Total No. of Printed Pages: 21

(DO NOT OPEN THIS QUESTION BOOKLET BEFORE TIME OR UNTIL YOU ARE ASKED TO DO SO)

Α

Ph.D./URS-EE-Jan-2022

SET-Y

SUBJECT: Mechanical Engineering 10012

		Sr. No
Time : 1¼ Hours Roll No. (in figures)	Max. Marks : 100 (in words)	Total Questions : 100
Name	Father's Name	
Mother's Name		
(Signature of the Candidate)	_	(Signature of the Invigilator)
CANDIDATES MUST READ THE	FOLLOWING INFORMATIO	N/INSTRUCTIONS REFORE

CANDIDATES MUST READ THE FOLLOWING INFORMATION/INSTRUCTIONS BEFORE STARTING THE QUESTION PAPER.

- 1. All questions are compulsory.
- 2. The candidates *must return* the question booklet as well as OMR Answer-Sheet to the Invigilator concerned before leaving the Examination Hall, failing which a case of use of unfairmeans / mis-behaviour will be registered against him / her, in addition to lodging of an FIR with the police. Further the answer-sheet of such a candidate will not be evaluated.
- 3. Keeping in view the transparency of the examination system, carbonless OMR Sheet is provided to the candidate so that a copy of OMR Sheet may be kept by the candidate.
- 4. Question Booklet along with answer key of all the A, B, C & D code will be got uploaded on the University website after the conduct of Entrance Examination. In case there is any discrepancy in the Question Booklet/Answer Key, the same may be brought to the notice of the Controller of Examination in writing/through E.Mail within 24 hours of uploading the same on the University Website. Thereafter, no complaint in any case, will be considered.
- 5. The candidate *must not* do any rough work or writing in the OMR Answer-Sheet. Rough work, if any, may be done in the question booklet itself. Answers *must not* be ticked in the question booklet.
- 6. There will be no negative marking. Each correct answer will be awarded one full mark. Cutting, erasing, overwriting and more than one answer in OMR Answer-Sheet will be treated as incorrect answer.
- 7. Use only Black or Blue Ball Point Pen of good quality in the OMR Answer-Sheet.
- 8. Before answering the questions, the candidates should ensure that they have been supplied correct and complete booklet. Complaints, if any, regarding misprinting etc. will not be entertained 30 minutes after starting of the examination.

PHD/URS-EE-2022/(Mechanical Engineering)(SET-Y)/(A)

SEAL

]
1.	Annealing of white cast iron results	in production of:	
	(1) Malleable iron	(2) Nodular iron	
	(3) Spheroidal iron	(4) Grey iron	
2.	Which of the following statement is	s wrong ?	
	(1) Steel with 0.8% carbon is whol	ly pearlite	
	(2) The amount of cementite inci	creases with the increase in percentage of carbo	n
	(3) A mechanical mixture of 87%	cementite and 13% ferrite is called pearlite	
	(4) The cementite is identified as r	ound particles in the structure	
3.	White cast iron has:	~ · · · · · · · · · · · · · · · · · · ·	
ა.		o worker (S)	
	(1) Carbon in the form of carbide		
	(2) Low tensile strength		
	(3) High compressive strength	The state of the s	
	(4) All of these	Harmy 28 is	
4.	A cycle consisting of one constant processes is known as:	t pressure, one constant volume and two isentrop	ic
	(1) Carnot cycle	(2) Stirling cycle	
	(3) Otto cycle	(4) Diesel cycle	
5.	Nickel in steel:	Committee the state of the stat	
	(1) Improves wear resistance, cutti	ng ability and toughness	
	(2) Refines grain size and produce and heat resistant properties	es less tendency to carburisation, improves corrosion	on
	(3) Improves cutting ability and re-	duces hardenability	
	*	ile strength and anti-corrosion properties	

	(1) Brass	(2) Cast iron		
	(3) Aluminium	(4) Steel		
7.	A coarse grained steel:			
	(1) Is less tough and has a greater tende	ncy to distort during heat treatment		
	(2) Is more ductile and has a less tenden	cy to distort during heat treatment		
	(3) Is less tough and has a less tendency	to distort during heat treatment		
	(4) Is more ductile and has a greater tendency to distort during heat treatment			
8.	Normalizing of steel is done to:			
	(1) Refine the grain structure			
	(2) Remove strains caused by cold work	ring		
	(3) Remove dislocations caused in the internal structure due to hot working			
	(4) All of the above			
9.	If the permissible crushing stress for the material of a key is double the permissible shear stress, then the sunk key will be equally strong in shearing and crushing if the key is a:			
	(1) rectangular key with width equal to half the thickness			
	(2) rectangular key with width equal to twice the thickness			
	(3) square key			
	(4) rectangular key with width equal to	one-fourth the thickness		
10.	Which of the following element results i	n presence of free graphite in C. I.?		
	(1) Carbon	(2) Sulphur		
	(3) Silicon	(4) Manganese		
PHD/U	JRS-EE-2022/(Mechanical Engineering	g)(SET-Y)/(A)		

6. Cemented carbide tools are *not* found to be suitable for cutting:

	A CONTRACTOR OF THE PROPERTY O
11.	Which is false statement about annealing? Annealing is done to:
	(1) Relieve stresses
	(2) Harden steel slightly
	(3) Improve machining characteristic
	(4) Soften material
12.	The main alloying elements high speed steel in order of increasing proportion are:
	(1) Vanadium, chromium, tungsten
	(2) Tungsten, titanium, vanadium
	(3) Chromium, titanium, vanadium
	(4) Tungsten, chromium, titanium
13.	Which is false statement about normalizing? Normalizing is done to:
	(1) Refine grain structure
	(2) Reduce segregation in casting
	(3) Improve mechanical properties
	(4) Induce stresses
	Vanadium in bink and a to the second of the
14.	Vanadium in high speed steels:
	(1) Promotes decarburisation
	(2) Provides high hot hardness
	(3) Forms very hard carbides and thus increases wear resistance
	(4) Promotes retention of austenite
15.	White cast iron contains carbon in the form of:
	(1) Free carbon (2) Graphite
	(3) Cementite (4) White carbon

16	16. Which of the following constituents of steels is softest and least strong?		
	(1) Austenite	(2) Pearlite	
	(3) Ferrite	(4) Cementite	
17	In nodular iron, graphite is in the f	form of:	
	(1) Cementite	(2) Free carbon	
	(3) Flakes	(4) Spheroids	
18	Austenite is a combination of:		
	(1) Ferrite and cementite		
	(2) Cementite and gamma iron		
	(3) Ferrite and austenite		
	(4) Ferrite and iron graphite		
19.	When a shaft is subjected to a twis under:	ting moment, every cross-	section of the shaft will be
	(1) Tensile stress	(2) Compressive st	ress
	(3) Shear stress	(4) Bending stress	
20.	The stress induced in a body due applied gradually is:	to suddenly applied loa	d compared to when it is
	(1) Same	(2) Half	s ob estenact (i)
	(3) Two times	(4) Four times	California (California)
21.	Percentage reduction of area in perf of:	forming tensile test on cas	st iron may be of the order
	(1) 50%	(2) 25%	
	(3) 0%	(4) 15%	managa na saga

22.	The property of material to absorb large amount of energy before fracture is known as:		
	(1) Ductility	(2) Toughness	
	(3) Resilience	(4) Shock proof	
23.	Longitudinal stress in a thin cylinder is:		
	(1) Equal to the hoop stress	(2) Twice the hoop stress	
	(3) Half of the hoop stress	(4) One fourth of hoop stress	
24.	If the section modulus of a beam is incre	eased, the bending stress in the beam will:	
	(1) Not change	(2) Increase	
	(3) Decrease	(4) None of these	
25.	When a closely-coiled helical spring is	subjected to an axial load, it is said to be under:	
	(1) Bending	(2) Shear	
	(3) Torsion	(4) Crushing	
26.	. What type of fusion welding process is used for welding sheet metals of all engineering metals (except Cu, Ag) in automobile and air craft industries, pipe and tubing production?		
	(1) Thermit welding		
	(2) Electroslag welding		
	(3) Resistance welding		
	(4) Electron beam welding		
27. The object of caulking in a riveted joint is to make the joint:			
	(1) Free from corrosion	(2) Stronger in tension	
	(3) Free from stresses	(4) Leak-proof	
PHD/	URS-EE-2022/(Mechanical Engineerin	g)(SET-Y)/(A) P. T. O.	

- 28. The main purpose of spheroidising treatment is to improve:
 - (1) Hardenability of low carbon steels
 - (2) Machinability of low carbon steels
 - (3) Hardenability of high carbon steels
 - (4) Machinability of high carbon steels
- 29. The mechanism of material removal in EDM process is:
 - (1) Melting and Evaporation
 - (2) Melting and Corrosion
 - (3) Erosion and Cavitations
 - (4) Cavitations and Evaporation
- 30. In ECM, the material removal is due to:
 - (1) Corrosion

(2) Erosion

(3) Fusion

- (4) Ion displacement
- 31. Allowance in limits and fits refers to:
 - (1) Maximum clearance between shaft and hole
 - (2) Minimum clearance between shaft and hole
 - (3) Difference between maximum and minimum sizes of hole
 - (4) Difference between maximum and minimum sizes of shaft
- 32. An expendable pattern is used in:
 - (1) Slush casting
 - (2) Squeeze casting
 - (3) Centrifugal casting
 - (4) Investment casting

- **33.** Misrun is a casting defect which occurs due to?
 - (1) Very high pouring temperature of the metal
 - (2) Insufficient fluidity of the molten metal
 - (3) Absorption of gases by the liquid metal
 - (4) Improper alignment of the mould flasks
- 34. Shrinkage allowance on pattern is provided to compensate for shrinkage when:
 - (1) The temperature of liquid metal drops from pouring to freezing temperature
 - (2) The metal changes from liquid to solid state at freezing temperature
 - (3) The temperature of solid phase drops from freezing to room temperature
 - (4) The temperature of metal drops from pouring to room temperature
- 35. Which of the following statement is wrong about ultrasonic machining?
 - (1) It is best suited for machining hard and brittle materials
 - (2) It cuts materials at very slow speeds
 - (3) It removes large amount of material
 - (4) It produces good surface finish
- **36.** In electro-discharge machining, dielectric is used to:
 - (1) Help in the movement of the sparks
 - (2) Control the spark discharges
 - (3) Act as coolant
 - (4) All of these
- 37. A fine grained grinding wheel is used to grind:
 - (1) Hard and brittle materials
 - (2) Soft and ductile materials
 - (3) Hard and ductile materials
 - (4) Soft and brittle materials

38.	In order to grind soft material:	
	(1) Coarse grained grinding wheel	is used
	(2) Fine grained grinding wheel is	
	(3) Medium grained grinding whee	
	(4) Anyone of these	
39.	Carbide tipped tools usually have:	
	(1) Negative rake angle	
	(2) Positive rake angle	
	(3) Any rake angle	
	(4) No rake angle	
40.	. The operation of machining severa	al surfaces of a workpiece simultaneously is called:
	(1) Profile milling	
	(2) Gang milling	
	(3) Saw milling	
	(4) Helical milling	
41	I. The material which on machining.	produces chips with built up edge is:
	(1) Brittle material	(2) Ductile material
	(3) Hard material	(4) Tough material
42	2. Crater wear is predominant in:	
	(1) Carbon tool steels	
	(2) Tungsten carbide tools	
	(3) High speed steel tools	

(4) Ceramic tools

43.	The high cutting speed and large rake angle of the tool will result in the formation of
	which of the following?

- (1) Continuous chips
- (2) Discontinuous chip
- (3) Continuous chips with built up edge
- (4) None of these

44. The capacity of induced draft fan compared to forced draft fan in a boiler is:

- (1) Same
- (2) More
- (3) Less
- (4) Less or more depending on size of boiler

45. The equivalent evaporation is defined as:

- (1) The ratio of heat actually used in producing the steam to the heat liberated in the furnace
- (2) The amount of water evaporated or steam produced in kg per kg of fuel burnt
- (3) The amount of water evaporated from and at 100°C into dry and saturated steam
- (4) The evaporation of 15.653 kg of water per hour from and at 100°C

46. Steam engine operates on:

(1) Carnot cycle

(2) Joule cycle

(3) Stirling cycle

(4) Brayton cycle.

