1.	Let U , V be normal vectors in an inner product space V s. t. $ U+V =1$. Then $ U-V $ is:	
	(1) $\sqrt{3}$	(2) 1
	(3) 0	(4) $\sqrt{2}$
2.	Let $u, v \in V$. Then $ U + v \le U + v $. This result is known as:
	(1) Bessel's inequality	(2) Cauchy-Schwarz inequality
	(3) Triangle inequality	(4) None of these
3.	Which is an orthogonal set ?	
	$(1) \ \{(1,0,1),(1,0,-1)(0,1,0)\}$	
	(2) {(1, 0, 1), (1, 0, -1) (-1, 0, 1)}	
	(3) {(1, 0, 1), (1, 0, -1) (0, 3, 4)}	
	(4) None of these	
4.	Let w be a subspace of $R^4(R)$ generally $u_2 = (2, 4, 5, -1)$. Then dim w^{\perp} is:	rated by the vectors $u_1 = (1, 2, 3, -2)$ and
	(1) 1	(2) 2
	(3) 3	(4) 4
5.	Which of the following is <i>not</i> a subspace	e of R^3 ?
	(1) $\{(x, 0, 0) : x \text{ is real}\}$	
	(2) $\{(a, a + b, -a + 2b) : a, b \text{ real}\}$	
	(3) $\{(a, a - b, b) : a, b \text{ real}\}$	
	(4) $\{(a, b, c) : a, b, c \text{ integers}\}$	
60579/	(\mathbf{A})	P. T. O.

6.	Let V be a vector space over the field F of dimension n . Consider the following statements:		
	(I) Every subset of V containing n elem	ents is a basis of V .	
	(II) No linearly independent subset of <i>V</i> contains more than <i>n</i> elements.Which of the above statement is/are <i>correct</i>?(1) (I) only		
	(2) (II) only		
	(3) Both (I) and (II)		
	(4) Neither (I) nor (II)		
7.	. The set W of ordered triplets $(a_1, a_2, 0)$ of \mathbb{R}^3 has dimension:		
	(1) 1	(2) 2	
	(3) 3	(4) 4	
8.	Largest Linearly independent subset of R^3 contains elements.		
	(1) 1	(2) 2	
	(3) 3	(4) 4	
9.	The finite dimensional vector space $V(I)$ such that dim $W_1 = 2$, dim $W_2 = 3$. Then	F) is the direct sum of its subspace W_1 and W_2 dim V is:	
	(1) 2	(2) 3	
	(3) 5	(4) 6	
10.	Let V be the vector space of all polynomial	ials of degree $\leq n$ over R . Then dim V is:	
	(1) <i>n</i>	(2) $n-1$	
	(3) $n + 1$	(4) n^2	
60579/	$I(\mathbf{A})$		

11.	A one-one linear transformation is called:	
	(1) homomorphism	(2) monomorphism
	(3) epimorphism	(4) isomorphism
12.	Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be linear transformation. Then nullity (T) is:	on defined by $T(x_1, x_2) = (x_1 - x_2, x_2 - x_1, -x_1)$.
	(1) 0	(2) 1
	(3) 2	(4) None of these
13.	Let $X = (1, 2, 1)$ be relative to standard basis $Y_1 = (1, 1, 0)$, $Y_2 = (1, 0, 1)$, $Y_3 = (1, 0, 1)$	d basis. Then its coordinates relative to a new (1, 1, 1) are :
	(1) (1, 2, 1)	(2) (2, 1, 1)
	(3) (0, -1, 2)	(4) (1, 1, 3)
14.	Let V be the vector space of all 3×3 ske	ew symmetric matrices over R . Then dim V is:
	(1) 6	(2) 3
	(3) 4	(4) 9
15.	Let $T: U \to V$ be a linear transform $\rho(T) + \mu(T)$ is:	mation where U is finite dimensional. Then
	(1) $\dim U$	(2) $\dim R(T)$
	(3) dim $V(T)$	(4) $\dim N(T)$

60579/(A)

16.	If $S = \{(1, 1, 0), (2, 1, 3)\} \subseteq \mathbb{R}^3$, then which one of the following vectors of \mathbb{R}^3 is not
	in the span of S?

(1) (0, 0, 0)

(2) (3, 2, 3)

(3) (1, 2, 3)

 $(4) \left(\frac{4}{3},1,1\right)$

17. If W_1 and W_2 are linear subspace of a vector space V such that $W_1 \cap W_2 = \{0\}$, then dim $(W_1 + W_2)$ is equal to :

- (1) dim W_1
- (2) dim W_2
- (3) dim W_1 + dim W_2
- (4) dim W_1 dim W_2

18. Which of the following is *not* a subspace of R^3 ?

- (1) $\{(a, b, c) : a + b = c; a, b, c \text{ being real}\}$
- $(2) \{(0,0,0)\}$
- (3) $\{(a, a, z + 2b) : a, b \text{ real}\}$
- (4) $\{(a, a b, 1) : a, b \in \text{real number}\}$

