, \mathrm{~T} 5, \mathrm{~T} 6\}$
(3) $\{\mathrm{H} 1, \mathrm{H} 2, \mathrm{H} 3, \mathrm{~T} 4, \mathrm{~T} 5, \mathrm{~T} 6\}$
(4) $\{\mathrm{H} 1, \mathrm{H} 2, \mathrm{H} 3, \mathrm{H} 4, \mathrm{H} 5, \mathrm{H} 6, \mathrm{~T} 1, \mathrm{~T} 2, \mathrm{~T} 3, \mathrm{~T} 4, \mathrm{~T} 5, \mathrm{~T} 6\}$
43. If $P(A)=0.37, P(B)=0.42, P(A \cap B)=0.09$, then $P(A \cup B)$ is:
(1) 0.7
(2) 0.8
(3) 0.68
(4) 0.75
44. Probability of occurrence of an impossible event is :
(1) 1
(2) 2
(3) 0
(4) 0.5
45. A family has two children. What is the probability that both the children are boys, given that at least one of them is a boy?
(1) $\frac{3}{4}$
(2) $\frac{1}{4}$
(3) $\frac{1}{2}$
(4) $\frac{1}{3}$
46. Given that $P(A)=\frac{1}{3}, P(B)=\frac{3}{4}$ and $P(A \cup B)=\frac{11}{12}$, then $\mathrm{P}(\mathrm{B} / \mathrm{A})$ is :
(1) $\frac{1}{6}$
(2) $\frac{5}{6}$
(3) $\frac{2}{9}$
(4) $\frac{1}{2}$
47. If ${ }^{5} P_{r}=2 .{ }^{6} p_{r-1}$, then value of ' r ' is :
(1) 1
(2) 2
(3) 3
(4) 4
48. In how many ways can 5 men and 4 women be seated in a row so that the women occupy the even places?
(1) 2880
(2) 2860
(3) 2800
(4) 2820
49. The value of ${ }^{n} P_{n-1}$ is :
(1) n !
(2) n
(3) $2 n$!
(4) $2 n$
50. The number of squares that can be formed on a Chessboard :
(1) 224
(2) 204
(3) 160
(4) 64
51. The number of ways 10 digits numbers can be written using the digits 1 and 2 :
(1) $10_{C_{2}}$
(2) 10 !
(3) $10_{C_{1}}+9_{C_{2}}$
(4) 2^{10}
52. In an experiment of tossing three coins at a time, the probability of getting 2 heads and one tail is :
(1) $\frac{1}{8}$
(2) $\frac{1}{3}$
(3) $\frac{3}{8}$
(4) $\frac{1}{2}$
53. If A and B are events such that $P(A / B)=P(B / A)$, then :
(1) $B \supset A$ but $A \neq B$
(2) $A=B$
(3). $A \cap B=\phi$
(4) $P(B)=P(A)$
54. If A and B are two independent events, then the probability of occurrence of at least one of A and B is given by :
(1) $P(A)+P(B)$
(2) $P(A)-P(B)$
(3) $P(A \cup B)$
(4) $P(A \cap B)$
55. If A and B are independent events such that $P(A)=\frac{3}{5}$ and $P(B)=\frac{1}{5}$, then $P(A \cap B)$ is :
(1) $\frac{3}{25}$
(2) $\frac{4}{5}$
(3) $\frac{3}{10}$
(4) $\frac{2}{5}$
56. In context to the Bernoulli trials, which one of the following is not true ?
(1) There should be a finite number of trials
(2) The trials should be independent
(3) Each trial has more than two outcomes
(4) The probability of success remains the same in each trial
57. Probability can take values:
(1) 0 to 2
(2) -2 to 2
(3) $-\infty$ to 1
(4) -1 to 1
58. In case of binomial distribution, for given values of ' n ' and ' p ', the probability of x successes $P(x=x)$ is given by :
(1) ${ }^{x} c_{n} p^{x} q^{n-x}$
(2) ${ }^{n} c_{x} p^{x} q^{n-x}$
(3) $p^{x} \cdot q^{n-x}$
(4) ${ }^{n} c_{x} p^{x} q^{n}$
59. If a random variable x follows binomial distribution with ' n ' number of trials and ' p ' probability of success, then mean of x is :
(1) p
(2) $n(1-p)$
(3) $n p q$
(4) $n p$
60. The mean and variance of a binomial distribution are 8 and 4 respectively, then $P(x=1)$ is :
(1) $\frac{1}{2^{4}}$
(2) $\frac{1}{2^{8}}$
(3) $\frac{1}{2^{12}}$
(4) $\frac{1}{2^{6}}$

A
61. The primary data is gathered through :
(1) Survey
(2) Books
(3) Newspaper
(4) Internet
62. Which of the following is a measure of central tendency ?
(1) Mean deviation
(2) Mean
(3) Quartile deviation
(4) Standard deviation *
63. Pie chart represents the components of a factor by :
(1) Angles
(2) Percentages
(3) Sectors
(4) None of these
64. What is the main purpose of statistics ?
(1) To collect data
(2) To analyse data
(3) To interpret data
(4) All of these
65. Which of the following is an example of qualitative data ?
(1) Height
(2) Weight
(3) Age
(4) Gender
66. Which of the following is a measure of dispersion ?
(1) Variance
(2) Median
(3) Mode
(4) Mean
67. Which type of data is best represented by a histogram ?
(1) Categorical
(2) Discrete
(3) Continuous
(4) Nominal
68. If a constant value 5 is subtracted from each observation of a set, then the mean of the set is :
(1) Increased by 5
(2) Decreased by 5
(3) Decreased by 25
(4) is not affected
69. Geometric mean of two numbers $\frac{1}{16}$ and $\frac{4}{25}$, is :
(1) $\frac{1}{10}$
(2) $\frac{1}{100}$
(3) 10
(4) 100
70. The standard deviation of the following data is :
$-1,-2,-3,-4,-5,-6,-7$
(1) -2
(2) 4
(3) 2
(4) -4

UG-EE-June, 2024/(Statistics-4 Yr.)(SET-Y)/(A)

71. The mean of 5 observations $1,2,6, x$ and y is 4.2 , then $x+y$ is :
(1) 4
(2) 8
(3) 15
(4) 12
72. Mean deviation for ' n ' observations $x_{1}, x_{2}, \ldots, x_{n}$ from their mean \bar{X} is :
(1) $\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}$
(2) $\frac{1}{n} \sum_{i=1}^{n}\left|X_{i}-\bar{X}\right|$
(3) $\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}$
(4) $\sum_{i=1}^{n}\left|X_{i}-\bar{X}\right|$
73. Mean of first ' n ' natural number is :
(1) $\frac{n}{2}$
(2) $\frac{n(n+1)}{2}$
(3) $\frac{n+1}{2}$
(4) $\frac{n-1}{2}$
74. The standard deviation of 10 observations is 09 . If 2 is subtracted from each observation, then the new standard deviation is :
(1) 09
(2) 11
(3) 08
(4) 07
75. Mean deviation from the median for the following data is :
$3,9,6,8,4,12,19,21$
(1) 2
(2) 3
(3) 4
(4) 5
76. What is the harmonic mean of 5 and 2 ?
(1) $\frac{20}{7}$
(2) $\frac{30}{7}$
(3) $\frac{10}{7}$
(4) $\frac{40}{7}$
77. The sum of deviations about mean is :
(1) Largest
(2) Smallest
(3) Positive
(4) Zero
78. The relationship between arithmetic mean (A. M.), geometric mean (G. M.) and harmonic mean (H. M.) can be expressed as :
(1) A. M. \geq G. M. \geq H. M.
(2) A. M. $=$ G. M. $-\mathrm{H} \cdot \mathrm{M}$.
(3) G. M. \geq H. M. \geq A. M.
(4) A. M. \leq G. M. $\leq \mathrm{H} . \mathrm{M}$.
79. The range is calculated as :
(1) The sum of all data values
(2) The product of all data values
(3) The square of the mean deviation
(4) The difference between the largest and smallest data values
80. Mode of the following data is :
$3,2,5,2,3,5,6,5,6,3,2,5,1$
(1) 2
(2) 3
(3) 5
(4) 6

UG-EE-June, 2024/(Statistics-4 Yr.)(SET-Y)/(A)

A

81. A class of 30 boys and 15 girls is given a test in statistics. The average marks obtained by boys is 15 and by girls is 6 . The average of whole class is :
(1) 10.5
(2) 12
(3) 12.5
(4) 10
82. The sum of square of deviations for 10 observations taken from mean is 250 . The value of variance is :
(1) 25
(2) 30
(3) 40
(4) 45
83. The variance of $6,8,10,12,14$ is :
(1) 1
(2) 12
(3) 18
(4) 8
84. The mean of 8 numbers is 15 . A new number 24 is added. The mean of nine numbers is :
(1) 18
(2) 16
(3) 12
(4) 11
85. The median of the series:
$3,18,7,20,11,12,9,17,22$
(1) 11
(2) 12
(3) 10
(4) 8
86. Find out the missing number of the series :
$2,6,14,26,42, \ldots \ldots \ldots \ldots$.
(1) 52
(2) 62
(3) 72
(4) 60
87. Find out the missing letters of the series:
x \qquad $x x y y x$ \qquad xyyyxxxx
(1) x, x
(2) y, y
(3) y, x
(4) x, y
88. In a code language if 'TRAINS' is coded as 'RTIASN', how 'PISTOL' will be coded in the same language ?
(1) IPTSLO
(2) IPSTLO
(3) SIPTLO
(4) IPTLSO
89. A person started walking towards North. After walking 30 metres, he turned towards left and walked 40 metres. He then turned left and walked 30 metres. He again turned left and walked 50 metres. How far is he from his original position ?
(1) 40 metres
(2) 30 metres
(3) 20 metres
(4) 10 metres
90. If + means $\times,-$ means,$+ \times$ means \div and \div means - , then :
$6-3+8 \times 3 \div 4=?$
(1) 4
(2) 5
(3) 10
(4) 12

UG-EE-June, 2024/(Statistics-4 Yr.)(SET-Y)/(A)

91. 'Page' is related to 'Book' as 'Leaf' is related to :
(1) Root
(2) Tree
(3) Fruit
(4) Forest
92. Newspaper : Press : : Cloth : ?
(1) Fibre
(2) Textile
(3) Tailor
(4) Mill
93. In 10 years, ' A ' will be twice as old as ' B ' was 10 years ago. If at present ' A ' is 9 years older than ' B ', the present age of ' B ' is :
(1) 19 years
(2) 29 years
(3) 39 years
(4) 59 years
94. Pointing towards a person, a man said to a woman "His mother is the only daughter of your father". How is woman related to that person?
(1) Daughter
(2) Mother
(3) Sister
(4) Wife
95. Mirror image of \rightarrow is :
(1) \rightarrow
(2) K
(3) \longleftarrow
(4) \rightarrow
96. Calculate the simple interest of Rs. 7200 at $12 \frac{3}{4} \%$ per annum for 9 months :
(1) Rs. 688.50
(2) Rs. 670.50
(3) Rs. 700.1
(4) Rs. 690
97. A man buys 25 chairs for Rs. 375 and sells them at profit equal to the selling price of 5 chairs. What is the selling price of one chair?
(1) Rs. 14.50
(2) Rs. 15.20
(3) Rs. 17.20
(4) Rs. 18.75
98. A man riding on a bicycle at a speed of $15 \mathrm{~km} / \mathrm{h}$ crosses a bridge in 5 minute. The length of the bridge is :
(1) 1 km
(2) $1 \frac{1}{4} \mathrm{~km}$
(3) 2 km
(4) $2 \frac{1}{2} \mathrm{~km}$
99. The HCF of $\frac{9}{10}, \frac{12}{25}, \frac{18}{25}$ and $\frac{21}{40}$ is :
(1) $\frac{3}{5}$
(2) $\frac{252}{5}$
(3) $\frac{3}{1400}$
(4) $\frac{52}{140}$
100. Find the missing number :

(1) 37
(2) 41
(3) 47
(4) 18

UG-EE-June, 2024/(Statistics-4 Yr.)(SET-Y)/(A)

(DO NOT OPEN THIS QUESTION BOOKLET BEFORE TIME OR UNTIL YOU ARE ASKED TO DO SO)

Sr. No.