47. In a throttling process:

- (1) Steam temperature remains constant
- (2) Steam pressure remains constant
- (3) Steam enthalpy remains constant
- (4) Steam entropy remains constant

PHD/URS-EE-2022/(Mechanical Engineering)(SET-Y)/(A)

18.	Which of the following is not a boiler mounting?		
	(1) Blow off cock	(2)	Feed check valve
	(3) Economiser	(4)	Fusible plug
49.	The increase in pressure:		
	(1) Lowers the boiling point of a liquid		
	(2) Raises the boiling point of a liquid		
	(3) Does not affects the boiling point of	a liq	uid
	(4) Reduces its volume		
50.	Adiabatic process is:		
	(1) Essentially an isentropic process		
	(2) Non-heat transfer process		
	(3) Reversible process		
	(4) Constant temperature process		
51.	Resilience of a material is important, w	hen it	is subjected to:
	(1) Combined loading		
	(2) Fatigue		
	(3) Thermal stresses		
	(4) Shock loading		
52.	The power transmitted by the belt drive	can	be increased by:
	(1) Increasing the initial tension in the	belt	
	(2) Dressing the belt to increase the co	effici	ent of friction
	(3) Increasing wrap angle by using idle	er pul	ley

(4) All of the above methods

53.	Which <i>one</i> of the following is a positive	re drive ?		
	(1) V-belt drive	(2) Rope drive		
	(3) Crossed flat belt drive	(4) Chain drive		
54.	Shear stress theory is applicable for:			
	(1) Ductile materials			
	(2) Brittle materials			
	(3) Elastic materials			
	(4) All of the above			
55.	If two identical springs are in parallel to	hen their overall stiffness will be:		
	(1) Half	(2) Same		
	(3) Double	(4) None of the above		
56.	In a gear, having Involute teeth, the normal to the Involute is a tangent to the:			
	(1) Base circle	(2) Pitch circle		
	(3) Addendum circle	(4) Dedendum circle		
57.	The cam and follower is an example of	: :		
	(1) Sliding pair	(2) Rolling pair		
	(3) Lower pair	(4) Higher pair		
58.	According to Kennedy'S theorem, instantaneous centers lie on :	if three bodies have plane motions, their		
	(1) A triangle			
	(2) A point			
	(3) Two lines			
	(4) A straight line			
D/U	JRS-EE-2022/(Mechanical Engineerin	g)(SET-Y)/(A) P. T. O.		

59.	The Coriolis component of accele	eration acts:
	(1) Along the sliding surface	
	(2) Perpendicular to the sliding s	urface
	(3) At 45° to the sliding surface	
	(4) Parallel to the sliding surface	
60.	Euler's dimensionless number rel	ates the following:
	(1) Inertial force and gravity	
	(2) Viscous force and inertial for	ce
	(3) Viscous force and buoyancy	force
	(4) Pressure force and inertial fo	rce
61.	In a forced vortex, the velocity of	flow everywhere within the fluid is:
	(1) Maximum	(2) Minimum
	(3) Zero	(4) Nonzero finite
62.	The continuity equation is connect	cted with:
	(1) Open channel/pipe flow	
	(2) Compressibility of fluids	
	(3) Conservation of mass	
	(4) Steady/unsteady flow	

- **63.** The absolute pressure is equal to:
 - (1) Gauge pressure + atmospheric pressure
 - (2) Gauge pressure atmospheric pressure
 - (3) Atmospheric pressure gauge pressure
 - (4) Gauge pressure vacuum pressure

64	Cavitation is caused by:		
	(1) High velocity	(2) High pressure	
	(3) Weak material	(4) Low pressure	
65.	A body floats in stable equilibrium:		
	(1) When its meta centric height is zero		
	(2) When the metacentre is above CG		
	(3) When its e.g. is below its center of b	ouoyancy	
	(4) Metacentre has nothing to do with p	osition of CG for determining stability	
66.	A large Reynold number is indication of	·:	
	(1) Smooth and streamline flow		
	(2) Laminar flow		
	(3) Steady flow		
	(4) Highly turbulent flow		
67.	Which of the following is dimensionless	?	
	(1) Specific weight	•	
	(2) Specific volume		
	(3) Specific speed		
	(4) Specific gravity		
68.	Service time in queuing theory is usually	assumed to follow:	
	(1) Normal distribution		
	(2) Poisson's distribution		
	(3) Erlang distribution		
	(4) Exponential distribution		

69.	Simplex method is the method used for:
	(1) Value analysis
	(2) Network analysis
	(3) Linear programming
	(4) Queuing theory
70.	Which of the following layouts is suited to flow production system?
	(1) Process layout
	(2) Product layout
	(3) Fixed position layout
	(4) Plant layout
71.	The production scheduling is simpler and high volume of output and high labour efficiency are achieved in the case of :
	(1) Product layout
	(2) Process layout
	(3) Fixed position layout
	(4) A combination of line and process layout
72	A-B-C analysis is used in:
	(1) CPM
	(2) PERT
	(3) Inventory control
	(4) All of these
PHI	D/URS-EE-2022/(Mechanical Engineering)(SET-Y)/(A)

73. A critical activity has:

- (1) Maximum slack
- (2) Minimum slack
- (3) Zero slack
- (4) Average slack

74. The probabilistic time is given by (where to = Optimistic time, tp = Pessimistic time, and tn = Most likely time):

(1) (to + tp + tn)/3

(2) (to + 2tp + tn)/4

(3) (to + 4tp + tn)/5

(4) (to + tp + 4tn)/6

75. Two alternatives can produce a product. First have a fixed cost of Rs. 2000 and a variable cost of Rs. 20 per piece. The second method has a fixed cost of Rs. 1500 and a variable cost of Rs. 30. The break even quantity between the two alternatives is:

(1) 25

(2) 50

(3) 75

(4) 100

76. Scheduling:

- (1) Prescribes the sequence of operations to be followed
- (2) Determines the programme for the operations
- (3) Is concerned with starting of processes
- (4) Regulates the progress of job through various processes

77. In the continuous review inventory control, the material is ordered when it reaches:

- (1) Reorder point
- (2) Optimum order quantity
- (3) Average inventory
- (4) Zero

PHD/URS-EE-2022/(Mechanical Engineering)(SET-Y)/(A)

6	hipments?
78.	Which modes of transportation suit high quantity shipments?
	(1) Air transportation
	(2) Water transportation
	(3) Rail transportation
	(4) Intermodal transportation
79.	With regard to safety inventory required for a required service level, which of following is correct under Aggregation in Supply chain:
	(1) It decreases
	(2) It increases
	(3) It remains fixed
	(4) It is doubled
80.	Lean production involves:
	(1) Improvement of resource utilization
	(2) Reduction of waiting time
	(3) Elimination of all types of waste
	(4) Elimination of rework
81.	A growing number of firms now outsource some or all of their inventory storage and transport to intermediaries. These are called:
	(1) Competitors
	(2) Third-party logistics providers
	(3) Channel members

(4) Cross-functional teams

82. The Delphi method:

- (1) Uses a panel of experts who give their opinion on what is likely to happen
- (2) Consists of projections based on external indicators that relate to the demand for a company's products
- (3) Uses economic indicators, such as housing starts and gasoline consumption, to forecast demand
- (4) Uses historical data to forecast demand
- 83. Which of the following techniques are projections based on judgment, intuition and informed opinions?
 - (1) Extrinsic forecasting
 - (2) Quantitative forecasting
 - (3) Intrinsic forecasting
 - (4) Qualitative forecasting
- **84.** Which of the following aggregate planning strategies is likely to have the least impact on quality?
 - (1) Subcontracting
 - (2) Changing inventory level
 - (3) Using part-time workers
 - (4) Varying production rates through overtime or idle time
- 85. Which statement is characteristic of a mixed strategy for aggregate planning?
 - (1) Mixed plans typically yield a worse strategy than a pure plan
 - (2) Mixed plans seek a minimum cost via a combination of planning options
 - (3) Mixed plans are less complex to develop than a level plan
 - (4) Mixed plans are less complex to develop than a chase plan

PHD/URS-EE-2022/(Mechanical Engineering)(SET-Y)/(A)

- 86. Which of these pieces of information is *not* contained in a bill of material?
 - (1) Lead times
 - (2) Physical dimensions
 - (3) Raw materials to be used
 - (4) Quantities of components
- 87. JIT is a philosophy of:
 - (1) Push production
 - (2) Waste reduction
 - (3) Re-engineering for breakthrough
 - (4) Variability increase
- 88. What is an advantage of holding inventory?
 - (1) Improved quality
 - (2) Reduced obsolescence
 - (3) Greater availability
 - (4) Reduced material handling
- 89. Investment casting is used for:
 - (1) Shapes which are made by difficulty using complex patterns in sand casting
 - (2) Mass production
 - (3) Shapes which are very complex and intricate and can't be cast by any other method
 - (4) Stainless steel

90.	The vacuum obtainable in a conder	nser is dependent upon :	
	(1) Capacity of ejector		
	(2) Quantity of steam to be handle	d	
	(3) Any of the two is possible		
	(4) Temperature of cooling water		
91.	Zeroth law of thermodynamics :		
	(1) Deals with conversion of mass	and energy	
	(2) Deals with reversibility and irr	reversibility of process	
	(3) Deals with thermal equilibrium	n	
	(4) Deals with heat engines.		
92.	In vapour compression refrigerat liquid:	ion cycle, the condition of refrige	erant is saturated
	(1) Before entering the expansion	valve	
	(2) Before entering the compresso	or	
	(3) After passing through the cond	lenser	
	(4) Before passing through the con	ndenser	
93.	Absorption system normally uses f	following refrigerant:	
	(1) CO ₂	(2) SO ₂	
	(3) Freon-II	(4) Ammonia	
94.	Shock effect in a nozzle is felt in:		
	(1) Divergent portion	(2) Straight portion	
	(3) Convergent portion	(4) Throat	
UDA	IDC FF 2022/(Machanical Engine	eering)(SET-Y)/(A)	P. T. O.

95.	Which type of electrode is used in submerged arc welding?				
	(1) Bare rods	(2) Coated electrodes			
	(3) Core wires	(4) Copper electrodes			
96.	The main advantage of shell moulding i	s that :			
	(1) Metallic pattern is used				
	(2) The moulds are stronger				
	(3) Thin section can be easily obtained				
	(4) Highly complex sections can be eas	ily obtained			
97.	Blind risers:				
	(1) Assist in feeding the metal into casting proper				
	(2) Help to trap slag or other lighter particles				
	(3) Supply the liquid metal when pouring is completed				
	(4) None of the above				
98.	Cylinder-Piston assembly constitute wh	ich type of kinematic pair :			
	(1) Lower pair	(2) Higher pair			
	(3) Open pair	(4) Close pair			
99.	Thermal efficiency of a closed cycle gas turbine plant increases by:				
	(1) Reheating	(2) Intercooling			
	(3) Regenerator	(4) All of the above			
100.	For a machine to be self-locking, its effi	ciency should be:			
,	(1) 100%	(2) Less than 67%			
	(3) Less than 50%	(4) More than 50%			

Total No. of Printed Pages: 21

Sr No

(DO NOT OPEN THIS QUESTION BOOKLET BEFORE TIME OR UNTIL YOU ARE ASKED TO DO SO)

В

Ph.D./URS-EE-Jan-2022

SET-Y

SUBJECT: Mechanical Engineering

10018

Time: 11/4 Hours Roll No. (in figures)	Max. Marks : 100 (in words)	Total Questions: 100
Name		
Mother's Name	Date of Examination_	
(Signature of the Candidate)	·	(Signature of the Invigilator)

CANDIDATES MUST READ THE FOLLOWING INFORMATION/INSTRUCTIONS BEFORE STARTING THE QUESTION PAPER.

