

Time : $11 / 4$ Hours
Roll No. (in figures) \qquad
Max. Marks : 100
Total Questions : 100 (in words) \qquad
Date of Birth \qquad
Father's Name \qquad Mother's Name \qquad
Date of Examination \qquad
(Signature of the Candidate)
(Signature of the Invigilator)
CANDIDATES MUST READ THE FOLLOWING INFORMATION/INSTRUCTIONS BEFORE STARTING THE QUESTION PAPER.

1. All questions are compulsory.
2. The candidates must return the question booklet as well as OMR Answer-Sheet to the Invigilatol concerned before leaving the Examination Hall, failing which a case of use of unfairmeans / mis-behaviour will be registered against him / her, in addition to lodging of an FIR with the police. Further the answer-sheet of such a candidate will not be evaluated.
3. Keeping in view the transparency of the examination system, carbonless OMR Sheet is provided to the candidate so that a copy of OMR Sheet may be kept by the candidate.
4. Question Booklet along with answer key of all the A; B, C \& D code shall be got uploaded on the University Website immediately after the conduct of Entrance Examination. Candidates may raise valid objection/complaint if any, with regard to discrepancy in the question booklet/answer key within 24 hours of uploading the same on the University Website. The complaint be sent by the students to the Controller of Examinations by hand or through email. Thereafter, no complaint in any case, will be considered.
5. The candidate must not do any rough work or writing in the OMR Answer-Sheet. Rough work, if any, may be done in the question booklet itself. Answers must not be ticked in the question booklet.
6. There will be no negative marking. Each correct answer will be awarded one full mark. Cutting, erasing, overwriting and more than one answer in OMR Answer-Sheet will be treated as incorrect answer.
7. Use only Black or Blue Ball Point Pen of good quality in the OMR Answer-Sheet.
8. Before answering the questions, the candidates should ensure that they have been supplied correct and complete booklet. Complaints, if any, regarding misprinting etc. will not be entertained 30 minutes after starting of the examination.

PG-EE-July-2024/(Mathematics)(SET-Z)/(A)

1. A matrix A such that $A^{2}=I$ or $(I+A)(I-A)=0$ is called :
(1) Idempotent
(2) Nilpotent
(3) Involuntory
(4) None of the above
2. If for a square matrix A of order $n,|A-\lambda I|=a_{0} \lambda^{n}+a_{1} \lambda^{n-1}+\ldots \ldots \ldots .+a_{n}$, then $a_{0} A^{n}+a_{1} A^{n-1}+\ldots \ldots . .+a_{n} I$ is equal to :
(1) 0
(2) I_{n}
(3) $J_{n \times n}$
(4) $I_{n} A^{-1}$
3. If A is an $m \times n$ matrix of rank r_{A} and B is an $n \times p$ matrix of rank r_{B} such that $A B=0$, then which of the following is true?
(1) $r_{A}+r_{B}=p$
(2) $r_{A}+r_{B} \leq n$
(3) $r_{A}+r_{B}>n$
(4) $r_{A}+r_{B}=n+p$
4. A square matrix A of order n is such that $A^{\prime} A=I=A A^{\prime}$, then $|A|$ is equal to :
(1) 1
(2) n
(3) ± 1
(4) $n-1$
5. The canonical form of a Quadratic Form is $-21 y_{1}^{2}-\frac{2}{7} y_{2}^{2}$. The rank and the index of this Q. F. are 2 and 0 respectively, then the nature of this Q.F. is :
(1) Positive definite
(2) Negative definite
(3) Semi-positive definite
(4) Semi-negative definite
6. Given the function $f(x)=\left\{\begin{array}{cl}x^{2} & , x \leq c \\ a x+b & , x>c\end{array}\right.$ is differentiable at $x=c$. The values of a and b are respectively :
(1) $2 c,-c^{2}$
(2) $c^{2}, 2 c$
(3) $c,-c^{2}$
(4) $-c^{2}, 2 c$
7. If $y=\sqrt{x+\sqrt{x+\sqrt{x+\ldots . . . \text { to } \infty}}}$, then $\frac{d y}{d x}$ is equal to :
(1) x^{3}
(2) $\frac{1}{y+1}$
(3) $\frac{1}{2 y-1}$
(4) $\frac{x}{1-2 y}$
8. The radius of curvature at the vertex of the cycloid $x=a(\theta+\sin \theta), y=a(1-\cos \theta)$ is :
(1) $4 a$
(2) $a+\sin \theta$
(3) $2 a$
(4) $2 a+3$
9. The asymptotes of the curve $\left(x^{2}-y^{2}\right)(x+2 y+1)+x+y+1=0$ are :
(1) $y= \pm x ; x+2 y+1=0$
(2) $y= \pm x ; x+y+1=0$
(3) $y=x ; x+2 y+1=0 ; x+y+1=0$
(4) $y=-x ; x+2 y+1=0 ; x+y+1=0$
10. The curve $y^{2}(2 a-x)=x^{3}$ has :
(1) Node
(2) Cusp
(3) Conjugate point
(4) None of these

PG-EE-July-2024/(Mathematics)(SET-Z)/(A)

11. The centre and radius of the sphere $7 x^{2}+7 y^{2}+7 z^{2}-6 x-3 y-2 z=0$ are respectively:
(1) $\left(\frac{6}{7}, \frac{3}{7}, \frac{2}{7}\right), \frac{1}{4}$
(2) $\left(\frac{3}{7}, \frac{3}{14}, \frac{2}{7}\right), \frac{1}{2}$
(3) $\left(\frac{3}{7}, \frac{3}{14}, \frac{1}{7}\right), \frac{1}{2}$
(4) $\left(\frac{6}{7}, \frac{3}{7}, \frac{2}{7}\right), \frac{1}{2}$
12. The equation of the plane that bisects the line joining the points $(1,2,3) ;(3,4,5)$ at right angles is :
(1) $x+y+z=0$
(2) $x+y-z+2=0$
(3) $x-y+z=0$
(4) $x+y+z-9=0$
13. The equations of a straight line through the point $(3,1,-6)$ and parallel to each of the planes $x+y+2 z-4=0$ and $2 x-3 y+z+5=0$ are :
(1) $\frac{x-3}{7}=\frac{y-1}{3}=\frac{z+6}{-5}$
(2) $\frac{x+4}{3}=\frac{y-1}{3}=\frac{z-6}{5}$
(3) $\frac{x-3}{7}=\frac{y+1}{3}=\frac{z-6}{-5}$
(4) None of the above
14. The equation of the cylinder whose generators are parallel to the line, $\frac{x}{1}=\frac{y}{-2}=\frac{z}{3}$ and whose guiding curve is the ellipse $x^{2}+2 y^{2}=1, z=0$ is :
(1) $3\left(x^{2}+2 y^{2}+z^{2}\right)-2 x z=0$
(2) $3\left(x^{2}+2 y^{2}+z^{2}\right)-2 x z+8 y z-3=0$
(3) $x^{2}+y^{2}+z^{2}-2 x z-8 y z+3=0$
(4) None of the above
15. The vertex of the cone $4 x^{2}-y^{2}+2 z^{2}+2 x y-3 y z+12 x-11 y+6 z+4=0$ is :
(1) $(1,2 ; 3)$
(2) $(1,3,4)$
(3) $(-1,-2,-3)$
(4) $(1,2,-3)$
16. The integrating factor of the differential equation $x(x-1) \frac{d y}{d x}=(x-2) y+x^{3}(2 x-1)$ is :
(1) $\frac{x-1}{x^{3}}$
(2) $\frac{x^{2}}{x-1}$
(3) $\frac{x-1}{x^{2}}$
(4) $\frac{x^{3}}{2 x-1}$
17. The solution of the following differential equation is :

$$
\frac{d y}{d x}=\sin (x+y)+\cos (x+y)
$$

(1) $c e^{x}=\tan \left(\frac{x+y}{2}\right)+1$
(2) $c e^{x}=\tan (x+y)+1$
(3) $c e^{x}=\tan \left(\frac{x+y}{2}\right)-1$
(4) $c e^{x}=\tan (x+y)-1$
18. Singular solution of the following D. E. is :
$y^{2}-2 p x y+p^{2} x^{2}-\left(a^{2} p^{2}+b^{2}\right)=0$
(1) $a^{2} x^{2}+b^{2} y^{2}=1$
(2) $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
(3) $x^{2}+y^{2}=\frac{a^{2}}{b^{2}}$
(4) $x^{2}+y^{2}=a^{2} b^{2}$
19. The P. I. of the following D. E. is :

$$
\left(D^{2}-5 D+6\right) y=5^{x} \quad\left[D \equiv \frac{d}{d x}\right]
$$

(1) $5^{x} \log _{e} 5$
(2) $\frac{5^{x}}{2 \log _{e} 5}$
(3) $\frac{5^{x}}{3 \log _{e} 5}$
(4) $\frac{5^{x}}{\log _{e}\left(\frac{5}{e^{2}}\right) \cdot \log _{e}\left(\frac{5}{e^{3}}\right)}$
20. Integrating factor of the following D. E. is:

$$
\sin ^{2} x \frac{d^{2} y}{d x^{2}}=2 y
$$

(1) $\sin x$
(2) $\cos x$
(3) $\tan x$
(4) $\cot x$

PG-EE-July-2024/(Mathematics)(SET-Z)/(A)
21. If $r=a \cos t i+a \sin t j+t k$, then the value of $\left|\frac{d^{2} r}{d t^{2}}\right|$ is :
(1) $-a \cos t i-a \sin t j$
(2) $\sqrt{\left(a^{2} \cos ^{2} t+a^{2} \sin ^{2} t\right)+t}$
(3) $a \cos t+a \sin t$
(4) a
22. If $r=x i+y j+z k$, then $\operatorname{grad} r$ is :
(1) $\frac{x}{r}+\frac{y}{r}+\frac{z}{r}$
(2) $\frac{1}{r}(x i+y j+z k)$
(3) $x i+y j+z k$
(4) None of the above
23. If c is a regular closed curse in $x y$-plane, enclosing a region S and $P(x, y)$ and $Q(x, y)$ be two continuously differentiable functions in the region S i.e. inside and on c, then $\iint_{S}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d x d y$ is equal to :
(1) $\int_{c}(P d x+Q d y)$
(2) $\int_{c}(Q d y-P d x)$
(3) $\int_{c} \frac{\partial x}{\partial y}(P+Q)$
(4) $\int_{c} \frac{\partial^{2}}{\partial y^{2}}(P d x+Q d y)$
24. The value of $\int_{s}(a x i+b y j+c z k) \cdot \hat{n} d s$ is:
(1) $a+b+c$
(2) $\frac{4}{3}(a+b+c)$
(3) $\frac{4}{3} \pi(a+c+b)$
(4) $a^{2}+b^{2}+c^{2}$
25. If $f(t)=t i-3 j+2 t k, g(t)=i-2 j+2 k$ and $h(t)=3 i+t j-k$, then the value of $\int_{1}^{2} f(g \times h) d t$ is :
(1) 0
(2) 1
(3) 2
(4) 3
26. If $u=\tan ^{-1}\left(\frac{y}{x}\right)$, then $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}$ is equal to:
(1) $\frac{2 x y}{x^{2}+y^{2}}$
(2) $\frac{x}{x^{2}+y^{2}}$
(3) 0
(4) $\frac{x}{y}$
27. Which of the following function is not differentiable at $x=0$?
(1) $x|x|$
(2) $x+|x|$
(3) e^{-x}
(4) x^{3}
28. If $f(x)=3 x^{3}-5 x^{2}+2 x$, then the interval for which f satisfies all the conditions of Roll's theorem is :
(1) $[0,1]$
(2) $[-1,1]$
(3) $[-1,0]$
(4) $[1,2]$
29. If Lagrange's theorem is true for the function $f(x)=x^{3}-3 x-2$ in the interval $[-2,3]$, then the value of c where it is true is :
(1) 0
(2) $\sqrt{7 / 3}$
(3) $\sqrt{\frac{3}{7}}$
(4) 1
30. If the function $f(x)=x(x-2)$ is continuous in $\left[0, \frac{3}{2}\right]$ and differentiable in $\left(0, \frac{3}{2}\right)$, then the value of ' c ' of the mean value theorem is :
(1) $\frac{1}{2}$
(2) $\frac{3}{2}$
(3) $\frac{1}{4}$
(4) $\frac{3}{4}$
31. The pedal equation of the curve $x^{2}+y^{2}=2 a x$ is:
(1) $r^{2}=a p$
(2) $r^{2}=\frac{a}{p}$
(3) $r^{2}=2 a p$
(4) $r^{2}=a p^{2}$
32. The length of subnormal to parabola $y^{2}=4 a x$ is :
(1) $2 a$
(2) $4 a$
(3) $a \sqrt{2}$
(4) $2 a \sqrt{2}$
33. For the curve $y=a \log \left(\sec \frac{x}{a}\right)$, the chord of curvature parallel to y-axis is equal to :
(1) a
(2) $2 a$
(3) $3 a$
(4) $4 a$
34. The radius of curvature of the curve $y=a \sin \psi \cos \psi$ is :
(1) p
(2) $3 p$
(3) $4 p$
(4) $2 p$
35. If $u=\tan ^{-1} \frac{x^{3}+y^{3}+x^{2} y-x y^{2}}{x^{2}-x y+y^{2}}$, then the value of $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}$ is equal to :
(1) 0
(2) $\sin u$
(3) $\sin 2 u$
(4) $\frac{1}{2} \sin 2 u$
36. If $x=r \cos \theta$ and $y=r \sin \theta$, then $\frac{\partial(r, \theta)}{\partial(x, y)}$ is :
(1) r
(2) $r \sin \theta$
(3) $\frac{r}{\sin \theta}$
(4) $\frac{1}{r}$
37. If $a>0, b>0$, then the maximum value of $a \cos \theta+b \sin \theta$ is :
(1) $a+b$
(2) $a-b$
(3) a or b
(4) $\sqrt{a^{2}+b^{2}}$
38. Sequence $\left(1,-\frac{1}{2}, \frac{1}{3},-\frac{1}{4}, \frac{1}{5},-\frac{1}{6}, \ldots\right)$ is :
(1) Monotonic but not bounded
(2) Bounded but not monotonic
(3) Monotonic and bounded
(4) Neither monotonic nor bounded
39. Maxima and Minima value of the set $S=\left\{1+\frac{(-1)^{n}}{n} ; n \in N\right\}$ are :
(1) $\left(\frac{3}{2}, 0\right)$
(2) $\left(0, \frac{3}{2}\right)$
(3) $\left(1, \frac{3}{2}\right)$
(4) $\left(\frac{3}{2}, 1\right)$
40. Series $\left(\frac{2^{2}}{1^{2}}-\frac{2}{1}\right)^{-1}+\left(\frac{3^{3}}{2^{3}}-\frac{3}{2}\right)^{-2}+\left(\frac{4^{4}}{3^{4}}-\frac{4}{3}\right)^{-3}+\ldots$. is
(1) Convergent
(2) Divergent
(3) Oscillatory finitely
(4) Oscillatory infinitely
41. If $y=\tan ^{-1}\left(\frac{x}{a}\right)$, then its nth derivative y_{n} is :
(1) $\frac{(-1)^{n-1}(n-1)!}{a^{n}} \sin ^{n} \theta \cos n \theta$
(2) $\frac{(-1)^{n-1}(n-1)!}{a^{n}} \tan ^{n} \theta \cos n \theta$
(3) $\frac{(-1)^{n-1}(n-1)!}{a^{n}} \sin ^{n} \theta \sin n \theta$
(4) $\frac{(-1)^{n-1}(n-1)!}{a^{n}} \cos ^{n} \theta \cos n \theta$
where $\theta=\tan ^{-1}\left(\frac{a}{x}\right)$.
42. If $u=\phi(x-y, y-z, z-x)$, then $\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}+\frac{\partial u}{\partial z}$ is equal to :
(1) 0
(2) 1
(3) u
(4) $x y z$
43. If α is a paramcter, then envelop of the family of lines $x \cos \alpha+y \sin \alpha=a$ is :
(1) Parabola
(2) Circle
(3) Ellipse
(4) Hyperbola
44. The evolute of curve $2 x y=a^{2}$ is:
(1) $x^{2 / 3}+y^{2 / 3}=a^{2 / 3}$
(2) $(x+y)^{2 / 3}+(x-y)^{2 / 3}=a^{2 / 3}$
(3) $(x+y)^{2 / 3}+(x-y)^{2 / 3}=2 a^{2 / 3}$
(4) $(x+y)^{2 / 3}-(x-y)^{2 / 3}=2 a^{2 / 3}$
45. Maximum curvature of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is :
(1) $\frac{2 a}{b}$
(2) $\frac{2 b}{a}$
(3) $\frac{a}{2 b}$
(4) $\frac{b}{2 a}$
46. The minimum value of $\sqrt{x^{2}+y^{2}}$, under the condition $x^{2}+x y+y^{2}=1$ is:
(1) 1
(2) $\sqrt{2}$
(3) $\sqrt{3}$
(4) $\frac{\sqrt{6}}{2}$
47. The sequence $\left\{x_{n}\right\}$ where :
$x_{n}=\frac{1}{n+1}+\frac{1}{n+2}+\ldots \ldots \ldots+\frac{1}{2 n}$ is :
(1) Convergent
(2) Divergent
(3) Oscillatory
(4) None of the above
48. If $x=a(\cos \theta+\theta \sin \theta), y=a(\sin \theta-\theta \sin \theta)$, then the value of $\frac{d^{2} y}{d x^{2}}$ at $\theta=\pi$ is :
(1) $\frac{2}{a \pi}$
(2) $\frac{1}{a^{2} \pi}$
(3) $-\frac{1}{a \pi}$
(4) $-\frac{1}{a^{2} \pi^{2}}$
49. What is the degree and order of the following differential equation?
$\left(\frac{d^{3} y}{d x^{3}}\right)^{2 / 3}-3 \frac{d^{2} y}{d x^{2}}+5 \frac{d y}{d x}+4 y=1$
(1) 3,3
(2) $2 / 3,3$
(3) 3,2
(4) 2,3
50. If n is a natural number, then