Time: $1 \frac{1}{4}$ Hours
Roll No. (in figures) \qquad Max. Marks : 100

Total Questions:

Name \qquad Date of Birth \qquad
Father's Name \qquad Mother's Name \qquad

Date of Examination \qquad

CANDIDATES MUST READ THE FOLLOWING INFORMATION/INSTRUCTIONS BEFQRE STARTING THE QUESTION PAPER.

1. All questions are compulsory.

2. The candidates must return the question booklet as well as OMR Answer-Sheet to the Invigilator concerned before leaving the Examination Hall, failing which a case of use of unfairmeans / mis-behaviour will be registered against him / her, in addition to lodging of an FIR with the police. Further the answer-sheet of such a candidate will not be evaluated.
3. Keeping in view the transparency of the examination system, carbonless OMR Sheet is provided to the candidate so that a copy of OMR Sheet may be kept by the candidate.
4. Question Booklet along with answer key of all the A, B, C \& D code shall be got uploaded on the University Website immediately after the conduct of Entrance Examination. Candidates may raise valid objection/complaint if any, with regard to discrepancy in the question booklet/answer key within 24 hours of uploading the same on the University Website. The complaint be sent by the students to the Controller of Examinations by hand or through email. Thereafter, no complaint in any case, will be considered.
5. The candidate must not do any rough work or writing in the OMR Answer-Sheet. Rough work, if any, may be done in the question booklet itself. Answers must not be ticked in the question booklet.
6. There will be no negative marking. Each correct answer will be awarded one full mark. Cutting, erasing, overwriting and more than one answer in OMR Answer-Sheet will be treated as incorrect answer.
7. Use only Black or Blue Ball Point Pen of good quality in the OMR Answer-Sheet.
8. Before answering the questions, the candidates should ensure that they have been supplied correct and complete booklet. Complaints, if any, regarding misprinting etc. will not be entertained 30 minutes after starting of the examination.
UG-EE-June, 2024/(Statistics-4 Yr.)(SET-Y)/(B)
9. A class of 30 boys and 15 girls is given a test in statistics. The average marks obtained by boys is 15 and by girls is 6 . The average of whole class is :
(1) 10.5
(2) 12
(3) 12.5
(4) 10
10. The sum of square of deviations for 10 observations taken from mean is 250 . The value of variance is :
(1) 25
(2) 30
(3) 40
(4) 45
11. The variance of $6,8,10,12,14$ is :
(1) 1
(2) 12
(3) 18
(4) 8
12. The mean of 8 numbers is 15 . A new number 24 is added. The mean of nine numbers is :
(1) 18
(2) 16
(3) 12
(4) 11
13. The median of the series :
$3,18,7,20,11,12,9,17,22$
(1) 11
(2) 12
(3) 10
(4) 8
14. Find out the missing number of the series :
$2,6,14,26,42, \ldots \ldots \ldots \ldots$
(1) 52
(2) 62
(3) 72
(4) 60
15. Find out the missing letters of the series :
x \qquad $x x y y x$ \qquad xyyyxxxx
(1) x, x
(2) y, y
(3) y, x
(4) x, y
16. In a code language if 'TRAINS' is coded as 'RTIASN', how 'PISTOL' will be coded in the same language?
(1) IPTSLO
(2) IPSTLO
(3) SIPTLO
(4) IPTLSO
17. A person started walking towards North. After walking 30 metres, he turned towards left and walked 40 metres. He then turned left and walked 30 metres. He again turned left and walked 50 metres. How far is he from his original position?
(1) 40 metres
(2) 30 metres
(3) 20 metres
(4) 10 metres
18. If + means $\times,-$ means,$+ \times$ means \div and \div means - , then :
$6-3+8 \times 3 \div 4=$?
(1) 4
(2) 5
(3) 10
(4) 12

UG-EE-June, 2024/(Statistics-4 Yr.)(SET-Y)/(B)

B

11. The mean of 5 observations $1,2,6, x$ and y is 4.2 , then $x+y$ is :
(1) 4
(2) 8
(3) 15
(4) 12
12. Mean deviation for ' n ' observations $x_{1}, x_{2}, \ldots ., x_{n}$ from their mean \bar{X} is :
(1) $\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}$
(2) $\frac{1}{n} \sum_{i=1}^{n}\left|X_{i}-\bar{X}\right|$
(3) $\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}$
(4) $\sum_{i=1}^{n}\left|X_{i}-\bar{X}\right|$
13. Mean of first ' n ' natural number is :
(1) $\frac{n}{2}$
(2) $\frac{n(n+1)}{2}$
(3) $\frac{n+1}{2}$
(4) $\frac{n-1}{2}$
14. The standard deviation of 10 observations is 09 . If 2 is subtracted from each observation, then the new standard deviation is :
(1) 09
(2) 11
(3) 08
(4) 07
15. Mean deviation from the median for the following data is :
$3,9,6,8,4,12,19,21$
(1) 2
(2) 3
(3) 4
(4) 5
16. What is the harmonic mean of 5 and 2 ?
(1) $\frac{20}{7}$
(2) $\frac{30}{7}$
(3) $\frac{10}{7}$
(4) $\frac{40}{7}$
17. The sum of deviations about mean is :
(1) Largest
(2) Smallest
(3) Positive
(4) Zero
18. The relationship between arithmetic mean (A. M.), geometric mean (G. M.) and harmonic mean (H. M.) can be expressed as :
(1) A. M. \geq G. M. \geq H. M.
(2) A. M. $=$ G. M. $-\mathrm{H} . \mathrm{M}$.
(3) G. M. \geq H. M. \geq A. M.
(4) A. M. \leq G. M. \leq H. M.
19. The range is calculated as :
(1) The sum of all data values
(2) The product of all data values
(3) The square of the mean deviation
(4) The difference between the largest and smallest data values
20. Mode of the following data is :
$3,2,5,2,3,5,6,5,6,3,2,5,1$
(1) 2
(2) 3
(3) 5
(4) 6

B
21. 'Page' is related to 'Book' as 'Leaf' is related to :
(1) Root
(2) Tree
(3) Fruit
(4) Forest
22. Newspaper : Press : : Cloth : ?
(1) Fibre
(2) Textile
(3) Tailor
(4) Mill
23. In 10 years, ' A ' will be twice as old as ' B ' was 10 years ago. If at present ' A ' is 9 years older than ' B ', the present age of ' B ' is :
(1) 19 years
(2) 29 years
(3) 39 years
(4) 59 years
24. Pointing towards a person, a man said to a woman "His mother is the only daughter of your father". How is woman related to that person?
(1) Daughter
(2) Mother
(3) Sister
(4) Wife
25. Mirror image of \rightarrow is :
(1) \square
(2) \longleftarrow
(3)

(4)

26. Calculate the simple interest of Rs. 7200 at $12 \frac{3}{4} \%$ per annum for 9 months :
(1) Rs. 688.50
(2) Rs. 670.50
(3) Rs. 700.1
(4) Rs. 690
27. A man buys 25 chairs for Rs. 375 and sells them at profit equal to the selling price of 5 chairs. What is the selling price of one chair ?
(1) Rs. 14.50
(2) Rs. 15.20
(3) Rs. 17.20
(4) Rs. 18.75
28. A man riding on a bicycle at a speed of $15 \mathrm{~km} / \mathrm{h}$ crosses a bridge in 5 minute. The length of the bridge is :
(1) 1 km
(2) $1 \frac{1}{4} \mathrm{~km}$
(3) 2 km
(4) $2 \frac{1}{2} \mathrm{~km}$
29. The HCF of $\frac{9}{10}, \frac{12}{25}, \frac{18}{25}$ and $\frac{21}{40}$ is :
(1) $\frac{3}{5}$
(2) $\frac{252}{5}$
(3) $\frac{3}{1400}$
(4) $\frac{52}{140}$
30. Find the missing number :