- 1. All questions are compulsory.
- 2. The candidates must return the question booklet as well as OMR Answer-Sheet to the Invigilator concerned before leaving the Examination Hall, failing which a case of use of unfairmeans / mis-behaviour will be registered against him / her, in addition to lodging of an FIR with the police. Further the answer-sheet of such a candidate will not be evaluated.
- 3. Keeping in view the transparency of the examination system, carbonless OMR Sheet is provided to the candidate so that a copy of OMR Sheet may be kept by the candidate.
- 4. Question Booklet along with answer key of all the A, B, C & D code will be got uploaded on the University website after the conduct of Entrance Examination. In case there is any discrepancy in the Question Booklet/Answer Key, the same may be brought to the notice of the Controller of Examination in writing/through E.Mail within 24 hours of uploading the same on the University Website. Thereafter, no complaint in any case, will be considered.
- 5. The candidate *must not* do any rough work or writing in the OMR Answer-Sheet. Rough work, if any, may be done in the question booklet itself. Answers *must not* be ticked in the question booklet.
- 6. There will be no negative marking. Each correct answer will be awarded one full mark. Cutting, erasing, overwriting and more than one answer in OMR Answer-Sheet will be treated as incorrect answer.
- 7. Use only Black or Blue Ball Point Pen of good quality in the OMR Answer-Sheet.
- 8. Before answering the questions, the candidates should ensure that they have been supplied correct and complete booklet. Complaints, if any, regarding misprinting etc. will not be entertained 30 minutes after starting of the examination.

P. T. O.

1.	The material which on machining produces chips with built up edge is:
	(1) Brittle material (2) Ductile material
	(3) Hard material (4) Tough material
2.	Crater wear is predominant in:
	(1) Carbon tool steels
	(2) Tungsten carbide tools
	(3) High speed steel tools
	(4) Ceramic tools
3.	The high cutting speed and large rake angle of the tool will result in the formation of which of the following?
	(1) Continuous chips
	(2) Discontinuous chip
	(3) Continuous chips with built up edge
	(4) None of these
4.	The capacity of induced draft fan compared to forced draft fan in a boiler is: (1) Same
	(2) More
	(3) Less
	(4) Less or more depending on size of boiler
5.	The equivalent evaporation is defined as:
	(1) The ratio of heat actually used in producing the steam to the heat liberated in the furnace
	(2) The amount of water evaporated or steam produced in kg per kg of fuel burnt
	(3) The amount of water evaporated from and at 100°C into dry and saturated steam

(4) The evaporation of 15.653 kg of water per hour from and at 100°C

6. Steam engine operates on:

(1) Carnot cycle

(3) Stirling cycle

7. In a throttling process:

	(1) Steam temperature remains constant	
	(2) Steam pressure remains constant	
	(3) Steam enthalpy remains constant	
	(4) Steam entropy remains constant	
8.	Which of the following is <i>not</i> a boiler m	ounting?
	(1) Blow off cock	(2) Feed check valve
	(3) Economiser	(4) Fusible plug
0	The increase in pressure:	
9.	(1) Lowers the boiling point of a liquid	
	(2) Raises the boiling point of a liquid	C 1 1 1
	(3) Does not affects the boiling point of	a liquid
	(4) Reduces its volume	
10.	Adiabatic process is:	
	(1) Essentially an isentropic process	
	(2) Non-heat transfer process	
	(3) Reversible process	
	(4) Constant temperature process	
11.	Percentage reduction of area in perform of:	ning tensile test on east iron may be of the order
	(1) 50%	(2) 25%
	(3) 0%	(4) 15%
PHD/	URS-EE-2022/(Mechanical Engineerin	g)(SET_V)/(D)

(2) Joule cycle

(4) Brayton cycle

12.	The property of material to absorb large amount of energy before fracture is known as:		
	(1) Ductility	(2) Toughness	
	(3) Resilience	(4) Shock proof	
13.	Longitudinal stress in a thin cylinder is:		
	(1) Equal to the hoop stress	(2) Twice the hoop stress	
	(3) Half of the hoop stress	(4) One fourth of hoop stress	
14.	If the section modulus of a beam is incre	eased, the bending stress in the beam will:	
	(1) Not change	(2) Increase	
	(3) Decrease	(4) None of these	
15.	When a closely-coiled helical spring is s	ubjected to an axial load, it is said to be under:	
	(1) Bending	(2) Shear	
	(3) Torsion	(4) Crushing	
16.	What type of fusion welding process is metals (except Cu, Ag) in automobi production?	used for welding sheet metals of all engineering le and air craft industries, pipe and tubing	
	(1) Thermit welding		
	(2) Electroslag welding		
	(2) Electroslag welding(3) Resistance welding		
17.	(3) Resistance welding		
17.	(3) Resistance welding(4) Electron beam welding		

	The main purpose of spheroidising tre	atment is to improve:		
18.	The main purpose of spheroteness			
	(1) Hardenability of low carbon steels			
	(2) Machinability of low carbon steel	S		
	(3) Hardenability of high carbon steel	ls		
	(4) Machinability of high carbon stee			
19.	The mechanism of material removal i	n EDM process is:		
	(1) Melting and Evaporation			
	(2) Melting and Corrosion			
	(3) Erosion and Cavitations			
	(4) Cavitations and Evaporation			
20.	In ECM, the material removal is due	to:		
	(1) Corrosion	(2) Erosion		
	(3) Fusion	(4) Ion displacement		
21.	Annealing of white cast iron results i	in production of:		
	(1) Malleable iron	(2) Nodular iron		
	(3) Spheroidal iron	(4) Grey iron		
22.	Which of the following statement is	wrong?		
	(1) Steel with 0.8% carbon is wholly pearlite			
	(2) The amount of cementite incr	reases with the increase in percentage of carbon		
	(3) A mechanical mixture of 87% c	ementite and 13% ferrite is called pearlite		
	(4) The cementite is identified as ro	ound particles in the structure		
PHD	/URS-EE-2022/(Mechanical Enginee	ering)(SET_V)/(P)		
	3	-8/OHI-1//(D)		

23.	White cast iron has:
	(1) Carbon in the form of carbide
	(2) Low tensile strength
	(3) High compressive strength
	(4) All of these
24.	A cycle consisting of one constant pressure, one constant volume and two isentropic processes is known as:
	(1) Carnot cycle (2) Stirling cycle
	(3) Otto cycle (4) Diesel cycle
25.	Nickel in steel:
•	(1) Improves wear resistance, cutting ability and toughness
	(2) Refines grain size and produces less tendency to carburisation, improves corrosion and heat resistant properties
	(3) Improves cutting ability and reduces hardenability
	(4) Gives ductility, toughness, tensile strength and anti-corrosion properties
26.	Cemented carbide tools are <i>not</i> found to be suitable for cutting:
	(1) Brass (2) Cast iron
	(3) Aluminium (4) Steel
27.	A coarse grained steel:
	(1) Is less tough and has a greater tendency to distort during heat treatment
	(2) Is more ductile and has a less tendency to distort during heat treatment
	(3) Is less tough and has a less tendency to distort during heat treatment

(4) Is more ductile and has a greater tendency to distort during heat treatment

28.	Normaliz	zing c	of steel	lis	done	to	;
-----	----------	--------	----------	-----	------	----	---

- (1) Refine the grain structure
- (2) Remove strains caused by cold working
- (3) Remove dislocations caused in the internal structure due to hot working
- (4) All of the above
- 29. If the permissible crushing stress for the material of a key is double the permissible shear stress, then the sunk key will be equally strong in shearing and crushing if the key is a:
 - (1) rectangular key with width equal to half the thickness
 - (2) rectangular key with width equal to twice the thickness
 - (3) square key
 - (4) rectangular key with width equal to one-fourth the thickness
- 30. Which of the following element results in presence of free graphite in C. I.?
 - (1) Carbon

(2) Sulphur

(3) Silicon

(4) Manganese

31. Zeroth law of thermodynamics:

- (1) Deals with conversion of mass and energy
- (2) Deals with reversibility and irreversibility of process
- (3) Deals with thermal equilibrium
- (4) Deals with heat engines
- 32. In vapour compression refrigeration cycle, the condition of refrigerant is saturated liquid:
 - (1) Before entering the expansion valve
 - (2) Before entering the compressor
 - (3) After passing through the condenser
 - (4) Before passing through the condenser

33.	Absorption system normally uses following refrigerant:					
	(1) CO_2 (2)	SO_2				
	(3) Freon-II (4)	Ammonia				
34.	1. Shock effect in a nozzle is felt in:					
	(1) Divergent portion (2)	Straight portion				
	(3) Convergent portion (4)	Throat				
35.	5. Which type of electrode is used in submerged	arc welding?				
	(1) Bare rods (2)	Coated electrodes				
	(3) Core wires (4)	Copper electrodes				
36.	The main advantage of shell moulding is that	: The second				
	(1) Metallic pattern is used					
	(2) The moulds are stronger					
	(3) Thin section can be easily obtained					
	(4) Highly complex sections can be easily obtained					
37.	. Blind risers:					
	(1) Assist in feeding the metal into casting proper					
	(2) Help to trap slag or other lighter particles	(2) Help to trap slag or other lighter particles				
	(3) Supply the liquid metal when pouring is completed					
	(4) None of the above	entant 'k oa, s				
38.	Cylinder-Piston assembly constitute which ty	ype of kinematic pair:				
		Higher pair				
		Close pair				

39.	Thermal efficiency of a closed cycle gas turbine plant increases by .			
05.	(1) Reheating	(2)	Intercooling	
		(4)	All of the above	
	(3) Regenerator			
40.	For a machine to be self-locking, its efficiency should be:			
	(1) 100%	(2)	Less than 67%	
	(3) Less than 50%	(4)	More than 50%	
41.	In a forced vortex, the velocity of flow ev	very	where within the fluid is:	
	(1) Maximum		Minimum	
	(3) Zero	(4)	Nonzero finite	
42.	The continuity equation is connected wit (1) Open channel/pipe flow (2) Compressibility of fluids (3) Conservation of mass (4) Steady/unsteady flow	h:		
43.	The absolute pressure is equal to:			
	(1) Gauge pressure + atmospheric press	ure		
	(2) Gauge pressure – atmospheric press	ure		
	(3) Atmospheric pressure – gauge press	ure		
	(4) Gauge pressure – vacuum pressure			
44.	Cavitation is caused by:			
	(1) High velocity	(2) High pressure	
	(3) Weak material	(4) Low pressure	

- 45. A body floats in stable equilibrium:
 - (1) When its meta centric height is zero
 - (2) When the metacentre is above CG
 - (3) When its e.g. is below its center of buoyancy
 - (4) Metacentre has nothing to do with position of CG for determining stability
- 46. A large Reynold number is indication of:
 - (1) Smooth and streamline flow
 - (2) Laminar flow
 - (3) Steady flow
 - (4) Highly turbulent flow
- 47. Which of the following is dimensionless?
 - (1) Specific weight
 - (2) Specific volume
 - (3) Specific speed
 - (4) Specific gravity
- 48. Service time in queuing theory is usually assumed to follow:
 - (1) Normal distribution
 - (2) Poisson's distribution
 - (3) Erlang distribution
 - (4) Exponential distribution
- 49. Simplex method is the method used for:
 - (1) Value analysis
 - (2) Network analysis
 - (3) Linear programming
 - (4) Queuing theory

50.