$$
\frac{\sum_{r=1}^{n} r^{3}}{\sum_{r=1}^{n} r(r+1)} \text { is equal to: }
$$

(1) $\frac{3}{2} \cdot \frac{n}{n+1}$
(2) $\frac{3}{2} \cdot \frac{n+1}{n+2}$
(3) $\frac{3}{2} \cdot \frac{n}{n+4}$
(4) $\frac{3}{4} \cdot \frac{n(n+1)}{n+2}$
51. If a and b are any two positive integers with $a>b$ and n is the number of divisions in Euclid's algorithm, and if p is the number of digits in b then :
(1) $n \leq p$
(2) $n \geq 7 p$
(3) $n \leq 5 p$
(4) $n>5 p$
52. If $F_{n}=2^{2^{n}}+1$, then $F_{0} F_{1} \ldots \ldots . . F_{n-1}$ is equal to :
(1) F_{n}
(2) $F_{n}+3$
(3) $F_{n}-2$
(4) $F_{n}+4$
53. If $n=p_{1}^{a_{1}}, p_{2}^{a_{2}} \ldots \ldots \ldots . p_{t}^{a_{t}}$ be any positive integer where $p_{1}, p_{2}, \ldots \ldots ., p_{t}$ are distinct prime, then Euler's $\phi(n)$ is equal to :
(1) $n\left(1-\frac{1}{p_{1}}\right)\left(1-\frac{1}{p_{2}}\right) \cdots \ldots . .\left(1-\frac{1}{p_{t}}\right)$
(2) $n \cdot p_{1} p_{2} \ldots \ldots \ldots p_{n}$
(3) $n\left(p_{1}+1\right)\left(p_{2}+2\right) \ldots . .\left(p_{t}+t\right)$
(4) $n\left(1+\frac{1}{p_{1}}\right)\left(1+\frac{1}{p_{2}}\right) \ldots \ldots \ldots\left(1+\frac{1}{p_{t}}\right)$
54. Using Euler method, the general solution of the equation $21 x+13 y=1791$ is :
(1) $x=-t, y=141+12 t$
(2) $x=-2 t, y=141+13 t$
(3) $x=4 t, y=141+13 t$
(4) $x=-2 t, y=122+13 t$
55. A square of side a revolves about a line through a corner and perpendicular to the diagonal through that corner, then the volume and area of the surface of the solid generated are :
(1) $\sqrt{2} \pi a^{3}, 4 \sqrt{2} \pi a^{2}$
(2) $4 \pi a^{3}, \sqrt{2} \pi a^{2}$
(3) $4 \sqrt{2} \pi a^{3}, 4 \pi a^{2}$
(4) $\pi a^{3}, 4 \pi a^{2}$
56. If both m and n are positive integers, then $B(m, n)$ is equal to :
(1) $\frac{\underline{\underline{m} \underline{n}}}{\underline{m+n-1}}$
(2) $\frac{|m-1| n-1}{\lfloor m+n-1}$
(3) $\frac{|m+1| n+1}{\lfloor m+n}$
(4) $\frac{m+1 \mid n+1}{\frac{m+n-2}{2}}$
57. $\int_{0}^{\pi / 2} \sin ^{n} \theta d \theta$ is equal to $:($ where $n>-1)$
(1) $\sqrt{\pi} \cdot \frac{\Gamma(n+1)}{\Gamma(n+2)}$
(2) $\frac{\Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{n-1}{2}\right)}$
(3) $\frac{\pi}{2} \frac{\Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{n-1}{2}\right)}$
(4) $\frac{\pi}{2} \cdot \frac{\Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{n+2}{2}\right)}$
58. Area of the curve $r^{2}=a^{2} \cos ^{2} \theta+b^{2} \sin ^{2} \theta$ is :
(1) $(a+b) \frac{\pi}{2}$
(2) $2 \pi\left(a^{2}+b^{2}\right)$
(3) $\left(a^{2}+b^{2}\right) \frac{\pi}{2}$
(4) $4 \pi\left(a^{2}+b^{2}\right)$
59. $\underset{n \rightarrow \infty}{L t} \sum_{r=1}^{n-1} \frac{1}{n} \sqrt{\frac{n+r}{n-r}}=$
(1) $\pi+1$
(2) $\frac{\pi}{2}+1$
(3) $2 \pi+3$
(4) $\frac{4}{3}\left(\frac{\pi}{2}+1\right)$
60. If $f(t)=e^{-t} t^{n}$, then its Laplace Transform $F(s)$ is :
(1) $\frac{\Gamma(n+1)}{(s+1)^{n+1}}$
(2) $\frac{1}{s^{2}+1}$
(3) $\frac{\Gamma(n)}{s^{n+1}}$
(4) $\frac{\Gamma(n+1)}{s^{2}+1}$
61. Let X has a two parameter gamma distribution with parameters λ, k ($\lambda>0$ is the scalc parameter and $k>0$ is the shape parameter) with density function $f_{\lambda, k}(x)=\left\{\begin{array}{cc}\frac{\lambda^{k} x^{k-1} e^{-\lambda x x}}{\mathrm{I}^{\prime}(k)} & , x>0 \\ 0 & , x<0\end{array}\right.$, then its L.T. $f^{*}(s)$ is given by :
(1) $\frac{1}{(s+1)^{2}}$
(2) $\left(\frac{\lambda}{s+\lambda}\right)^{k}$
(3) $\left(\frac{s+\lambda}{\lambda}\right)^{k}$
(4) $\left(\frac{\lambda+k}{s+\lambda}\right)^{k-1}$
62. What will be the output of the program :
main ()
\{
int $\mathrm{a}=1, \mathrm{~b}=2, \mathrm{c}=3$;
printf ("\%d", $\mathrm{a}+=(\mathrm{a}+=3,5, \mathrm{a})$)
\}
(1) 6
(2) 9
(3) 12
(4) 8
63. Which of the following comment is correct when a macro definition includes arguments?
(1) The opening parenthesis should immediately follow the macro name.
(2) There should be at least one blank between the macro name and the opening parenthesis.
(3) There should be only one blank between the macro name and the opening parenthesis.
(4) All the above comments are correct.
64. Which one of the following is a loop construct that will always be executed once ?
(1) for
(2) while
(3) switch
(4) do while
65. Which of the following statement is not true ?
(1) A pointer to an int and a pointer to a double are of the same size.
(2) A pointer must point to a data item on the heap (free store).
(3) A pointer can be reassigned to point to another data item:
(4) A pointer can point to an array.
66. What does this statement mean?
$x-=y+1 ;$
(1) $x=x-y+1$
(2) $x=-x-y-1$
(3) $x=x-y-1$
(4) $x=x+y-1$
67. Value of $\int \cos ^{2} x \sin ^{2} x d x$ is :
(1) $\frac{1}{8}\left[x-\frac{\cos 2 x}{2}\right]$
(2) $\frac{1}{4}\left[x-\frac{\cos 2 x}{2}\right]$
(3) $\frac{1}{8}\left[x-\frac{\sin 2 x}{2}\right]$
(4) $\frac{1}{4}\left[x-\frac{\sin 2 x}{2}\right]$
68. If $f(x)=x, x \in[0,1]$ and f is R-integrable on $[0,1]$, then $\int_{0}^{1} x d x$ is equal to :
(1) 1
(2) $\frac{1}{2}$
(3) 2
(4) $\frac{3}{2}$
69. The sum of n terms of a series is $S_{n}=\frac{n^{2} x}{1+n^{4} x^{2}}$, then for this series which statement is true?
(1) Converges uniformly.
(2) Does not converge uniformly.
(3) Converges uniformly only in the interval $(0,1)$.
(4) Each term is continuous in an interval (a, b).
70. Find the valuc of c which satisfies the mean value theorem for the given function, $f(x)=x^{2}+2 x+1$ on $[1,2] ?$
(1) $10 / 2$
(2) $13 / 2$
(3) $-13 / 2$
(4) $-7 / 2$

PG-EE-July-2024/(Mathematics)(SET-Z)/(A)
71. Which of the following is not a necessary condition for Cauchy's Mean Value Theorem?
(1) The functions, $f(x)$ and $g(x)$ be continuous in $[a, b]$
(2) The derivative of $g^{\prime}(x)$ be equal to 0
(3) The functions $f(x)$ and $g(x)$ be derivable in (a, b)
(4) There exists a value $c \in(a, b)$ such that $\frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f^{\prime}(c)}{g^{\prime}(c)}$
72. A group $(\mathrm{G}, *)$ is said to be abelian if \qquad .
(1) $(x+y)=(y-x)$
(2) $x * y=y * x$
(3) $x+y=x$
(4) $x * y=x * y$
73. Which of the following is not necessarily a property of a group ?
(1) Commutatively
(2) Associativity
(3) Existence of inverse for every element
(4) Existence of identity
74. Let $x=(0,1)$ be the open unit interval and $C(x, R)$ be the ring of continuous functions from x to R. For any $x \in(0,1)$, let $l(x)=\{f \in C(x, R) \mid f(x)=0\}$. Then which of the following true?
(1) $l(x)$ is a prime ideal.
(2) $l(x)$ is a maximal ideal.
(3) Every maximal ideal of $C(x, R)$ is equal to $l(x)$ for some $x \in x$.
(4) Only (1) and (2) are true.
75. Let R be a commutative ring with unity. Which of the following is true ?
(1) If R has finitely many prime ideals, then R is a field.
(2) If R has infinitely many ideals, then R is finite.
(3) If R is a P.I.D., then every subring of R with unity is a P.I.D.
(4). If R is an integral domain which has finitely many ideals, then R is a field.
76. Let $R=Z[X] /\left(x^{2}+1\right)$ and $\psi: Z(X) \rightarrow R$ be the natural quotient map. Which of the following statements are true?
(1) R is isomorphic to a subring of C.
(2) The ideal gencrated by $\psi(X)$ is a prime ideal in R.
(3) R has infinitely many prime ideals.
(4) Only (1) and (3) are true.
77. The number of ring homomorphisms from $f: Z[x, y] \longrightarrow \frac{F[X]}{\left(x^{3}+x^{2}+x+1\right)}$ equals :
(1) 2^{6}
(2) 2^{18}
(3) 1
(4) 2^{9}
78. The total number of non-isomorphic groups of order 122 is :
(1) 2
(2) 1
(3) 61
(4) 4
79. Let G be a group order 6 and H be a subgroup of G such that $1<|H|<6$. Which one of the following options is correct?
(1) G is always cyclic, but H may not be cyclic.
(2) G may not be cyclic, but H is always cyclic.
(3) Both G and H are always cyclic.
(4) Both G and H may not be cyclic.
80. The number of generators of a cyclic group of order 10 is :
(1) 2
(2) 3
(3) 4
(4) 5

PG-EE-July-2024/(Mathematics)(SET-Z)/(A)

A

81. Using Gauss Elimination method, the solution of equations $2 x-y+3 z=9, x+y+z=6$, $x-y+z=2$ is :
(1) $x=-13, y=1, z=-8$
(2) $x=13, y=1, z=-8$
(3) $x=-13, y=4, z=15$
(4) $x=5, y=14, z=5$
82. While solving the equation $x^{2}-3 x+1=0$ using Newton-Raphson method the initial guess of the root is as 1 , then the value of the root will be :
(1) 1.5
(2) 1
(3) 0.5
(4) 0
83. For a fixed $C \in R$, let $\alpha=\int_{0}^{2}\left(9 x^{2}-5 C x^{4}\right) d x$. If the value of this integral obtained by using the Trapezoidal rule is equal to α, then the value of C (rounded off 2 decimal places) is :
(1) 0.5
(2) 0.24
(3) 0.12
(4) 0.76
84. If $f(x)=x^{2}$, then the second order divided difference for the points x_{0}, x_{1}, x_{2} will be :
(1) -1
(2) $\frac{-1}{x_{1}-x_{0}}$
(3) 1
(4) $\frac{1}{x_{2}-x_{1}}$
85. Which of the following is termed as an action of pull or push of a body at rest or motion?
(1) Torque
(2) Momentum
(3) Work
(4) Force
86. What is the relationship between each force, if three concurrent forces acting on a body according to Lami's theorem?
(1) Directly proportional to the sine of the angle between the other two forces
(2) Inversely proportional to the cosine of the angle between the other two forces
(3) Directly proportional to the cosine of the angle between the other two forces
(4) Inversely proportional to the tangent of the angle between the other two forces
87. The resultant R of forces P and Q makes an angle θ with the line of action of $P . P$ is now replaced by $P+R, Q$ remaining unchanged such that the resultant makes an angle $\theta / 2$ with $P+R$. The magnitude of this resultant is :
(1) $2 R \sin \theta / 2$
(2) $2 R \cos \theta / 2$
(3) $R \sin \theta / 2$
(4) $3 R \cos \theta / 2$
88. Forces of $6,8,12 \mathrm{gm}$ wt act along $\mathrm{BC}, \mathrm{CA}, \mathrm{AB}$, the sides of a triangle of lengths $3,4,5$ cms respectively. The resultant of these forces acting parallel to $A B$ is :
(1) 2 gm wt
(2) 3 gm wt
(3) 3.5 gm wt
(4) 4 gm wt
89. The sides of a uniform triangular lamina are $5,6,9 \mathrm{cms}$. in length, the perpendicular distance of its centre of gravity from the shortest side is :
(1) 2 cm
(2) $4 \sqrt{3} \mathrm{~cm}$
(3) $\frac{4}{3} \sqrt{2} \mathrm{~cm}$
(4) $\frac{3 \sqrt{2}}{4} \mathrm{~cm}$
90. A force of 30 kg acting at an angle of 30° with the horizontal is about to drag a body of weight 60 kg lying on the floor. The co-efficient of friction is :
(1) $\mu=\frac{1}{3}$
(2) $\mu=\frac{\sqrt{3}}{4}$
(3) $\mu=\sqrt{3}$
(4) $\mu=\frac{1}{\sqrt{3}}$
91. The value of integral $\iint_{R} y d x d y$ where R is the region bounded by the parabolas $y^{2}=4 x$ and $x^{2}=4 y$ is :
(1) $\frac{32}{5}$
(2) $\frac{48}{5}$
(3) $\frac{16}{5}$
(4) $\frac{16 \sqrt{2}}{5}$
92. The value of $\iiint_{x^{2}+y^{2}+z^{2} \leq 1}\left(x^{2}+y^{2}+z^{2}\right) d x d y d z$ is :
(1) $\frac{\pi}{2}$
(2) $\frac{\pi}{5}$
(3) $\frac{4 \pi}{5}$
(4) $\frac{4 \pi}{15}$
93. The locus of z when amp $\left(\frac{z-1}{z+1}\right)=\frac{\pi}{3}$ is :
(1) $x^{2}+y^{2}-\left(\frac{2}{\sqrt{3}}\right) y-1=0$
(2) $x^{2}+y^{2}-2 y=0$
(3) $x^{2}+y^{2}+\frac{2}{\sqrt{3}} y+1=0$
(4) $x^{2}+y^{2}+2 y-1=0$
94. $\lim _{z \rightarrow 2 e} \frac{\pi i}{3} \frac{z^{3}+8}{z^{4}+4 z^{2}+16}=$
(1) $\frac{3-i \sqrt{3}}{2}$
(2) $\frac{1}{8}(3-i \sqrt{3})$
(3) $\frac{3+i \sqrt{3}}{2}$
(4) $\frac{1}{4}(3+i \sqrt{3})$
95. The bilinear transformation $w=\frac{3 z-4}{z-1}$ is :
(1) Elliptic
(2) Parabolic
(3)' Hyperbolic
(4) None of these
96. The circle of convergence of power series $\sum_{n=1}^{\infty}\left(\frac{2 i}{z+i+1}\right)^{n}$ is :
(1) $|z+i|<2$
(2) $|z+i|>2$
(3) $|z+i+1|>2$
(4) $|z+i+1|<2$
97. If $f(z)=\frac{z^{3}+3 z+1}{z-3}$ and path of integration is a circle with centre at the origin and radius r, the Cauchy theorem is applicable when r equals :
(1) 5
(2) 4
(3) 3
(4) 2
98. A particle moves in a curve so that its tangential and normal accelerations are equal and the angular velocities of the tangent is constant. The path of the particle is given by :
(1) $s=A e^{\psi}+B$ where $A=\frac{C}{w}, B$ and C are constants
(2) $s=2 A \log v+\log C$
(3) $s=A e^{\psi}+B \log C$
(4) $s=A \log \psi+B e^{\psi}+C$
99. A particle is moving with S.H.M. of amplitude a. Its velocity at any point x is :
(1) $v=\sqrt{u\left(a^{2}-x^{2}\right)}$
(2) $u=u\left(a^{2}-x^{2}\right)$
(3) $v=\sqrt{u\left(a^{2}+x^{2}\right)}$
(4) $v=u\left(a^{2}+x^{2}\right)$
100. If the time of the flight of a bullet over a horizontal range R is T, the angle of projection is :
(1) $\sin ^{-1}\left(T^{2} / 2 R\right)$
(2) $\tan ^{-1}\left(\frac{T^{2}}{2 R}\right)$
(3) $\sin ^{-1}\left(\frac{g T^{2}}{2 R}\right)$
(4) $\tan ^{-1}\left(\frac{g T^{2}}{2 R}\right)$

PG-EE-July-2024/(Mathematics)(SET-Z)/(A)

Pound $/-{ }^{-24}$ Total No. of Printed Pages
(DO NOT OPEN THIS QUESTION BOOKLET BEFORE TIME OR UNTIL YOU
 SUBJECT : Mathematics

Sr. No.
Time: $11 / 4$ Hours
Max. Marks : 100
Total Questions : 100
Roll No. (in figures) \qquad (in words)

Name \qquad Date of Birth \qquad
Father's Name \qquad Mother's Name \qquad
Date of Examination \qquad
(Signature of the Candidate)
(Signature of the Invigilator)

CANDIDATES MUST READ THE FOLLOWING INFORMATION/INSTRUCTIONS BEFORE STARTING THE QUESTION PAPER.