19. Let U be n-dimensional vector space over F and v be m-dimensional vector space over F. Then L(U, V) is a vector space of dimension :

(1) m

(2) m^2n^2

(3) 1

(4) None of these

60579/(A)

20.	Dimension of subspace $W = \{(a, b, c) : a = -b = c\}$ of a vector space $R^3(R)$ equals :		
	(1) 0	(2) 1	
	(3) 2	(4) 3	
21.	Let e_1 , e_2 , e_3 denote the standard basis orthonormal basis of R^3 iff:	s of R^3 . Then $ae_1 + be_2 + ce_3$, e_2 , e_3 is an	
	(1) $a \neq 0$, $a^2 + b^2 + c^2 = 1$	(2) $a = 1, b = c = 0$	
	(3) $a = b = c = 1$	(4) a=b=c	
22.	Let $V(F)$ be the vector space of all pe	olynomials is x in which an inner product is	
	defined by $(f,g) = \int_{0}^{1} f(x)g(x)dx$. Then for $f(x) = x + 2$, $g(x) = x^{2} - 2x - 3$, $\langle f, g \rangle$ is:		
	(1) $\frac{5}{2}$	(2) $\frac{-37}{4}$	
	(3) $\frac{5}{8}$	$(4) \frac{37}{4}$	
23.	The dimension of $C(R)$ is:		
	(1) 1	(2) 2	
	(3) 3	(4) 4	
24.	Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be a linear transformation. Then Rank T is:	fon given by $T(x_1 - x_2) = (x_1 + x_2, x_1 - x_2, x_2)$.	
	(1) 0	(2) 1	
	(3) 2	(4) 3	
60579/(A)			

25. Consider the mapping:

(I)
$$T: \mathbb{R}^3 \to \mathbb{R}^2$$
, $T(x, y, z) = (x + 1, y + z)$

(II)
$$T: \mathbb{R}^3 \to \mathbb{R}$$
, $T(x, y) = xy$

(III)
$$T: \mathbb{R}^3 \to \mathbb{R}^2$$
, $T(x, y, z) = (|x|, 0)$

Which of the above are linear transformation?

- (1) (I), (II) and (III)
- (2) (I) and (III) only
- (3) (II) and (III) only
- (4) None of these

26. Let U = (1, 1, 1), V = (1, 2, -3) and W = (1, -4, 3) in \mathbb{R}^3 . Then which of the following is *not* true?

- (1) U is orthogonal to V
- (2) U is orthogonal to W
- (3) V is orthogonal to W
- (4) V is not orthogonal to W

27. Let *M* and *N* be subspaces of a finite dimensional inner product space *V*. Then show that $(M + N)^{\perp} =$

(1) $M^{\perp} \cup N^{\perp}$

(2) $M^{\perp} \cap N^{\perp}$

(3) M^{\perp}

(4) None of these

28.	Find the dimension of the vector space	$Q(\sqrt{2})$ over Q :
	(1) 1	(2) 2
	(3) 0	(4) 3

29. The set of vectors (1, 2, 0), (0, 3, 1) and (-1, 0, 1) of $V_3(X)$ is linearly independent if:

- (1) X is set of rational number
- (2) X is set of irrational number
- (3) Neither (1) and nor (2)
- (4) None of these

30. For what value of K will the vector u = (1, K, 5) in $V_3(R)$ be a linear combination of vectors v = (1, -3, 2) and w = (2, -1, 1)?

$$(1) -8$$
 $(2) 8$

31. Write the linear transformation corresponding to the matrix $T: \mathbb{R}^3 \to \mathbb{R}^3 \begin{bmatrix} 1 & 2 & -3 \\ 0 & 1 & 1 \\ 1 & 0 & -1 \end{bmatrix}$:

(1)
$$T(x_1, x_2, x_3) = (x_1 + 2x_2 - 3x_3, x_2 + x_3, x_1 - x_3)$$

(2)
$$T(x_1, x_2, x_3) = (x_1 + 2x_2 - 3x_3, x_2 - x_3, x_1 + x_3)$$

(3)
$$T(x_1, x_2, x_3) = (x_1 - 2x_2 + 3x_3, x_2 - x_3, x_1 - x_3)$$

(4)
$$T(x_1, x_2, x_3) = (x_1 - 2x_2 - 3x_3, x_2 - x_3, x_1 + x_3)$$

- **32.** Which of the following is *not* an orthonormal set ?
 - $(1) \{(1,0,0),(0,1,0),(0,0,1)\}$
 - (2) $\left\{ \left(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}} \right), \left(\frac{1}{\sqrt{2}}, 0, \frac{-1}{\sqrt{2}} \right), (0, 1, 0) \right\}$
 - $(3) \{(3,0,4),(-4,0,3),(0,4,0)\}$
 - (4) $\left\{ \left(\frac{3}{5}, 0, \frac{4}{5}\right), \left(\frac{-4}{5}, 0, \frac{3}{5}\right), (0, 1, 0) \right\}$
- **33.** Let $T_1: R^3 \to R^2$ such that $T_1(x, y, z) = (3x, 4y z), T_2: R^2 \to R^2$ such that $T_2(x, y) = (-x, y)$. Compute T_1T_2 :
 - (1) T_1T_2 is defined
 - (2) T_1T_2 is not defined
 - (3) $T_1T_2 = (-2x, 3y, z)$
 - (4) None of these
- **34.** Let $T_1: U \to V$ and $T_2: V \to W$ be two linear transformation then :
 - $(1) \quad \rho(T_2T_1) \le \rho(T_2)$
 - (2) $\rho(T_2T_1) = \rho(T_2)$
 - (3) $\rho(T_2T_1) > \rho(T_2)$
 - $(4) \quad \rho(T_2T_1) \ge \rho(T_2)$