- Which of the following layouts is suited to flow production system?
 - (1) Process layout
 - (2) Product layout
 - (3) Fixed position layout
 - (4) Plant layout
- Allowance in limits and fits refers to: 51.
 - (1) Maximum clearance between shaft and hole
 - (2) Minimum clearance between shaft and hole
 - (3) Difference between maximum and minimum sizes of hole
 - (4) Difference between maximum and minimum sizes of shaft
- An expendable pattern is used in: 52.
 - (1) Slush casting
 - (2) Squeeze casting
 - (3) Centrifugal casting
 - (4) Investment casting
- Misrun is a casting defect which occurs due to? 53.
 - (1) Very high pouring temperature of the metal
 - (2) Insufficient fluidity of the molten metal
 - (3) Absorption of gases by the liquid metal
 - (4) Improper alignment of the mould flasks
- Shrinkage allowance on pattern is provided to compensate for shrinkage when: 54.
 - (1) The temperature of liquid metal drops from pouring to freezing temperature
 - (2) The metal changes from liquid to solid state at freezing temperature
 - (3) The temperature of solid phase drops from freezing to room temperature
 - (4) The temperature of metal drops from pouring to room temperature

- 55. Which of the following statement is wrong about ultrasonic machining?
 - (1) It is best suited for machining hard and brittle materials
 - (2) It cuts materials at very slow speeds
 - (3) It removes large amount of material
 - (4) It produces good surface finish
- **56.** In electro-discharge machining, dielectric is used to:
 - (1) Help in the movement of the sparks
 - (2) Control the spark discharges
 - (3) Act as coolant
 - (4) All of these
- **57.** A fine grained grinding wheel is used to grind:
 - (1) Hard and brittle materials
 - (2) Soft and ductile materials
 - (3) Hard and ductile materials
 - (4) Soft and brittle materials
- **58.** In order to grind soft material:
 - (1) Coarse grained grinding wheel is used
 - (2) Fine grained grinding wheel is used
 - (3) Medium grained grinding wheel is used
 - (4) Anyone of these
- **59.** Carbide tipped tools usually have:
 - (1) Negative rake angle
 - (2) Positive rake angle
 - (3) Any rake angle
 - (4) No rake angle

_	
60.	The operation of machining several surfaces of a workpiece simultaneously is called:
	(1) Profile milling
	(2) Gang milling
	(3) Saw milling
	(4) Helical milling
61.	The production scheduling is simpler and high volume of output and high labour efficiency are achieved in the case of :
	(1) Product layout
	(2) Process layout
	(3) Fixed position layout
	(4) A combination of line and process layout
62.	A-B-C analysis is used in:
	(1) CPM
	(2) PERT
	(3) Inventory control
	(4) All of these
63.	A critical activity has:
	(1) Maximum slack
	(2) Minimum slack
	(3) Zero slack
	(4) Average slack

64. The probabilistic time is given by (where to = Optimistic time, tp = Pessimistic time, and tn = Most likely time):

(1)
$$(to + tp + tn)/3$$

(2)
$$(to + 2tp + tn)/4$$

(3)
$$(to + 4tp + tn)/5$$

(4)
$$(to + tp + 4tn)/6$$

65. Two alternatives can produce a product. First have a fixed cost of Rs. 2000 and a variable cost of Rs. 20 per piece. The second method has a fixed cost of Rs. 1500 and a variable cost of Rs. 30. The break even quantity between the two alternatives is:

$$(1)$$
 25

$$(2)$$
 50

$$(3)$$
 75

66. Scheduling:

(1) Prescribes the sequence of operations to be followed

(2) Determines the programme for the operations

(3) Is concerned with starting of processes

(4) Regulates the progress of job through various processes

67. In the continuous review inventory control, the material is ordered when it reaches:

(1) Reorder point

(2) Optimum order quantity

(3) Average inventory

(4) Zero

68. Which modes of transportation suit high quantity shipments?

(1) Air transportation

(2) Water transportation

(3) Rail transportation

(4) Intermodal transportation

- 69. With regard to safety inventory required for a required service level, which of following is correct under Aggregation in Supply chain:
 - (1) It decreases
 - (2) It increases
 - (3) It remains fixed
 - (4) It is doubled

70. Lean production involves:

- (1) Improvement of resource utilization
- (2) Reduction of waiting time
- (3) Elimination of all types of waste
- (4) Elimination of rework
- **71.** A growing number of firms now outsource some or all of their inventory storage and transport to intermediaries. These are called:
 - (1) Competitors
 - (2) Third-party logistics providers
 - (3) Channel members
 - (4) Cross-functional teams

72. The Delphi method:

- (1) Uses a panel of experts who give their opinion on what is likely to happen
- (2) Consists of projections based on external indicators that relate to the demand for a company's products
- (3) Uses economic indicators, such as housing starts and gasoline consumption, to forecast demand
- (4) Uses historical data to forecast demand

- 73. Which of the following techniques are projections based on judgment, intuition and informed opinions?
 - (1) Extrinsic forecasting
 - (2) Quantitative forecasting
 - (3) Intrinsic forecasting
 - (4) Qualitative forecasting
- 74. Which of the following aggregate planning strategies is likely to have the least impact on quality?
 - (1) Subcontracting
 - (2) Changing inventory level
 - (3) Using part-time workers
 - (4) Varying production rates through overtime or idle time
- 75. Which statement is characteristic of a mixed strategy for aggregate planning?
 - (1) Mixed plans typically yield a worse strategy than a pure plan
 - (2) Mixed plans seek a minimum cost via a combination of planning options
 - (3) Mixed plans are less complex to develop than a level plan
 - (4) Mixed plans are less complex to develop than a chase plan
- 76. Which of these pieces of information is not contained in a bill of material?
 - (1) Lead times
 - (2) Physical dimensions
 - (3) Raw materials to be used
 - (4) Quantities of components

-	TTTT	•	1 .1	1	-£	
11.	JII	is a	philoso	pny	OI	•

- (1) Push production
- (2) Waste reduction
- (3) Re-engineering for breakthrough
- (4) Variability increase

78. What is an advantage of holding inventory?

- (1) Improved quality
- (2) Reduced obsolescence
- (3) Greater availability
- (4) Reduced material handling

79. Investment casting is used for:

- (1) Shapes which are made by difficulty using complex patterns in sand casting
- (2) Mass production
- (3) Shapes which are very complex and intricate and can't be cast by any other method
- (4) Stainless steel

80. The vacuum obtainable in a condenser is dependent upon:

- (1) Capacity of ejector
- (2) Quantity of steam to be handled
- (3) Any of the two is possible
- (4) Temperature of cooling water

-		2000
81.	. Which is false statement about annealing? Annealing is done to:	
	(1) Relieve stresses	
	(2) Harden steel slightly	
	(3) Improve machining characteristic	
	(4) Soften material	
82.		
	(1) Vanadium chromium turnet	
	(2) Tungsten, titanium, vanadium	
	(3) Chromium, titanium, vanadium	
	(4) Tungsten, chromium, titanium	
83.	Which is false statement about normalizing? Normalizing is done to:	
	(1) Refine grain structure	
	(2) Reduce segregation in casting	
	(3) Improve mechanical properties	
	(4) Induce stresses	
84.	Vanadium in high speed steels:	
	(1) Promotes decarburisation	
	(2) Provides high hot hardness	
	(3) Forms very hard carbides and thus increases wear resistance	
	(4) Promotes retention of austenite	
85.	White cast iron contains carbon in the form of:	
	(2) Graphite	
	(4) White carbon (3) Cementite	
PHD	URS-EE-2022/(Mechanical Engineering)(SET-Y)/(B) P. T	. O.
· •••/(URS-EE-2022/(Mechanical - 5	

86.	Which of the following constituents of steels is softest and least strong?			
	(1) Austenite	(2) Pearlite		
	(3) Ferrite	(4) Cementite		
87.	In nodular iron, graphite is in the form	of:		
	(1) Cementite	(2) Free carbon		
	(3) Flakes	(4) Spheroids		
88.	Austenite is a combination of:			
	(1) Ferrite and cementite			
	(2) Cementite and gamma iron	•		
	(3) Ferrite and austenite			
N.	(4) Ferrite and iron graphite			
89.	When a shaft is subjected to a twisting under:	g moment, every cross-section of the shaft will be		
	(1) Tensile stress	(2) Compressive stress		
	(3) Shear stress	(4) Bending stress		
90.	The stress induced in a body due to applied gradually is:	suddenly applied load compared to when it is		
	(1) Same	(2) Half		
	(3) Two times	(4) Four times		
91.	Resilience of a material is important, v	when it is subjected to:		
	(1) Combined loading			
	(2) Fatigue			
	(3) Thermal stresses			
	(4) Shock loading			
PHD/U	RS-EE-2022/(Mechanical Engineeri	ng)(SET-Y)/(B)		

 (1) Increasing the initial tension in the second (2) Dressing the belt to increase the cool (3) Increasing wrap angle by using idle (4) All of the above methods 	pelt
93. Which <i>one</i> of the following is a positive(1) V-belt drive(3) Crossed flat belt drive	drive ? (2) Rope drive (4) Chain drive
 94. Shear stress theory is applicable for: (1) Ductile materials (2) Brittle materials (3) Elastic materials (4) All of the above 95. If two identical springs are in parallel the (1) Half 	en their overall stiffness will be: (2) Same
(3) Double	(4) None of the above
 96. In a gear, having Involute teeth, the norm (1) Base circle (3) Addendum circle 97. The cam and follower is an example of: (1) Sliding pair (3) Lower pair 	nal to the Involute is a tangent to the : (2) Pitch circle (4) Dedendum circle (2) Rolling pair (4) Higher pair
PHD/URS-EE-2022/(Mechanical Engineering)	(SET-Y)/(B) P. T. O.

- 98. According to Kennedy'S theorem, if three bodies have plane motions, their instantaneous centers lie on:
 - (1) A triangle
 - (2) A point
 - (3) Two lines
 - (4) A straight line
- 99. The Coriolis component of acceleration acts:
 - (1) Along the sliding surface
 - (2) Perpendicular to the sliding surface
 - (3) At 45° to the sliding surface
 - (4) Parallel to the sliding surface
- 100. Euler's dimensionless number relates the following:
 - (1) Inertial force and gravity
 - (2) Viscous force and inertial force
 - (3) Viscous force and buoyancy force
 - (4) Pressure force and inertial force

Total No. of Printed Pages: 21

SET-Y

(DO NOT OPEN THIS QUESTION BOOKLET BEFORE TIME OR UNTIL YOU ARE ASKED TO DO SO)

Ph.D./URS-EE-Jan-2022

SUBJECT: Mechanical Engineering 10019

		31. 140
Time: 1¼ Hours Roll No. (in figures)	Max. Marks : 100 (in words)	Total Questions: 100
Name	Father's Name	
Mother's Name	Date of Examination_	
(Signature of the Candidate)		(Signature of the Invigilator)

CANDIDATES MUST READ THE FOLLOWING INFORMATION/INSTRUCTIONS BEFORE STARTING THE QUESTION PAPER.

- 1. All questions are compulsory.
- 2. The candidates *must return* the question booklet as well as OMR Answer-Sheet to the Invigilator concerned before leaving the Examination Hall, failing which a case of use of unfairmeans / mis-behaviour will be registered against him / her, in addition to lodging of an FIR with the police. Further the answer-sheet of such a candidate will not be evaluated.
- 3. Keeping in view the transparency of the examination system, carbonless OMR Sheet is provided to the candidate so that a copy of OMR Sheet may be kept by the candidate.
- 4. Question Booklet along with answer key of all the A, B, C & D code will be got uploaded on the University website after the conduct of Entrance Examination. In case there is any discrepancy in the Question Booklet/Answer Key, the same may be brought to the notice of the Controller of Examination in writing/through E.Mail within 24 hours of uploading the same on the University Website. Thereafter, no complaint in any case, will be considered.
- 5. The candidate *must not* do any rough work or writing in the OMR Answer-Sheet. Rough work, if any, may be done in the question booklet itself. Answers *must not* be ticked in the question booklet.
- 6. There will be no negative marking. Each correct answer will be awarded one full mark. Cutting, erasing, overwriting and more than one answer in OMR Answer-Sheet will be treated as incorrect answer.
- 7. Use only Black or Blue Ball Point Pen of good quality in the OMR Answer-Sheet.
- 8. Before answering the questions, the candidates should ensure that they have been supplied correct and complete booklet. Complaints, if any, regarding misprinting etc. will not be entertained 30 minutes after starting of the examination.