1. All questions are compulsory.

2. The candidates must return the question booklet as well as OMR Answer-Sheet to the Invigilator concerned before leaving the Examination Hall, failing which a case of use of unfairmeans / mis-behaviour will be registered against him / her, in addition to lodging of an FIR with the police. Further the answer-sheet of such a candidate will not be evaluated.
3. Keeping in view the transparency of the examination system, carbonless OMR Sheet is provided to the candidate so that a copy of OMR Sheet may be kept by the candidate.
4. Question Booklet along with answer key of all the A, B, C \& D code shall be got uploaded on the University Website immediately after the conduct of Entrance Examination. Candidates may raise valid objection/complaint if any, with regard to discrepancy in the question booklet/answer key within 24 hours of uploading the same on the University Website. The complaint be sent by the students to the Controller of Examinations by hand or through email. Thereafter, no complaint in any case, will be considered.
5. The candidate must not do any rough work or writing in the OMR Answer-Sheet. Rough work, if any, may be done in the question booklet itself. Answers must not be ticked in the question booklet.
6. There will be no negative marking. Each correct answer will be awarded one full mark. Cutting, erasing, overwriting and more than one answer in OMR Answer-Sheet will be treated as incorrect answer.
7. Use only Black or Blue Ball Point Pen of good quality in the OMR Answer-Sheet.
8. Before answering the questions, the candidates should ensure that they have been supplied correct and complete booklet. Complaints, if any, regarding misprinting etc. will not be entertained 30 minutes after starting of the examination.
9. Which of the following is not a necessary condition for Cauchy's Mean Value Theorem?
(1) The functions, $f(x)$ and $g(x)$ be continuous in $\lceil a, b\rceil$
(2) The derivative of $g^{\prime}(x)$ be equal to 0
(3) The functions $f(x)$ and $g(x)$ be derivable in (a, b)
(4) There exists a value $c \in(a, b)$ such that $\frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f^{\prime}(c)}{g^{\prime}(c)}$
10. A group $(\mathrm{G}, *)$ is said to be abelian if \qquad .
(1) $(x+y)=(y-x)$
(2) $x * y=y * x$
(3) $x+y=x$
(4) $x * y=x * y$
11. Which of the following is not necessarily a property of a group ?
(1) Commutatively
(2) Associativity
(3) Existence of inverse for every element
(4) Existence of identity
12. Let $x=(0,1)$ be the open unit interval and $C(x, R)$ be the ring of continuous functions from x to R. For any $x \in(0,1)$, let $l(x)=\{f \in C(x, R) \mid f(x)=0\}$. Then which of the following true?
(1) $l(x)$ is a prime ideal.
(2) $l(x)$ is a maximal ideal.
(3) Every maximal ideal of $C(x, R)$ is equal to $l(x)$ for some $x \in x$.
(4) Only (1) and (2) are true.
13. Let R be a commutative ring with unity. Which of the following is true ?
(1) If R has finitely many prime ideals, then R is a field.
(2) If R has infinitely many ideals, then R is finite.
(3) If R is a P.I.D., then every subring of R with unity is a P.I.D.
(4) If R is an integral domain which has finitely many ideals, then R is a field.
14. Let $R=Z \mid X\rceil /\left(x^{2}+1\right)$ and $\psi: Z(X) \rightarrow R$ be the natural quotient map. Which of the following statements are true?
(1) R is isomorphic to a subring of C.
(2) The ideal generated by $\psi(X)$ is a prime ideal in R.
(3) R has infinitely many prime ideals.
(4) Only (1) and (3) are true.
15. The number of ring homomorphisms from $f: Z[x, y] \longrightarrow \frac{F[X]}{\left(x^{3}+x^{2}+x+1\right)}$ equals :
(1) 2^{6}
(2) 2^{18}
(3) 1
(4) 2^{9}
16. The total number of non-isomorphic groups of order 122 is :
(1) 2
(2) 1
(3) 61
(4) 4
17. Let G be a group order 6 and H be a subgroup of G such that $1<|H|<6$. Which one of the following options is correct?
(1) G is always cyclic, but H may not be cyclic.
(2) G may not be cyclic, but H is always cyclic.
(3) Both G and H are always cyclic.
(4) Both G and H may not be cyclic.
18. The number of generators of a cyclic group of order 10 is:
(1) 2^{\prime}
(2) 3
(3) 4
(4) 5

PG-EE-July-2024/(Mathematics)(SET-Z)/(B)
11. If a and b are ans imo positive integers with n, A and n is the nomber of divisions it liuclid's agorithon, and if p is the mmber of digits in s then
(1) $n>p$
(2) $n>7 p$
(3) $n \leq 5 p$
(d) $11 \cdot 9 p$
12. If $F_{n}=2^{2^{n}}+1$, then $F_{0} F_{1} \ldots \ldots . . F_{n}$, is equal to:
(1) F_{n}
(2) $r_{n}+3$
(3) $F_{n}-2$
(d) $\mathrm{F}+\mathrm{l}$
13. If $n=p_{1}^{a_{1}}, p_{2}^{a_{2}} \ldots \ldots \ldots p_{1}^{a_{1}}$ be any positive integer where $p_{1}, p_{2} \ldots \ldots . . p_{1}$ are distimet prime, then Liuler's $\phi(n)$ is equal to:
(1) $n\left(1-\frac{1}{p_{1}}\right)\left(1-\frac{1}{p_{2}}\right) \ldots \ldots\left(1-\frac{1}{p_{1}}\right)$
(2) $n \cdot p_{1} p_{2} \ldots \ldots p_{n}$
(3) $n\left(p_{1}+1\right)\left(p_{2}+2\right) \ldots \ldots\left(p_{8}+1\right)$
(4) $n\left(1+\frac{1}{p_{1}}\right)\left(1+\frac{1}{p_{2}}\right) \ldots \ldots\left(1+\frac{1}{p_{1}}\right)$
14. Using Euler method, the general solution of the equation $21 x^{2}+13 y-1791$ is :
(1) $x=-t, y \quad 141+121$
(2) $x=2 t y=141+13 t$
(3) $x=4 t, y \quad|4|+13 t$
(4) $x-2 t, y=122+13 t$
15. A square of side a revolves about a line through a comer and perpendientar to the diagonal through that corner, then the volume and aren of the surlace of the solid generated are :
(1) $\sqrt{2} \pi a^{3}, 4 \sqrt{2} \pi a^{2}$
(2) $4 \pi a^{1}, \sqrt{2} \pi a^{2}$
(3) $4 \sqrt{2} \pi a^{3}, 4 \pi a^{2}$
(4) $\pi a^{1}, 4 \pi a^{2}$
16. If both m and n are positive integers, then $B(m, n)$ is equal to :
(1) $\frac{\llcorner m\lfloor n}{\lfloor m+n-1}$
(2) $\frac{\lfloor m-1 \downharpoonright n-1}{\lfloor m+n-1}$
(3) $\frac{\lfloor m+1 \mid n+1}{\lfloor m+n}$
(4) $\frac{\lfloor m+1\lfloor n+1}{\lfloor m+n-2}$
17. $\int_{0}^{\pi / 2} \sin ^{n} \theta d \theta$ is cqual to : (where $\left.n>-1\right)$
(1) $\sqrt{\pi} \cdot \frac{\Gamma(n+1)}{\Gamma(n+2)}$
(2) $\frac{\Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{n-1}{2}\right)}$
(3) $\frac{\pi}{2} \frac{\Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{n-1}{2}\right)}$
(4) $\frac{\pi}{2} \cdot \frac{\Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{n+2}{2}\right)}$
18. Area of the curve $r^{2}=a^{2} \cos ^{2} \theta+b^{2} \sin ^{2} \theta$ is :
(1) $(a+b) \frac{\pi}{2}$
(2) $2 \pi\left(a^{2}+b^{2}\right)$
(3) $\left(a^{2}+b^{2}\right) \frac{\pi}{2}$
(4) $4 \pi\left(a^{2}+b^{2}\right)$
19. $\underset{n \rightarrow \infty}{L t} \sum_{r=1}^{n-1} \frac{1}{n} \sqrt{\frac{n+r}{n-r}}=$
(1) $\pi+1$
(2) $\frac{\pi}{2}+1$
(3) $2 \pi+3$
(4) $\frac{4}{3}\left(\frac{\pi}{2}+1\right)$
20. If $f(t)=e^{-t} t^{n}$, then its Laplace Transform $F(s)$ is :
(1) $\frac{\Gamma(n+1)}{(s+1)^{n+1}}$
(2) $\frac{1}{s^{2}+1}$
(3) $\frac{\Gamma(n)}{s^{n+1}}$
(4) $\frac{\Gamma(n+1)}{s^{2}+1}$

B
21. The pedal equation of the curve $x^{2}+y^{2}=2 a x$ is :
(1) $r^{2}=a p$
(2) $r^{2}=\frac{a}{p}$
(3) $r^{2}=2 a p$
(4) $r^{2}=a p^{2}$
22. The length of subnormal to parabola $y^{2}=4 a x$ is:
(1) $2 a$
(2) $4 a$
(3) $a \sqrt{2}$
(4) $2 a \sqrt{2}$
23. For the curve $y=a \log \left(\sec \frac{x}{a}\right)$, the chord of curvature parallel to y-axis is equal to :
(1) a
(2) $2 a$
(3) $3 a$
(4) $4 a$
24. The radius of curvature of the curve $y=a \sin \psi \cos \psi$ is :
(1) p
(2) $3 p$
(3) $4 p$
(4) $2 p$
25. If $u=\tan ^{-1} \frac{x^{3}+y^{3}+x^{2} y-x y^{2}}{x^{2}-x y+y^{2}}$, then the value of $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}$ is equal to :
(1) 0
(2) $\sin u$
(3) $\sin 2 u$
(4) $\frac{1}{2} \sin 2 u$
26. If $x=r \cos \theta$ and $y=r \sin \theta$, then $\frac{\partial(r, \theta)}{\partial(x, y)}$ is :
(1) r
(2) $r \sin \theta$
(3) $\frac{r}{\sin \theta}$
(4) $\frac{1}{r}$
27. If $a>0, b>0$, then the maximum value of $a \cos \theta+b \sin \theta$ is :
(1) $a+b$
(2) $a-b$
(3) a or b
(4) $\sqrt{a^{2}+b^{2}}$
28. Sequence $\left(1,-\frac{1}{2}, \frac{1}{3},-\frac{1}{4}, \frac{1}{5},-\frac{1}{6}, \ldots \ldots \ldots.\right)$ is :
(1) Monotonic but not bounded
(2) Bounded but not monotonic
(3) Monotonic and bounded
(4) Neither monotonic nor bounded
29. Maxima and Minima value of the set $S=\left\{1+\frac{(-1)^{n}}{n} ; n \in N\right\}$ are :
(1) $\left(\frac{3}{2}, 0\right)$
(2) $\left(0, \frac{3}{2}\right)$
(3) $\left(1, \frac{3}{2}\right)$
(4) $\left(\frac{3}{2}, 1\right)$
30. Series $\left(\frac{2^{2}}{1^{2}}-\frac{2}{1}\right)^{-1}+\left(\frac{3^{3}}{2^{3}}-\frac{3}{2}\right)^{-2}+\left(\frac{4^{4}}{3^{4}}-\frac{4}{3}\right)^{-3}+$. \qquad
(1) Convergent
(2) Divergent
(3) Oscillatory finitely
(4) Oscillatory infinitely
31. The centre and radius of the sphere $7 x^{2}+7 y^{2}+7 z^{2}-6 x-3 y-2 z=0$ are respectively:
(1) $\left(\frac{6}{7}, \frac{3}{7}, \frac{2}{7}\right), \frac{1}{4}$
(2) $\left(\frac{3}{7}, \frac{3}{14}, \frac{2}{7}\right), \frac{1}{2}$
(3) $\left(\frac{3}{7}, \frac{3}{14}, \frac{1}{7}\right), \frac{1}{2}$
(4) $\left(\frac{6}{7}, \frac{3}{7}, \frac{2}{7}\right), \frac{1}{2}$
32. The equation of the plane that bisects the line joining the points $(1,2,3) ;(3,4,5)$ at right angles is :
(1) $x+y+z=0$
(2) $x+y-z+2=0$
(3) $x-y+z=0$
(4) $x+y+z-9=0$
33. The equations of a straight line through the point $(3,1,-6)$ and parallel to each of the planes $x+y+2 z-4=0$ and $2 x-3 y+z+5=0$ are :
(1) $\frac{x-3}{7}=\frac{y-1}{3}=\frac{z+6}{-5}$
(2) $\frac{x+4}{3}=\frac{y-1}{3}=\frac{z-6}{5}$
(3) $\frac{x-3}{7}=\frac{y+1}{3}=\frac{z-6}{-5}$
(4) None of the above
34. The equation of the cylinder whose generators are parallel to the line, $\frac{x}{1}=\frac{y}{-2}=\frac{z}{3}$ and whose guiding curve is the ellipse $x^{2}+2 y^{2}=1, z=0$ is :
(1) $3\left(x^{2}+2 y^{2}+z^{2}\right)-2 x z=0$
(2) $3\left(x^{2}+2 y^{2}+z^{2}\right)-2 x z+8 y z-3=0$
(3) $x^{2}+y^{2}+z^{2}-2 x z-8 y z+3=0$
(4) None of the above
35. The vertex of the cone $4 x^{2}-y^{2}+2 z^{2}+2 x y-3 y z+12 x-11 y+6 z+4=0$ is :
(1) $(1,2,3)$
(2) $(1,3,4)$
(3) $(-1,-2,-3)$
(4) $(1,2,-3)$
36. The integrating factor of the differential equation $x(x-1) \frac{d y}{d x}=(x-2) y+x^{3}(2 x-1)$ is :
(1) $\frac{x-1}{x^{3}}$
(2) $\frac{x^{2}}{x-1}$
(3) $\frac{x-1}{x^{2}}$
(4) $\frac{x^{3}}{2 x-1}$
37. The solution of the following differential equation is :
$\frac{d y}{d x}=\sin (x+y)+\cos (x+y)$
(1) $c e^{x}=\tan \left(\frac{x+y}{2}\right)+1$
(2) $c e^{x}=\tan (x+y)+1$
(3) $c e^{x}=\tan \left(\frac{x+y}{2}\right)-1$
(4) $c e^{x}=\tan (x+y)-1$
38. Singular solution of the following D. E. is:
$y^{2}-2 p x y+p^{2} x^{2}-\left(a^{2} p^{2}+b^{2}\right)=0$
(1) $a^{2} x^{2}+b^{2} y^{2}=1$
(2) $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
(3) $x^{2}+y^{2}=\frac{a^{2}}{b^{2}}$
(4) $x^{2}+y^{2}=a^{2} b^{2}$
39. The P. I. of the following D. E. is :

$$
\left(D^{2}-5 D+6\right) y=5^{x} \quad\left[D \equiv \frac{d}{d x}\right]
$$

(1) $5^{x} \log _{e} 5$
(2) $\frac{5^{x}}{2 \log _{e} 5}$
(3) $\frac{5^{x}}{3 \log _{e} 5}$
(4) $\frac{5^{x}}{\log _{e}\left(\frac{5}{e^{2}}\right) \cdot \log _{e}\left(\frac{5}{e^{3}}\right)}$
40. Integrating factor of the following D. E. is :

$$
\sin ^{2} x \frac{d^{2} y}{d x^{2}}=2 y
$$

(1) $\sin x$
(2) $\cos x$
(3) $\tan x$
(4) $\cot x$
41. The value of integral $\iint_{R} y d x d y$ where R is the region bounded by the parabolas $y^{2}=4 x$ and $x^{2}=4 y$ is :
(1) $\frac{32}{5}$
(2) $\frac{48}{5}$
(3) $\frac{16}{5}$
(4) $\frac{16 \sqrt{2}}{5}$
42. The value of $\iiint_{x^{2}+y^{2}+z^{2} \leq 1}\left(x^{2}+y^{2}+z^{2}\right) d x d y d z$ is :
(1) $\frac{\pi}{2}$
(2) $\frac{\pi}{5}$
(3) $\frac{4 \pi}{5}$
(4) $\frac{4 \pi}{15}$
43. The locus of z when amp $\left(\frac{z-1}{z+1}\right)=\frac{\pi}{3}$ is :
(1) $x^{2}+y^{2}-\left(\frac{2}{\sqrt{3}}\right) y-1=0$
(2) $x^{2}+y^{2}-2 y=0$
(3) $x^{2}+y^{2}+\frac{2}{\sqrt{3}} y+1=0$
(4) $x^{2}+y^{2}+2 y-1=0$
44. $\lim _{z \rightarrow 2 e} \frac{\pi i}{3} \frac{z^{3}+8}{z^{4}+4 z^{2}+16}=$
(1) $\frac{3-i \sqrt{3}}{2}$
(2) $\frac{1}{8}(3-i \sqrt{3})$
(3) $\frac{3+i \sqrt{3}}{2}$
(4) $\frac{1}{4}(3+i \sqrt{3})$
45. The bilinear transformation $w=\frac{3 z-4}{z-1}$ is :
(1) Elliptic
(2) Parabolic
(3) Hyperbolic
(4) None of these
46. The circle of convergence of power series $\sum_{n=1}^{\infty}\left(\frac{2 i}{z+i+1}\right)^{n}$ is :
(1) $|z+i|<2$
(2) $|z+i|>2$
(3) $|z+i+1|>2$
(4) $|z+i+1|<2$
47. If $f(z)=\frac{z^{3}+3 z+1}{z-3}$ and path of integration is a circle with centre at the origin and radius r, the Cauchy theorem is applicable when r equals :
(1) 5
(2) 4
(3) 3
(4) 2
48. A particle moves in a curve so that its tangential and normal accelerations are equal and the angular velocities of the tangent is constant. The path of the particle is given by :
(1) $s=A e^{\psi}+B$ where $A=\frac{C}{w}, B$ and C are constants
(2) $s=2 A \log v+\log C$
(3) $s=A e^{\dagger \prime}+B \log C$
(4) $s=A \log \psi+B e^{\psi}+C$
49. A particle is moving with S.H.M. of amplitude a. Its velocity at any point x is :
(1) $v=\sqrt{u\left(a^{2}-x^{2}\right)}$
(2) $u=u\left(a^{2}-x^{2}\right)$
(3) $v=\sqrt{u\left(a^{2}+x^{2}\right)}$
(4) $v=u\left(a^{2}+x^{2}\right)$
50. If the time of the flight of a bullet over a horizontal range R is T, the angle of projection is :
(1) $\sin ^{-1}\left(T^{2} / 2 R\right)$
(2) $\tan ^{-1}\left(\frac{T^{2}}{2 R}\right)$
(3) $\sin ^{-1}\left(\frac{g T^{2}}{2 R}\right)$
(4) $\tan ^{-1}\left(\frac{g T^{2}}{2 R}\right)$
51. Let X has a two parameter gamma distribution with parameters $\lambda, k(\lambda>0)$ is the scale parameter and $k>0$ is the shape parameter) with density function $f_{\lambda, k}(x)=\left\{\begin{array}{cc}\frac{\lambda^{k} x^{k-1} e^{-\lambda x}}{\Gamma^{2}(k)} & , \quad x>0 \\ 0 & , x<0\end{array}\right.$, then its L.T. $f^{*}(s)$ is given by :
(1) $\frac{1}{(s+1)^{2}}$
(2) $\left(\frac{\lambda}{s+\lambda}\right)^{k}$
(3) $\left(\frac{s+\lambda}{\lambda}\right)^{k}$
(4) $\left(\frac{\lambda+k}{s+\lambda}\right)^{k-1}$
52. What will be the output of the program :

```
main ()
{
int }\textrm{a}=1,\textrm{b}=2,\textrm{c}=3
printf("%d", a += (a += 3,5,a))
}
```