- **35.** Let the linear transformation $T_1: R^3 \to R^2$ such that $T_1(x, y, z) = (4x, 3y, -2z)$ and $T_2: R^2 \to R^2$ such that $T_2(x, y) = (-2x, y)$. Compute $T_2T_1:$
 - (1) T_2T_1 is not defined
 - (2) (-8x, 3y 2z)
 - (3) (8x, 2y 3z)
 - (4) (6x, 2y 2z)
- **36.** Find the coordinates of vector (1, 1, 1) relative to the basis (1, 1, 2), (2, 2, 1), (1, 2, 2):
 - $(1) \left(\frac{1}{3}, 0, 0\right)$
 - (2) $\left(\frac{1}{3}, 0, \frac{1}{3}\right)$
 - (3) $\left(\frac{1}{3}, \frac{1}{3}, 0\right)$
 - $(4) \left(0,0,\frac{1}{3}\right)$
- **37.** The linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by T(1, 0) = (2, 3), T(0, 1) = (5, 6) is :
 - (1) one-one and onto
 - (2) one-one but not onto
 - (3) onto but not one-one
 - (4) neither one-one nor onto

60579/(A)

- **38.** The norm of vector U = (2, -3, 6) is :
 - (1) 8

(2) 6

(3) 7

- (4) 5
- **39.** Let $T: U \to V$ be a linear transformation where U is a finite dimension. Then :
 - (1) rank(T) + nullity(T) = dim U
 - (2) rank(T) + nullity(T) = dim V
 - (3) rank(T) = dim U
 - (4) rank(T) = nullity(T)
- **40.** Normalize the vector U = (1, -2, 5) is :
 - (1) $\left\{ \frac{1}{\sqrt{30}}, \frac{-2}{\sqrt{30}}, \frac{5}{\sqrt{30}} \right\}$
 - $(2) \ \left\{ \frac{1}{\sqrt{32}}, \frac{-2}{\sqrt{32}}, \frac{5}{\sqrt{32}} \right\}$
 - (3) $\left\{ \frac{1}{\sqrt{25}}, \frac{-2}{\sqrt{25}}, \frac{5}{\sqrt{25}} \right\}$
 - (4) $\left\{ \frac{1}{\sqrt{28}}, \frac{-2}{\sqrt{28}}, \frac{5}{\sqrt{28}} \right\}$

			1	1	2	
41.	Consider the linear transformation in R	3 given by $y = AX$ where $A =$	1	2	5	. Then
	image of $X = (2, 0, 5)$ is:		ľ,	3	3]	
	(1) (12, 27, 17)	(2) (17, 12, 27)				
	(3) (27, 12, 17)	(4) (12, 17, 27)				
42.	Using Cauchy Schwarz inequality, the a	bsolute value of cosine of an a	ngl	e is	:	
	(1) atmost 1	(2) at least 1				
	(3) exactly 1	(4) None of these				
43.	Let <i>V</i> be a finite dimensional inner production	uct space and W be a subspace	of	<i>V</i> . T	Cher	ı :
	(I) $V = W \oplus W^{\perp}$	(II) $W^{\perp\perp} = W$				
	(1) Only I is true	(2) Only II is true				
	(3) Both are true	(4) None of these				
44.	Let $T_1: U \to V$ and $T_2: V \to W$ be two	linear transformation. Then:				
	(I) If T_2T_1 is one-one, then T_1 is one-or	ne				
	(II) If T_2T_1 is onto, then T_2 is onto					
	(1) Only I is true	(2) Only II is true				
	(3) Both are true	(4) None of these				
45.	The finite dimensional vector space $V(R)$ such that dim $W_1 = 2$, dim $W_2 = 3$. Then		pace	es V	V ₁ a	M_2
	(1) 2	(2) 3				
	(3) 5	(4) 6				

60579/(A)