(1) 37
(2) 41
(3) 47
(4) 18
31. How many subsets can be formed from the following set :
$\{1,2,3 \ldots \ldots n\}$
(1) n
(2) n^{2}
(3) $2 n$
(4) 2^{n}
32. If $A=\{1,2,3\}, B=\{3,4\}, C=\{4,5,6\}$, then $A \cup(B \cap C)$ is :
(1) $\{3\}$
(2) $\{1,2,3,4\}$
(3) $\{1,2,3,5\}$
(4) $\{1,2,3,4,5,6\}$
33. In rule method, the null set is represented by :
(1) $\}$
(2) ϕ
(3) $\{x: x=x\}$
(4) $\{x: x \neq x\}$
34. Let $U=\{1,2,3, \ldots .10\}, A=\{1,2,5\}, B=\{6,7\}$, then $A \cap B^{\prime}$ is (Where A^{\prime} \& B^{\prime} represent compliment of A and B respectively) :
(1) A
(2) B^{\prime}
(3) A^{\prime}
(4) B
35. In a group of 70 people, 37 like coffee, 52 like tea and each person likes at least one of the two drives. How many like both coffee and tea ?
(1) 17
(2) 18
(3) 19
(4) 20
36. The inequality $\frac{2}{x}<3$ is true, when x belongs to :
(1) $\left[\frac{2}{3}, \infty\right)$
(2) $\left(-\infty, \frac{2}{3}\right]$
(3) $\left(\frac{2}{3}, \infty\right) \cup(-\infty, 0)$
(4) None of these
37. If $A=\{1,2,4\}$, then the identity relation on A is :
(1) $\{(1,1)\}$
(2) $\{(1,1)(1,2)\}$.
(3) $\{(2 ; 2),(1,4)\}$
(4) $\{(1,1),(2,2),(4,4)\}$
38. Let $A=\{x, y, z\}$ and $B=\{1,2\}$, then the number of relations from A into B are :
(1) 2^{5}
(2) 2^{6}
(3) 2^{3}
(4) 2^{2}
39. The radian measure corresponding to $-47^{\circ} 30^{\prime}$ is :
(1) $-\frac{15}{72} \pi$
(2) $\frac{15}{72} \pi$
(3) $-\frac{19}{72} \pi$
(4) $\frac{19}{72} \pi$
40. The value of $\sin \left(\frac{7 \pi}{6}\right)$ is :
(1) $-\frac{\sqrt{3}}{2}$
(2) $\frac{1}{2}$
(3) $-\frac{1}{\sqrt{2}}$
(4) $\frac{\sqrt{3}}{2}$
41. The number of ways 10 digits numbers can be written using the digits 1 and 2 ::
(1) ${ }^{10} C_{2}$
(2) 10 !
(3) $10_{C_{1}}+9_{C_{2}}$
(4) 2^{10}
42. In an experiment of tossing three coins at a time, the probability of getting 2 heads and one tail is :
(1) $\frac{1}{8}$
(2) $\frac{1}{3}$
(3) $\frac{3}{8}$
(4) $\frac{1}{2}$
43. If A and B are events such that $P(A / B)=P(B / A)$, then :
(1) $B \supset A$ but $A \neq B$
(2) $A=B$
(3) $A \cap B=\phi$
(4) $P(B)=P(A)$
44. If A and B are two independent events, then the probability of occurrence of at least one of A and B is given by :
(1) $P(A)+P(B)$
(2) $P(A)-P(B)$
(3) $P(A \cup B)$
(4) $P(A \cap B)$
45. If A and B are independent events such that $P(A)=\frac{3}{5}$ and $P(B)=\frac{1}{5}$, then $P(A \cap B)$ is :
(1) $\frac{3}{25}$
(2) $\frac{4}{5}$
(3) $\frac{3}{10}$
(4) $\frac{2}{5}$
46. In context to the Bernoulli trials, which one of the following is not true ?
(1) There should be a finite number of trials
(2) The trials should be independent
(3) Each trial has more than two outcomes
(4) The probability of success remains the same in each trial
47. Probability can take values :
(1) 0 to 2
(2) -2 to 2
(3) $-\infty$ to 1
(4) -1 to 1
48. In case of binomial distribution, for given values of ' n ' and ' p ', the probability of x successes $P(x=x)$ is given by :
(1) ${ }^{x} c_{n} p^{x} q^{n-x}$
(2) ${ }^{n} c_{x} p^{x} q^{n-x}$
(3) $p^{x} \cdot q^{n-x}$
(4) ${ }^{n} c_{x} p^{x} q^{n}$
49. If a random variable x follows binomial distribution with ' n ' number of trials and ' p ' probability of success, then mean of x is :
(1) p
(2) $n(1-p)$
(3) $n p q$
(4) $n p$
50. The mean and variance of a binomial distribution are 8 and 4 respectively, then $P(x=1)$ is :
(1) $\frac{1}{2^{4}}$
(2) $\frac{1}{2^{8}}$
(3) $\frac{1}{2^{12}}$
(4) $\frac{1}{2^{6}}$
51. The primary data is gathered through :
(1) Survey
(2) Books
(3) Newspaper
(4) Internet
52. Which of the following is a measure of central tendency ?
(1) Mean deviation
(2) Mean
(3) Quartile deviation
(4) Standard deviation
53. Pie chart represents the components of a factor by :
(1) Angles
(2) Percentages
(3) Sectors
(4) None of these
54. What is the main purpose of statistics ?
(1) To collect data
(2) To analyse data
(3) To interpret data
(4) All of these
55. Which of the following is an example of qualitative data ?
(1) Height
(2) Weight
(3) Age
(4) Gender
56. Which of the following is a measure of dispersion ?
(1) Variance
(2) Median
(3) Mode
(4) Mean
57. Which type of data is best represented by a histogram ?
(1) Categorical
(2) Discrete
(3) Continuous
(4) Nominal
58. If a constant value 5 is subtracted from each observation of a set, then the mean of the set is :
(1) Increased by 5
(2) Decreased by 5
(3) Decreased by 25
(4) is not affected
59. Geometric mean of two numbers $\frac{1}{16}$ and $\frac{4}{25}$, is :
(1) $\frac{1}{10}$
(2) $\frac{1}{100}$
(3) 10
(4) 100
60. The standard deviation of the following data is :
$-1,-2,-3,-4,-5,-6,-7$
(1) -2
(2) 4
(3) 2
(4) -4

B
61. For any positive integer $n, \operatorname{Lim}_{x \rightarrow a} \frac{x^{n}-a^{n}}{x-a}$ is :
(1) 0
(2) 1
(3) $n a^{n}$
(4) $n a^{n-1}$
62. $\operatorname{Lim}_{x \rightarrow 0} \frac{\sin 4 x}{\sin 2 x}$ is equal to :
(1) 0
(2) 1
(3) 2
(4) 3
63. $\operatorname{Lim}(\sec \theta-\tan \theta)=$?
$\theta \rightarrow \frac{\pi}{2}$
(1) 0
(2) 1
(3) -1
(4) ∞
64. If $f(x)=x \sin x$, then $f^{\prime}\left(\frac{\pi}{2}\right)$ is :
(1) 0
(2) 1
(3) -1
(4) $\frac{1}{2}$
65. Derivative of $e^{x^{2}}$ is :
(1) $e^{x^{2}}$
(2) $2 x$
(3) $2 \cdot e^{x^{2}}$
(4) $2 x^{e^{x^{2}}}$
66. A function $f(x)$ is not continuous at $x=1$ if :
(1) $\operatorname{Lim}_{x \rightarrow} f(x) \neq f(1)$
(2) $\operatorname{Lim}_{x \rightarrow 1} f(x)=f(1)$
(3) $f^{1}(1) \neq 0$
(4) None of these
67. If $f(x)=\left\{\begin{array}{cl}x+\lambda ; & x<3 \\ 4 & ; x=3 \\ 3 x-5 ; & x>3\end{array}\right.$ is continuous at $x=3$, then the value of λ is :
(1) 1
(2) -2
(3) -1
(4) 0
68. If f and g be two real functions continuous at a real number ' C ', then which one of the following is not true?
(1) $f+g$ is continuous at $x=c$
(2) $f-g$ is continuous at $x=c$
(3) $f . g$ is continuous at $x=c$
(4) $\frac{f}{g}$ is continuous at $x=c$, if $g(0) \neq 0$
69. If $x-y=\pi$, then $\frac{d y}{d x}=$?
(1) 0
(2) 1
(3) 2
(4) 3
70. If $x=a(t-\sin t)$ and $y=a(1-\cos t)$ then $\frac{d y}{d x}=$?
(1) $\sec t$
(2) $\operatorname{cosec} t$
(3) $\tan \frac{t}{2}$
(4) $\cot \frac{t}{2}$

B
71. The additive inverse of $(2+3 i)^{2}$ is :
(1) $-5+12 i$
(2) $-9+12 i$
(3) $5-12 i$
(4) $9-12 i$
72. Multiplicative inverse of $4+7 i$ is :
(1) $(-4-7 i)$
(2) $-4+7 i$
(3) $-\frac{4}{65}+\frac{7}{65} i$
(4) $\frac{4}{65}-\frac{7}{65} i$
73. How many terms are there in A. P. $20,22,24,26, \ldots ., 100$?
(1) 40
(2) 41
(3) 42
(4) 43
74. The sum of the first 15 terms of the A. P. $5,10,15,20, \ldots \ldots$ is :
(1) 400
(2) 425
(3) 600
(4) 525
75. If $\left[\begin{array}{rr}1 & 0 \\ 3 & -4\end{array}\right]+\left[\begin{array}{rr}a & 1 \\ -1 & b\end{array}\right]=\left[\begin{array}{rr}2 & 1 \\ 2 & -2\end{array}\right]$, then value of a and b are :
(1) $1,-2$
(2) $-1,2$
(3) $-1,-2$
(4) 1,2
76. Inverse matrix of $\left[\begin{array}{cc}2 & -3 \\ -4 & 2\end{array}\right]$ is :
(1) $-\frac{1}{8}\left[\begin{array}{ll}2 & 3 \\ 4 & 2\end{array}\right]$
(2) $-\frac{1}{8}\left[\begin{array}{ll}2 & 4 \\ 3 & 2\end{array}\right]$
(3) $\frac{1}{8}\left[\begin{array}{ll}2 & 3 \\ 4 & 2\end{array}\right]$
(4) $\frac{1}{8}\left[\begin{array}{ll}2 & 4 \\ 3 & 2\end{array}\right]$
77. The minor of -3 in the determinant $\left|\begin{array}{rrr}2 & -3 & 1 \\ 4 & 0 & 5 \\ -1 & 6 & 7\end{array}\right|$ is :
(1) 30
(2) 33
(3) 28
(4) 32
78. Let A be a square matrix of order 3×3, then $|\mathrm{KA}|$ is :
(1) $3 \mathrm{~K}|\mathrm{~A}|$
(2) $\mathrm{K}|\mathrm{A}|$
(3) $\mathrm{K}^{2}|\mathrm{~A}|$
(4) $\mathrm{K}^{3}|\mathrm{~A}|$
79. Matrices A and B will be inverse of each other only if :
(1) $\mathrm{AB}=\mathrm{BA}$
(2) $\mathrm{AB}=\mathrm{BA}=0$
(3) $\mathrm{AB}=\mathrm{BA}=\mathrm{I}$
(4) $\mathrm{AB}=\mathrm{I}, \mathrm{BA}=0$
80. Which of the following is not a property of inverse of a matrix ?
(1) $\left(A^{-1}\right)^{-1}=A$
(2) $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$
(3) $(A B)^{-1}=A^{-1} B^{-1}$
(4) $\operatorname{Adj}\left(A^{-1}\right)=(\operatorname{Adj} A)^{-1}$