(1) 6
(2) 9
(3) 12
(4) 8
53. Which of the following comment is correct when a macro definition includes arguments?
(1) The opening parenthesis should immediately follow the macro name.
(2) There should be at least one blank between the macro name and the opening parenthesis.
(3) There should be only one blank between the macro name and the opening parenthesis.
(4) All the above comments are correct.
54. Which one of the following is a loop construct that will always be executed once ?
(1) for
(2) while
(3) switch
(4) do while
55. Which of the following statement is not true ?
(1) A pointer to an int and a pointer to a double are of the same size.
(2) A pointer must point to a data item on the heap (free store).
(3) A pointer can be reassigned to point to another data item.
(4) A pointer can point to an array.
56. What does this statement mean ?
$x-=y+1:$
(1) $x=x-y+1$
(2) $x=-x-y-1$
(3) $x=x-y \quad 1$
(4) $x=x+y-1$
57. Value of $\int \cos ^{2} x \sin ^{2} x d x$ is :
(1) $\frac{1}{8}\left[x-\frac{\cos 2 x}{2}\right]$
(2) $\frac{1}{4}\left[x-\frac{\cos 2 x}{2}\right]$
(3) $\frac{1}{8}\left[x-\frac{\sin 2 x}{2}\right]$
(4) $\frac{1}{4}\left[x-\frac{\sin 2 x}{2}\right]$
58. If $f(x)=x, x \in[0,1]$ and f is R -integrable on $[0,1]$, then $\int_{0}^{1} x d x$ is equal to :
(1) 1
(2) $\frac{1}{2}$
(3) 2
(4) $\frac{3}{2}$
59. The sum of n terms of a series is $S_{n}=\frac{n^{2} x}{1+n^{4} x^{2}}$, then for this series which statement is true?
(1) Converges uniformly.
(2) Does not converge uniformly.
(3) Converges uniformly only in the interval $(0,1)$.
(4) Each term is continuous in an interval (a, b).
60. Find the value of c which satisfies the mean value theorem for the given function, $f(x)=x^{2}+2 x+1$ on $[1,2] ?$
(1) $10 / 2$
(2) $13 / 2$
(3) $-13 / 2$
(4) $-7 / 2$
61. Using Gauss lilimination method, the solution of equations $2 x-y+3 z=9, x+y+z=6$, $x-y+z=2$ is :
(1) $x=-13, y=1, z=-8$
(2) $x=13, y=1, z=-8$
(3) $x=-13, y=4, z=15$
(4) $x=5, y=14, z=5$
62. While solving the equation $x^{2}-3 x+1=0$ using Newton-Raphson method the initial guess of the root is as 1 , then the value of the root will be :
(1) 1.5
(2) 1
(3) 0.5
(4) 0
63. For a fixed $C \in R$, let $\alpha=\int_{0}^{2}\left(9 x^{2}-5 C x^{4}\right) d x$. If the value of this integral obtained by using the Trapezoidal rule is equal to α, then the value of C (rounded off 2 decimal places) is :
(1) 0.5
(2) 0.24
(3) 0.12
(4) 0.76
64. If $f(x)=x^{2}$, then the second order divided difference for the points x_{0}, x_{1}, x_{2} will be :
(1) -1
(2) $\frac{-1}{x_{1}-x_{0}}$
(3) 1
(4) $\frac{1}{x_{2}-x_{1}}$
65. Which of the following is termed as an action of pull or push of a body at rest or motion?
(1) Torque
(2) Momentum
(4) Force
(3) Work
66. What is the relationship between each force, if three concurrent forces acting on a body according to 1 ami's theorem ?
(1) Directly proportional to the sine of the angle between the other two forces
(2) Inversely proportional to the cosine of the angle between the other two forces
(3) Directly proportional to the cosine of the angle between the other two forces
(4) Inversely proportional to the tangent of the angle between the other two forces
67. The resultant R of forces P and Q makes an angle θ with the line of action of $P . P$ is now replaced by $P+R, Q$ remaining unchanged such that the resultant makes an angle $\theta / 2$ with $P+R$. The magnitude of this resultant is :
(1) $2 R \sin \theta / 2$
(2) $2 R \cos \theta / 2$
(3) $R \sin \theta / 2$
(4) $3 R \cos \theta / 2$
68. Forces of $6,8,12 \mathrm{gm}$ wt act along $\mathrm{BC}, \mathrm{CA}, \mathrm{AB}$, the sides of a triangle of lengths $3,4,5$ cms respectively. The resultant of these forces acting parallel to $A B$ is :
(1) 2 gm wt
(2) 3 gm wt
(3) 3.5 gm wt
(4) 4 gm wt
69. The sides of a uniform triangular lamina are $5,6,9 \mathrm{cms}$. in length, the perpendicular distance of its centre of gravity from the shortest side is :
(1) 2 cm
(2) $4 \sqrt{3} \mathrm{~cm}$
(3) $\frac{4}{3} \sqrt{2} \mathrm{~cm}$
(4) $\frac{3 \sqrt{2}}{4} \mathrm{~cm}$
70. A force of 30 kg acting at an angle of 30° with the horizontal is about to drag a body of weight 60 kg lying on the floor. The co-efficient of friction is :
(1) $\mu=\frac{1}{3}$
(2) $\mu=\frac{\sqrt{3}}{4}$
(3) $\mu=\sqrt{3}$
(4) $\mu=\frac{1}{\sqrt{3}}$
71. If $y=\tan ^{-1}\left(\frac{x}{a}\right)$. then its nth derivative y_{n} is :
(1) $\frac{(-1)^{n-1}(n-1)!}{a^{n}} \sin ^{n} \theta \cos n \theta$
(2) $\frac{(-1)^{n-1}(n-1)!}{a^{n}} \tan ^{n} \theta \cos n \theta$
(3) $\frac{(-1)^{n-1}(n-1)!}{a^{n}} \sin ^{n} \theta \sin n \theta$
(4) $\frac{(-1)^{n-1}(n-1)!}{a^{n}} \cos ^{n} \theta \cos n \theta$
where $\theta=\tan \quad\left(\frac{a}{x}\right)$.
72. If $u=\phi(x-y, y-z, z-x)$, then $\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}+\frac{\partial u}{\partial z}$ is equal to :
(1) 0
(2) 1
(3) u
(4) $x y z$
73. If α is a paramcter, then envelop of the family of lines $x \cos \alpha+y \sin \alpha=a$ is :
(1) Parabola
(2) Circle
(3) Ellipse
(4) Hyperbola
74. The evolute of curve $2 x y=a^{2}$ is :
(1) $x^{2 / 3}+y^{2 / 3}=a^{2 / 3}$
(2) $(x+y)^{2 / 3}+(x-y)^{2 / 3}=a^{2 / 3}$
(3) $(x+y)^{2 / 3}+(x-y)^{2 / 3}=2 a^{2 / 3}$
(4) $(x+y)^{2 / 3}-(x-y)^{2 / 3}=2 a^{2 / 3}$
75. Maximum curvature of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is:
(1) $\frac{2 a}{b}$
(2) $\frac{2 b}{a}$
(3) $\frac{a}{2 b}$
(4) $\frac{b}{2 a}$
76. The minimum value of $\sqrt{x^{2}+y^{2}}$, under the condition $x^{2}+x y+y^{2}=1$ is :
(1) 1
(2) $\sqrt{2}$
(3) $\sqrt{3}$
(4) $\frac{\sqrt{6}}{2}$
77. The sequence $\left\{x_{n}\right\}$ where :
$x_{n}=\frac{1}{n+1}+\frac{1}{n+2}+\ldots \ldots \ldots+\frac{1}{2 n}$ is :
(1) Convergent
(2) Divergent
(3) Oscillatory
(4) None of the above
78. If $x=a(\cos \theta+\theta \sin \theta), y=a(\sin \theta-\theta \sin \theta)$, then the value of $\frac{d^{2} y}{d x^{2}}$ at $\theta=\pi$ is :
(1) $\frac{2}{a \pi}$
(2) $\frac{1}{a^{2} \pi}$
(3) $-\frac{1}{a \pi}$
(4) $-\frac{1}{a^{2} \pi^{2}}$
79. What is the degree and order of the following differential equation ?
$\left(\frac{d^{3} y}{d x^{3}}\right)^{2 / 3}-3 \frac{d^{2} y}{d x^{2}}+5 \frac{d y}{d x}+4 y=1$
(1) 3,3
(2) $2 / 3,3$
(3) 3,2
(4) 2,3
80. If n is a natural number, then

$$
\frac{\sum_{r=1}^{n} r^{3}}{\sum_{r=1}^{n} r(r+1)} \text { is equal to : }
$$

(1) $\frac{3}{2} \cdot \frac{n}{n+1}$
(2) $\frac{3}{2} \cdot \frac{n+1}{n+2}$
(3) $\frac{3}{2} \cdot \frac{n}{n+4}$
(4) $\frac{3}{4} \cdot \frac{n(n+1)}{n+2}$
81. If $r=a \cos t i+a \sin t j+t k$, then the value of $\left|\frac{d^{2} r}{d t^{2}}\right|$ is
(1) $-a \cos t i-a \sin t j$
(2) $\sqrt{\left(a^{2} \cos ^{2} t+a^{2} \sin ^{2} t\right)+t}$
(3) $a \cos t+a \sin t$
(4) a
82. If $r=x i+y j+z k$, then $\operatorname{grad} r$ is :
(1) $\frac{x}{r}+\frac{y}{r}+\frac{z}{r}$
(2) $\frac{1}{r}(x i+y j+z k)$
(3) $x i+y j+z k$
(4) None of the above
83. If c is a regular closed curse in $x y$-plane, enclosing a region S and $P(x, y)$ and $Q(x, y)$ be two continuously differentiable functions in the region S i.e. inside and on c, then $\iint_{S}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d x d y$ is equal to :
(1) $\int_{c}(P d x+Q d y)$
(2) $\int_{c}(Q d y-P d x)$
(3) $\int_{c} \frac{\partial x}{\partial y}(P+Q)$
(4) $\int_{c} \frac{\partial^{2}}{\partial y^{2}}(P d x+Q d y)$
84. The value of $\int_{s}(a x i+b y j+c z k) \cdot \hat{n} d s$ is :
(1) $a+b+c$
(2) $\frac{4}{3}(a+b+c)$
(3) $\frac{4}{3} \pi(a+c+b)$
(4) $a^{2}+b^{2}+c^{2}$
85. If $f(t)=t i-3 j+2 t k, g(t)=i-2 j+2 k$ and $h(t)=3 i+t j-k$, then the value of $\int_{1}^{2} f .(g \times h) d t$ is :
(1) 0
(2) 1
(3) 2
(4) 3
86. If $u=\tan ^{-1}\left(\frac{y}{x}\right)$. then $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}$ is equal to :
(1) $\frac{2 x y}{x^{2}+y^{2}}$
(2) $\frac{x}{x^{2}+y^{2}}$
(3) 0
(4) $\frac{x}{y}$
87. Which of the following function is not differentiable at $x=0$?
(1) $x|x|$
(2) $x+|x|$
(3) e^{-x}
(4) x^{3}
88. If $f(x)=3 x^{3}-5 x^{2}+2 x$, then the interval for which f satisfies all the conditions of Roll's theorem is :
(1) $[0,1]$
(2) $[-1,1]$
(3) $[-1,0]$
(4) $[1,2]$
89. If Lagrange's theorem is true for the function $f(x)=x^{3}-3 x-2$ in the interval $[-2,3]$, then the valuc of c where it is true is :
(1) 0
(2) $\sqrt{7 / 3}$
(3) $\sqrt{\frac{3}{7}}$
(4) 1
90. If.the function $f(x)=x(x-2)$ is continuous in $\left[0, \frac{3}{2}\right]$ and differentiable in $\left(0, \frac{3}{2}\right)$, then the value of ' c ' of the mean value theorem is :
(1) $\frac{1}{2}$
(2) $\frac{3}{2}$
(3) $\frac{1}{4}$
(4) $\frac{3}{4}$
91. A matrix A such that $A^{2}=I$ or $(I+A)(I-1)=0$ is called :
(1) Idempotent
(2) Nilpotent
(3) Involuntory
(4) None of the above
92. If for a square matrix A of order $n,|A-\lambda I|=a_{0} \lambda^{n}+a_{1} \lambda^{n-1}+\ldots \ldots \ldots .+a_{n}$, then $a_{0} A^{n}+a_{1} A^{n-1}+$ \qquad $+a_{n} I$ is equal to :
(1) 0
(2) I_{n}
(3) $J_{n \times n}$
(4) $I_{n} A^{-1}$
93. If A is an $m \times n$ matrix of $\operatorname{rank} r_{A}$ and B is an $n \times p$ matrix of rank r_{B} such that $A B=0$, then which of the following is true ?
(1) $r_{A}+r_{B}=p$
(2) $r_{A}+r_{B} \leq n$
(3) $r_{A}+r_{B}>n$
(4) $r_{A}+r_{B}=n+p$
94. A square matrix A of order n is such that $A^{\prime} A=I=A A^{\prime}$, then $|A|$ is equal to :
(1) 1
(2) n
(3) ± 1
(4) $n-1$
95. The canonical form of a Quadratic Form is $-21 y_{1}^{2}-\frac{2}{7} y_{2}^{2}$. The rank and the index of this Q. F. arc 2 and 0 respectively, then the nature of this Q.F. is :
(1) Positive definite
(2) Negative definite
(3) Semi-positive definite
(4) Semi-negative definite
96. Given the function $f(x)=\left\{\begin{array}{cl}x^{2} & , x \leq c \\ a x+b, & x>c\end{array}\right.$ is differentiable at $x=c$. The values of a and b are respectively :
(1) $2 c,-c^{2}$
(2) $c^{2}, 2 c$
(3) $c,-c^{2}$
(4) $-c^{2}, 2 c$
97. If $y=\sqrt{x+\sqrt{x+\sqrt{x+\ldots \ldots . \text { to } \infty}}}$, then $\frac{d y}{d x}$ is equal to :
(1) x^{3}
(2) $\frac{1}{y+1}$
(3) $\frac{1}{2 y-1}$
(4) $\frac{x}{1-2 y}$
98. The radius of curvature at the vertex of the cycloid $x=a(\theta+\sin \theta), y=a(1-\cos \theta)$ is :
(1) $4 a$
(2) $a+\sin \theta$
(3) $2 a$
(4) $2 a+3$
99. The asymptotes of the curve $\left(x^{2}-y^{2}\right)(x+2 y+1)+x+y+1=0$ are :
(1) $y= \pm x ; x+2 y+1=0$
(2) $y= \pm x ; x+y+1=0$
(3) $y=x ; x+2 y+1=0 ; x+y+1=0$
(4) $y=-x ; x+2 y+1=0 ; x+y+1=0$
100. The curve $y^{2}(2 a-x)=x^{3}$ has :
(1) Node
(2) Cusp
(3) Conjugate point
(4) None of these

the
 Total No. of Printed Pages : 21 (DO NOT OREN THIS QUESTION BOOKLET BEFORE TIME OR UNTIL YOU
 ARE ASKED TO DO SO) PG-EE-July, 2024

Time: 11/4 Hours
Roll No. (in figures) \qquad Max. Marks : 100 (in words) \qquad
Name \qquad Date of Birth \qquad
Father's Name \qquad Mother's Name \qquad
Date of Examination \qquad
(Signature of the Candidate)
(Signature of the Invigilator)

CANDIDATES MUST READ THE FOLLOWING INFORMATION/INSTRUCTIONS BEFORE STARTING THE QUESTION PAPER.