	4.	Which is false statement about annealing? Annealing is done to:
		(1) Relieve stresses
		(2) Harden steel slightly
		(3) Improve machining characteristic
		(4) Soften material
	2.	The main alloying elements high speed steel in order of increasing proportion are:
		(1) Vanadium, chromium, tungsten
		(2) Tungsten, titanium, vanadium
		(3) Chromium, titanium, vanadium
		(4) Tungsten, chromium, titanium
	3.	Which is false statement about normalizing? Normalizing is done to:
	U.	(1) Refine grain structure
		(2) Reduce segregation in casting
		(3) Improve mechanical properties
		(4) Induce stresses
		(4) Middle Stresses
	4.	Vanadium in high speed steels:
		(1) Promotes decarburisation
		(2) Provides high hot hardness
		(3) Forms very hard carbides and thus increases wear resistance
		(4) Promotes retention of austenite
		Afterior participation of the second
	5.	White cast iron contains carbon in the form of:
		(1) Free carbon (2) Graphite
		(3) Cementite (4) White carbon
PI	HD/I	URS-EE-2022/(Mechanical Engineering)(SET-Y)/(C) P.

6.	Which of the following constituents of s	steels is softest and least strong?
	(1) Austenite	(2) Pearlite
	(3) Ferrite	(4) Cementite
7.	In nodular iron, graphite is in the form of	of:
	(1) Cementite	(2) Free carbon
	(3) Flakes	(4) Spheroids
8.	Austenite is a combination of:	
	(1) Ferrite and cementite	
	(2) Cementite and gamma iron	
	(3) Ferrite and austenite	
	(4) Ferrite and iron graphite	
9.	When a shaft is subjected to a twisting under:	moment, every cross-section of the shaft will be
	(1) Tensile stress	(2) Compressive stress
	(3) Shear stress	(4) Bending stress
10.	The stress induced in a body due to applied gradually is:	suddenly applied load compared to when it is
	(1) Same	(2) Half
	(3) Two times	(4) Four times
11.	Zeroth law of thermodynamics:	
	(1) Deals with conversion of mass and	energy
	(2) Deals with reversibility and irrevers	sibility of process
	(3) Deals with thermal equilibrium	
	(4) Deals with heat engines	

12.	In vapour compression refrigeration of liquid:	cycle, the condition of refrigerant is saturated
	(1) Before entering the expansion valve	
	(2) Before entering the compressor	
	(3) After passing through the condense	r
	(4) Before passing through the condens	
		e la composição de como de com
13.	Absorption system normally uses follow	ving refrigerant:
	(1) CO ₂	(2) SO ₂
	(3) Freon-II	(4) Ammonia
14.	Shock effect in a nozzle is felt in:	
	(1) Divergent portion	(2) Straight portion
	(3) Convergent portion	(4) Throat
15.	Which type of electrode is used in subm	nerged arc welding?
10.		
	(1) Bare rods	(2) Coated electrodes
	(3) Core wires	(4) Copper electrodes
16.	The main advantage of shell moulding i	s that:
	(1) Metallic pattern is used	
	(2) The moulds are stronger	more layers
	(3) Thin section can be easily obtained	Carried Carried to Divers, frontial (E)
		ily obtained to the second to
PHD/(URS-EE-2022/(Mechanical Engineering	g)(SET-Y)/(C) P. T. O

17.	Blind risers:	
	(1) Assist in feeding the metal into casting	ng proper
	(2) Help to trap slag or other lighter part	icles
	(3) Supply the liquid metal when pouring	g is completed
	(4) None of the above	
18.	Cylinder-Piston assembly constitute which	ch type of kinematic pair:
	(1) Lower pair	(2) Higher pair
	(3) Open pair	(4) Close pair
19.	Thermal efficiency of a closed cycle gas	turbine plant increases by:
	(1) Reheating	(2) Intercooling
	(3) Regenerator	(4) All of the above
20.	For a machine to be self-locking, its efficiency	ciency should be:
	(1) 100%	(2) Less than 67%
	(3) Less than 50%	(4) More than 50%
21.		and high volume of output and high labour
	efficiency are achieved in the case of:	campleon for a gase-ogase-
	(1) Product layout	bonu a mulling like 11
	(2) Process layout	
	(3) Fixed position layout	hoursake show od henry a real fill the
	(4) A combination of line and process la	ayout
PHD	URS-EE-2022/(Mechanical Engineering	(SET-Y)/(C)

22.	A-B-C	analysis	is	used	in	:
-----	-------	----------	----	------	----	---

- (1) CPM
- (2) PERT
- (3) Inventory control
- (4) All of these

23. A critical activity has:

- (1) Maximum slack
- (2) Minimum slack
- (3) Zero slack
- (4) Average slack

24. The probabilistic time is given by (where to = Optimistic time, tp = Pessimistic time, and tn = Most likely time):

(1)
$$(to + tp + tn)/3$$

(2)
$$(to + 2tp + tn)/4$$

(3)
$$(to + 4tp + tn)/5$$

(4)
$$(to + tp + 4tn)/6$$

25. Two alternatives can produce a product. First have a fixed cost of Rs. 2000 and a variable cost of Rs. 20 per piece. The second method has a fixed cost of Rs. 1500 and a variable cost of Rs. 30. The break even quantity between the two alternatives is:

(1) 25

(2) 50

(3) 75

(4) 100

26. Scheduling:

- (1) Prescribes the sequence of operations to be followed
- (2) Determines the programme for the operations
- (3) Is concerned with starting of processes
- (4) Regulates the progress of job through various processes

27.	In the continuous review inventory control, the material is ordered when it reaches:
	(1) Reorder point
	(2) Optimum order quantity
	(3) Average inventory
	(4) Zero
28.	Which modes of transportation suit high quantity shipments?
	(1) Air transportation
	(2) Water transportation
	(3) Rail transportation
	(4) Intermodal transportation
29.	With regard to safety inventory required for a required service level, which following is correct under Aggregation in Supply chain:
	(1) It decreases
	(2) It increases
	(3) It remains fixed
	(4) It is doubled
30.	Lean production involves:
	(1) Improvement of resource utilization
	(2) Reduction of waiting time
	(3) Elimination of all types of waste
	(4) Elimination of rework

Resilience of a material is importan	nt, when it is subjected to:	1	45
(1) Combined loading			
(2) Fatigue	grade in the second		
(3) Thermal stresses			
(4) Shock loading			., 'n
The power transmitted by the belt of	drive can be increased by:		
(2) Dressing the belt to increase th	e coefficient of friction		
(3) Increasing wrap angle by using	g idler pulley		
(4) All of the above methods			
Which <i>one</i> of the following is a po	sitive drive ?	•	
(1) V-belt drive	(2) Rope drive		
(3) Crossed flat belt drive	(4) Chain drive		
	r:		
• •			
(4) All of the above			
If two identical springs are in paral	lel then their overall stiffness will be	: 4 C E.B	
(1) Half			
(2) Same			
(3) Double			
(4) None of the above			
	 (1) Combined loading (2) Fatigue (3) Thermal stresses (4) Shock loading The power transmitted by the belt of (1) Increasing the initial tension in (2) Dressing the belt to increase the (3) Increasing wrap angle by using (4) All of the above methods Which one of the following is a positive (3) Crossed flat belt drive (4) Crossed flat belt drive (5) Ductile materials (6) Brittle materials (7) Elastic materials (8) Elastic materials (9) All of the above If two identical springs are in paralleled (1) Half (2) Same (3) Double 	 (2) Fatigue (3) Thermal stresses (4) Shock loading The power transmitted by the belt drive can be increased by: (1) Increasing the initial tension in the belt (2) Dressing the belt to increase the coefficient of friction (3) Increasing wrap angle by using idler pulley (4) All of the above methods Which one of the following is a positive drive? (1) V-belt drive (2) Rope drive (3) Crossed flat belt drive (4) Chain drive Shear stress theory is applicable for: (1) Ductile materials (2) Brittle materials (3) Elastic materials (4) All of the above If two identical springs are in parallel then their overall stiffness will be (1) Half (2) Same (3) Double 	(1) Combined loading (2) Fatigue (3) Thermal stresses (4) Shock loading The power transmitted by the belt drive can be increased by: (1) Increasing the initial tension in the belt (2) Dressing the belt to increase the coefficient of friction (3) Increasing wrap angle by using idler pulley (4) All of the above methods Which one of the following is a positive drive? (1) V-belt drive (2) Rope drive (3) Crossed flat belt drive (4) Chain drive Shear stress theory is applicable for: (1) Ductile materials (2) Brittle materials (3) Elastic materials (4) All of the above If two identical springs are in parallel then their overall stiffness will be: (1) Half (2) Same (3) Double

	,	mal to the	Involute	is a ta	ngent to	the:	
36.	In a gear, having Involute teeth, the normal (1) Base circle (3) Addendum circle	(2) 110	h circle endum c				
37.	The cam and follower is an example of (1) Sliding pair (3) Lower pair	(2) Rol(4) Hig	ling pair ther pair				
38.	According to Kennedy'S theorem, instantaneous centers lie on:	if three	bodies	have	plane	motions,	their
	(1) A triangle						
	(2) A point						
	(3) Two lines						
	(4) A straight line			V			
39.	The Coriolis component of acceleration	on acts:					
	(1) Along the sliding surface						
	(2) Perpendicular to the sliding surface	ce					
	(3) At 45° to the sliding surface						
	(4) Parallel to the sliding surface						
40	. Euler's dimensionless number relates	the follow	ving:				
	(1) Inertial force and gravity						
	(2) Viscous force and inertial force						
	(3) Viscous force and buoyancy force	ce					
	(4) Pressure force and inertial force						

- 41. Allowance in limits and fits refers to:
 - (1) Maximum clearance between shaft and hole
 - (2) Minimum clearance between shaft and hole
 - (3) Difference between maximum and minimum sizes of hole
 - (4) Difference between maximum and minimum sizes of shaft
- 42. An expendable pattern is used in:
 - (1) Slush casting
 - (2) Squeeze casting
 - (3) Centrifugal casting
 - (4) Investment casting
- 43. Misrun is a casting defect which occurs due to?
 - (1) Very high pouring temperature of the metal
 - (2) Insufficient fluidity of the molten metal
 - (3) Absorption of gases by the liquid metal
 - (4) Improper alignment of the mould flasks
- 44. Shrinkage allowance on pattern is provided to compensate for shrinkage when:
 - (1) The temperature of liquid metal drops from pouring to freezing temperature
 - (2) The metal changes from liquid to solid state at freezing temperature
 - (3) The temperature of solid phase drops from freezing to room temperature
 - (4) The temperature of metal drops from pouring to room temperature
- 45. Which of the following statement is wrong about ultrasonic machining?
 - (1) It is best suited for machining hard and brittle materials
 - (2) It cuts materials at very slow speeds
 - (3) It removes large amount of material
 - (4) It produces good surface finish