B
81. Which of the following can not be the probability of occurrence of an event?
(1) $\frac{2}{3}$
(2) $\frac{3}{2}$
(3) 0
(4) 1
82. In an experiment of rolling a fair die and unbiased coin, the sample space is :
(1) $\{\mathrm{H} 1, \mathrm{H} 2, \mathrm{H} 3, \mathrm{H} 4, \mathrm{H} 5, \mathrm{H} 6\}$
(2) $\{\mathrm{T} 1, \mathrm{~T} 2, \mathrm{~T} 3, \mathrm{~T} 4, \mathrm{~T} 5, \mathrm{~T} 6\}$
(3) $\{\mathrm{H} 1, \mathrm{H} 2, \mathrm{H} 3, \mathrm{~T} 4, \mathrm{~T} 5, \mathrm{~T} 6\}$
(4) $\{\mathrm{H} 1, \mathrm{H} 2, \mathrm{H} 3, \mathrm{H} 4, \mathrm{H} 5, \mathrm{H} 6, \mathrm{~T} 1, \mathrm{~T} 2, \mathrm{~T} 3, \mathrm{~T} 4, \mathrm{~T} 5, \mathrm{~T} 6\}$
83. If $P(A)=0.37, P(B)=0.42, P(A \cap B)=0.09$, then $P(A \cup B)$ is :
(1) 0.7
(2) 0.8
(3) 0.68
(4) 0.75
84. Probability of occurrence of an impossible event is :
(1) 1
(2) 2
(3) 0
(4) 0.5
85. A family has two children. What is the probability that both the children are boys, given that at least one of them is a boy ?
(1) $\frac{3}{4}$
(2) $\frac{1}{4}$
(3) $\frac{1}{2}$
(4) $\frac{1}{3}$
86. Given that $P(A)=\frac{1}{3}, P(B)=\frac{3}{4}$ and $P(A \cup B)=\frac{11}{12}$, then $\mathrm{P}(\mathrm{B} / \mathrm{A})$ is :
(1) $\frac{1}{6}$
(2) $\frac{5}{6}$
(3) $\frac{2}{9}$
(4) $\frac{1}{2}$
87. If ${ }^{5} P_{r}=2 .{ }^{6} p_{r-1}$, then value of ' r ' is :
(1) 1
(2) 2
(3) 3
(4) 4
88. In how many ways can 5 men and 4 women be seated in a row so that the women occupy the even places?
(1) 2880
(2) 2860
(3) 2800
(4) 2820
89. The value of ${ }^{n} P_{n-1}$ is :
(1) n !
(2) n
(3) $2 n$!
(4) $2 n$
90. The number of squares that can be formed on a Chessboard :
(1) 224
(2) 204
(3) 160
(4) 64

B
91. If $x=t^{2}$ and $y=t^{3}$, then $\frac{d^{2} y}{d x^{2}}=$?
(1) $\frac{3}{4 t}$
(2) \sqrt{t}
(3) t
(4) $\frac{3}{2 \sqrt{t}}$
92. The rate of change of the area of a circle with respect to its radius ' r ' where $r=3 \mathrm{~cm}$, is :
(1) 2π
(2) 4π
(3) 6π
(4) 10π
93. The point, at which the tangent to the curve $y=\sqrt{4 x-3}-1$ has its slope $\frac{2}{3}$, is :
(1) $(1,2)$
(2) $(2,1)$
(3) $(2,3)$
(4) $(3,2)$
94. If $f^{\prime}(x)=x^{2}+5$ and $f(0)=-1$, then $f(x)=$?
(1) $\frac{1}{3} x^{3}+5 x-1$
(2) $\frac{1}{3} x^{3}+5 x+1$
(3) $x^{3}+5 x+1$
(4) $x^{3}+5 x-1$
95. The value of $\int_{-2}^{2}\left(p x^{3}+q x+r\right) d x$, is :
(1) r
(2) $2 r$
(3) $3 r$
(4) $4 r$
96. $\int \frac{\sin x+\cos x}{\sqrt{1+\sin 2 x}} d x=$?
(1) $\sin x+c$
(2) $x+c$
(3) $\cos x+c$
(4) $x^{2}+c$
97. Area bounded by the curve $y=\log x, x-$ axis and the ordinates $x=1, x=2$ is :
(1) $\log 4$ sq. unit
(2) $(\log 4-1)$ sq. unit
(3) $(\log 4+1)$ sq. unit
(4) $(\log 4-2)$ sq. unit
98. The general solution of $x^{2} \frac{d y}{d x}=6$ is :
(1). $y=\frac{-6}{x}+c$
(2) $y=\frac{6}{x}+c$
(3) $y=\frac{12}{x}+c$
(4) $y=x+c$
99. The order and degree of differential equation $\frac{d^{4} y}{d x^{4}}-4 \frac{d^{3} y}{d x}+8 \frac{d^{2} y}{d x^{2}}-8 \frac{d y}{d x}+4 y=0$ are :
(1) $(4,4)$
(2) $(4,1)$
(3) $(1,1)$
(4) $(1,4)$
100. The maximum value of :

$$
P=x+3 y
$$

Such that :
$2 x+y \leq 20$
$x+2 y \leq 20$
$x \geq 0, y \geq 0$, is :
(1) 10
(2) 60
(3) 30
(4) 25
\qquad
Time : $1 \frac{1}{4}$ Hours
Roll No. (in figures) \qquad Max. Marks : 100

Total Questions: 100

Name (in words) \qquad

Father's Name \qquad Date of Birth \qquad

Date of Examination \qquad
(Signature of the Candidate)

> (Signature of the Invigilator)

CANDIDATES MUST READ THE FOLLOWING INFORMATION/INSTRUCTIONS BEFORE STARTING THE QUESTION PAPER.

1. All questions are compulsory.

2. The candidates must return the question booklet as well as OMR Answer-Sheet to the Invigilator concerned before leaving the Examination Hall, failing which a case of use of unfairmeans / mis-behaviour will be registered against him / her, in addition to lodging of an FIR with the police. Further the answer-sheet of such a candidate will not be evaluated.
3. Keeping in view the transparency of the examination system, carbonless OMR Sheet is provided to the candidate so that a copy of OMR Sheet may be kept by the candidate.
4. Question Booklet along with answer key of all the A, B, C \& D code shall be got uploaded on the University Website immediately after the conduct of Entrance Examination. Candidates may raise valid objection/complaint if any, with regard to discrepancy in the question booklet/answer key within 24 hours of uploading the same on the University Website. The complaint be sent by the students to the Controller of Examinations by hand or through email. Thereafter, no complaint in any case, will be considered.
5. The candidate must not do any rough work or writing in the OMR Answer-Sheet. Rough work, if any, may be done in the question booklet itself. Answers must not be ticked in the question booklet.
6. There will be no negative marking. Each correct answer will be awarded one full mark. Cutting, erasing, overwriting and more than one answer in OMR Answer-Sheet will be treated as incorrect answer.
7. Use only Black or Blue Ball Point Pen of good quality in the OMR Answer-Sheet.
8. Before answering the questions, the candidates should ensure that they have been supplied correct and complete booklet. Complaints, if any, regarding misprinting eic. will not be entertained 30 minutes after starting of the examination.

UG-EE-June, 2024/(Statistics-4 Yr.)(SET-Y)/(C)

1. For any positive integer $n, \operatorname{Lim}_{x \rightarrow a} \frac{x^{n}-a^{n}}{x-a}$ is :
(1) 0
(2) 1
(3) $n a^{n}$
(4) $n a^{n-1}$
2. $\operatorname{Lim}_{x \rightarrow 0} \frac{\sin 4 x}{\sin 2 x}$ is equal to :
(1) 0
(2) 1
(3) 2
(4) 3
3. $\operatorname{Lim}(\sec \theta-\tan \theta)=$?
$\theta \rightarrow \frac{\pi}{2}$
(1) 0
(2) 1
(3) -1
(4) ∞
4. If $f(x)=x \sin x$, then $f^{\prime}\left(\frac{\pi}{2}\right)$ is :
(1) 0
(2) 1
(3) -1
(4) $\frac{1}{2}$
5. Derivative of $e^{x^{2}}$ is :
(1) $e^{x^{2}}$
(2) $2 x$
(3) $2 . e^{x^{2}}$
(4) $2 x^{e^{x^{2}}}$
6. A function $f(x)$ is not continuous at $x=1$ if :
(1) $\operatorname{Lim}_{x \rightarrow} f(x) \neq f(1)$
(2) $\operatorname{Lim}_{x \rightarrow 1} f(x)=f(1)$
(3) $f^{1}(1) \neq 0$
(4) None of these
7. If $f(x)=\left\{\begin{array}{cll}x+\lambda & ; x<3 \\ 4 & ; x=3 \\ 3 x-5 & ; x>3\end{array}\right.$ is continuous at $x=3$, then the value of λ is :
(1) 1
(2) -2
(3) -1
(4) 0
8. If f and g be two real functions continuous at a real number ' C ', then which one of the following is not true?
(1) $f+g$ is continuous at $x=c$
(2) $f-g$ is continuous at $x=c$
(3) $f . g$ is continuous at $x=c$
(4) $\frac{f}{g}$ is continuous at $x=c$, if $g(0) \neq 0$
9. If $x-y=\pi$, then $\frac{d y}{d x}=$?
(1) 0
(2) 1
(3) 2
(4) 3
10. If $x=a(t-\sin t)$ and $y=a(1-\cos t)$ then $\frac{d y}{d x}=$?
(1) $\sec t$
(2) $\operatorname{cosec} t$
(3) $\tan \frac{t}{2}$
(4) $\cot \frac{t}{2}$
11. The number of ways 10 digits numbers can be written using the digits 1 and 2 :
(1) $10_{C_{2}}$
(2) 10 !
(3) $10_{C_{1}}+9_{C_{2}}$
(4) 2^{10}
12. In an experiment of tossing three coins at a time, the probability of getting 2 heads and one tail is :
(1) $\frac{1}{8}$
(2) $\frac{1}{3}$
(3) $\frac{3}{8}$
(4) $\frac{1}{2}$
13. If A and B are events such that $P(A / B)=P(B / A)$, then :
(1) $B \supset A$ but $A \neq B$
(2) $A=B$
(3) $A \cap B=\phi$
(4) $P(B)=P(A)$
14. If A and B are two independent events, then the probability of occurrence of at least one of A and B is given by :
(1) $P(A)+P(B)$
(2) $P(A)-P(B)$
(3) $P(A \cup B)$
(4) $P(A \cap B)$
15. If A and B are independent events such that $P(A)=\frac{3}{5}$ and $P(B)=\frac{1}{5}$, then $P(A \cap B)$ is :
(1) $\frac{3}{25}$
(2) $\frac{4}{5}$
(3) $\frac{3}{10}$
(4) $\frac{2}{5}$
16. In context to the Bernoulli trials, which one of the following is not true ?
(1) There should be a finite number of trials
(2) The trials should be independent
(3) Each trial has more than two outcomes
(4) The probability of success remains the same in each trial
17. Probability can take values:
(1) 0 to 2
(2) -2 to 2
(3) $-\infty$ to 1
(4) -1 to 1
18. In case of binomial distribution, for given values of ' n ' and ' p ', the probability of x successes $P(x=x)$ is given by :
(1) ${ }^{x} c_{n} p^{x} q^{n-x}$
(2) ${ }^{n} c_{x} p^{x} q^{n-x}$
(3) $p^{x} \cdot q^{n-x}$
(4) ${ }^{n} c_{x} p^{x} q^{n}$
19. If a random variable x follows binomial distribution with ' n ' number of trials and ' p ' probability of success, then mean of x is :
(1) p
(2) $n(1-p)$
(3) $n p q$
(4) $n p$
20. The mean and variance of a binomial distribution are 8 and 4 respectively, then $P(x=1)$ is :
(1) $\frac{1}{2^{4}}$
(2) $\frac{1}{2^{8}}$
(3) $\frac{1}{2^{12}}$
(4) $\frac{1}{2^{6}}$.