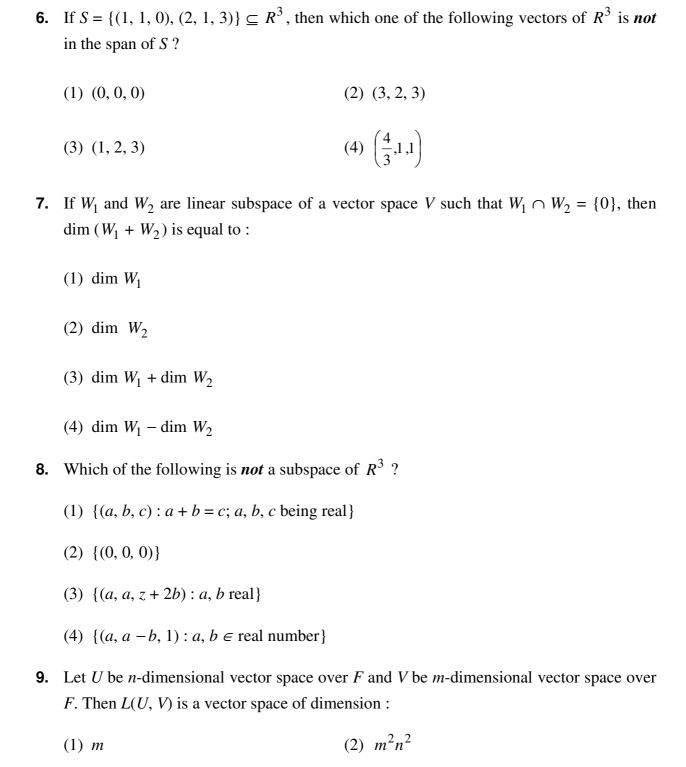
46.	If $(m, 3, 1)$ is a linear combination of vectors $(3, 2, 1)$ and $(2, 1, 0)$ in \mathbb{R}^3 . Then the value of m is :		
	(1) 1	(2) 3	
	(3) 5	(4) None of the above	
47.	Let U , V be elements of an inner product space such that $ U = 3$, $ V = 5$ $ U + V = 8$, then $ U - V $ is:		
	(1) 2	(2) $\sqrt{34}$	
	(3) 0	(4) None of the above	
48.	Every field F is a vector space over itself of dimension :		
	(1) 1	(2) 2	
	(3) 3	(4) 0	
49.	If W is a subspace of V such that dim W	$= m \ and \ dim \ V = n.$ Then:	
	(1) $m \neq n$	(2) m < n	
	(3) m=n	(4) m > n	
50.	. A bijective linear transformation is called :		
	(1) homomorphism	(2) monomorphism	
	(3) epimorphism	(4) isomorphism	

1.	A one-one linear transformation is called:		
	(1) homomorphism	(2) monomorphism	
	(3) epimorphism	(4) isomorphism	
2.	Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be linear transformation. Then nullity (T) is:	on defined by $T(x_1, x_2) = (x_1 - x_2, x_2 - x_1, -x_1)$.	
	(1) 0	(2) 1	
	(3) 2	(4) None of these	
3.	Let $X = (1, 2, 1)$ be relative to standard basis $Y_1 = (1, 1, 0)$, $Y_2 = (1, 0, 1)$, $Y_3 = (1, 0, 1)$	d basis. Then its coordinates relative to a new (1, 1, 1) are :	
	(1) (1, 2, 1)	(2) (2, 1, 1)	
	(3) (0,-1,2)	(4) (1, 1, 3)	
4.	Let V be the vector space of all 3×3 ske	ew symmetric matrices over R . Then dim V is:	
	(1) 6	(2) 3	
	(3) 4	(4) 9	
5.	Let $T: U \to V$ be a linear transform $\rho(T) + \mu(T)$ is:	mation where U is finite dimensional. Then	
	(1) dim U	(2) $\dim R(T)$	
	(3) dim $V(T)$	(4) $\dim N(T)$	

60579/(B)

(3) 1

60579/(B)



(4) None of these

10.	Dimension of subspace $W = \{(a, b, c) : a = -b = c\}$ of a vector space $R^3(R)$ equals :		
	(1) 0	(2) 1	
	(3) 2	(4) 3	
11.	Let e_1 , e_2 , e_3 denote the standard basis of R^3 . Then $ae_1 + be_2 + ce_3$, e_2 , e_3 is an orthonormal basis of R^3 iff:		
	(1) $a \neq 0$, $a^2 + b^2 + c^2 = 1$	(2) $a = 1, b = c = 0$	
	(3) $a = b = c = 1$	(4) a=b=c	
12.	Let $V(F)$ be the vector space of all per-	olynomials is x in which an inner product is	
	defined by $(f,g) = \int_{0}^{1} f(x)g(x)dx$. Then for $f(x) = x + 2$, $g(x) = x^{2} - 2x - 3$, $\langle f, g \rangle$ is:		
	(1) $\frac{5}{2}$	(2) $\frac{-37}{4}$	
	(3) $\frac{5}{8}$	$(4) \frac{37}{4}$	
13.	The dimension of $C(R)$ is :		
	(1) 1	(2) 2	
	(3) 3	(4) 4	
14.	Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be a linear transformation. Then Rank T is:	on given by $T(x_1 - x_2) = (x_1 + x_2, x_1 - x_2, x_2)$.	
	(1) 0	(2) 1	
	(3) 2	(4) 3	
60579/	(\mathbf{B})	P. T. O.	