- In electro-discharge machining, dielectric is used to: 46.
 - (1) Help in the movement of the sparks
 - (2) Control the spark discharges
 - (3) Act as coolant
 - (4) All of these
- A fine grained grinding wheel is used to grind: 47.
 - (1) Hard and brittle materials
 - (2) Soft and ductile materials
 - (3) Hard and ductile materials
 - (4) Soft and brittle materials
- In order to grind soft material:
 - (1) Coarse grained grinding wheel is used
 - (2) Fine grained grinding wheel is used
 - (3) Medium grained grinding wheel is used
 - (4) Anyone of these
- 49. Carbide tipped tools usually have:
 - (1) Negative rake angle
 - (2) Positive rake angle
 - (3) Any rake angle
 - (4) No rake angle
- The operation of machining several surfaces of a workpiece simultaneously is called: **50.**
 - (1) Profile milling
 - (2) Gang milling
 - (3) Saw milling
 - (4) Helical milling

P. T. O.

51.	Percentage reduction of area in perform of:	ing tensile test on cast iron may be of the order
	(1) 50%	(2) 25%
	(3) 0%	(4) 15%
52.	The property of material to absorb large	amount of energy before fracture is known as:
	(1) Ductility	(2) Toughness
	(3) Resilience	(4) Shock proof
53.	Longitudinal stress in a thin cylinder is:	
	(1) Equal to the hoop stress	(2) Twice the hoop stress
	(3) Half of the hoop stress	(4) One fourth of hoop stress
54.	If the section modulus of a beam is incre	eased, the bending stress in the beam will:
	(1) Not change	(2) Increase
	(3) Decrease	(4) None of these
55.	When a closely-coiled helical spring is s	subjected to an axial load, it is said to be under:
	(1) Bending	(2) Shear
	(3) Torsion	(4) Crushing
	What type of fusion welding process is metals (except Cu, Ag) in automobi production?	used for welding sheet metals of all engineering le and air craft industries, pipe and tubing
	(1) Thermit welding	
	(2) Electroslag welding	
	(3) Resistance welding	
	(4) Electron beam welding	

57.	The object of caulking in a riveted joint i	is to	make the joint:
	(1) Free from corrosion	(2)	Stronger in tension
	(3) Free from stresses	(4)	Leak-proof
58.	The main purpose of spheroidising treats	nent	is to improve:
	(1) Hardenability of low carbon steels		
	(2) Machinability of low carbon steels		•
	(3) Hardenability of high carbon steels		
	(4) Machinability of high carbon steels		
59.	The mechanism of material removal in I	EDM	I process is:
	(1) Melting and Evaporation		
	(2) Melting and Corrosion		
	(3) Erosion and Cavitations		
	(4) Cavitations and Evaporation		
60.	In ECM, the material removal is due to:		*
	(1) Corrosion	(2)	Erosion
	(3) Fusion	(4)	Ion displacement
61.	The material which on machining produ	ces	chips with built un edge is
	(1) Brittle material		Ductile material
	(3) Hard material		Tough material
62.	Crater wear is predominant in:		
	(1) Carbon tool steels	(2)	Tungsten carbide tools
	(3) High speed steel tools		Ceramic tools

63.	The high cutting speed and large rake angle of the twhich of the following?	ool will result in the formation of
	(1) Continuous chips	
	(2) Discontinuous chip	
	(3) Continuous chips with built up edge	
	(4) None of these	

- 64. The capacity of induced draft fan compared to forced draft fan in a boiler is:
 - (1) Same
 - (2) More
 - (3) Less
 - (4) Less or more depending on size of boiler
- **65.** The equivalent evaporation is defined as:
 - (1) The ratio of heat actually used in producing the steam to the heat liberated in the furnace
 - (2) The amount of water evaporated or steam produced in kg per kg of fuel burnt
 - (3) The amount of water evaporated from and at 100°C into dry and saturated steam
 - (4) The evaporation of 15.653 kg of water per hour from and at 100°C
- **66.** Steam engine operates on :
 - (1) Carnot cycle

(2) Joule cycle

(3) Stirling cycle

(4) Brayton cycle

- **67.** In a throttling process:
 - (1) Steam temperature remains constant
 - (2) Steam pressure remains constant
 - (3) Steam enthalpy remains constant
 - (4) Steam entropy remains constant

(3) Conservation of mass

(2) Compressibility of fluids

(4) Steady/unsteady flow

- 73. The absolute pressure is equal to:
 - (1) Gauge pressure + atmospheric pressure
 - (2) Gauge pressure atmospheric pressure
 - (3) Atmospheric pressure gauge pressure
 - (4) Gauge pressure vacuum pressure
- 74. Cavitation is caused by:
 - (1) High velocity

(2) High pressure

(3) Weak material

- (4) Low pressure
- 75. A body floats in stable equilibrium:
 - (1) When its meta centric height is zero
 - (2) When the metacentre is above CG
 - (3) When its e.g. is below its center of buoyancy
 - (4) Metacentre has nothing to do with position of CG for determining stability
- 76. A large Reynold number is indication of:
 - (1) Smooth and streamline flow
 - (2) Laminar flow
 - (3) Steady flow
 - (4) Highly turbulent flow
- 77. Which of the following is dimensionless?
 - (1) Specific weight
 - (2) Specific volume
 - (3) Specific speed
 - (4) Specific gravity

6	11- assumed to follow:
78.	Service time in queuing theory is usually assumed to follow:
	(1) Normal distribution
	(2) Poisson's distribution
	(3) Erlang distribution
	(4) Exponential distribution
79.	Simplex method is the method used for:
	(1) Value analysis
	(2) Network analysis
	(3) Linear programming
	(4) Queuing theory
80	. Which of the following layouts is suited to flow production system?
	(1) Process layout
	(2) Product layout
	(3) Fixed position layout
	(4) Plant layout
8	1. Annealing of white cast iron results in production of:
	(1) Malleable iron
	(2) Nodular iron
	(3) Spheroidal iron
	(4) Grey iron

82.	Which	of the	following	statement is	wrong?	?
-----	-------	--------	-----------	--------------	--------	---

- (1) Steel with 0.8% carbon is wholly pearlite
- (2) The amount of cementite increases with the increase in percentage of carbon in iron
- (3) A mechanical mixture of 87% cementite and 13% ferrite is called pearlite
- (4) The cementite is identified as round particles in the structure

83. White cast iron has:

- (1) Carbon in the form of carbide
- (2) Low tensile strength
- (3) High compressive strength
- (4) All of these
- **84.** A cycle consisting of one constant pressure, one constant volume and two isentropic processes is known as:
 - (1) Carnot cycle

(2) Stirling cycle

(3) Otto cycle

(4) Diesel cycle

85. Nickel in steel:

- (1) Improves wear resistance, cutting ability and toughness
- (2) Refines grain size and produces less tendency to carburisation, improves corrosion and heat resistant properties
- (3) Improves cutting ability and reduces hardenability
- (4) Gives ductility, toughness, tensile strength and anti-corrosion properties

86. Cemented carbide tools are *not* found to be suitable for cutting:

(1) Brass

(2) Cast iron

(3) Aluminium

(4) Steel

87.	A coarse grained steel: (1) Is less tough and has a greater tendency to 6 (2) Is more ductile and has a less tendency to 6 (3) Is less tough and has a less tendency to dist (4) Is more ductile and has a greater tendency 6	ort during heat treatment								
88.	Normalizing of steel is done to:									
	(1) Refine the grain structure									
	(2) Remove strains caused by cold working									
	(3) Remove dislocations caused in the internal	structure due to hot working								
	(4) All of the above	•								
89.	If the permissible crushing stress for the material of a key is double the permissible shear stress, then the sunk key will be equally strong in shearing and crushing if the key is a:									
	(1) rectangular key with width equal to half the	e thickness								
	(2) rectangular key with width equal to twice t	he thickness								
	(3) square key									
	(4) rectangular key with width equal to one-fo	urth the thickness								
90.	. Which of the following element results in pres	ence of free graphite in C. I.?								
	and the second s	Sulphur								
	(3) Silicon (4) N	Manganese								
91.	. A growing number of firms now outsource so transport to intermediaries. These are called:									
	(1) Competitors (2)	Third-party logistics providers								
	(3) Channel members (4)	Cross-functional teams								
PHD/	/URS-EE-2022/(Mechanical Engineering)(SE	(-Y)/(C)								
	19.10	The state of the s								

92. The	Delphi	method	:
----------------	--------	--------	---

- (1) Uses a panel of experts who give their opinion on what is likely to happen
- (2) Consists of projections based on external indicators that relate to the demand for a company's products
- (3) Uses economic indicators, such as housing starts and gasoline consumption, to forecast demand
- (4) Uses historical data to forecast demand
- 93. Which of the following techniques are projections based on judgment, intuition and informed opinions?
 - (1) Extrinsic forecasting

(2) Quantitative forecasting

(3) Intrinsic forecasting

- (4) Qualitative forecasting
- **94.** Which of the following aggregate planning strategies is likely to have the least impact on quality?
 - (1) Subcontracting
 - (2) Changing inventory level
 - (3) Using part-time workers
 - (4) Varying production rates through overtime or idle time
- 95. Which statement is characteristic of a mixed strategy for aggregate planning?
 - (1) Mixed plans typically yield a worse strategy than a pure plan
 - (2) Mixed plans seek a minimum cost via a combination of planning options
 - (3) Mixed plans are less complex to develop than a level plan
 - (4) Mixed plans are less complex to develop than a chase plan
- 96. Which of these pieces of information is not contained in a bill of material?
 - (1) Lead times

- (2) Physical dimensions
- (3) Raw materials to be used
- (4) Quantities of components

9	7		J	ľ	Г	i	S	a	D	h	il	O	S	O	D.	h	V	of	•	:
_	•	•	•	-				••	~					v	·				•	•

- (1) Push production
- (2) Waste reduction
- (3) Re-engineering for breakthrough
- (4) Variability increase

98. What is an advantage of holding inventory?

- (1) Improved quality
- (2) Reduced obsolescence
- (3) Greater availability
- (4) Reduced material handling

99. Investment casting is used for:

- (1) Shapes which are made by difficulty using complex patterns in sand casting
- (2) Mass production
- (3) Shapes which are very complex and intricate and can't be cast by any other method
- (4) Stainless steel

100. The vacuum obtainable in a condenser is dependent upon:

- (1) Capacity of ejector
- (2) Quantity of steam to be handled
- (3) Any of the two is possible
- (4) Temperature of cooling water

Total No. of Printed Pages: 21

(DO NOT OPEN THIS QUESTION BOOKLET BEFORE TIME OR UNTIL YOU ARE ASKED TO DO SO)

D

Ph.D./URS-EE-Jan-2022

SET-Y

SUBJECT: Mechanical Engineering

10024

		Sr. No
Time: 11/4 Hours	Max. Marks : 100	Total Questions: 100
Roll No. (in figures)	(in words)	,
Name	Father's Name	
Mother's Name	Date of Examination	
(Signature of the Candidate)		(Signature of the Invigilator)

CANDIDATES MUST READ THE FOLLOWING INFORMATION/INSTRUCTIONS BEFORE STARTING THE QUESTION PAPER.

- 1. All questions are compulsory.
- 2. The candidates *must return* the question booklet as well as OMR Answer-Sheet to the Invigilator concerned before leaving the Examination Hall, failing which a case of use of unfairmeans / mis-behaviour will be registered against him / her, in addition to lodging of an FIR with the police. Further the answer-sheet of such a candidate will not be evaluated.
- Keeping in view the transparency of the examination system, carbonless OMR Sheet is provided to the candidate so that a copy of OMR Sheet may be kept by the candidate.
- 4. Question Booklet along with answer key of all the A, B, C & D code will be got uploaded on the University website after the conduct of Entrance Examination. In case there is any discrepancy in the Question Booklet/Answer Key, the same may be brought to the notice of the Controller of Examination in writing/through E.Mail within 24 hours of uploading the same on the University Website. Thereafter, no complaint in any case, will be considered.
- 5. The candidate *must not* do any rough work or writing in the OMR Answer-Sheet. Rough work, if any, may be done in the question booklet itself. Answers *must not* be ticked in the question booklet.
- 6. There will be no negative marking. Each correct answer will be awarded one full mark. Cutting, erasing, overwriting and more than one answer in OMR Answer-Sheet will be treated as incorrect answer.
- 7. Use only Black or Blue Ball Point Pen of good quality in the OMR Answer-Sheet.
- 8. Before answering the questions, the candidates should ensure that they have been supplied correct and complete booklet. Complaints, if any, regarding misprinting etc. will not be entertained 30 minutes after starting of the examination.