C
21. A class of 30 boys and 15 girls is given a test in statistics. The average marks obtained by boys is 15 and by girls is 6 . The average of whole class is :
(1) 10.5
(2) 12
(3) 12.5
(4) 10
22. The sum of square of deviations for 10 observations taken from mean is 250 . The value of variance is :
(1) 25
(2) 30
(3) 40
(4) 45
23. The variance of $6,8,10,12,14$ is :
(1) 1
(2) 12
(3) 18
(4) 8
24. The mean of 8 numbers is 15 . A new number 24 is added. The mean of nine numbers is :
(1) 18
(2) 16
(3) 12
(4) 11
25. The median of the series :
$3,18,7,20,11,12,9,17,22$
(1) 11
(2) 12
(3) 10
(4) 8
26. Find out the missing number of the series :
$2,6,14,26,42$, \qquad
(1) 52
(2) 62
(3) 72
(4) 60
27. Find out the missing letters of the series :
x \qquad $x x y y x$ \qquad xyyyxxxx
(1) x, x
(2) y, y
(3) y, x
(4) x, y
28. In a code language if 'TRAINS' is coded as 'RTIASN', how 'PISTOL' will be coded in the same language ?
(1) IPTSLO
(2) IPSTLO
(3) SIPTLO
(4) IPTLSO
29. A person started walking towards North. After walking 30 metres, he turned towards left and walked 40 metres. He then turned left and walked 30 metres. He again turned left and walked 50 metres. How far is he from his original position?
(1) 40 metres
(2) 30 metres
(3) 20 metres
(4) 10 metres
30. If + means $\times,-$ means,$+ \times$ means \div and \div means - , then :
$6-3+8 \times 3 \div 4=$?
(1) 4
(2) 5
(3) 10
(4) 12

C
31. The mean of 5 observations $1,2,6, x$ and y is 4.2 , then $x+y$ is :
(1) 4
(2) 8
(3) 15
(4) 12
32. Mean deviation for ' n ' observations $x_{1}, x_{2}, \ldots ., x_{n}$ from their mean \bar{X} is :
(1) $\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}$
(2) $\frac{1}{n} \sum_{i=1}^{n}\left|X_{i}-\bar{X}\right|$
(3) $\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}$
(4) $\sum_{i=1}^{n}\left|X_{i}-\bar{X}\right|$
33. Mean of first ' n ' natural number is :
(1) $\frac{n}{2}$
(2) $\frac{n(n+1)}{2}$
(3) $\frac{n+1}{2}$
(4) $\frac{n-1}{2}$
34. The standard deviation of 10 observations is 09 . If 2 is subtracted from each observation, then the new standard deviation is :
(1) 09
(2) 11
(3) 08
(4) 07
35. Mean deviation from the median for the following data is :
$3,9,6,8,4,12,19,21$
(1) 2
(2) 3
(3) 4
(4) 5
36. What is the harmonic mean of 5 and 2 ?
(1) $\frac{20}{7}$
(2) $\frac{30}{7}$
(3) $\frac{10}{7}$
(4) $\frac{40}{7}$
37. The sum of deviations about mean is :
(1) Largest
(2) Smallest
(3) Positive
(4) Zero
38. The relationship between arithmetic mean (A. M.), geometric mean (G. M.) and harmonic mean (H. M.) can be expressed as :
(1) A. M. \geq G. M. \geq H. M.
(2) A. M. $=$ G. M. $-\mathrm{H} . \mathrm{M}$.
(3) G. M. $\geq \mathrm{H} . \mathrm{M} . \geq \mathrm{A} . \mathrm{M}$.
(4) A. M. \leq G. M. \leq H. M.
39. The range is calculated as :
(1) The sum of all data values
(2) The product of all data values
(3) The square of the mean deviation
(4) The difference between the largest and smallest data values
40. Mode of the following data is :

$$
3,2,5,2,3,5,6,5,6,3,2,5,1
$$

(1) 2
(2) 3
(3) 5
(4) 6
41. The additive inverse of $(2+3 i)^{2}$ is :
(1) $-5+12 i$
(2) $-9+12 i$
(3) $5-12 i$
(4) $9-12 i$
42. Multiplicative inverse of $4+7 i$ is :
(1) $(-4-7 i)$
(2) $-4+7 i$
(3) $-\frac{4}{65}+\frac{7}{65} i$
(4) $\frac{4}{65}-\frac{7}{65} i$
43. How many terms are there in A. P. $20,22,24,26, \ldots ., 100$?
(1) 40
(2) 41
(3) 42
(4) 43
44. The sum of the first 15 terms of the A. P. $5,10,15,20$, \qquad is :
(1) 400
(2) 425
(3) 600
(4) 525
45. If $\left[\begin{array}{rr}1 & 0 \\ 3 & -4\end{array}\right]+\left[\begin{array}{rr}a & 1 \\ -1 & b\end{array}\right]=\left[\begin{array}{rr}2 & 1 \\ 2 & -2\end{array}\right]$, then value of a and b are :
(1) $1,-2$
(2) $-1,2$
(3) $-1,-2$
(4) 1,2
46. Inverse matrix of $\left[\begin{array}{cc}2 & -3 \\ -4 & 2\end{array}\right]$ is :
(1) $-\frac{1}{8}\left[\begin{array}{ll}2 & 3 \\ 4 & 2\end{array}\right]$
(2) $-\frac{1}{8}\left[\begin{array}{ll}2 & 4 \\ 3 & 2\end{array}\right]$
(3) $\frac{1}{8}\left[\begin{array}{ll}2 & 3 \\ 4 & 2\end{array}\right]$
(4) $\frac{1}{8}\left[\begin{array}{ll}2 & 4 \\ 3 & 2\end{array}\right]$
47. The minor of -3 in the determinant $\left|\begin{array}{rrr}2 & -3 & 1 \\ 4 & 0 & 5 \\ -1 & 6 & 7\end{array}\right|$ is :
(1) 30
(2) 33
(3) 28
(4) 32
48. Let A be a square matrix of order 3×3, then $\mid \mathrm{KAl}$ is :
(1) $3 \mathrm{~K}|\mathrm{~A}|$
(2) $\mathrm{K}|\mathrm{A}|$
(3) $\mathrm{K}^{2}|\mathrm{~A}|$
(4) $\mathrm{K}^{3}|\mathrm{~A}|$
49. Matrices A and B will be inverse of each other only if :
(1) $\mathrm{AB}=\mathrm{BA}$
(2) $\mathrm{AB}=\mathrm{BA}=0$
(3) $\mathrm{AB}=\mathrm{BA}=\mathrm{I}$
(4) $\mathrm{AB}=\mathrm{I}, \mathrm{BA}=0$
50. Which of the following is not a property of inverse of a matrix ?
(1) $\left(A^{-1}\right)^{-1}=A$
(2) $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$
(3) $(A B)^{-1}=A^{-1} B^{-1}$
(4) $\operatorname{Adj}\left(A^{-1}\right)=(\operatorname{Adj} A)^{-1}$

C
51. If $x=t^{2}$ and $y=t^{3}$, then $\frac{d^{2} y}{d x^{2}}=$?
(1) $\frac{3}{4 t}$
(2) \sqrt{t}
(3) t
(4) $\frac{3}{2 \sqrt{t}}$
52. The rate of change of the area of a circle with respect to its radius ' r ' where $r=3 \mathrm{~cm}$, is :
(1) 2π
(2) 4π
(3) 6π
(4) 10π
53. The point, at which the tangent to the curve $y=\sqrt{4 x-3}-1$ has its slope $\frac{2}{3}$, is :
(1) $(1,2)$
(2) $(2,1)$
(3) $(2,3)$
(4) $(3,2)$
54. If $f^{\prime}(x)=x^{2}+5$ and $f(0)=-1$, then $f(x)=$?
(1) $\frac{1}{3} x^{3}+5 x-1$
(2) $\frac{1}{3} x^{3}+5 x+1$
(3) $x^{3}+5 x+1$
(4) $x^{3}+5 x-1$
55. The value of $\int_{-2}^{2}\left(p x^{3}+q x+r\right) d x$, is :
(1) r
(2) $2 r$
(3) $3 r$
(4) $4 r$
56. $\int \frac{\sin x+\cos x}{\sqrt{1+\sin 2 x}} d x=$?
(1) $\sin x+c$
(2) $x+c$
(3) $\cos x+c$
(4) $x^{2}+c$
57. Area bounded by the curve $y=\log x, x$-axis and the ordinates $x=1, x=2$ is :
(1) $\log 4$ sq. unit
(2) $(\log 4-1)$ sq. unit
(3) $(\log 4+1)$ sq. unit
(4) $(\log 4-2)$ sq. unit
58. The general solution of $x^{2} \frac{d y}{d x}=6$ is :
(1) $y=\frac{-6}{x}+c$
(2) $y=\frac{6}{x}+c$
(3) $y=\frac{12}{x}+c$
(4) $y=x+c$
59. The order and degree of differential equation $\frac{d^{4} y}{d x^{4}}-4 \frac{d^{3} y}{d x}+8 \frac{d^{2} y}{d x^{2}}-8 \frac{d y}{d x}+4 y=0$ are :
(1) $(4,4)$
(2) $(4,1)$
(3) $(1,1)$
(4) $(1,4)$
60. The maximum value of :

$$
P=x+3 y
$$

Such that :

$$
\begin{aligned}
& 2 x+y \leq 20 \\
& x+2 y \leq 20 \\
& x \geq 0, y \geq 0, \text { is : }
\end{aligned}
$$