15. Consider the mapping :

(I)
$$T: \mathbb{R}^3 \to \mathbb{R}^2$$
, $T(x, y, z) = (x + 1, y + z)$

(II)
$$T: \mathbb{R}^3 \to \mathbb{R}$$
, $T(x, y) = xy$

(III)
$$T: \mathbb{R}^3 \to \mathbb{R}^2$$
, $T(x, y, z) = (|x|, 0)$

Which of the above are linear transformation?

- (1) (I), (II) and (III)
- (2) (I) and (III) only
- (3) (II) and (III) only
- (4) None of these

16. Let U = (1, 1, 1), V = (1, 2, -3) and W = (1, -4, 3) in \mathbb{R}^3 . Then which of the following is *not* true?

- (1) U is orthogonal to V
- (2) U is orthogonal to W
- (3) V is orthogonal to W
- (4) V is not orthogonal to W

17. Let *M* and *N* be subspaces of a finite dimensional inner product space *V*. Then show that $(M + N)^{\perp} =$

(1) $M^{\perp} \cup N^{\perp}$

(2) $M^{\perp} \cap N^{\perp}$

(3) M^{\perp}

(4) None of these

18.	$Q(\sqrt{2})$ over Q :	
	(1) 1	(2) 2
	(3) 0	(4) 3
19.	The set of vectors (1, 2, 0), (0, 3, 1) and	$(-1, 0, 1)$ of V_2

19. The set of vectors (1, 2, 0), (0, 3, 1) and (-1, 0, 1) of $V_3(X)$ is linearly independent if:

(1) X is set of rational number

(2) X is set of irrational number

(3) Neither (1) and nor (2)

(4) None of these

20. For what value of K will the vector u = (1, K, 5) in $V_3(R)$ be a linear combination of vectors v = (1, -3, 2) and w = (2, -1, 1)?

$$(1) -8$$

21. Write the linear transformation corresponding to the matrix $T: \mathbb{R}^3 \to \mathbb{R}^3 \begin{bmatrix} 1 & 2 & -3 \\ 0 & 1 & 1 \\ 1 & 0 & -1 \end{bmatrix}$:

(1)
$$T(x_1, x_2, x_3) = (x_1 + 2x_2 - 3x_3, x_2 + x_3, x_1 - x_3)$$

(2)
$$T(x_1, x_2, x_3) = (x_1 + 2x_2 - 3x_3, x_2 - x_3, x_1 + x_3)$$

(3)
$$T(x_1, x_2, x_3) = (x_1 - 2x_2 + 3x_3, x_2 - x_3, x_1 - x_3)$$

(4)
$$T(x_1, x_2, x_3) = (x_1 - 2x_2 - 3x_3, x_2 - x_3, x_1 + x_3)$$

- **22.** Which of the following is *not* an orthonormal set?
 - $(1) \{(1,0,0),(0,1,0),(0,0,1)\}$
 - (2) $\left\{ \left(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}} \right), \left(\frac{1}{\sqrt{2}}, 0, \frac{-1}{\sqrt{2}} \right), (0, 1, 0) \right\}$
 - $(3) \{(3,0,4),(-4,0,3),(0,4,0)\}$
 - (4) $\left\{ \left(\frac{3}{5}, 0, \frac{4}{5}\right), \left(\frac{-4}{5}, 0, \frac{3}{5}\right), (0, 1, 0) \right\}$
- **23.** Let $T_1: R^3 \to R^2$ such that $T_1(x, y, z) = (3x, 4y z), T_2: R^2 \to R^2$ such that $T_2(x, y) = (-x, y)$. Compute T_1T_2 :
 - (1) T_1T_2 is defined
 - (2) T_1T_2 is not defined
 - (3) $T_1T_2 = (-2x, 3y, z)$
 - (4) None of these
- **24.** Let $T_1: U \to V$ and $T_2: V \to W$ be two linear transformation then :
 - $(1) \quad \rho(T_2T_1) \le \rho(T_2)$
 - (2) $\rho(T_2T_1) = \rho(T_2)$
 - (3) $\rho(T_2T_1) > \rho(T_2)$
 - $(4) \quad \rho(T_2T_1) \ge \rho(T_2)$

- **25.** Let the linear transformation $T_1: R^3 \to R^2$ such that $T_1(x, y, z) = (4x, 3y, -2z)$ and $T_2: R^2 \to R^2$ such that $T_2(x, y) = (-2x, y)$. Compute $T_2T_1:$
 - (1) T_2T_1 is not defined
 - (2) (-8x, 3y 2z)
 - (3) (8x, 2y 3z)
 - (4) (6x, 2y 2z)
- **26.** Find the coordinates of vector (1, 1, 1) relative to the basis (1, 1, 2), (2, 2, 1), (1, 2, 2):
 - $(1) \left(\frac{1}{3}, 0, 0\right)$
 - (2) $\left(\frac{1}{3}, 0, \frac{1}{3}\right)$
 - (3) $\left(\frac{1}{3}, \frac{1}{3}, 0\right)$
 - $(4) \left(0,0,\frac{1}{3}\right)$
- **27.** The linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by T(1, 0) = (2, 3), T(0, 1) = (5, 6) is :
 - (1) one-one and onto
 - (2) one-one but not onto
 - (3) onto but not one-one
 - (4) neither one-one nor onto