1.	The production	scheduling is	simpler	and	high	volume	of	output	and	high	labour
	efficiency are ac	chieved in the c	ase of:		U			o and and		g	moour

- (1) Product layout
- (2) Process layout
- (3) Fixed position layout
- (4) A combination of line and process layout

2. A-B-C analysis is used in :

- (1) CPM
- (2) PERT
- (3) Inventory control
- (4) All of these

3. A critical activity has:

(1) Maximum slack

(2) Minimum slack

(3) Zero slack

(4) Average slack

(1) (to + tp + tn)/3

(2) (to + 2tp + tn)/4

(3) (to + 4tp + tn)/5

(4) (to + tp + 4tn)/6

(1) 25

(2) 50

(3) 75

(4) 100

PHD/URS-EE-2022/(Mechanical Engineering)(SET-Y)/(D)

P. T. O.

6.	Scheduling	•
	- CITCUITATIO	٠

- (1) Prescribes the sequence of operations to be followed
- (2) Determines the programme for the operations
- (3) Is concerned with starting of processes
- (4) Regulates the progress of job through various processes
- 7. In the continuous review inventory control, the material is ordered when it reaches:
 - (1) Reorder point
 - (2) Optimum order quantity
 - (3) Average inventory
 - (4) Zero
- 8. Which modes of transportation suit high quantity shipments?
 - (1) Air transportation
 - (2) Water transportation
 - (3) Rail transportation
 - (4) Intermodal transportation
- **9.** With regard to safety inventory required for a required service level, which of following is correct under Aggregation in Supply chain:
 - (1) It decreases
 - (2) It increases
 - (3) It remains fixed
 - (4) It is doubled

10.	Lean pr	oduction	in	volves	:
	/1× T		15	•	

- (1) Improvement of resource utilization
- (2) Reduction of waiting time
- (3) Elimination of all types of waste
- (4) Elimination of rework

11. Resilience of a material is important, when it is subjected to:

- (1) Combined loading
- (2) Fatigue
- (3) Thermal stresses
- (4) Shock loading

12. The power transmitted by the belt drive can be increased by:

- (1) Increasing the initial tension in the belt
- (2) Dressing the belt to increase the coefficient of friction
- (3) Increasing wrap angle by using idler pulley
- (4) All of the above methods

13. Which one of the following is a positive drive?

(1) V-belt drive

- (2) Rope drive
- (3) Crossed flat belt drive
- (4) Chain drive

14. Shear stress theory is applicable for:

- (1) Ductile materials
- (2) Brittle materials
- (3) Elastic materials
- (4) All of the above

PHD/URS-EE-2022/(Mechanical Engineering)(SET-Y)/(D)

P. T. O.

45	If two identical springs are in parallel then their overall stiffness will be:			
15.				
	(1) Half	(2) Same		
	(3) Double	(4) None of the above		
16.	16. In a gear, having Involute teeth, the normal to the Involute is a tangent to			
	(1) Base circle	(2) Pitch circle		
	(3) Addendum circle	(4) Dedendum circle		
17.	The cam and follower is an example of:			
	(1) Sliding pair	(2) Rolling pair		
	(3) Lower pair	(4) Higher pair		
18.	According to Kennedy'S theorem, instantaneous centers lie on:	if three bodies have plane motions, their		
	(1) A triangle	(2) A point		
	(3) Two lines	(4) A straight line		
19.	The Coriolis component of acceleration	acts:		
	(1) Along the sliding surface			
	 (2) Perpendicular to the sliding surface (3) At 45° to the sliding surface (4) Parallel to the sliding surface 			
	· ·	. a y series f		
20.	Euler's dimensionless number relates the	following:		
	(1) Inertial force and gravity			
	(2) Viscous force and inertial force			
	(3) Viscous force and buoyancy force			
	(4) Pressure force and inertial force			
PHD/U	RS-EE-2022/(Mechanical Engineering)(SET-Y)/(D)		

- 21. Allowance in limits and fits refers to:
 - (1) Maximum clearance between shaft and hole
 - (2) Minimum clearance between shaft and hole
 - (3) Difference between maximum and minimum sizes of hole
 - (4) Difference between maximum and minimum sizes of shaft
- 22. An expendable pattern is used in:
 - (1) Slush casting
 - (2) Squeeze casting
 - (3) Centrifugal casting
 - (4) Investment casting
- 23. Misrun is a casting defect which occurs due to?
 - (1) Very high pouring temperature of the metal
 - (2) Insufficient fluidity of the molten metal
 - (3) Absorption of gases by the liquid metal
 - (4) Improper alignment of the mould flasks
- 24. Shrinkage allowance on pattern is provided to compensate for shrinkage when:
 - (1) The temperature of liquid metal drops from pouring to freezing temperature
 - (2) The metal changes from liquid to solid state at freezing temperature
 - (3) The temperature of solid phase drops from freezing to room temperature
 - (4) The temperature of metal drops from pouring to room temperature
- 25. Which of the following statement is wrong about ultrasonic machining?
 - (1) It is best suited for machining hard and brittle materials
 - (2) It cuts materials at very slow speeds
 - (3) It removes large amount of material
 - (4) It produces good surface finish

P. T. O.

- 26. In electro-discharge machining, dielectric is used to:
 - (1) Help in the movement of the sparks
 - (2) Control the spark discharges
 - (3) Act as coolant
 - (4) All of these
- 27. A fine grained grinding wheel is used to grind:
 - (1) Hard and brittle materials
 - (2) Soft and ductile materials
 - (3) Hard and ductile materials
 - (4) Soft and brittle materials
- 28. In order to grind soft material:
 - (1) Coarse grained grinding wheel is used
 - (2) Fine grained grinding wheel is used
 - (3) Medium grained grinding wheel is used
 - (4) Anyone of these
- 29. Carbide tipped tools usually have:
 - (1) Negative rake angle
 - (2) Positive rake angle
 - (3) Any rake angle
 - (4) No rake angle
- 30. The operation of machining several surfaces of a workpiece simultaneously is called:
 - (1) Profile milling
 - (2) Gang milling
 - (3) Saw milling
 - (4) Helical milling

31.	Which is false statement about annealing? Annealing is done to:		
	(1) Relieve stresses		
	(2) Harden steel slightly		
	(3) Improve machining characteristic		
	(4) Soften material		
32.	The main allowing elements high speed	steel in order of increasing proportion are:	
02.	The main alloying elements high speed steel in order of increasing proportion are:		
	(1) Vanadium, chromium, tungsten		
	(2) Tungsten, titanium, vanadium		
	(3) Chromium, titanium, vanadium		
	(4) Tungsten, chromium, titanium		
33.	Which is false statement about normalizing? Normalizing is done to:		
	(1) Refine grain structure		
	(2) Reduce segregation in casting		
	(3) Improve mechanical properties		
	(4) Induce stresses		
34.	Vanadium in high speed steels:		
	(1) Promotes decarburisation		
	(2) Provides high hot hardness		
	(3) Forms very hard carbides and thus is	ncreases wear resistance	
	(4) Promotes retention of austenite		
		and the state of t	
35.	White cast iron contains carbon in the fo	cast iron contains carbon in the form of:	
	(1) Free carbon	(2) Graphite	
	(3) Cementite	(4) White carbon	

36.	Which of the following constituents	of steels is softest and least strong?	
	(1) Austenite	(2) Pearlite	
	(3) Ferrite	(4) Cementite	
37.	In nodular iron, graphite is in the for	rm of:	
	(1) Cementite	(2) Free carbon	
	(3) Flakes	(4) Spheroids	
38.	. Austenite is a combination of:		
	(1) Ferrite and cementite		
	(2) Cementite and gamma iron		
	(3) Ferrite and austenite	•	
	(4) Ferrite and iron graphite		
39.	When a shaft is subjected to a twist under:	ing moment, every cross-section of the shaft will be	
	(1) Tensile stress	(2) Compressive stress	
	(3) Shear stress	(4) Bending stress	
40.	The stress induced in a body due applied gradually is:	to suddenly applied load compared to when it is	
	(1) Same	(2) Half	
	(3) Two times	(4) Four times	
41.	Zeroth law of thermodynamics:		
	(1) Deals with conversion of mass	and energy	
	(2) Deals with reversibility and irreversibility of process		
	(3) Deals with thermal equilibrium		
	(4) Deals with heat engines		

42.	In vapour compression refrigeration cy liquid:	cle, the condition of refrigerant is saturated
	(1) Before entering the expansion valve	
	(2) Before entering the compressor	
	(3) After passing through the condenser	
	(4) Before passing through the condense	r •
43.	Absorption system normally uses follow	ing refrigerant:
	(1) CO ₂	(2) SO ₂
	(3) Freon-II	(4) Ammonia
44.	Shock effect in a nozzle is felt in:	56
	(1) Divergent portion	(2) Straight portion
	(3) Convergent portion	(4) Throat
45.	Which type of electrode is used in subm	erged arc welding?
	(1) Bare rods	(2) Coated electrodes
	(3) Core wires	(4) Copper electrodes
46.	The main advantage of shell moulding is	s that:
	(1) Metallic pattern is used	
	(2) The moulds are stronger	
	(3) Thin section can be easily obtained	
	(4) Highly complex sections can be eas	ily obtained
PHD/	URS-EE-2022/(Mechanical Engineering	g)(SET-Y)/(D) P. T. O

47.	Blind risers:		
	(1) Assist in feeding the metal	into casting proper	
	(2) Help to trap slag or other li	ghter particles	
	(3) Supply the liquid metal wh	en pouring is completed	
	(4) None of the above		
48.	Cylinder-Piston assembly cons	titute which type of kinematic pair:	
	(1) Lower pair	(2) Higher pair	
	(3) Open pair	(4) Close pair	
49.	Thermal efficiency of a closed	cycle gas turbine plant increases by:	
	(1) Reheating	(2) Intercooling	
	(3) Regenerator	(4) All of the above	
50.	For a machine to be self-locking	g, its efficiency should be:	
	(1) 100%	(2) Less than 67%	
	(3) Less than 50%	(4) More than 50%	
51.	In a forced vortex, the velocity	of flow everywhere within the fluid is:	
	(1) Maximum	(2) Minimum	
	(3) Zero	(4) Nonzero finite	
52 .	The continuity equation is conn	ected with:	
	(1) Open channel/pipe flow		
	(2) Compressibility of fluids		
	(3) Conservation of mass		
	(4) Steady/unsteady flow		
		the state of the Valendaria and Australia	

- 53. The absolute pressure is equal to:
 - (1) Gauge pressure + atmospheric pressure
 - (2) Gauge pressure atmospheric pressure
 - (3) Atmospheric pressure gauge pressure
 - (4) Gauge pressure vacuum pressure
- **54.** Cavitation is caused by:
 - (1) High velocity

(2) High pressure

(3) Weak material

- (4) Low pressure
- **55.** A body floats in stable equilibrium :
 - (1) When its meta centric height is zero
 - (2) When the metacentre is above CG
 - (3) When its e.g. is below its center of buoyancy
 - (4) Metacentre has nothing to do with position of CG for determining stability
- **56.** A large Reynold number is indication of :
 - (1) Smooth and streamline flow
 - (2) Laminar flow
 - (3) Steady flow
 - (4) Highly turbulent flow
- 57. Which of the following is dimensionless?
 - (1) Specific weight
 - (2) Specific volume
 - (3) Specific speed
 - (4) Specific gravity

PHD/URS-EE-2022/(Mechanical Engineering)(SET-Y)/(D)