(1) 10
(2) 60
(3) 30
(4) 25

C
61. How many subsets can be formed from the following set :
$\{1,2,3 \ldots \ldots n\}$
(1) n
(2) n^{2}
(3) $2 n$
(4) 2^{n}
62. If $A=\{1,2,3\}, B=\{3,4\}, C=\{4,5,6\}$, then $A \cup(B \cap C)$ is :
(1) $\{3\}$
(2) $\{1,2,3,4\}$
(3) $\{1,2,3,5\}$
(4) $\{1,2,3,4,5,6\}$
63. In rule method, the null set is represented by :
(1) $\}$
(2) ϕ
(3) $\{x: x=x\}$
(4) $\{x: x \neq x\}$
64. Let $U=\{1,2,3, \ldots .10\}, A=\{1,2,5\}, B=\{6,7\}$, then $A \cap B^{\prime}$ is (Where A^{\prime} \& B^{\prime} represent compliment of A and B respectively) :
(1) A
(2) B^{\prime}
(3) A^{\prime}
(4) B
65. In a group of 70 people, 37 like coffee, 52 like tea and each person likes at least one of the two drives. How many like both coffee and tea ?
(1) 17
(2) 18
(3) 19
(4) 20
66. The inequality $\frac{2}{x}<3$ is true, when x belongs to :
(1) $\left[\frac{2}{3}, \infty\right)$
(2) $\left(-\infty, \frac{2}{3}\right]$
(3) $\left(\frac{2}{3}, \infty\right) \cup(-\infty, 0)$
(4) None of these
67. If $A=\{1,2,4\}$, then the identity relation on A is :
(1) $\{(1,1)\}$
(2) $\{(1,1)(1,2)\}$
(3) $\{(2,2),(1,4)\}$
(4) $\{(1,1),(2,2),(4,4)\}$
68. Let $A=\{x, y, z\}$ and $B=\{1,2\}$, then the number of relations from A into B are :
(1) 2^{5}
(2) 2^{6}
(3) 2^{3}
(4) 2^{2}
69. The radian measure corresponding to $-47^{\circ} 30^{\prime}$ is :
(1) $-\frac{15}{72} \pi$
(2) $\frac{15}{72} \pi$
(3) $-\frac{19}{72} \pi$
(4) $\frac{19}{72} \pi$
70. The value of $\sin \left(\frac{7 \pi}{6}\right)$ is :
(1) $-\frac{\sqrt{3}}{2}$
(2) $\frac{1}{2}$
(3) $-\frac{1}{\sqrt{2}}$
(4) $\frac{\sqrt{3}}{2}$
71. Which of the following can not be the probability of occurrence of an event?
(1) $\frac{2}{3}$
(2) $\frac{3}{2}$
(3) 0
(4) 1
72. In an experiment of rolling a fair die and unbiased coin, the sample space is :
(1) $\{\mathrm{H} 1, \mathrm{H} 2, \mathrm{H} 3, \mathrm{H} 4, \mathrm{H} 5, \mathrm{H} 6\}$
(2) $\{\mathrm{T} 1, \mathrm{~T} 2, \mathrm{~T} 3, \mathrm{~T} 4, \mathrm{~T} 5, \mathrm{~T} 6\}$
(3) $\{\mathrm{H} 1, \mathrm{H} 2, \mathrm{H} 3, \mathrm{~T} 4, \mathrm{~T} 5, \mathrm{~T} 6\}$
(4) $\{\mathrm{H} 1, \mathrm{H} 2, \mathrm{H} 3, \mathrm{H} 4, \mathrm{H} 5, \mathrm{H} 6, \mathrm{~T} 1, \mathrm{~T} 2, \mathrm{~T} 3, \mathrm{~T} 4, \mathrm{~T} 5, \mathrm{~T} 6\}$
73. If $P(A)=0.37, P(B)=0.42, P(A \cap B)=0.09$, then $P(A \cup B)$ is :
(1) 0.7
(2) 0.8
(3) 0.68
(4) 0.75
74. Probability of occurrence of an impossible event is :
(1) 1
(2) 2
(3) 0
(4) 0.5
75. A family has two children. What is the probability that both the children are boys, given that at least one of them is a boy ?
(1) $\frac{3}{4}$
(2) $\frac{1}{4}$
(3) $\frac{1}{2}$
(4) $\frac{1}{3}$
76. Given that $P(A)=\frac{1}{3}, P(B)=\frac{3}{4}$ and $P(A \cup B)=\frac{11}{12}$, then $\mathrm{P}(\mathrm{B} / \mathrm{A})$ is :
(1) $\frac{1}{6}$
(2) $\frac{5}{6}$
(3) $\frac{2}{9}$
(4) $\frac{1}{2}$
77. If ${ }^{5} P_{r}=2 .{ }^{6} p_{r-1}$, then value of ' r ' is :
(1) 1
(2) 2
(3) 3
(4) 4
78. In how many ways can 5 men and 4 women be seated in a row so that the women occupy the even places ?
(1) 2880
(2) 2860
(3) 2800
(4) 2820
79. The value of ${ }^{n} P_{n-1}$ is :
(1) n !
(2) n
(3) $2 n$!
(4) $2 n$
80. The number of squares that can be formed on a Chessboard :
(1) 224
(2) 204
(3) 160
(4) 64

C

81. 'Page' is related to 'Book' as 'Leaf' is related to :
(1) Root
(2) Tree
(3) Fruit
(4) Forest
82. Newspaper : Press : : Cloth : ?
(1) Fibre
(2) Textile
(3) Tailor
(4) Mill
83. In 10 years, ' A ' will be twice as old as ' B ' was 10 years ago. If at present ' A ' is 9 years older than ' B ', the present age of ' B ' is :
(1) 19 years
(2) 29 years
(3) 39 years
(4) 59 years
84. Pointing towards a person, a man said to a woman "His mother is the only daughter of your father". How is woman related to that person?
(1) Daughter
(2) Mother
(3) Sister
(4) Wife
85. Mirror image of \rightarrow is :
(1) \square
(2)

(3) \longleftarrow
(4)

86. Calculate the simple interest of Rs. 7200 at $12 \frac{3}{4} \%$ per annum for 9 months :
(1) Rs. 688.50
(2) Rs. 670.50
(3) Rs. 700.1
(4) Rs. 690
87. A man buys 25 chairs for Rs. 375 and sells them at profit equal to the selling price of 5 chairs. What is the selling price of one chair ?
(1) Rs. 14.50
(2) Rs. 15.20
(3) Rs. 17.20
(4) Rs. 18.75
88. A man riding on a bicycle at a speed of $15 \mathrm{~km} / \mathrm{h}$ crosses a bridge in 5 minute. The length of the bridge is :
(1) 1 km
(2) $1 \frac{1}{4} \mathrm{~km}$
(3) 2 km
(4) $2 \frac{1}{2} \mathrm{~km}$
89. The HCF of $\frac{9}{10}, \frac{12}{25}, \frac{18}{25}$ and $\frac{21}{40}$ is :
(1) $\frac{3}{5}$
(2) $\frac{252}{5}$
(3) $\frac{3}{1400}$
(4) $\frac{52}{140}$
90. Find the missing number :

(1) 37
(2) 41
(3) 47
(4) 18

UG-EE-June, 2024/(Statistics-4 Yr.)(SET-Y)/(C)

C
91. The primary data is gathered through :
(1) Survey
(2) Books
(3) Newspaper
(4) Internet
92. Which of the following is a measure of central tendency ?
(1) Mean deviation
(2) Mean
(3) Quartile deviation
(4) Standard deviation
93. Pie chart represents the components of a factor by :
(1) Angles
(2) Percentages
(3) Sectors
(4) None of these
94. What is the main purpose of statistics ?
(1) To collect data
(2) To analyse data
(3) To interpret data
(4) All of these
95. Which of the following is an example of qualitative data ?
(1) Height
(2) Weight
(3) Age
(4) Gender
96. Which of the following is a measure of dispersion ?
(1) Variance
(2) Median
(3) Mode
(4) Mean
97. Which type of data is best represented by a histogram ?
(1) Categorical
(2) Discrete
(3) Continuous
(4) Nominal
98. If a constant value 5 is subtracted from each observation of a set, then the mean of the set is :
(1) Increased by 5
(2) Decreased by 5
(3) Decreased by 25
(4) is not affected
99. Geometric mean of two numbers $\frac{1}{16}$ and $\frac{4}{25}$, is :
(1) $\frac{1}{10}$
(2) $\frac{1}{100}$
(3) 10
(4) 100
100. The standard deviation of the following data is :
$-1,-2,-3,-4,-5,-6,-7$
(1) -2
(2) 4
(3) 2
(4) -4

(DO NOT OPEN THIS QUESTION BOOKLET BEFORE TIME OR UNTIL YOU

\qquad

Time : $\mathbf{1} 1 / 4$ Hours
Roll No. (in figures) \qquad Max. Marks : 100

Total Questions: 100 (in words) \qquad
Name \qquad Date of Birth \qquad
Father's Name \qquad Mother's Name \qquad
Date of Examination \qquad
(Signature of the Candidate)
(Signature of the Invigilator)

CANDIDATES MUST READ THE FOLLOWING INFORMATION/INSTRUCTIONS BEFORE STARTING THE QUESTION PAPER.

1. All questions are compulsory.

2. The candidates must return the question booklet as well as OMR Answer-Sheet to the Invigilator concerned before leaving the Examination Hall, failing which a case of use of unfairmeans / mis-behaviour will be registered against him / her, in addition to lodging of an FIR with the police. Further the answer-sheet of such a candidate will not be evaluated.
3. Keeping in view the transparency of the examination system, carbonless OMR Sheet is provided to the candidate so that a copy of OMR Sheet may be kept by the candidate.
4. Question Booklet along with answer key of all the A, B, C \& D code shall be got uploaded on the University Website immediately after the conduct of Entrance Examination. Candidates may raise valid objection/complaint if any, with regard to discrepancy in the question booklet/answer key within 24 hours of uploading the same on the University Website. The complaint be sent by the students to the Controller of Examinations by hand or through email. Thereafter, no complaint in any case, will be considered.
5. The candidate must not do any rough work or writing in the OMR Answer-Sheet. Rough work, if any, may be done in the question booklet itself. Answers must not be ticked in the question booklet.
6. There will be no negative marking. Each correct answer will be awarded one full mark. Cutting, erasing, overwriting and more than one answer in OMR Answer-Sheet will be treated as incorrect answer.
7. Use only Black or Blue Ball Point Pen of good quality in the OMR Answer-Sheet.
8. Before answering the questions, the candidates should ensure that they have been supplied correct and complete booklet. Complaints, if any, regarding misprinting etc. will not be entertained 30 minutes after starting of the examination.
UG-EE-June, 2024/(Statistics-4 Yr.)(SET-Y)/(D)

D

1. 'Page' is related to 'Book' as 'Leaf' is related to :
(1) Root
(2) Tree
(3) Fruit
(4) Forest
2. Newspaper : Press : : Cloth : ?
(1) Fibre
(2) Textile
(3) Tailor
(4) Mill
3. In 10 years, ' A ' will be twice as old as ' B ' was 10 years ago. If at present ' A ' is 9 years older than ' B ', the present age of ' B ' is :
(1) 19 years
(2) 29 years
(3) 39 years
(4) 59 years
4. Pointing towards a person, a man said to a woman "His mother is the only daughter of your father". How is woman related to that person?
(1) Daughter
(2) Mother
(3) Sister
(4) Wife
5. Mirror image of \rightarrow is:
(1) \square
(2) \measuredangle
(3)