60579/(B)

- **28.** The norm of vector U = (2, -3, 6) is :
 - (1) 8

(2) 6

(3) 7

- (4) 5
- **29.** Let $T: U \to V$ be a linear transformation where U is a finite dimension. Then :
 - (1) rank(T) + nullity(T) = dim U
 - (2) rank(T) + nullity(T) = dim V
 - (3) rank(T) = dim U
 - (4) rank(T) = nullity(T)
- **30.** Normalize the vector U = (1, -2, 5) is :
 - (1) $\left\{ \frac{1}{\sqrt{30}}, \frac{-2}{\sqrt{30}}, \frac{5}{\sqrt{30}} \right\}$
 - $(2) \ \left\{ \frac{1}{\sqrt{32}}, \frac{-2}{\sqrt{32}}, \frac{5}{\sqrt{32}} \right\}$
 - (3) $\left\{ \frac{1}{\sqrt{25}}, \frac{-2}{\sqrt{25}}, \frac{5}{\sqrt{25}} \right\}$
 - (4) $\left\{ \frac{1}{\sqrt{28}}, \frac{-2}{\sqrt{28}}, \frac{5}{\sqrt{28}} \right\}$

31.	Consider the linear transformation in R^2	3 given by $y = AX$ where $A = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 2 & 5 \\ 1 & 3 & 3 \end{bmatrix}$. Then
	image of $X = (2, 0, 5)$ is:	$\begin{bmatrix} 1 & 3 & 3 \end{bmatrix}$
	(1) (12, 27, 17)	(2) (17, 12, 27)
	(3) (27, 12, 17)	(4) (12, 17, 27)
32.	Using Cauchy Schwarz inequality, the a	bsolute value of cosine of an angle is:
	(1) atmost 1	(2) at least 1
	(3) exactly 1	(4) None of these
33.	Let <i>V</i> be a finite dimensional inner produ	uct space and W be a subspace of V . Then:
	(I) $V = W \oplus W^{\perp}$	(II) $W^{\perp\perp} = W$
	(1) Only I is true	(2) Only II is true
	(3) Both are true	(4) None of these
34.	Let $T_1: U \to V$ and $T_2: V \to W$ be two	linear transformation. Then:
	(I) If T_2T_1 is one-one, then T_1 is one-or	ne
	(II) If T_2T_1 is onto, then T_2 is onto	
	(1) Only I is true	(2) Only II is true
	(3) Both are true	(4) None of these
35.	The finite dimensional vector space $V(F)$ such that dim $W_1 = 2$, dim $W_2 = 3$. Then	\widetilde{V}) is the direct sum of its subspaces W_1 and W_2 dim V is:
	(1) 2	(2) 3
	(3) 5	(4) 6

60579/(B)

60579/(B)

36.	If $(m, 3, 1)$ is a linear combination of vectors $(3, 2, 1)$ and $(2, 1, 0)$ in \mathbb{R}^3 . Then the value of m is :	
	(1) 1	(2) 3
	(3) 5	(4) None of the above
37.	Let U , V be elements of an inner $\ U + V\ = 8$, then $\ U - V\ $ is:	product space such that $ U = 3$, $ V = 5$,
	(1) 2	(2) $\sqrt{34}$
	(3) 0	(4) None of the above
38.	Every field F is a vector space over itsel	f of dimension :
	(1) 1	(2) 2
	(3) 3	(4) 0
39.	If W is a subspace of V such that dim W	$= m \ and \ dim \ V = n.$ Then:
	$(1) m \neq n$	(2) m < n
	(3) m=n	(4) m > n
40.	A bijective linear transformation is calle	ed:
	(1) homomorphism	
	(2) monomorphism	
	(3) epimorphism	
	(4) isomorphism	

41.	Let U, V be normal vectors in an inner product space V s. t. $ U+V =1$. Then $ U-V $ is:	
	(1) $\sqrt{3}$	(2) 1
	(3) 0	(4) $\sqrt{2}$
42.	Let $u, v \in V$. Then $ U + v \le U + v $. This result is known as:
	(1) Bessel's inequality	(2) Cauchy-Schwarz inequality
	(3) Triangle inequality	(4) None of these
43.	Which is an orthogonal set ?	
	$(1) \ \{(1,0,1),(1,0,-1)(0,1,0)\}$	
	$(2) \ \{(1,0,1),(1,0,-1)(-1,0,1)\}$	
	$(3) \ \{(1,0,1),(1,0,-1)(0,3,4)\}$	
	(4) None of these	
44.	Let w be a subspace of $R^4(R)$ gener $u_2 = (2, 4, 5, -1)$. Then dim w^{\perp} is:	rated by the vectors $u_1 = (1, 2, 3, -2)$ and
	(1) 1	(2) 2
	(3) 3	(4) 4
45.	Which of the following is <i>not</i> a subspace	e of R^3 ?
	(1) $\{(x, 0, 0) : x \text{ is real}\}$	
	(2) $\{(a, a + b, -a + 2b) : a, b \text{ real}\}$	
	(3) $\{(a, a-b, b) : a, b \text{ real}\}$	
	(4) $\{(a, b, c) : a, b, c \text{ integers}\}$	
60579/	'(B)	P. T. O.