P. T. O.

58	8. Service time in queuing theory is usually assumed to follow:
	(1) Normal distribution
	(2) Poisson's distribution
	(3) Erlang distribution
	(4) Exponential distribution
59	3. Simplex method is the method used for:
	(1) Value analysis
	(2) Network analysis
	(3) Linear programming
	(4) Queuing theory
60	. Which of the following layouts is suited to flow production system?
	(1) Process layout
	(2) Product layout
	(3) Fixed position layout
	(4) Plant layout
61.	A growing number of firms now outsource some or all of their inventory storage and transport to intermediaries. These are called;
	(1) Competitors
	(2) Third-party logistics providers
	(2) Channel members

(4) Cross-functional teams

- **62.** The Delphi method:
 - (1) Uses a panel of experts who give their opinion on what is likely to happen
 - (2) Consists of projections based on external indicators that relate to the demand for a company's products
 - (3) Uses economic indicators, such as housing starts and gasoline consumption, to forecast demand
 - (4) Uses historical data to forecast demand
- **63.** Which of the following techniques are projections based on judgment, intuition and informed opinions?
 - (1) Extrinsic forecasting
 - (2) Quantitative forecasting
 - (3) Intrinsic forecasting
 - (4) Qualitative forecasting
- **64.** Which of the following aggregate planning strategies is likely to have the least impact on quality?
 - (1) Subcontracting
 - (2) Changing inventory level
 - (3) Using part-time workers
 - (4) Varying production rates through overtime or idle time
- 65. Which statement is characteristic of a mixed strategy for aggregate planning?
 - (1) Mixed plans typically yield a worse strategy than a pure plan
 - (2) Mixed plans seek a minimum cost via a combination of planning options
 - (3) Mixed plans are less complex to develop than a level plan
 - (4) Mixed plans are less complex to develop than a chase plan

PHD/URS-EE-2022/(Mechanical Engineering)(SET-Y)/(D)

P. T. O.

(3) Raw materials to be used(4) Quantities of components

67. JIT is a philosophy of:

(1) Push production

(2) Waste reduction

(3) Re-engineering for breakthrough

(4) Variability increase

68. What is an advantage of holding inventory?

(1) Improved quality

(2) Reduced obsolescence

(3) Greater availability

(4) Reduced material handling

69. Investment casting is used for:

(1) Shapes which are made by difficulty using complex patterns in sand casting

(2) Mass production

(3) Shapes which are very complex and intricate and can't be cast by any other method

(4) Stainless steel

70.	The vacuum obtainable in a condenser is dependent upon:
	(1) Capacity of ejector
	(2) Quantity of steam to be handled
	(3) Any of the two is possible
	(4) Temperature of cooling water
71.	Annealing of white cast iron results in production of:
	(1) Malleable iron (2) Nodular iron
	(3) Spheroidal iron (4) Grey iron
72.	Which of the following statement is wrong?
	(1) Steel with 0.8% carbon is wholly pearlite
	(2) The amount of cementite increases with the increase in percentage of carbon in iron
	(3) A mechanical mixture of 87% cementite and 13% ferrite is called pearlite
	(4) The cementite is identified as round particles in the structure
70	
73.	White cast iron has:
	(1) Carbon in the form of carbide
	(2) Low tensile strength
	(3) High compressive strength
	(4) All of these
74.	A cycle consisting of one constant pressure, one constant volume and two isentropic processes is known as:
	(1) Carnot cycle (2) Stirling cycle
	(3) Otto cycle (4) Diesel cycle
PHD/I	URS-FF-2022/(Machanical Engineering)(SET-Y)/(D)

75. Nickel in steel:

- (1) Improves wear resistance, cutting ability and toughness
- (2) Refines grain size and produces less tendency to carburisation, improves corrosion and heat resistant properties
- (3) Improves cutting ability and reduces hardenability
- (4) Gives ductility, toughness, tensile strength and anti-corrosion properties
- **76.** Cemented carbide tools are *not* found to be suitable for cutting :
 - (1) Brass

(2) Cast iron

(3) Aluminium

(4) Steel

77. A coarse grained steel:

- (1) Is less tough and has a greater tendency to distort during heat treatment
- (2) Is more ductile and has a less tendency to distort during heat treatment
- (3) Is less tough and has a less tendency to distort during heat treatment
- (4) Is more ductile and has a greater tendency to distort during heat treatment

78. Normalizing of steel is done to:

- (1) Refine the grain structure
- (2) Remove strains caused by cold working
- (3) Remove dislocations caused in the internal structure due to hot working
- (4) All of the above
- 79. If the permissible crushing stress for the material of a key is double the permissible shear stress, then the sunk key will be equally strong in shearing and crushing if the key is a:
 - (1) rectangular key with width equal to half the thickness
 - (2) rectangular key with width equal to twice the thickness
 - (3) square key
 - (4) rectangular key with width equal to one-fourth the thickness

80.	Which of the following element results i	n presence of free graphite in C. I. ?
	(1) Carbon	(2) Sulphur
	(3) Silicon	(4) Manganese
81.	Percentage reduction of area in perform of:	ing tensile test on cast iron may be of the order
	(1) 50%	(2) 25%
	(3) 0%	(4) 15%
82.	The property of material to absorb large	amount of energy before fracture is known as:
	(1) Ductility	(2) Toughness
	(3) Resilience	(4) Shock proof
83.	Longitudinal stress in a thin cylinder is	
	(1) Equal to the hoop stress	
	(2) Twice the hoop stress	
	(3) Half of the hoop stress	
	(4) One fourth of hoop stress	
84.	If the section modulus of a beam is incre	eased, the bending stress in the beam will:
	(1) Not change	(2) Increase
	(3) Decrease	(4) None of these
85.	When a closely-coiled helical spring is s	subjected to an axial load, it is said to be under:
	(1) Bending	(2) Shear
НОл	(3) Torsion	(4) Crushing g)(SET-Y)/(D) P. T. O.

86.	_	sed for welding sheet metals of all engineering e and air craft industries, pipe and tubing			
	(1) Thermit welding				
	(2) Electroslag welding				
	(3) Resistance welding				
	(4) Electron beam welding				
87.	The object of caulking in a riveted joint	is to make the joint:			
	(1) Free from corrosion	(2) Stronger in tension			
	(3) Free from stresses	(4) Leak-proof			
88.	The main purpose of spheroidising treatment is to improve:				
	(1) Hardenability of low carbon steels				
	(2) Machinability of low carbon steels				
	(3) Hardenability of high carbon steels				
	(4) Machinability of high carbon steels				
89.	The mechanism of material removal in	EDM process is:			
	(1) Melting and Evaporation				
	(2) Melting and Corrosion				
	(3) Erosion and Cavitations				
	(4) Cavitations and Evaporation				
90.	In ECM, the material removal is due to				
	(1) Corrosion	(2) Erosion			
	(3) Fusion	(4) Ion displacement			
PHD/	URS-EE-2022/(Mechanical Engineerin	g)(SET-Y)/(D)			

•	91. The material which on machining prod	uces chips with built up edge is:
	(1) Brittle material	(2) Ductile material
	(3) Hard material	(4) Tough material
9	92. Crater wear is predominant in :	
	(1) Carbon tool steels	
	(2) Tungsten carbide tools	
	(3) High speed steel tools	e e e e e e e e e e e e e e e e e e e
	(4) Ceramic tools	
9:	93. The high cutting speed and large rake which of the following?	angle of the tool will result in the formation of
	(1) Continuous chips	
	(2) Discontinuous chip	
	(3) Continuous chips with built up edge	e
	(4) None of these	
94.	4. The capacity of induced draft fan compa	ared to forced draft fan in a boiler is:
	(1) Same	
	(2) More	
	(3) Less	
	(4) Less or more depending on size of t	poiler
95.	5. The equivalent evaporation is defined as	s:
	(1) The ratio of heat actually used in p furnace	producing the steam to the heat liberated in the
	(2) The amount of water evaporated or	steam produced in kg per kg of fuel burnt
	10 .	om and at 100°C into dry and saturated steam

(4) The evaporation of 15.653 kg of water per hour from and at 100°C

PHD/URS-EE-2022/(Mechanical Engineering)(SET-Y)/(D)

P. T. O.

96.	Steam engine operates on:			
	(1) Carnot cycle	(2) Joule cycle		
	(3) Stirling cycle	(4) Brayton cycle		
97.	In a throttling process:			
	(1) Steam temperature remains constant	:		
	(2) Steam pressure remains constant			
	(3) Steam enthalpy remains constant			
	(4) Steam entropy remains constant			
98.	Which of the following is <i>not</i> a boiler n	nounting?		
	(1) Blow off cock	(2) Feed check valve		
	(3) Economiser	(4) Fusible plug		
99.	The increase in pressure:			
	(1) Lowers the boiling point of a liquid	· .		
	(2) Raises the boiling point of a liquid			
	(3) Does not affects the boiling point of a liquid			
	(4) Reduces its volume			
100.	Adiabatic process is:			
100.	(1) Essentially an isentropic process	P		
	(2) Non-heat transfer process			
	(3) Reversible process			
	(4) Constant temperature process			

Answerkey of Entrance Test of PHD/URS Machnical Enineering 2021-22					
Q. No. A B C D					
1	1	2	2	1	
2	3	2	1	3	
	4	1	4	3	
3	4	2	3	4	
4	4	3	3	2	
5		2	3	2	
6	4			1	
7	1	3	4		
8	4	3	2	2	
9	3	2	3	1	
10	3	2	3	3	
11	2	3	3	4	
12	1	2	3	4	
13	4	3	4	4	
14	3	3	1	1	
15	3	3	1	3	
16	3	3	3	1	
17	4	4	3	4	
18	2	4	1	4	
19	3	1	4	2	
20	3	4	3	4	
21	3	1 .	1	4	
22	2	3	3	2	
23	3	4 -	4	3	
24	3	4.	2	3	
25	3	4.	2	4	
26	4	1;	1	1	
27	4	4:	2	1	
28	1	3:	1	1	
30	4	3 •	3	2	
31	1	3	4	2	
32	4	3 ,	4	1	
33	2	4	4	4	
34	3	1	1	3	
35	3	1	3	3	
36	4	3	1	3	
37	1	3	4	4	
38	1	1	4	2	
39	1	4	2	3	
40	2	3	1	3	
41	2 2	3	4	3	
42	1	1	2	4	
44	2	4	3	1	
45	3	2	3	1	
46	2	4	4	3	
47	3	4	1	3	
48	3	4	1	1	
49	2	3	1	4	

50	2	2	2	3
51	4	1	3	4
52	4	4	2	3
53	4	2	3	1
54	1	3	3	4
55	3	3	3	2
56	1	4	3	4
57	4	1	4	4
58	4	1	4	4
59	2	1	1	3
60	4	2	4	2
61	4	1	2	2
62	3	3	2	1
63	1	3	1	4
64	4	4	2	2
65	2	2	3	2
66	4	2	2	1
67	4	1	3	2
68	4	2	3	3
69	3	1	2	3
70	2	3	2	4
71	1	2	4	1
72	3	1	3	3
73	3	4	1	4
74	4	2	4	4
75	2	2	2	4
76	2	1	4	4
77	1	2	4	1
78	2	3	4	4
79	1	3	3	3
80	3	4	2	3
81	2	2 · .	1	3
82	1	1 .	3	2
83	4	. 4	4	3
84	2 2	3.	4	3
85		3.	4	3
86	1	3 •	4	3
87	2	4	1	4
88	3	2 •	4	4
89	3	3.	3	1
90	4	3 •	3	4
91	3	4	2	2
92	3	4	1	2
93	4	4	4	1
94	1	1	2	2
95	1	3	2	3
96	3	1	1	2
97	3	4	2	3
98	1	4	3	3
99	4	2	3	2
100	3	4	4	2

market for the forther