1. All questions are compulsory.

2. The candidates must return the question booklet as well as OMR Answer-Sheet to the Invigilator concerned before leaving the Examination Hall, failing which a case of use of unfairmeans / mis-behaviour will be registered against him / her, in addition to lodging of an FIR with the police. Further the answer-sheet of such a candidate will not be evaluated.
3. Keeping in view the transparency of the examination system, carbonless OMR Sheet is provided to the candidate so that a copy of OMR Sheet may be kept by the candidate.
4. Question Booklet along with answer key of all the $A, B, C \& D$ code shall be got uploaded on the University Website immediately after the conduct of Entrance Examination. Candidates may raise valid objection/complaint if any, with regard to discrepancy in the question booklet/answer key within 24 hours of uploading the same on the University Website. The complaint be sent by the students to the Controller of Examinations by hand or through email. Thereafter, no complaint in any case, will be considered.
5. The candidate must not do any rough work or writing in the OMR Answer-Sheet. Rough work, if any, may be done in the question booklet itself. Answers must not be ticked in the question booklet.
6. There will be no negative marking. Each correct answer will be awarded one full mark. Cutting, erasing, overwriting and more than one answer in OMR Answer-Sheet will be treated as incorrect answer.
7. Use only Black or Blue Ball Point Pen of good quality in the OMR Answer-Sheet.
8. Before answering the questions, the candidates should ensure that they have been supplied correct and complete booklet. Complaints, if any, regarding misprinting etc. will not be entertained 30 minutes after starting of the examination.

PG-EE-July-2024/(Mathematics)(SET-Z)/(C)

1. If $y=\tan ^{-1}\left(\frac{x}{a}\right)$, then its nth derivative y_{n} is :
(1) $\frac{(-1)^{n-1}(n-1)!}{a^{n}} \sin ^{n} \theta \cos n \theta$
(2) $\frac{(-1)^{n-1}(n-1)!}{a^{n}} \tan ^{n} \theta \cos n \theta$
(3) $\frac{(-1)^{n-1}(n-1)!}{a^{n}} \sin ^{n} \theta \sin n \theta$
(4) $\frac{(-1)^{n-1}(n-1)!}{a^{n}} \cos ^{n} \theta \cos n \theta$
where $\theta=\tan ^{-1}\left(\frac{a}{x}\right)$.
2. If $u=\phi(x-y, y-z, z-x)$, then $\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}+\frac{\partial u}{\partial z}$ is equal to :
(1) 0
(2) 1
(3) u
(4) $x y z$
3. If α is a parameter, then envelop of the family of lines $x \cos \alpha+y \sin \alpha=a$ is :
(1) Parabola
(2) Circle
(3) Ellipse
(4). Hyperbola
4. The evolute of curve $2 x y=a^{2}$ is:
(1) $x^{2 / 3}+y^{2 / 3}=a^{2 / 3}$
(2) $(x+y)^{2 / 3}+(x-y)^{2 / 3}=a^{2 / 3}$
(3) $(x+y)^{2 / 3}+(x-y)^{2 / 3}=2 a^{2 / 3}$
(4) $(x+y)^{2 / 3}-(x-y)^{2 / 3}=2 a^{2 / 3}$
5. Maximum curvature of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is :
(1) $\frac{2 a}{b}$
(2) $\frac{2 b}{a}$
(3) $\frac{a}{2 b}$
(4) $\frac{b}{2 a}$
P. T. O.
6. The minimum value of $\sqrt{x^{2}+y^{2}}$, under the condition $x^{2}+x y+y^{2}=1$ is :
(1) 1
(2) $\sqrt{2}$
(3) $\sqrt{3}$
(4) $\frac{\sqrt{6}}{2}$
7. The sequence $\left\{x_{n}\right\}$ where :

$$
x_{n}=\frac{1}{n+1}+\frac{1}{n+2}+\ldots \ldots \ldots+\frac{1}{2 n} \text { is : }
$$

(1) Convergent
(2) Divergent
(3) Oscillatory
(4) None of the above
8. If $x=a(\cos \theta+\theta \sin \theta), y=a(\sin \theta-\theta \sin \theta)$, then the value of $\frac{d^{2} y}{d x^{2}}$ at $\theta=\pi$ is :
(1) $\frac{2}{a \pi}$
(2) $\frac{1}{a^{2} \pi}$
(3) $-\frac{1}{a \pi}$
(4) $-\frac{1}{a^{2} \pi^{2}}$
9. What is the degree and order of the following differential equation?

$$
\left(\frac{d^{3} y}{d x^{3}}\right)^{2 / 3}-3 \frac{d^{2} y}{d x^{2}}+5 \frac{d y}{d x}+4 y=1
$$

(1) 3,3
(2) $2 / 3,3$
(3) 3,2
(4) 2,3
10. If n is a natural number, then

$$
\frac{\sum_{r=1}^{n} r^{3}}{\sum_{r=1}^{n} r(r+1)} \text { is equal to : }
$$

(1) $\frac{3}{2} \cdot \frac{n}{n+1}$
(2) $\frac{3}{2} \cdot \frac{n+1}{n+2}$
(3) $\frac{3}{2} \cdot \frac{n}{n+4}$
(4) $\frac{3}{4} \cdot \frac{n(n+1)}{n+2}$
11. If $r=a \cos t i+a \sin t j+t k$, then the value of $\left|\frac{d^{2} r}{d t^{2}}\right|$ is :
(1) $-a \cos t i-a \sin t j$
(2) $\sqrt{\left(a^{2} \cos ^{2} t+a^{2} \sin ^{2} t\right)+t}$
(3) $a \cos t+a \sin t$
(4) a
12. If $r=x i+y j+z k$, then $\operatorname{grad} r$ is :
(1) $\frac{x}{r}+\frac{y}{r}+\frac{z}{r}$
(2) $\frac{1}{r}(x i+y j+z k)$
(3) $x i+y j+z k$
(4) None of the above
13. If c is a regular closed curse in $x y$-plane, enclosing a region S and $P(x, y)$ and $Q(x, y)$ be two continuously differentiable functions in the region S i.e. inside and on c, then $\iint_{5}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d x d y$ is equal to :
(1) $\int_{c}(P d x+Q d y)$
(2) $\int_{c}(Q d y-P d x)$
(3) $\int_{c} \frac{\partial x}{\partial y}(P+Q)$
(4) $\int_{c} \frac{\partial^{2}}{\partial y^{2}}(P d x+Q d y)$
14. The value of $\int_{s}(a x i+b y j+c z k) \cdot \hat{n} d s$ is :
(1) $a+b+c$
(2) $\frac{4}{3}(a+b+c)$
(3) $\frac{4}{3} \pi(a+c+b)$
(4) $a^{2}+b^{2}+c^{2}$
15. If $f(t)=t i-3 j+2 t k, g(t)=i-2 j+2 k$ and $h(t)=3 i+t j-k$, then the value of $\int_{1}^{2} f(g \times h) d t$ is :
(1) 0
(2) 1
(3) 2
(4) 3
16. If $u=\tan ^{-1}\left(\frac{y}{x}\right)$, then $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}$ is equal to :
(1) $\frac{2 x y}{x^{2}+y^{2}}$
(2) $\frac{x}{x^{2}+y^{2}}$
(3) 0
(4) $\frac{x}{y}$
17. Which of the following function is not differentiable at $x=0$?
(1) $x|x|$
(2) $x+|x|$
(3) e^{-x}
(4) x^{3}
18. If $f(x)=3 x^{3}-5 x^{2}+2 x$, then the interval for which f satisfies all the conditions of Roll's theorem is :
(1) $[0,1]$
(2) $[-1,1]$
(3) $[-1,0]$
(4) $[1,2]$.
19. If Lagrange's theorem is true for the function $f(x)=x^{3}-3 x-2$ in the interval $[-2,3]$, then the value of c where it is true is:
(1) 0
(2) $\sqrt{7 / 3}$
(3) $\sqrt{\frac{3}{7}}$
(4) 1
20. If the function $f(x)=x(x-2)$ is continuous in $\left[0, \frac{3}{2}\right]$ and differentiable in $\left(0, \frac{3}{2}\right)$, then the value of ' c ' of the mean value theorem is :
(1) $\frac{1}{2}$
(2) $\frac{3}{2}$
(3) $\frac{1}{4}$
(4) $\frac{3}{4}$
21. A matrix A such that $A^{2}=I$ or $(I+A)(I-A)=0$ is called :
(1) Idempotent
(2) Nilpotent
(3) Involuntory
(4) None of the above
22. If for a square matrix A of order $n,|A-\lambda I|=a_{0} \lambda^{n}+a_{1} \lambda^{n-1}+\ldots \ldots . . .+a_{n}$, then $a_{0} A^{n}+a_{1} A^{n-1}+\ldots \ldots \ldots . .+a_{n} I$ is equal to :
(1) 0
(2) I_{n}
(3) $J_{n \times n}$
(4) $I_{n} A^{-1}$
23. If A is an $m \times n$ matrix of $\operatorname{rank} r_{A}$ and B is an $n \times p$ matrix of rank r_{B} such that $A B=0$, then which of the following is true?
(1) $r_{A}+r_{B}=p$
(2) $r_{A}+r_{B} \leq n$
(3) $r_{A}+r_{B}>n$
(4) $r_{A}+r_{B}=n+p$
24. A square matrix A of order n is such that $A^{\prime} A=I=A A^{\prime}$, then $|A|$ is equal to :
(1) 1
(2) n
(3) ± 1
(4) $n-1$
25. The canonical form of a Quadratic Form is $-21 y_{1}^{2}-\frac{2}{7} y_{2}^{2}$. The rank and the index of this Q.F. are 2 and 0 respectively, then the nature of this Q. F. is :
(1) Positive definite
(2) Negative definite
(3) Semi-positive definite
(4) Semi-negative definite
26. Given the function $f(x)=\left\{\begin{array}{cl}x^{2} & , x \leq c \\ a x+b & , x>c\end{array}\right.$ is differentiable at $x=c$. The values of a and b are respectively :
(1) $2 c,-c^{2}$
(2) $c^{2}, 2 c$
(3) $c,-c^{2}$
(4) $-c^{2}, 2 c$
27. If $y=\sqrt{x+\sqrt{x+\sqrt{x+\ldots \ldots \text { to } \infty}}}$, then $\frac{d y}{d x}$ is equal to :
(1) x^{3}
(2) $\frac{1}{y+1}$
(3) $\frac{1}{2 y-1}$
(4) $\frac{x}{1-2 y}$
28. The radius of curvature at the vertex of the cycloid $x=a(\theta+\sin \theta), y=a(1-\cos \theta)$ is :
(1) $4 a$
(2) $a+\sin \theta$
(3) $2 a$
(4) $2 a+3$
29. The asymptotes of the curve $\left(x^{2}-y^{2}\right)(x+2 y+1)+x+y+1=0$ are :
(1) $y= \pm x ; x+2 y+1=0$
(2) $y= \pm x ; x+y+1=0$
(3) $y=x ; x+2 y+1=0 ; x+y+1=0$
(4) $y=-x ; x+2 y+1=0 ; x+y+1=0$
30. The curve $y^{2}(2 a-x)=x^{3}$ has :
(1) Node
(2) Cusp
(3) Conjugate point
(4) None of these
31. The value of integral $\iint_{R} y d x d y$ where R is the region bounded by the parabolas $y^{2}=4 x$ and $x^{2}=4 y$ is :
(1) $\frac{32}{5}$
(2) $\frac{48}{5}$
(3) $\frac{16}{5}$
(4) $\frac{16 \sqrt{2}}{5}$
32. The value of $\iiint_{x^{2}+y^{2}+z^{2} \leq 1}\left(x^{2}+y^{2}+z^{2}\right) d x d y d z$ is :
(1) $\frac{\pi}{2}$
(2) $\frac{\pi}{5}$
(3) $\frac{4 \pi}{5}$
(4) $\frac{4 \pi}{15}$
33. The locus of z when amp $\left(\frac{z-1}{z+1}\right)=\frac{\pi}{3}$ is :
(1) $x^{2}+y^{2}-\left(\frac{2}{\sqrt{3}}\right) y-1=0$
(2) $x^{2}+y^{2}-2 y=0$
(3) $x^{2}+y^{2}+\frac{2}{\sqrt{3}} y+1=0$
(4) $x^{2}+y^{2}+2 y-1=0$
34. $\lim _{z \rightarrow 2 e} \frac{\pi i}{3} \frac{z^{3}+8}{z^{4}+4 z^{2}+16}=$
(1) $\frac{3-i \sqrt{3}}{2}$
(2) $\frac{1}{8}(3-i \sqrt{3})$
(3) $\frac{3+i \sqrt{3}}{2}$
(4) $\frac{1}{4}(3+i \sqrt{3})$
35. The bilinear transformation $w=\frac{3 z-4}{z-1}$ is :
(1) Elliptic
(2) Parabolic
(3) Hyperbolic
(4) None of these
36. The circle of convergence of power series $\sum_{n=1}^{\infty}\left(\frac{2 i}{z+i+1}\right)^{n}$ is :
(1) $|z+i|<2$
(2) $|z+i|>2$
(3) $|z+i+1|>2$
(4) $|z+i+1|<2$
37. If $f(z)=\frac{z^{3}+3 z+1}{z-3}$ and path of integration is a circle with centre at the origin and radius r, the Cauchy theorem is applicable when r equals :
(1) 5
(2) 4
(3) 3
(4) 2
38. A particle moves in a curve so that its tangential and normal accelerations are equal and the angular velocities of the tangent is constant. The path of the particle is given by :
(1) $s=A e^{\psi}+B$ where $A=\frac{C}{w}, B$ and C are constants
(2) $s=2 A \log v+\log C$
(3) $s=A e^{\psi}+B \log C$
(4) $s=A \log \psi+B e^{\psi}+C$
39. A particle is moving with S.H.M. of amplitude a. Its velocity at any point x is :
(1) $v=\sqrt{u\left(a^{2}-x^{2}\right)}$
(2) $u=u\left(a^{2}-x^{2}\right)$
(3) $v=\sqrt{u\left(a^{2}+x^{2}\right)}$
(4) $v=u\left(a^{2}+x^{2}\right)$
40. If the time of the flight of a bullet over a horizontal range R is T, the angle of projection is :
(1) $\sin ^{-1}\left(T^{2} / 2 R\right)$
(2) $\tan ^{-1}\left(\frac{T^{2}}{2 R}\right)$
(3) $\sin ^{-1}\left(\frac{g T^{2}}{2 R}\right)$
(4) $\tan ^{-1}\left(\frac{g T^{2}}{2 R}\right)$
41. Let X has a two parameter gamma distribution with parameters $\lambda, k(\lambda>0$ is the scale parameter and $k>0$ is the shape parameter) with density function $f_{\lambda, k}(x)=\left\{\begin{array}{cc}\frac{\lambda^{k} x^{k-1} e^{-\lambda x}}{\mathrm{I}^{1}(k)} & , \quad x>0 \\ 0 & , \quad x<0\end{array}\right.$, then its L.T. $f^{*}(s)$ is given by :
(1) $\frac{1}{(s+1)^{2}}$
(2) $\left(\frac{\lambda}{s+\lambda}\right)^{k}$
(3) $\left(\frac{s+\lambda}{\lambda}\right)^{k}$
(4) $\left(\frac{\lambda+k}{s+\lambda}\right)^{k-1}$
42. What will be the output of the program : main ()
\{
int $\mathrm{a}=1, \mathrm{~b}=2, \mathrm{c}=3$;
printf ("\%d", $a+=(a+=3,5, a))$
\}
(1) 6
(2) 9
(3) 12
(4) 8
43. Which of the following comment is correct when a macro definition includes arguments?
(1) The opening parenthesis should immediately follow the macro name.
(2) There should be at least one blank between the macro name and the opening parenthesis.
(3) There should be only one blank between the macro name and the opening parenthesis.
(4) All the above comments are correct.
44. Which one of the following is a loop construct that will always be executed once ?
(1) for
(2) while
(3) switch
(4) do while
45. Which of the following statement is not true ?
(1) A pointer to an int and a pointer to a double are of the same size.
(2) A pointer must point to a data item on the heap (free store).
(3) A pointer can be reassigned to point to another data item.
(4) A pointer can point to an array.