(4) \rightarrow
6. Calculate the simple interest of Rs. 7200 at $12 \frac{3}{4} \%$ per annum for 9 months :
(1) Rs. 688.50
(2) Rs. 670.50
(3) Rs. 700.1
(4) Rs. 690
7. A man buys 25 chairs for Rs. 375 and sells them at profit equal to the selling price of 5 chairs. What is the selling price of one chair?
(1) Rs. 14.50
(2) Rs. 15.20
(3) Rs. 17.20
(4) Rs. 18.75
8. A man riding on a bicycle at a speed of $15 \mathrm{~km} / \mathrm{h}$ crosses a bridge in 5 minute. The length of the bridge is :
(1) 1 km
(2) $1 \frac{1}{4} \mathrm{~km}$
(3) 2 km
(4) $2 \frac{1}{2} \mathrm{~km}$
9. The HCF of $\frac{9}{10}, \frac{12}{25}, \frac{18}{25}$ and $\frac{21}{40}$ is :
(1) $\frac{3}{5}$
(2) $\frac{252}{5}$
(3) $\frac{3}{1400}$
(4) $\frac{52}{140}$
10. Find the missing number :

(1) 37
(2) 41
(3) 47
(4) 18

UG-EE-June, 2024/(Statistics-4 Yr.)(SET-Y)/(D)

D
11. If $x=t^{2}$ and $y=t^{3}$, then $\frac{d^{2} y}{d x^{2}}=$?
(1) $\frac{3}{4 t}$
(2) \sqrt{t}
(3) t
(4) $\frac{3}{2 \sqrt{t}}$
12. The rate of change of the area of a circle with respect to its radius ' r ' where $r=3 \mathrm{~cm}$, is :
(1) 2π
(2) 4π
(3) 6π
(4) 10π
13. The point, at which the tangent to the curve $y=\sqrt{4 x-3}-1$ has its slope $\frac{2}{3}$, is :
(1) $(1,2)$
(2) $(2,1)$
(3) $(2,3)$
(4) $(3,2)$
14. If $f^{\prime}(x)=x^{2}+5$ and $f(0)=-1$, then $f(x)=$?
(1) $\frac{1}{3} x^{3}+5 x-1$
(2) $\frac{1}{3} x^{3}+5 x+1$
(3) $x^{3}+5 x+1$
(4) $x^{3}+5 x-1$
15. The value of $\int_{-2}^{2}\left(p x^{3}+q x+r\right) d x$, is :
(1) r
(2) $2 r$
(3) $3 r$
(4) $4 r$
16. $\int \frac{\sin x+\cos x}{\sqrt{1+\sin 2 x}} d x=$?
(1) $\sin x+c$
(2) $x+c$
(3) $\cos x+c$
(4) $x^{2}+c$
17. Area bounded by the curve $y=\log x, x$-axis and the ordinates $x=1, x=2$ is :
(1) $\log 4$ sq. unit
(2) $(\log 4-1)$ sq. unit
(3) $(\log 4+1)$ sq. unit
(4) $(\log 4-2)$ sq. unit
18. The general solution of $x^{2} \frac{d y}{d x}=6$ is :
(1) $y=\frac{-6}{x}+c$
(2) $y=\frac{6}{x}+c$
(3) $y=\frac{12}{x}+c$
(4) $y=x+c$
19. The order and degree of differential equation $\frac{d^{4} y}{d x^{4}}-4 \frac{d^{3} y}{d x}+8 \frac{d^{2} y}{d x^{2}}-8 \frac{d y}{d x}+4 y=0$ are :
(1) $(4,4)$
(2) $(4,1)$
(3) $(1,1)$
(4) $(1,4)$
20. The maximum value of:

$$
P=x+3 y
$$

Such that :

$$
\begin{aligned}
& 2 x+y \leq 20 \\
& x+2 y \leq 20 \\
& x \geq 0, y \geq 0, \text { is }
\end{aligned}
$$

(1) 10
(2) 60
(3) 30
(4) 25

UG-EE-June, 2024/(Statistics-4 Yr.)(SET-Y)/(D)

D
21. The mean of 5 observations $1,2,6, x$ and y is 4.2 , then $x+y$ is :
(1) 4
(2) 8
(3) 15
(4) 12
22. Mean deviation for ' n ' observations $x_{1}, x_{2}, \ldots ., x_{n}$ from their mean \bar{X} is :
(1) $\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}$
(2) $\frac{1}{n} \sum_{i=1}^{n}\left|X_{i}-\bar{X}\right|$
(3) $\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}$
(4) $\sum_{i=1}^{n}\left|X_{i}-\bar{X}\right|$
23. Mean of first ' n ' natural number is :
(1) $\frac{n}{2}$
(2) $\frac{n(n+1)}{2}$
(3) $\frac{n+1}{2}$
(4) $\frac{n-1}{2}$
24. The standard deviation of 10 observations is 09 . If 2 is subtracted from each observation, then the new standard deviation is :
(1) 09
(2) 11
(3) 08
(4) 07
25. Mean deviation from the median for the following data is :
$3,9,6,8,4,12,19,21$
(1) 2
(2) 3
(3) 4
(4) 5
26. What is the harmonic mean of 5 and 2 ?
(1) $\frac{20}{7}$
(2) $\frac{30}{7}$
(3) $\frac{10}{7}$
(4) $\frac{40}{7}$
27. The sum of deviations about mean is :
(1) Largest
(2) Smallest
(3) Positive
(4) Zero
28. The relationship between arithmetic mean (A. M.), geometric mean (G. M.) and harmonic mean (H. M.) can be expressed as :
(1) A. M. \geq G. M. \geq H. M.
(2) A. M. = G. M. $-\mathrm{H} \cdot \mathrm{M}$.
(3) G. M. \geq H. M. \geq A. M.
(4) A. M. \leq G. M. \leq H. M.
29. The range is calculated as :
(1) The sum of all data values
(2) The product of all data values
(3) The square of the mean deviation
(4) The difference between the largest and smallest data values
30. Mode of the following data is :
$3,2,5,2,3,5,6,5,6,3,2,5,1$
(1) 2
(2) 3
(3) 5
(4) 6

D
31. For any positive integer $n, \operatorname{Lim}_{x \rightarrow a} \frac{x^{n}-a^{n}}{x-a}$ is :
(1) 0
(2) 1
(3) $n a^{n}$
(4) $n a^{n-1}$
32. $\operatorname{Lim}_{x \rightarrow 0} \frac{\sin 4 x}{\sin 2 x}$ is equal to :
(1) 0
(2) 1
(3) 2
(4) 3
33. $\operatorname{Lim}(\sec \theta-\tan \theta)=$?
$\theta \rightarrow \frac{\pi}{2}$
(1) 0
(2) 1
(3) -1
(4) ∞
34. If $f(x)=x \sin x$, then $f^{\prime}\left(\frac{\pi}{2}\right)$ is :
(1) 0
(2) 1
(3) -1
(4) $\frac{1}{2}$
35. Derivative of $e^{x^{2}}$ is :
(1) $e^{x^{2}}$
(2) $2 x$
(3) $2 e^{x^{2}}$
(4)

36. A function $f(x)$ is not continuous at $x=1$ if :
(1) $\operatorname{Lim}_{x \rightarrow} f(x) \neq f(1)$
(2) $\operatorname{Lim}_{x \rightarrow 1} f(x)=f(1)$
(3) $f^{1}(1) \neq 0$
(4) None of these
37. If $f(x)=\left\{\begin{array}{cl}x+\lambda & ; x<3 \\ 4 & ; x=3 \text { is continuous at } x=3 \text {, then the value of } \lambda \text { is : } \\ 3 x-5 & ;-x>3\end{array}\right.$
(1) 1
(2) -2
(3) -1
(4) 0
38. If f and g be two real functions continuous at a real number ' C ', then which one of the following is not true?
(1) $f+g$ is continuous at $x=c$
(2) $f-g$ is continuous at $x=c$
(3) $f . g$ is continuous at $x=c$
(4) $\frac{f}{g}$ is continuous at $x=c$, if $g(0) \neq 0$
39. If $x-y=\pi$, then $\frac{d y}{d x}=$?
(1) 0
(2) 1
(3) 2
(4) 3
40. If $x=a(t-\sin t)$ and $y=a(1-\cos t)$ then $\frac{d y}{d x}=$?
(1) $\sec t$
(2) $\operatorname{cosec} t$
(3) $\tan \frac{t}{2}$
(4) $\cot \frac{t}{2}$

D
41. The primary data is gathered through :
(1) Survey
(2) Books
(3) Newspaper
(4) Internet
42. Which of the following is a measure of central tendency ?
(1) Mean deviation
(2) Mean
(3) Quartile deviation
(4) Standard deviation
43. Pie chart represents the components of a factor by :
(1) Angles
(2) Percentages
(3) Sectors
(4) None of these
44. What is the main purpose of statistics ?
(1) To collect data.
(2) To analyse data
(3) To interpret data
(4) All of these
45. Which of the following is an example of qualitative data ?
(1) Height
(2) Weight
(3) Age
(4) Gender
46. Which of the following is a measure of dispersion ?
(1) Variance
(2) Median
(3) Mode
(4) Mean
47. Which type of data is best represented by a histogram ?
(1) Categorical
(2) Discrete
(3) Continuous
(4) Nominal
48. If a constant value 5 is subtracted from each observation of a set, then the mean of the set is :
(1) Increased by 5
(2) Decreased by 5
(3) Decreased by 25
(4) is not affected
49. Geometric mean of two numbers $\frac{1}{16}$ and $\frac{4}{25}$, is :
(1) $\frac{1}{10}$
(2) $\frac{1}{100}$
(3) 10
(4) 100
50. The standard deviation of the following data is :
$-1,-2,-3,-4,-5,-6,-7$
(1) -2
(2) 4
(3) 2
(4) -4
51. A class of 30 boys and 15 girls is given a test in statistics. The average marks obtained by boys is 15 and by girls is 6 . The average of whole class is :
(1) 10.5
(2) 12
(3) 12.5
(4) 10
52. The sum of square of deviations for 10 observations taken from mean is 250 . The value of variance is :
(1) 25
(2) 30
(3) 40
(4) 45
53. The variance of $6,8,10,12,14$ is :
(1) 1
(2) 12
(3) 18
(4) 8
54. The mean of 8 numbers is 15 . A new number 24 is added. The mean of nine numbers is :
(1) 18
(2) 16
(3) 12
(4) 11
55. The median of the series :
$3,18,7,20,11,12,9,17,22$
(1) 11
(2) 12
(3) 10
(4) 8
56. Find out the missing number of the series :
$2,6,14,26,42, \ldots \ldots \ldots \ldots$.
(1) 52
(2) 62
(3) 72
(4) 60
57. Find out the missing letters of the series:
x \qquad $x x y y x$ \qquad xyyyxxxx
(1) x, x
(2) y, y
(3) y, x
(4) x, y
58. In a code language if 'TRAINS' is coded as 'RTIASN', how 'PISTOL' will be coded in the same language?
(1) IPTSLO
(2) IPSTLO
(3) SIPTLO
(4) IPTLSO
59. A person started walking towards North. After walking 30 metres, he turned towards left and walked 40 metres. He then turned left and walked 30 metres. He again turned left and walked 50 metres. How far is he from his original position ?
(1) 40 metres
(2) 30 metres
(3) 20 metres
(4) 10 metres
60. If + means $\times,-$ means,$+ \times$ means \div and \div means - , then :
$6-3+8 \times 3 \div 4=?$
(1) 4
(2) 5
(3) 10
(4) 12

D
61. Which of the following can not be the probability of occurrence of an event?
(1) $\frac{2}{3}$
(2) $\frac{3}{2}$
(3) 0
(4) 1
62. In an experiment of rolling a fair die and unbiased coin, the sample space is :
(1) $\{\mathrm{H} 1, \mathrm{H} 2, \mathrm{H} 3, \mathrm{H} 4, \mathrm{H} 5, \mathrm{H} 6\}$
(2) $\{\mathrm{T} 1, \mathrm{~T} 2, \mathrm{~T} 3, \mathrm{~T} 4, \mathrm{~T} 5, \mathrm{~T} 6\}$
(3) $\{\mathrm{H} 1, \mathrm{H} 2, \mathrm{H} 3, \mathrm{~T} 4, \mathrm{~T} 5, \mathrm{~T} 6\}$
(4) $\{\mathrm{H} 1, \mathrm{H} 2, \mathrm{H} 3, \mathrm{H} 4, \mathrm{H} 5, \mathrm{H} 6, \mathrm{~T} 1, \mathrm{~T} 2, \mathrm{~T} 3, \mathrm{~T} 4, \mathrm{~T} 5, \mathrm{~T} 6\}$
63. If $P(A)=0.37, P(B)=0.42, P(A \cap B)=0.09$, then $P(A \cup B)$ is :
(1) 0.7
(2) 0.8
(3) 0.68
(4) 0.75
64. Probability of occurrence of an impossible event is :
(1) 1
(2) 2
(3) 0
(4) 0.5
65. A family has two children. What is the probability that both the children are boys, given that at least one of them is a boy ?
(1) $\frac{3}{4}$
(2) $\frac{1}{4}$
(3) $\frac{1}{2}$
(4) $\frac{1}{3}$
66. Given that $P(A)=\frac{1}{3}, P(B)=\frac{3}{4}$ and $P(A \cup B)=\frac{11}{12}$, then $\mathrm{P}(\mathrm{B} / \mathrm{A})$ is :
(1) $\frac{1}{6}$
(2) $\frac{5}{6}$
(3) $\frac{2}{9}$
(4) $\frac{1}{2}$
67. If ${ }^{5} P_{r}=2 .{ }^{6} p_{r-1}$, then value of ' r ' is :
(1) 1
(2) 2
(3) 3
(4) 4
68. In how many ways can 5 men and 4 women be seated in a row so that the women occupy the even places?
(1) 2880
(2) 2860
(3) 2800
(4) 2820
69. The value of ${ }^{n} P_{n-1}$ is :
(1) n !
(2) n
(3) $2 n$!
(4) $2 n$
70. The number of squares that can be formed on a Chessboard :
(1) 224
(2) 204
(3) 160
(4) 64

D
71. The number of ways 10 digits numbers can be written using the digits 1 and 2 :
(1) $10_{C_{2}}$
(2) 10 !
(3) $10 C_{C_{1}}+9_{C_{2}}$
(4) 2^{10}
72. In an experiment of tossing three coins at a time, the probability of getting 2 heads and one tail is :
(1) $\frac{1}{8}$
(2) $\frac{1}{3}$
(3) $\frac{3}{8}$
(4) $\frac{1}{2}$
73. If A and B are events such that $P(A / B)=P(B / A)$, then :
(1) $B \supset A$ but $A \neq B$
(2) $A=B$
(3) $A \cap B=\phi$
(4) $P(B)=P(A)$
74. If A and B are two independent events, then the probability of occurrence of at least one of A and B is given by :
(1) $P(A)+P(B)$
(2) $P(A)-P(B)$
(3) $P(A \cup B)$
(4) $P(A \cap B)$
75. If A and B are independent events such that $P(A)=\frac{3}{5}$ and $P(B)=\frac{1}{5}$, then $P(A \cap B)$ is :
(1) $\frac{3}{25}$
(2) $\frac{4}{5}$
(3) $\frac{3}{10}$
(4) $\frac{2}{5}$
76. In context to the Bernoulli trials, which one of the following is not true ?
(1) There should be a finite number of trials
(2) The trials should be independent
(3) Each trial has more than two outcomes
(4) The probability of success remains the same in each trial
77. Probability can take values :
(1) 0 to 2
(2) -2 to 2
(3) $-\infty$ to 1
(4) -1 to 1
78. In case of binomial distribution, for given values of ' n ' and ' p ', the probability of x successes $P(x=x)$ is given by :
(1) ${ }^{x} c_{n} p^{x} q^{n-x}$
(2) ${ }^{n} c_{x} p^{x} q^{n-x}$
(3) $p^{x} \cdot q^{n-x}$
(4) ${ }^{n} c_{x} p^{x} q^{n}$
79. If a random variable x follows binomial distribution with ' n ' number of trials and ' p ' probability of success, then mean of x is :
(1) p
(2) $n(1-p)$
(3) $n p q$
(4) $n p$
80. The mean and variance of a binomial distribution are 8 and 4 respectively, then $P(x=1)$ is :
(1) $\frac{1}{2^{4}}$
(2) $\frac{1}{2^{8}}$
(3) $\frac{1}{2^{12}}$
(4) $\frac{1}{2^{6}}$

D
81. How many subsets can be formed from the following set :
$\{1,2,3 \ldots \ldots n\}$
(1) n
(2) n^{2}
(3) $2 n$
(4) 2^{n}
82. If $A=\{1,2,3\}, B=\{3,4\}, C=\{4,5,6\}$, then $A \cup(B \cap C)$ is :
(1) $\{3\}$
(2) $\{1,2,3,4\}$
(3) $\{1,2,3,5\}$
(4) $\{1,2,3,4,5,6\}$
83. In rule method, the null set is represented by :
(1) $\}$
(2) ϕ
(3) $\{x: x=x\}$
(4) $\{x: x \neq x\}$
84. Let $U=\{1,2,3, \ldots .10\}, A=\{1,2,5\}, B=\{6,7\}$, then $A \cap B^{\prime}$ is (Where A^{\prime} \& B^{\prime} represent compliment of A and B respectively) :
(1) A
(2) B^{\prime}
(3) A
(4) B
85. In a group of 70 people, 37 like coffee, 52 like tea and each person likes at least one of the two drives. How many like both coffee and tea?
(1) 17
(2) 18
(3) 19
(4) 20
86. The inequality $\frac{2}{x}<3$ is true, when x belongs to :
(1) $\left[\frac{2}{3}, \infty\right)$
(2) $\left(-\infty, \frac{2}{3}\right]$
(3) $\left(\frac{2}{3}, \infty\right) \cup(-\infty, 0)$
(4) None of these
87. If $A=\{1,2,4\}$, then the identity relation on A is:
(1) $\{(1,1)\}$
(2) $\{(1,1)(1,2)\}$
(3) $\{(2,2),(1,4)\}$
(4) $\{(1,1),(2,2),(4,4)\}$
88. Let $A=\{x, y, z\}$ and $B=\{1,2\}$, then the number of relations from A into B are :
(1) 2^{5}
(2) 2^{6}
(3) 2^{3}
(4) 2^{2}
89. The radian measure corresponding to $-47^{\circ} 30^{\prime}$ is :
(1) $-\frac{15}{72} \pi$
(2) $\frac{15}{72} \pi$
(3) $-\frac{19}{72} \pi$
(4) $\frac{19}{72} \pi$
90. The value of $\sin \left(\frac{7 \pi}{6}\right)$ is :
(1) $-\frac{\sqrt{3}}{2}$
(2) $\frac{1}{2}$
(3) $-\frac{1}{\sqrt{2}}$
(4) $\frac{\sqrt{3}}{2}$

D
91. The additive inverse of $(2+3 i)^{2}$ is :
(1) $-5+12 i$
(2) $-9+12 i$
(3) $5-12 i$
(4) $9-12 i$
92. Multiplicative inverse of $4+7 i$ is :
(1) $(-4-7 i)$
(2) $-4+7 i$
(3) $-\frac{4}{65}+\frac{7}{65} i$
(4) $\frac{4}{65}-\frac{7}{65} i$
93. How many terms are there in A. P. $20,22,24,26, \ldots ., 100$?
(1) 40
(2) 41
(3) 42
(4) 43
94. The sum of the first 15 terms of the A. P. $5,10,15,20, \ldots \ldots$ is
(1) 400
(2) 425
(3) 600
(4) 525
95. If $\left[\begin{array}{rr}1 & 0 \\ 3 & -4\end{array}\right]+\left[\begin{array}{rr}a & 1 \\ -1 & b\end{array}\right]=\left[\begin{array}{rr}2 & 1 \\ 2 & -2\end{array}\right]$, then value of a and b are :
(1) $1,-2$
(2) $-1,2$
(3) $-1,-2$
(4) 1,2
96. Inverse matrix of $\left[\begin{array}{cc}2 & -3 \\ -4 & 2\end{array}\right]$ is :
(1) $-\frac{1}{8}\left[\begin{array}{ll}2 & 3 \\ 4 & 2\end{array}\right]$
(2) $-\frac{1}{8}\left[\begin{array}{ll}2 & 4 \\ 3 & 2\end{array}\right]$
(3) $\frac{1}{8}\left[\begin{array}{ll}2 & 3 \\ 4 & 2\end{array}\right]$
(4) $\frac{1}{8}\left[\begin{array}{ll}2 & 4 \\ 3 & 2\end{array}\right]$
97. The minor of -3 in the determinant $\left|\begin{array}{rrr}2 & -3 & 1 \\ 4 & 0 & 5 \\ -1 & 6 & 7\end{array}\right|$ is :
(1) 30
(2) 33
(3) 28
(4) 32
98. Let A be a square matrix of order 3×3, then $|\mathrm{KA}|$ is :
(1) $3 \mathrm{~K}|\mathrm{~A}|$
(2) $\mathrm{K}|\mathrm{A}|$
(3) $\mathrm{K}^{2}|\mathrm{~A}|$
(4) $\mathrm{K}^{3}|\mathrm{~A}|$
99. Matrices A and B will be inverse of each other only if :
(1) $\mathrm{AB}=\mathrm{BA}$
(2) $\mathrm{AB}=\mathrm{BA}=0$
(3) $\mathrm{AB}=\mathrm{BA}=\mathrm{I}$
(4) $\mathrm{AB}=\mathrm{I}, \mathrm{BA}=0$
100. Which of the following is not a property of inverse of a matrix ?
(1) $\left(A^{-1}\right)^{-1}=A$
(2) $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$
(3) $(A B)^{-1}=A^{-1} B^{-1}$
(4) $\operatorname{Adj}\left(A^{-1}\right)=(\operatorname{Adj} A)^{-1}$