PG-EE-July-2024/(Mathematics)(SET-Z)/(C) P. T. O.
46. What does this statement mean ?
$x-=y+1$;
(1) $x=x-y+1$
(2) $x=-x-y-1$
(3) $x=x-y-1$
(4) $x=x+y-1$
47. Value of $\int \cos ^{2} x \sin ^{2} x d x$ is :
(1) $\frac{1}{8}\left[x-\frac{\cos 2 x}{2}\right]$
(2) $\frac{1}{4}\left[x-\frac{\cos 2 x}{2}\right]$
(3) $\frac{1}{8}\left[x-\frac{\sin 2 x}{2}\right]$
(4) $\frac{1}{4}\left[x-\frac{\sin 2 x}{2}\right]$
48. If $f(x)=x, x \in[0,1]$ and f is R -integrable on [0, 1], then $\int_{0}^{1} x d x$ is equal to :
(1) 1
(2) $\frac{1}{2}$
(3) 2
(4) $\frac{3}{2}$
49. The sum of n terms of a series is $S_{n}=\frac{n^{2} x}{1+n^{4} x^{2}}$, then for this series which statement is true?
(1) Converges uniformly.
(2) Does not converge uniformly.
(3) Converges uniformly only in the interval $(0,1)$.
(4) Each term is continuous in an interval (a, b).
50. Find the value of c which satisfies the mean value theorem for the given function, $f(x)=x^{2}+2 x+1$ on $[1,2]$?
(1) $10 / 2$
(2) $13 / 2$
(3) $-13 / 2$
(4) $-7 / 2$
51. The pedal equation of the curve $x^{2}+y^{2}=2 a x$ is :
(1) $r^{2}=a p$
(2) $r^{2}=\frac{a}{p}$
(3) $r^{2}=2 a p$
(4) $r^{2}=a p^{2}$
52. The length of subnormal to parabola $y^{2}=4 a x$ is :
(1) $2 a$
(2) $4 a$
(3) $a \sqrt{2}$
(4) $2 a \sqrt{2}$
53. For the curve $y=a \log \left(\sec \frac{x}{a}\right)$, the chord of curvature parallel to y-axis is equal to :
(1) a
(2) $2 a$
(3) $3 a$
(4) $4 a$
54. The radius of curvature of the curve $y=a \sin \psi \cos \psi$ is :
(1) p
(2) $3 p$
(3) $4 p$
(4) $2 p$
55. If $u=\tan ^{-1} \frac{x^{3}+y^{3}+x^{2} y-x y^{2}}{x^{2}-x y+y^{2}}$, then the value of $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}$ is equal to :
(1) 0
(2) $\sin u$
(3) $\sin 2 u$
(4) $\frac{1}{2} \sin 2 u$
56. If $x=r \cos \theta$ and $y=r \sin \theta$, then $\frac{\partial(r, \theta)}{\partial(x, y)}$ is :
(1) r
(2) $r \sin \theta$
(3) $\frac{r}{\sin \theta}$
(4) $\frac{1}{r}$
57. If $a>0, b>0$, then the maximum value of $a \cos \theta+b \sin \theta$ is :
(1) $a+b$
(2) $a-b$
(3) a or b
(4) $\sqrt{a^{2}+b^{2}}$
58. Sequence $\left(1,-\frac{1}{2}, \frac{1}{3},-\frac{1}{4}, \frac{1}{5},-\frac{1}{6}, \ldots\right)$ is :
(1) Monotonic but not bounded
(2) Bounded but not monotonic
(3) Monotonic and bounded
(4) Neither monotonic nor bounded
59. Maxima and Minima value of the set $S=\left\{1+\frac{(-1)^{n}}{n} ; n \in N\right\}$ are :
(1) $\left(\frac{3}{2}, 0\right)$
(2) $\left(0, \frac{3}{2}\right)$
(3) $\left(1, \frac{3}{2}\right)$
(4) $\left(\frac{3}{2}, 1\right)$
60. Series $\left(\frac{2^{2}}{1^{2}}-\frac{2}{1}\right)^{-1}+\left(\frac{3^{3}}{2^{3}}-\frac{3}{2}\right)^{-2}+\left(\frac{4^{4}}{3^{4}}-\frac{4}{3}\right)^{-3}+\ldots$. is :
(1) Convergent
(2) Divergent
(3) Oscillatory finitely
(4) Oscillatory infinitely
61. Which of the following is not a necessary condition for Cauchy's Mean Value Theorem ?
(1) The functions, $f(x)$ and $g(x)$ be continuous in $[a, b]$
(2) The derivative of $g^{\prime}(x)$ be equal to 0
(3) The functions $f(x)$ and $g(x)$ be derivable in (a, b)
(4) There exists a value $c \in(a, b)$ such that $\frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f^{\prime}(c)}{g^{\prime}(c)}$
62. A group (G, *) is said to be abelian if
(1) $(x+y)=(y-x)$
(2) $x * y=y * x$
(3) $x+y=x$
(4) $x * y=x * y$
63. Which of the following is not necessarily a property of a group?
(1) Commutatively
(2) Associativity
(3) Existence of inverse for every element
(4) Existence of identity
64. Let $x=(0,1)$ be the open unit interval and $C(x, R)$ be the ring of continuous functions from x to R. For any $x \in(0,1)$, let $l(x)=\{f \in C(x, R) \mid f(x)=0\}$. Then which of the following true ?
(1) $l(x)$ is a prime ideal.
(2) $l(x)$ is a maximal ideal.
(3) Every maximal ideal of $C(x, R)$ is equal to $l(x)$ for some $x \in x$.
(4) Only (1) and (2) are true.
65. Let R be a commutative ring with unity. Which of the following is true ?
(1) If R has finitely many prime ideals, then R is a field.
(2) If R has infinitely many ideals, then R is finite.
(3) If R is a P.I.D., then every subring of R with unity is a P.I.D.
(4) If R is an integral domain which has finitely many ideals, then R is a field.
66. Let $R=Z[X] /\left(x^{2}+1\right)$ and $\psi: Z(X) \rightarrow R$ be the natural quotient map. Which of the following statements are true ?
(1) R is isomorphic to a subring of C.
(2) The ideal generated by $\psi(X)$ is a prime ideal in R.
(3) R has infinitely many prime ideals.
(4) Only (1) and (3) are true.
67. The number of ring homomorphisms from $f: Z[x, y] \longrightarrow \frac{F[X]}{\left(x^{3}+x^{2}+x+1\right)}$ equals :
(1) 2^{6}
(2) 2^{18}
(3) 1
(4) 2^{9}
68. The total number of non-isomorphic groups of order 122 is :
(1) 2
(2) 1
(3) 61
(4) 4
69. Let G be a group order 6 and H be a subgroup of G such that $1<|H|<6$. Which one of the following options is correct?
(1) G is always cyclic, but H may not be cyclic.
(2) G may not be cyclic, but H is always cyclic.
(3) Both G and H are always cyclic.
(4) Both G and H may not be cyclic.
70. The number of generators of a cyclic group of order 10 is:
(1) 2
(2) 3
(3) 4
(4) 5
71. Using Gauss Elimination method, the solution of equations $2 x-y+3 z=9, x+y+z=6$, $x-y+z=2$ is :
(1) $x=-13, y=1, z=-8$
(2) $x=13, y=1, z=-8$
(3) $x=-13, y=4, z=15$
(4) $x=5, y=14, z=5$
72. While solving the equation $x^{2}-3 x+1=0$ using Newton-Raphson method the initial guess of the root is as 1 , then the value of the root will be :
(1) 1.5
(2) 1
(3) 0.5
(4) 0
73. For a fixed $C \in R$, let $\alpha=\int_{0}^{2}\left(9 x^{2}-5 C x^{4}\right) d x$. If the value of this integral obtained by using the Trapezoidal rule is equal to α, then the value of C (rounded off 2 decimal places) is :
(1) 0.5
(2) 0.24
(3) 0.12
(4) 0.76
74. If $f(x)=x^{2}$, then the second order divided difference for the points x_{0}, x_{1}, x_{2} will be :
(1) -1
(2) $\frac{-1}{x_{1}-x_{0}}$
(3) 1
(4) $\frac{1}{x_{2}-x_{1}}$
75. Which of the following is termed as an action of pull or push of a body at rest or motion?
(1) Torque
(2) Momentum
(3) Work
(4) Force
76. What is the relationship between each force, if three concurrent forces acting on a body according to Lami's theorem?
(1) Directly proportional to the sine of the angle between the other two forces
(2) Inversely proportional to the cosine of the angle between the other two forces
(3) Directly proportional to the cosine of the angle between the other two forces
(4) Inversely proportional to the tangent of the angle between the other two forces
77. The resultant R of forces P and Q makes an angle θ with the line of action of $P . P$ is now replaced by $P+R, Q$ remaining unchanged such that the resultant makes an angle $\theta / 2$ with $P+R$. The magnitude of this resultant is :
(1) $2 R \sin \theta / 2$
(2) $2 R \cos \theta / 2$
(3) $R \sin \theta / 2$
(4) $3 R \cos \theta / 2$
78. Forces of $6,8,12 \mathrm{gm}$ wt act along $\mathrm{BC}, \mathrm{CA}, \mathrm{AB}$, the sides of a triangle of lengths $3,4,5$ cms respectively. The resultant of these forces acting parallel to $A B$ is :
(1) 2 gm wt
(2) 3 gm wt
(3) 3.5 gm wt
(4) 4 gm wt
79. The sides of a uniform triangular lamina are $5,6,9 \mathrm{cms}$. in length, the perpendicular distance of its centre of gravity from the shortest side is :
(1) 2 cm
(2) $4 \sqrt{3} \mathrm{~cm}$
(3) $\frac{4}{3} \sqrt{2} \mathrm{~cm}$
(4) $\frac{3 \sqrt{2}}{4} \mathrm{~cm}$
80. A force of 30 kg acting at an angle of 30° with the horizontal is about to drag a body of weight 60 kg lying on the floor. The co-efficient of friction is :
(1) $\mu=\frac{1}{3}$
(2) $\mu=\frac{\sqrt{3}}{4}$
(3) $\mu=\sqrt{3}$
(4) $\mu=\frac{1}{\sqrt{3}}$
81. The centre and radius of the sphere $7 x^{2}+7 y^{2}+7 z^{2}-6 x-3 y-2 z=0$ are respectively :
(1) $\left(\frac{6}{7}, \frac{3}{7}, \frac{2}{7}\right), \frac{1}{4}$
(2) $\left(\frac{3}{7}, \frac{3}{14}, \frac{2}{7}\right), \frac{1}{2}$
(3) $\left(\frac{3}{7}, \frac{3}{14}, \frac{1}{7}\right), \frac{1}{2}$
(4) $\left(\frac{6}{7}, \frac{3}{7}, \frac{2}{7}\right), \frac{1}{2}$
82. The equation of the plane that bisects the line joining the points $(1,2,3) ;(3,4,5)$ at right angles is :
(1) $x+y+z=0$
(2) $x+y-z+2=0$
(3) $x-y+z=0$
(4) $x+y+z-9=0$
83. The equations of a straight line through the point $(3,1,-6)$ and parallel to each of the planes $x+y+2 z-4=0$ and $2 x-3 y+z+5=0$ are :
(1) $\frac{x-3}{7}=\frac{y-1}{3}=\frac{z+6}{-5}$
(2) $\frac{x+4}{3}=\frac{y-1}{3}=\frac{z-6}{5}$
(3) $\frac{x-3}{7}=\frac{y+1}{3}=\frac{z-6}{-5}$
(4) None of the above
84. The equation of the cylinder whose generators are parallel to the line, $\frac{x}{1}=\frac{y}{-2}=\frac{z}{3}$ and whose guiding curve is the ellipse $x^{2}+2 y^{2}=1, z=0$ is :
(1) $3\left(x^{2}+2 y^{2}+z^{2}\right)-2 x z=0$
(2) $3\left(x^{2}+2 y^{2}+z^{2}\right)-2 x z+8 y z-3=0$
(3) $x^{2}+y^{2}+z^{2}-2 x z-8 y z+3=0$
(4) None of the above
85. The vertex of the cone $4 x^{2}-y^{2}+2 z^{2}+2 x y-3 y z+12 x-11 y+6 z+4=0$ is :
(1) $(1,2,3)$
(2) $(1,3,4)$
(3) $(-1,-2,-3)$
(4) $(1,2,-3)$
86. The integrating factor of the differential equation $x(x-1) \frac{d y}{d x}=(x-2) y+x^{3}(2 x-1)$ is :
(1) $\frac{x-1}{x^{3}}$
(2) $\frac{x^{2}}{x-1}$
(3) $\frac{x-1}{x^{2}}$
(4) $\frac{x^{3}}{2 x-1}$
87. The solution of the following differential equation is :
$\frac{d y}{d x}=\sin (x+y)+\cos (x+y)$
(1) $c e^{x}=\tan \left(\frac{x+y}{2}\right)+1$
(2) $c e^{x}=\tan (x+y)+1$
(3) $c e^{x}=\tan \left(\frac{x+y}{2}\right)-1$
(4) $c e^{x}=\tan (x+y)-1$
88. Singular solution of the following D. E. is :
$y^{2}-2 p x y+p^{2} x^{2}-\left(a^{2} p^{2}+b^{2}\right)=0$
(1) $a^{2} x^{2}+b^{2} y^{2}=1$
(2) $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
(3) $x^{2}+y^{2}=\frac{a^{2}}{b^{2}}$
(4) $x^{2}+y^{2}=a^{2} b^{2}$
89. The P. I. of the following D. E. is :

$$
\left(D^{2}-5 D+6\right) y=5^{x} \quad\left[D \equiv \frac{d}{d x}\right]
$$

(1) $5^{x} \log _{e} 5$
(2) $\frac{5^{x}}{2 \log _{e} 5}$
(3) $\frac{5^{x}}{3 \log _{e} 5}$
(4) $\frac{5^{x}}{\log _{e}\left(\frac{5}{e^{2}}\right) \cdot \log _{e}\left(\frac{5}{e^{3}}\right)}$
90. Integrating factor of the following D. E. is :

$$
\sin ^{2} x \frac{d^{2} y}{d x^{2}}=2 y
$$

(1) $\sin x$
(2) $\cos x$
(3) $\tan x$
(4) $\cot x$
91. If a and b are any two positive integers with $a>b$ and n is the number of divisions in Euclid's algorithm, and if p is the number of digits in b then :
(1) $n \leq p$
(2) $n \geq 7 p$
(3) $n \leq 5 p$
(4) $n>5 p$
92. If $F_{n}=2^{2^{n}}+1$, then $F_{0} F_{1} \ldots \ldots . . F_{n-1}$ is equal to :
(1) F_{n}
(2) $F_{n}+3$
(3) $F_{n}-2$
(4) $F_{n}+4$
93. If $n=p_{1}^{a_{1}}, p_{2}^{a_{2}} \ldots \ldots . . p_{t}^{a_{t}}$ be any positive integer where $p_{1}, p_{2}, \ldots \ldots ., p_{t}$ are distinct prime, then Euler's $\phi(n)$ is equal to :
(1) $n\left(1-\frac{1}{p_{1}}\right)\left(1-\frac{1}{p_{2}}\right) \cdots \cdots . . .\left(1-\frac{1}{p_{t}}\right)$
(2) $n \cdot p_{1} p_{2} \ldots \ldots \ldots p_{n}$
(3) $n\left(p_{1}+1\right)\left(p_{2}+2\right) \ldots \ldots\left(p_{t}+t\right)$
(4) $n\left(1+\frac{1}{p_{1}}\right)\left(1+\frac{1}{p_{2}}\right) \cdots \cdots \cdots\left(1+\frac{1}{p_{t}}\right)$
94. Using Euler method, the general solution of the equation $21 x+13 y=1791$ is :
(1) $x=-t, y=141+12 t$
(2) $x=-2 t, y=141+13 t$
(3) $x=4 t, y=-141+13 t$
(4) $x=-2 t, y=122+13 t$
95. A square of side a revolves about a line through a corner and perpendicular to the diagonal through that corner, then the volume and area of the surface of the solid generated are :
(1) $\sqrt{2} \pi a^{3}, 4 \sqrt{2} \pi a^{2}$
(2) $4 \pi a^{3}, \sqrt{2} \pi a^{2}$
(3) $4 \sqrt{2} \pi a^{3}, 4 \pi a^{2}$
(4) $\pi a^{3}, 4 \pi a^{2}$
96. If both m and n are positive integers, then $B(m, n)$ is equal to :
(1) $\frac{\lfloor m\lfloor n}{\lfloor m+n-1}$
(2) $\frac{|m-1| n-1}{\lfloor m+n-1}$
(3) $\frac{\lfloor m+1 \mid n+1}{\lfloor m+n}$
(4) $\frac{\lfloor m+1\lfloor n+1}{\lfloor m+n-2}$
97. $\int_{0}^{\pi / 2} \sin ^{n} \theta d \theta$ is equ
(1) $\sqrt{\pi} \cdot \frac{\Gamma(n+1)}{\Gamma(n+2)}$
(2) $\frac{\Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{n-1}{2}\right)}$
(3) $\frac{\pi}{2} \frac{\Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{n-1}{2}\right)}$
(4) $\frac{\pi}{2} \cdot \frac{\Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{n+2}{2}\right)}$
98. Area of the curve $r^{2}=a^{2} \cos ^{2} \theta+b^{2} \sin ^{2} \theta$ is :
(1) $(a+b) \frac{\pi}{2}$
(2) $2 \pi\left(a^{2}+b^{2}\right)$
(3) $\left(a^{2}+b^{2}\right) \frac{\pi}{2}$
(4) $4 \pi\left(a^{2}+b^{2}\right)$
99. $\underset{n \rightarrow \infty}{L t} \sum_{r=1}^{n-1} \frac{1}{n} \sqrt{\frac{n+r}{n-r}}=$
(1) $\pi+1$
(2) $\frac{\pi}{2}+1$
(3) $2 \pi+3$
(4) $\frac{4}{3}\left(\frac{\pi}{2}+1\right)$
100. If $f(t)=e^{-t} t^{n}$, then its Laplace Transform $F(s)$ is :
(1) $\frac{\Gamma(n+1)}{(s+1)^{n, 1}}$
(2) $\frac{1}{s^{2}+1}$
(3) $\frac{1(n)}{s^{n+1}}$
(4) $\frac{\Gamma(n+1)}{s^{2}+1}$

the
 Total No. of Printed Pages : 21 (DO NOT OREN THIS QUESTION BOOKLET BEFORE TIME OR UNTIL YOU
 ARE ASKED TO DO SO) PG-EE-July, 2024

Time: 11/4 Hours
Roll No. (in figures) \qquad Max. Marks : 100 (in words) \qquad
Name \qquad Date of Birth \qquad
Father's Name \qquad Mother's Name \qquad
Date of Examination \qquad
(Signature of the Candidate)
(Signature of the Invigilator)

CANDIDATES MUST READ THE FOLLOWING INFORMATION/INSTRUCTIONS BEFORE STARTING THE QUESTION PAPER.

1. All questions are compulsory.

2. The candidates must return the question booklet as well as OMR Answer-Sheet to the Invigilator concerned before leaving the Examination Hall, failing which a case of use of unfairmeans / mis-behaviour will be registered against him / her, in addition to lodging of an FIR with the police. Further the answer-sheet of such a candidate will not be evaluated.
3. Keeping in view the transparency of the examination system, carbonless OMR Sheet is provided to the candidate so that a copy of OMR Sheet may be kept by the candidate.
4. Question Booklet along with answer key of all the $A, B, C \& D$ code shall be got uploaded on the University Website immediately after the conduct of Entrance Examination. Candidates may raise valid objection/complaint if any, with regard to discrepancy in the question booklet/answer key within 24 hours of uploading the same on the University Website. The complaint be sent by the students to the Controller of Examinations by hand or through email. Thereafter, no complaint in any case, will be considered.
5. The candidate must not do any rough work or writing in the OMR Answer-Sheet. Rough work, if any, may be done in the question booklet itself. Answers must not be ticked in the question booklet.
6. There will be no negative marking. Each correct answer will be awarded one full mark. Cutting, erasing, overwriting and more than one answer in OMR Answer-Sheet will be treated as incorrect answer.
7. Use only Black or Blue Ball Point Pen of good quality in the OMR Answer-Sheet.
8. Before answering the questions, the candidates should ensure that they have been supplied correct and complete booklet. Complaints, if any, regarding misprinting etc. will not be entertained 30 minutes after starting of the examination.

PG-EE-July-2024/(Mathematics)(SET-Z)/(C)

1. If $y=\tan ^{-1}\left(\frac{x}{a}\right)$, then its nth derivative y_{n} is :
(1) $\frac{(-1)^{n-1}(n-1)!}{a^{n}} \sin ^{n} \theta \cos n \theta$
(2) $\frac{(-1)^{n-1}(n-1)!}{a^{n}} \tan ^{n} \theta \cos n \theta$
(3) $\frac{(-1)^{n-1}(n-1)!}{a^{n}} \sin ^{n} \theta \sin n \theta$
(4) $\frac{(-1)^{n-1}(n-1)!}{a^{n}} \cos ^{n} \theta \cos n \theta$
where $\theta=\tan ^{-1}\left(\frac{a}{x}\right)$.
2. If $u=\phi(x-y, y-z, z-x)$, then $\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}+\frac{\partial u}{\partial z}$ is equal to :
(1) 0
(2) 1
(3) u
(4) $x y z$
3. If α is a parameter, then envelop of the family of lines $x \cos \alpha+y \sin \alpha=a$ is :
(1) Parabola
(2) Circle
(3) Ellipse
(4). Hyperbola
4. The evolute of curve $2 x y=a^{2}$ is:
(1) $x^{2 / 3}+y^{2 / 3}=a^{2 / 3}$
(2) $(x+y)^{2 / 3}+(x-y)^{2 / 3}=a^{2 / 3}$
(3) $(x+y)^{2 / 3}+(x-y)^{2 / 3}=2 a^{2 / 3}$
(4) $(x+y)^{2 / 3}-(x-y)^{2 / 3}=2 a^{2 / 3}$
5. Maximum curvature of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is :
(1) $\frac{2 a}{b}$
(2) $\frac{2 b}{a}$
(3) $\frac{a}{2 b}$
(4) $\frac{b}{2 a}$
P. T. O.
6. The minimum value of $\sqrt{x^{2}+y^{2}}$, under the condition $x^{2}+x y+y^{2}=1$ is :
(1) 1
(2) $\sqrt{2}$
(3) $\sqrt{3}$
(4) $\frac{\sqrt{6}}{2}$
7. The sequence $\left\{x_{n}\right\}$ where :

$$
x_{n}=\frac{1}{n+1}+\frac{1}{n+2}+\ldots \ldots \ldots+\frac{1}{2 n} \text { is : }
$$

(1) Convergent
(2) Divergent
(3) Oscillatory
(4) None of the above
8. If $x=a(\cos \theta+\theta \sin \theta), y=a(\sin \theta-\theta \sin \theta)$, then the value of $\frac{d^{2} y}{d x^{2}}$ at $\theta=\pi$ is :
(1) $\frac{2}{a \pi}$
(2) $\frac{1}{a^{2} \pi}$
(3) $-\frac{1}{a \pi}$
(4) $-\frac{1}{a^{2} \pi^{2}}$
9. What is the degree and order of the following differential equation?

$$
\left(\frac{d^{3} y}{d x^{3}}\right)^{2 / 3}-3 \frac{d^{2} y}{d x^{2}}+5 \frac{d y}{d x}+4 y=1
$$

(1) 3,3
(2) $2 / 3,3$
(3) 3,2
(4) 2,3
10. If n is a natural number, then

$$
\frac{\sum_{r=1}^{n} r^{3}}{\sum_{r=1}^{n} r(r+1)} \text { is equal to : }
$$

(1) $\frac{3}{2} \cdot \frac{n}{n+1}$
(2) $\frac{3}{2} \cdot \frac{n+1}{n+2}$
(3) $\frac{3}{2} \cdot \frac{n}{n+4}$
(4) $\frac{3}{4} \cdot \frac{n(n+1)}{n+2}$
11. If $r=a \cos t i+a \sin t j+t k$, then the value of $\left|\frac{d^{2} r}{d t^{2}}\right|$ is :
(1) $-a \cos t i-a \sin t j$
(2) $\sqrt{\left(a^{2} \cos ^{2} t+a^{2} \sin ^{2} t\right)+t}$
(3) $a \cos t+a \sin t$
(4) a
12. If $r=x i+y j+z k$, then $\operatorname{grad} r$ is :
(1) $\frac{x}{r}+\frac{y}{r}+\frac{z}{r}$
(2) $\frac{1}{r}(x i+y j+z k)$
(3) $x i+y j+z k$
(4) None of the above
13. If c is a regular closed curse in $x y$-plane, enclosing a region S and $P(x, y)$ and $Q(x, y)$ be two continuously differentiable functions in the region S i.e. inside and on c, then $\iint_{5}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d x d y$ is equal to :
(1) $\int_{c}(P d x+Q d y)$
(2) $\int_{c}(Q d y-P d x)$
(3) $\int_{c} \frac{\partial x}{\partial y}(P+Q)$
(4) $\int_{c} \frac{\partial^{2}}{\partial y^{2}}(P d x+Q d y)$
14. The value of $\int_{s}(a x i+b y j+c z k) \cdot \hat{n} d s$ is :
(1) $a+b+c$
(2) $\frac{4}{3}(a+b+c)$
(3) $\frac{4}{3} \pi(a+c+b)$
(4) $a^{2}+b^{2}+c^{2}$
15. If $f(t)=t i-3 j+2 t k, g(t)=i-2 j+2 k$ and $h(t)=3 i+t j-k$, then the value of $\int_{1}^{2} f(g \times h) d t$ is :
(1) 0
(2) 1
(3) 2
(4) 3
16. If $u=\tan ^{-1}\left(\frac{y}{x}\right)$, then $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}$ is equal to :
(1) $\frac{2 x y}{x^{2}+y^{2}}$
(2) $\frac{x}{x^{2}+y^{2}}$
(3) 0
(4) $\frac{x}{y}$
17. Which of the following function is not differentiable at $x=0$?
(1) $x|x|$
(2) $x+|x|$
(3) e^{-x}
(4) x^{3}
18. If $f(x)=3 x^{3}-5 x^{2}+2 x$, then the interval for which f satisfies all the conditions of Roll's theorem is :
(1) $[0,1]$
(2) $[-1,1]$
(3) $[-1,0]$
(4) $[1,2]$.
19. If Lagrange's theorem is true for the function $f(x)=x^{3}-3 x-2$ in the interval $[-2,3]$, then the value of c where it is true is:
(1) 0
(2) $\sqrt{7 / 3}$
(3) $\sqrt{\frac{3}{7}}$
(4) 1
20. If the function $f(x)=x(x-2)$ is continuous in $\left[0, \frac{3}{2}\right]$ and differentiable in $\left(0, \frac{3}{2}\right)$, then the value of ' c ' of the mean value theorem is :
(1) $\frac{1}{2}$
(2) $\frac{3}{2}$
(3) $\frac{1}{4}$
(4) $\frac{3}{4}$
21. A matrix A such that $A^{2}=I$ or $(I+A)(I-A)=0$ is called :
(1) Idempotent
(2) Nilpotent
(3) Involuntory
(4) None of the above
22. If for a square matrix A of order $n,|A-\lambda I|=a_{0} \lambda^{n}+a_{1} \lambda^{n-1}+\ldots \ldots . . .+a_{n}$, then $a_{0} A^{n}+a_{1} A^{n-1}+\ldots \ldots \ldots . .+a_{n} I$ is equal to :
(1) 0
(2) I_{n}
(3) $J_{n \times n}$
(4) $I_{n} A^{-1}$
23. If A is an $m \times n$ matrix of $\operatorname{rank} r_{A}$ and B is an $n \times p$ matrix of rank r_{B} such that $A B=0$, then which of the following is true?
(1) $r_{A}+r_{B}=p$
(2) $r_{A}+r_{B} \leq n$
(3) $r_{A}+r_{B}>n$
(4) $r_{A}+r_{B}=n+p$
24. A square matrix A of order n is such that $A^{\prime} A=I=A A^{\prime}$, then $|A|$ is equal to :
(1) 1
(2) n
(3) ± 1
(4) $n-1$
25. The canonical form of a Quadratic Form is $-21 y_{1}^{2}-\frac{2}{7} y_{2}^{2}$. The rank and the index of this Q.F. are 2 and 0 respectively, then the nature of this Q. F. is :
(1) Positive definite
(2) Negative definite
(3) Semi-positive definite
(4) Semi-negative definite
26. Given the function $f(x)=\left\{\begin{array}{cl}x^{2} & , x \leq c \\ a x+b & , x>c\end{array}\right.$ is differentiable at $x=c$. The values of a and b are respectively :
(1) $2 c,-c^{2}$
(2) $c^{2}, 2 c$
(3) $c,-c^{2}$
(4) $-c^{2}, 2 c$
27. If $y=\sqrt{x+\sqrt{x+\sqrt{x+\ldots \ldots \text { to } \infty}}}$, then $\frac{d y}{d x}$ is equal to :
(1) x^{3}
(2) $\frac{1}{y+1}$
(3) $\frac{1}{2 y-1}$
(4) $\frac{x}{1-2 y}$
28. The radius of curvature at the vertex of the cycloid $x=a(\theta+\sin \theta), y=a(1-\cos \theta)$ is :
(1) $4 a$
(2) $a+\sin \theta$
(3) $2 a$
(4) $2 a+3$
29. The asymptotes of the curve $\left(x^{2}-y^{2}\right)(x+2 y+1)+x+y+1=0$ are :
(1) $y= \pm x ; x+2 y+1=0$
(2) $y= \pm x ; x+y+1=0$
(3) $y=x ; x+2 y+1=0 ; x+y+1=0$
(4) $y=-x ; x+2 y+1=0 ; x+y+1=0$
30. The curve $y^{2}(2 a-x)=x^{3}$ has :
(1) Node
(2) Cusp
(3) Conjugate point
(4) None of these
31. The value of integral $\iint_{R} y d x d y$ where R is the region bounded by the parabolas $y^{2}=4 x$ and $x^{2}=4 y$ is :
(1) $\frac{32}{5}$
(2) $\frac{48}{5}$
(3) $\frac{16}{5}$
(4) $\frac{16 \sqrt{2}}{5}$
32. The value of $\iiint_{x^{2}+y^{2}+z^{2} \leq 1}\left(x^{2}+y^{2}+z^{2}\right) d x d y d z$ is :
(1) $\frac{\pi}{2}$
(2) $\frac{\pi}{5}$
(3) $\frac{4 \pi}{5}$
(4) $\frac{4 \pi}{15}$
33. The locus of z when amp $\left(\frac{z-1}{z+1}\right)=\frac{\pi}{3}$ is :
(1) $x^{2}+y^{2}-\left(\frac{2}{\sqrt{3}}\right) y-1=0$
(2) $x^{2}+y^{2}-2 y=0$
(3) $x^{2}+y^{2}+\frac{2}{\sqrt{3}} y+1=0$
(4) $x^{2}+y^{2}+2 y-1=0$
34. $\lim _{z \rightarrow 2 e} \frac{\pi i}{3} \frac{z^{3}+8}{z^{4}+4 z^{2}+16}=$
(1) $\frac{3-i \sqrt{3}}{2}$
(2) $\frac{1}{8}(3-i \sqrt{3})$
(3) $\frac{3+i \sqrt{3}}{2}$
(4) $\frac{1}{4}(3+i \sqrt{3})$
35. The bilinear transformation $w=\frac{3 z-4}{z-1}$ is :
(1) Elliptic
(2) Parabolic
(3) Hyperbolic
(4) None of these
36. The circle of convergence of power series $\sum_{n=1}^{\infty}\left(\frac{2 i}{z+i+1}\right)^{n}$ is :
(1) $|z+i|<2$
(2) $|z+i|>2$
(3) $|z+i+1|>2$
(4) $|z+i+1|<2$
37. If $f(z)=\frac{z^{3}+3 z+1}{z-3}$ and path of integration is a circle with centre at the origin and radius r, the Cauchy theorem is applicable when r equals :
(1) 5
(2) 4
(3) 3
(4) 2
38. A particle moves in a curve so that its tangential and normal accelerations are equal and the angular velocities of the tangent is constant. The path of the particle is given by :
(1) $s=A e^{\psi}+B$ where $A=\frac{C}{w}, B$ and C are constants
(2) $s=2 A \log v+\log C$
(3) $s=A e^{\psi}+B \log C$
(4) $s=A \log \psi+B e^{\psi}+C$
39. A particle is moving with S.H.M. of amplitude a. Its velocity at any point x is :
(1) $v=\sqrt{u\left(a^{2}-x^{2}\right)}$
(2) $u=u\left(a^{2}-x^{2}\right)$
(3) $v=\sqrt{u\left(a^{2}+x^{2}\right)}$
(4) $v=u\left(a^{2}+x^{2}\right)$
40. If the time of the flight of a bullet over a horizontal range R is T, the angle of projection is :
(1) $\sin ^{-1}\left(T^{2} / 2 R\right)$
(2) $\tan ^{-1}\left(\frac{T^{2}}{2 R}\right)$
(3) $\sin ^{-1}\left(\frac{g T^{2}}{2 R}\right)$
(4) $\tan ^{-1}\left(\frac{g T^{2}}{2 R}\right)$
41. Let X has a two parameter gamma distribution with parameters $\lambda, k(\lambda>0$ is the scale parameter and $k>0$ is the shape parameter) with density function $f_{\lambda, k}(x)=\left\{\begin{array}{cc}\frac{\lambda^{k} x^{k-1} e^{-\lambda x}}{\mathrm{I}^{1}(k)} & , \quad x>0 \\ 0 & , \quad x<0\end{array}\right.$, then its L.T. $f^{*}(s)$ is given by :
(1) $\frac{1}{(s+1)^{2}}$
(2) $\left(\frac{\lambda}{s+\lambda}\right)^{k}$
(3) $\left(\frac{s+\lambda}{\lambda}\right)^{k}$
(4) $\left(\frac{\lambda+k}{s+\lambda}\right)^{k-1}$
42. What will be the output of the program : main ()
\{
int $\mathrm{a}=1, \mathrm{~b}=2, \mathrm{c}=3$;
printf ("\%d", $a+=(a+=3,5, a))$
\}
(1) 6
(2) 9
(3) 12
(4) 8
43. Which of the following comment is correct when a macro definition includes arguments?
(1) The opening parenthesis should immediately follow the macro name.
(2) There should be at least one blank between the macro name and the opening parenthesis.
(3) There should be only one blank between the macro name and the opening parenthesis.
(4) All the above comments are correct.
44. Which one of the following is a loop construct that will always be executed once ?
(1) for
(2) while
(3) switch
(4) do while
45. Which of the following statement is not true ?
(1) A pointer to an int and a pointer to a double are of the same size.
(2) A pointer must point to a data item on the heap (free store).
(3) A pointer can be reassigned to point to another data item.
(4) A pointer can point to an array.

PG-EE-July-2024/(Mathematics)(SET-Z)/(C) P. T. O.
46. What does this statement mean ?
$x-=y+1$;
(1) $x=x-y+1$
(2) $x=-x-y-1$
(3) $x=x-y-1$
(4) $x=x+y-1$
47. Value of $\int \cos ^{2} x \sin ^{2} x d x$ is :
(1) $\frac{1}{8}\left[x-\frac{\cos 2 x}{2}\right]$
(2) $\frac{1}{4}\left[x-\frac{\cos 2 x}{2}\right]$
(3) $\frac{1}{8}\left[x-\frac{\sin 2 x}{2}\right]$
(4) $\frac{1}{4}\left[x-\frac{\sin 2 x}{2}\right]$
48. If $f(x)=x, x \in[0,1]$ and f is R -integrable on [0, 1], then $\int_{0}^{1} x d x$ is equal to :
(1) 1
(2) $\frac{1}{2}$
(3) 2
(4) $\frac{3}{2}$
49. The sum of n terms of a series is $S_{n}=\frac{n^{2} x}{1+n^{4} x^{2}}$, then for this series which statement is true?
(1) Converges uniformly.
(2) Does not converge uniformly.
(3) Converges uniformly only in the interval $(0,1)$.
(4) Each term is continuous in an interval (a, b).
50. Find the value of c which satisfies the mean value theorem for the given function, $f(x)=x^{2}+2 x+1$ on $[1,2]$?
(1) $10 / 2$
(2) $13 / 2$
(3) $-13 / 2$
(4) $-7 / 2$
51. The pedal equation of the curve $x^{2}+y^{2}=2 a x$ is :
(1) $r^{2}=a p$
(2) $r^{2}=\frac{a}{p}$
(3) $r^{2}=2 a p$
(4) $r^{2}=a p^{2}$
52. The length of subnormal to parabola $y^{2}=4 a x$ is :
(1) $2 a$
(2) $4 a$
(3) $a \sqrt{2}$
(4) $2 a \sqrt{2}$
53. For the curve $y=a \log \left(\sec \frac{x}{a}\right)$, the chord of curvature parallel to y-axis is equal to :
(1) a
(2) $2 a$
(3) $3 a$
(4) $4 a$
54. The radius of curvature of the curve $y=a \sin \psi \cos \psi$ is :
(1) p
(2) $3 p$
(3) $4 p$
(4) $2 p$
55. If $u=\tan ^{-1} \frac{x^{3}+y^{3}+x^{2} y-x y^{2}}{x^{2}-x y+y^{2}}$, then the value of $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}$ is equal to :
(1) 0
(2) $\sin u$
(3) $\sin 2 u$
(4) $\frac{1}{2} \sin 2 u$
56. If $x=r \cos \theta$ and $y=r \sin \theta$, then $\frac{\partial(r, \theta)}{\partial(x, y)}$ is :
(1) r
(2) $r \sin \theta$
(3) $\frac{r}{\sin \theta}$
(4) $\frac{1}{r}$
57. If $a>0, b>0$, then the maximum value of $a \cos \theta+b \sin \theta$ is :
(1) $a+b$
(2) $a-b$
(3) a or b
(4) $\sqrt{a^{2}+b^{2}}$
58. Sequence $\left(1,-\frac{1}{2}, \frac{1}{3},-\frac{1}{4}, \frac{1}{5},-\frac{1}{6}, \ldots\right)$ is :
(1) Monotonic but not bounded
(2) Bounded but not monotonic
(3) Monotonic and bounded
(4) Neither monotonic nor bounded
59. Maxima and Minima value of the set $S=\left\{1+\frac{(-1)^{n}}{n} ; n \in N\right\}$ are :
(1) $\left(\frac{3}{2}, 0\right)$
(2) $\left(0, \frac{3}{2}\right)$
(3) $\left(1, \frac{3}{2}\right)$
(4) $\left(\frac{3}{2}, 1\right)$
60. Series $\left(\frac{2^{2}}{1^{2}}-\frac{2}{1}\right)^{-1}+\left(\frac{3^{3}}{2^{3}}-\frac{3}{2}\right)^{-2}+\left(\frac{4^{4}}{3^{4}}-\frac{4}{3}\right)^{-3}+\ldots$. is :
(1) Convergent
(2) Divergent
(3) Oscillatory finitely
(4) Oscillatory infinitely
61. Which of the following is not a necessary condition for Cauchy's Mean Value Theorem ?
(1) The functions, $f(x)$ and $g(x)$ be continuous in $[a, b]$
(2) The derivative of $g^{\prime}(x)$ be equal to 0
(3) The functions $f(x)$ and $g(x)$ be derivable in (a, b)
(4) There exists a value $c \in(a, b)$ such that $\frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f^{\prime}(c)}{g^{\prime}(c)}$
62. A group (G, *) is said to be abelian if
(1) $(x+y)=(y-x)$
(2) $x * y=y * x$
(3) $x+y=x$
(4) $x * y=x * y$
63. Which of the following is not necessarily a property of a group?
(1) Commutatively
(2) Associativity
(3) Existence of inverse for every element
(4) Existence of identity
64. Let $x=(0,1)$ be the open unit interval and $C(x, R)$ be the ring of continuous functions from x to R. For any $x \in(0,1)$, let $l(x)=\{f \in C(x, R) \mid f(x)=0\}$. Then which of the following true ?
(1) $l(x)$ is a prime ideal.
(2) $l(x)$ is a maximal ideal.
(3) Every maximal ideal of $C(x, R)$ is equal to $l(x)$ for some $x \in x$.
(4) Only (1) and (2) are true.
65. Let R be a commutative ring with unity. Which of the following is true ?
(1) If R has finitely many prime ideals, then R is a field.
(2) If R has infinitely many ideals, then R is finite.
(3) If R is a P.I.D., then every subring of R with unity is a P.I.D.
(4) If R is an integral domain which has finitely many ideals, then R is a field.
66. Let $R=Z[X] /\left(x^{2}+1\right)$ and $\psi: Z(X) \rightarrow R$ be the natural quotient map. Which of the following statements are true ?
(1) R is isomorphic to a subring of C.
(2) The ideal generated by $\psi(X)$ is a prime ideal in R.
(3) R has infinitely many prime ideals.
(4) Only (1) and (3) are true.
67. The number of ring homomorphisms from $f: Z[x, y] \longrightarrow \frac{F[X]}{\left(x^{3}+x^{2}+x+1\right)}$ equals :
(1) 2^{6}
(2) 2^{18}
(3) 1
(4) 2^{9}
68. The total number of non-isomorphic groups of order 122 is :
(1) 2
(2) 1
(3) 61
(4) 4
69. Let G be a group order 6 and H be a subgroup of G such that $1<|H|<6$. Which one of the following options is correct?
(1) G is always cyclic, but H may not be cyclic.
(2) G may not be cyclic, but H is always cyclic.
(3) Both G and H are always cyclic.
(4) Both G and H may not be cyclic.
70. The number of generators of a cyclic group of order 10 is:
(1) 2
(2) 3
(3) 4
(4) 5
71. Using Gauss Elimination method, the solution of equations $2 x-y+3 z=9, x+y+z=6$, $x-y+z=2$ is :
(1) $x=-13, y=1, z=-8$
(2) $x=13, y=1, z=-8$
(3) $x=-13, y=4, z=15$
(4) $x=5, y=14, z=5$
72. While solving the equation $x^{2}-3 x+1=0$ using Newton-Raphson method the initial guess of the root is as 1 , then the value of the root will be :
(1) 1.5
(2) 1
(3) 0.5
(4) 0
73. For a fixed $C \in R$, let $\alpha=\int_{0}^{2}\left(9 x^{2}-5 C x^{4}\right) d x$. If the value of this integral obtained by using the Trapezoidal rule is equal to α, then the value of C (rounded off 2 decimal places) is :
(1) 0.5
(2) 0.24
(3) 0.12
(4) 0.76
74. If $f(x)=x^{2}$, then the second order divided difference for the points x_{0}, x_{1}, x_{2} will be :
(1) -1
(2) $\frac{-1}{x_{1}-x_{0}}$
(3) 1
(4) $\frac{1}{x_{2}-x_{1}}$
75. Which of the following is termed as an action of pull or push of a body at rest or motion?
(1) Torque
(2) Momentum
(3) Work
(4) Force
76. What is the relationship between each force, if three concurrent forces acting on a body according to Lami's theorem?
(1) Directly proportional to the sine of the angle between the other two forces
(2) Inversely proportional to the cosine of the angle between the other two forces
(3) Directly proportional to the cosine of the angle between the other two forces
(4) Inversely proportional to the tangent of the angle between the other two forces
77. The resultant R of forces P and Q makes an angle θ with the line of action of $P . P$ is now replaced by $P+R, Q$ remaining unchanged such that the resultant makes an angle $\theta / 2$ with $P+R$. The magnitude of this resultant is :
(1) $2 R \sin \theta / 2$
(2) $2 R \cos \theta / 2$
(3) $R \sin \theta / 2$
(4) $3 R \cos \theta / 2$
78. Forces of $6,8,12 \mathrm{gm}$ wt act along $\mathrm{BC}, \mathrm{CA}, \mathrm{AB}$, the sides of a triangle of lengths $3,4,5$ cms respectively. The resultant of these forces acting parallel to $A B$ is :
(1) 2 gm wt
(2) 3 gm wt
(3) 3.5 gm wt
(4) 4 gm wt
79. The sides of a uniform triangular lamina are $5,6,9 \mathrm{cms}$. in length, the perpendicular distance of its centre of gravity from the shortest side is :
(1) 2 cm
(2) $4 \sqrt{3} \mathrm{~cm}$
(3) $\frac{4}{3} \sqrt{2} \mathrm{~cm}$
(4) $\frac{3 \sqrt{2}}{4} \mathrm{~cm}$
80. A force of 30 kg acting at an angle of 30° with the horizontal is about to drag a body of weight 60 kg lying on the floor. The co-efficient of friction is :
(1) $\mu=\frac{1}{3}$
(2) $\mu=\frac{\sqrt{3}}{4}$
(3) $\mu=\sqrt{3}$
(4) $\mu=\frac{1}{\sqrt{3}}$
81. The centre and radius of the sphere $7 x^{2}+7 y^{2}+7 z^{2}-6 x-3 y-2 z=0$ are respectively :
(1) $\left(\frac{6}{7}, \frac{3}{7}, \frac{2}{7}\right), \frac{1}{4}$
(2) $\left(\frac{3}{7}, \frac{3}{14}, \frac{2}{7}\right), \frac{1}{2}$
(3) $\left(\frac{3}{7}, \frac{3}{14}, \frac{1}{7}\right), \frac{1}{2}$
(4) $\left(\frac{6}{7}, \frac{3}{7}, \frac{2}{7}\right), \frac{1}{2}$
82. The equation of the plane that bisects the line joining the points $(1,2,3) ;(3,4,5)$ at right angles is :
(1) $x+y+z=0$
(2) $x+y-z+2=0$
(3) $x-y+z=0$
(4) $x+y+z-9=0$
83. The equations of a straight line through the point $(3,1,-6)$ and parallel to each of the planes $x+y+2 z-4=0$ and $2 x-3 y+z+5=0$ are :
(1) $\frac{x-3}{7}=\frac{y-1}{3}=\frac{z+6}{-5}$
(2) $\frac{x+4}{3}=\frac{y-1}{3}=\frac{z-6}{5}$
(3) $\frac{x-3}{7}=\frac{y+1}{3}=\frac{z-6}{-5}$
(4) None of the above
84. The equation of the cylinder whose generators are parallel to the line, $\frac{x}{1}=\frac{y}{-2}=\frac{z}{3}$ and whose guiding curve is the ellipse $x^{2}+2 y^{2}=1, z=0$ is :
(1) $3\left(x^{2}+2 y^{2}+z^{2}\right)-2 x z=0$
(2) $3\left(x^{2}+2 y^{2}+z^{2}\right)-2 x z+8 y z-3=0$
(3) $x^{2}+y^{2}+z^{2}-2 x z-8 y z+3=0$
(4) None of the above
85. The vertex of the cone $4 x^{2}-y^{2}+2 z^{2}+2 x y-3 y z+12 x-11 y+6 z+4=0$ is :
(1) $(1,2,3)$
(2) $(1,3,4)$
(3) $(-1,-2,-3)$
(4) $(1,2,-3)$
86. The integrating factor of the differential equation $x(x-1) \frac{d y}{d x}=(x-2) y+x^{3}(2 x-1)$ is :
(1) $\frac{x-1}{x^{3}}$
(2) $\frac{x^{2}}{x-1}$
(3) $\frac{x-1}{x^{2}}$
(4) $\frac{x^{3}}{2 x-1}$
87. The solution of the following differential equation is :
$\frac{d y}{d x}=\sin (x+y)+\cos (x+y)$
(1) $c e^{x}=\tan \left(\frac{x+y}{2}\right)+1$
(2) $c e^{x}=\tan (x+y)+1$
(3) $c e^{x}=\tan \left(\frac{x+y}{2}\right)-1$
(4) $c e^{x}=\tan (x+y)-1$
88. Singular solution of the following D. E. is :
$y^{2}-2 p x y+p^{2} x^{2}-\left(a^{2} p^{2}+b^{2}\right)=0$
(1) $a^{2} x^{2}+b^{2} y^{2}=1$
(2) $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
(3) $x^{2}+y^{2}=\frac{a^{2}}{b^{2}}$
(4) $x^{2}+y^{2}=a^{2} b^{2}$
89. The P. I. of the following D. E. is :

$$
\left(D^{2}-5 D+6\right) y=5^{x} \quad\left[D \equiv \frac{d}{d x}\right]
$$

(1) $5^{x} \log _{e} 5$
(2) $\frac{5^{x}}{2 \log _{e} 5}$
(3) $\frac{5^{x}}{3 \log _{e} 5}$
(4) $\frac{5^{x}}{\log _{e}\left(\frac{5}{e^{2}}\right) \cdot \log _{e}\left(\frac{5}{e^{3}}\right)}$
90. Integrating factor of the following D. E. is :

$$
\sin ^{2} x \frac{d^{2} y}{d x^{2}}=2 y
$$

(1) $\sin x$
(2) $\cos x$
(3) $\tan x$
(4) $\cot x$
91. If a and b are any two positive integers with $a>b$ and n is the number of divisions in Euclid's algorithm, and if p is the number of digits in b then :
(1) $n \leq p$
(2) $n \geq 7 p$
(3) $n \leq 5 p$
(4) $n>5 p$
92. If $F_{n}=2^{2^{n}}+1$, then $F_{0} F_{1} \ldots \ldots . . F_{n-1}$ is equal to :
(1) F_{n}
(2) $F_{n}+3$
(3) $F_{n}-2$
(4) $F_{n}+4$
93. If $n=p_{1}^{a_{1}}, p_{2}^{a_{2}} \ldots \ldots . . p_{t}^{a_{t}}$ be any positive integer where $p_{1}, p_{2}, \ldots \ldots ., p_{t}$ are distinct prime, then Euler's $\phi(n)$ is equal to :
(1) $n\left(1-\frac{1}{p_{1}}\right)\left(1-\frac{1}{p_{2}}\right) \cdots \cdots . . .\left(1-\frac{1}{p_{t}}\right)$
(2) $n \cdot p_{1} p_{2} \ldots \ldots \ldots p_{n}$
(3) $n\left(p_{1}+1\right)\left(p_{2}+2\right) \ldots \ldots\left(p_{t}+t\right)$
(4) $n\left(1+\frac{1}{p_{1}}\right)\left(1+\frac{1}{p_{2}}\right) \cdots \cdots \cdots\left(1+\frac{1}{p_{t}}\right)$
94. Using Euler method, the general solution of the equation $21 x+13 y=1791$ is :
(1) $x=-t, y=141+12 t$
(2) $x=-2 t, y=141+13 t$
(3) $x=4 t, y=-141+13 t$
(4) $x=-2 t, y=122+13 t$
95. A square of side a revolves about a line through a corner and perpendicular to the diagonal through that corner, then the volume and area of the surface of the solid generated are :
(1) $\sqrt{2} \pi a^{3}, 4 \sqrt{2} \pi a^{2}$
(2) $4 \pi a^{3}, \sqrt{2} \pi a^{2}$
(3) $4 \sqrt{2} \pi a^{3}, 4 \pi a^{2}$
(4) $\pi a^{3}, 4 \pi a^{2}$
96. If both m and n are positive integers, then $B(m, n)$ is equal to :
(1) $\frac{\lfloor m\lfloor n}{\lfloor m+n-1}$
(2) $\frac{|m-1| n-1}{\lfloor m+n-1}$
(3) $\frac{\lfloor m+1 \mid n+1}{\lfloor m+n}$
(4) $\frac{\lfloor m+1\lfloor n+1}{\lfloor m+n-2}$
97. $\int_{0}^{\pi / 2} \sin ^{n} \theta d \theta$ is equ
(1) $\sqrt{\pi} \cdot \frac{\Gamma(n+1)}{\Gamma(n+2)}$
(2) $\frac{\Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{n-1}{2}\right)}$
(3) $\frac{\pi}{2} \frac{\Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{n-1}{2}\right)}$
(4) $\frac{\pi}{2} \cdot \frac{\Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{n+2}{2}\right)}$
98. Area of the curve $r^{2}=a^{2} \cos ^{2} \theta+b^{2} \sin ^{2} \theta$ is :
(1) $(a+b) \frac{\pi}{2}$
(2) $2 \pi\left(a^{2}+b^{2}\right)$
(3) $\left(a^{2}+b^{2}\right) \frac{\pi}{2}$
(4) $4 \pi\left(a^{2}+b^{2}\right)$
99. $\underset{n \rightarrow \infty}{L t} \sum_{r=1}^{n-1} \frac{1}{n} \sqrt{\frac{n+r}{n-r}}=$
(1) $\pi+1$
(2) $\frac{\pi}{2}+1$
(3) $2 \pi+3$
(4) $\frac{4}{3}\left(\frac{\pi}{2}+1\right)$
100. If $f(t)=e^{-t} t^{n}$, then its Laplace Transform $F(s)$ is :
(1) $\frac{\Gamma(n+1)}{(s+1)^{n, 1}}$
(2) $\frac{1}{s^{2}+1}$
(3) $\frac{1(n)}{s^{n+1}}$
(4) $\frac{\Gamma(n+1)}{s^{2}+1}$

Answer keys of M.Sc.(Mathematics)/M.Sc.(Mathematics) under SFS entrance exam dated 15.07.2024

Answer keys of M.Sc.(Mathematics)/M.Sc.(Mathematics) under SFS entrance exam dated 15.07.2024

Q. NO.	A	B	C	D
51	3	2	3	4
52	3	4	1	2
53	1	1	2	1
54	2	4	2	3
55	1	2	3	1
56	2	3	4	3
57	4	3	4	2
58	3	2	2	1
59	2	2	1	2
60	1	4	1	4
61	2	3	2	3
62	4	4	2	1
63	1	2	1	2
64	4	3	4	4
65	2	4	4	3
66	3	1	4	2
67	3	2	1	1
68	2	1	1	3
69	2	3	2	2
70	4	4	3	4
71	2	3	3	2
72	2	1	4	4
73	1	2	2	1
74	4	4	3	4
75	4	3	4	2
76	4	2	1	3
77	1	1	2	3
78	1	3	1	2
79	2	2	3	2
80	3	4	4	4
81	3	4	3	3
82	4	2	4	1
83	2	1	1	2
84	3	3	2	3
85	4	1	3	4
86	1	3	3	1
87	2	2	1	3
88	1	1	2	1
89	3	2	4	1
90	4	4	4	2
91	2	3	3	3
92	3	1	3	4
93	1	2	1	2
94	2	3	2	3
95	2	4	1	4
96	3	1	2	1
97	4	3	4	2
98	1	1	3	1
99	1	1	2	3
100	4	2	1	4