46.	Let V be a vector space over the fiestatements:	ld F of dimension n . Consider the following
	(I) Every subset of V containing n elem	nents is a basis of V.
	(II) No linearly independent subset of V	contains more than n elements.
	Which of the above statement is/are <i>correct</i> ?	
	(1) (I) only	
	(2) (II) only	
	(3) Both (I) and (II)	
	(4) Neither (I) nor (II)	
47.	The set W of ordered triplets (a_1 , a_2 , 0) of R^3 has dimension :
	(1) 1	(2) 2
	(3) 3	(4) 4
48.	3. Largest Linearly independent subset of R^3 contains elements.	
	(1) 1	(2) 2
	(3) 3	(4) 4
49.	The finite dimensional vector space $V($ such that dim $W_1 = 2$, dim $W_2 = 3$. Then	F) is the direct sum of its subspace W_1 and W_2 dim V is:
	(1) 2	(2) 3
	(3) 5	(4) 6
50.	Let <i>V</i> be the vector space of all polynon	nials of degree $\leq n$ over R . Then dim V is:
	(1) <i>n</i>	(2) $n-1$
	(3) $n + 1$	(4) n^2

- **1.** Let e_1 , e_2 , e_3 denote the standard basis of R^3 . Then $ae_1 + be_2 + ce_3$, e_2 , e_3 is an orthonormal basis of R^3 iff:
 - (1) $a \neq 0$, $a^2 + b^2 + c^2 = 1$
 - (2) a = 1, b = c = 0
 - (3) a = b = c = 1
 - (4) a = b = c
- **2.** Let V(F) be the vector space of all polynomials is x in which an inner product is defined by $(f,g) = \int_0^1 f(x)g(x)dx$. Then for f(x) = x + 2, $g(x) = x^2 2x 3$, $\langle f, g \rangle$ is:
 - (1) $\frac{5}{2}$
 - (2) $\frac{-37}{4}$
 - (3) $\frac{5}{8}$
 - (4) $\frac{37}{4}$
- **3.** The dimension of C(R) is:
 - (1) 1

(2) 2

(3) 3

- (4) 4
- **4.** Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be a linear transformation given by $T(x_1 x_2) = (x_1 + x_2, x_1 x_2, x_2)$. Then Rank T is:
 - (1) 0

(2) 1

(3) 2

(4) 3

- **5.** Consider the mapping :
 - (I) $T: \mathbb{R}^3 \to \mathbb{R}^2$, T(x, y, z) = (x + 1, y + z)
 - (II) $T: \mathbb{R}^3 \to \mathbb{R}$, T(x, y) = xy
 - (III) $T: \mathbb{R}^3 \to \mathbb{R}^2$, T(x, y, z) = (|x|, 0)

Which of the above are linear transformation?

- (1) (I), (II) and (III)
- (2) (I) and (III) only
- (3) (II) and (III) only
- (4) None of these
- **6.** Let U = (1, 1, 1), V = (1, 2, -3) and W = (1, -4, 3) in \mathbb{R}^3 . Then which of the following is *not* true?
 - (1) U is orthogonal to V
 - (2) U is orthogonal to W
 - (3) V is orthogonal to W
 - (4) V is not orthogonal to W
- 7. Let M and N be subspaces of a finite dimensional inner product space V. Then show that $(M + N)^{\perp} =$
 - (1) $M^{\perp} \cup N^{\perp}$

(2) $M^{\perp} \cap N^{\perp}$

(3) M^{\perp}

(4) None of these

8.	Find the dimension of the vector space $Q(\sqrt{2})$ over Q :	
	(1) 1	(2) 2
	(3) 0	(4) 3
9.	The set of vectors $(1, 2, 0)$, $(0, 3, 1)$ and	$(-1, 0, 1)$ of $V_3(X)$ is linearly independent if:

(2) *X* is set of irrational number

(1) X is set of rational number

- (3) Neither (1) and nor (2)
- (4) None of these
- **10.** For what value of K will the vector u = (1, K, 5) in $V_3(R)$ be a linear combination of vectors v = (1, -3, 2) and w = (2, -1, 1)?

$$(1) -8$$

11. Write the linear transformation corresponding to the matrix $T: \mathbb{R}^3 \to \mathbb{R}^3 \begin{bmatrix} 1 & 2 & -3 \\ 0 & 1 & 1 \\ 1 & 0 & -1 \end{bmatrix}$:

(1)
$$T(x_1, x_2, x_3) = (x_1 + 2x_2 - 3x_3, x_2 + x_3, x_1 - x_3)$$

(2)
$$T(x_1, x_2, x_3) = (x_1 + 2x_2 - 3x_3, x_2 - x_3, x_1 + x_3)$$

(3)
$$T(x_1, x_2, x_3) = (x_1 - 2x_2 + 3x_3, x_2 - x_3, x_1 - x_3)$$

(4)
$$T(x_1, x_2, x_3) = (x_1 - 2x_2 - 3x_3, x_2 - x_3, x_1 + x_3)$$

- **12.** Which of the following is *not* an orthonormal set ?
 - $(1) \{(1,0,0),(0,1,0),(0,0,1)\}$
 - (2) $\left\{ \left(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}} \right), \left(\frac{1}{\sqrt{2}}, 0, \frac{-1}{\sqrt{2}} \right), (0, 1, 0) \right\}$
 - $(3) \{(3,0,4),(-4,0,3),(0,4,0)\}$
 - (4) $\left\{ \left(\frac{3}{5}, 0, \frac{4}{5}\right), \left(\frac{-4}{5}, 0, \frac{3}{5}\right), (0, 1, 0) \right\}$
- **13.** Let $T_1: R^3 \to R^2$ such that $T_1(x, y, z) = (3x, 4y z), T_2: R^2 \to R^2$ such that $T_2(x, y) = (-x, y)$. Compute T_1T_2 :
 - (1) T_1T_2 is defined
 - (2) T_1T_2 is not defined
 - (3) $T_1T_2 = (-2x, 3y, z)$
 - (4) None of these
- **14.** Let $T_1: U \to V$ and $T_2: V \to W$ be two linear transformation then :
 - $(1) \quad \rho(T_2T_1) \le \rho(T_2)$
 - (2) $\rho(T_2T_1) = \rho(T_2)$
 - (3) $\rho(T_2T_1) > \rho(T_2)$
 - $(4) \quad \rho(T_2T_1) \ge \rho(T_2)$

- **15.** Let the linear transformation $T_1: R^3 \to R^2$ such that $T_1(x, y, z) = (4x, 3y, -2z)$ and $T_2: R^2 \to R^2$ such that $T_2(x, y) = (-2x, y)$. Compute $T_2T_1:$
 - (1) T_2T_1 is not defined
 - (2) (-8x, 3y 2z)
 - (3) (8x, 2y 3z)
 - (4) (6x, 2y 2z)
- **16.** Find the coordinates of vector (1, 1, 1) relative to the basis (1, 1, 2), (2, 2, 1), (1, 2, 2):
 - $(1) \left(\frac{1}{3}, 0, 0\right)$
 - (2) $\left(\frac{1}{3}, 0, \frac{1}{3}\right)$
 - (3) $\left(\frac{1}{3}, \frac{1}{3}, 0\right)$
 - $(4) \left(0,0,\frac{1}{3}\right)$
- **17.** The linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by T(1, 0) = (2, 3), T(0, 1) = (5, 6) is :
 - (1) one-one and onto
 - (2) one-one but not onto
 - (3) onto but not one-one
 - (4) neither one-one nor onto

- **18.** The norm of vector U = (2, -3, 6) is :
 - (1) 8

(2) 6

(3) 7

- (4) 5
- **19.** Let $T: U \to V$ be a linear transformation where U is a finite dimension. Then :
 - (1) rank(T) + nullity(T) = dim U
 - (2) rank(T) + nullity(T) = dim V
 - (3) rank(T) = dim U
 - (4) rank(T) = nullity(T)
- **20.** Normalize the vector U = (1, -2, 5) is :
 - (1) $\left\{ \frac{1}{\sqrt{30}}, \frac{-2}{\sqrt{30}}, \frac{5}{\sqrt{30}} \right\}$
 - $(2) \ \left\{ \frac{1}{\sqrt{32}}, \frac{-2}{\sqrt{32}}, \frac{5}{\sqrt{32}} \right\}$
 - (3) $\left\{ \frac{1}{\sqrt{25}}, \frac{-2}{\sqrt{25}}, \frac{5}{\sqrt{25}} \right\}$
 - (4) $\left\{ \frac{1}{\sqrt{28}}, \frac{-2}{\sqrt{28}}, \frac{5}{\sqrt{28}} \right\}$

21.	Consider the linear transformation in R^2	3 given by $y = AX$ where $A = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 2 & 5 \\ 1 & 3 & 3 \end{bmatrix}$. Then
	image of $X = (2, 0, 5)$ is :	$\begin{bmatrix} 1 & 3 & 3 \end{bmatrix}$
	A = (2, 0, 3) is .	
	(1) (12, 27, 17)	(2) (17, 12, 27)
	(3) (27, 12, 17)	(4) (12, 17, 27)
22.	Using Cauchy Schwarz inequality, the a	bsolute value of cosine of an angle is:
	(1) atmost 1	(2) at least 1
	(3) exactly 1	(4) None of these
23.	Let V be a finite dimensional inner produ	act space and W be a subspace of V . Then:
	(I) $V = W \oplus W^{\perp}$	(II) $W^{\perp\perp} = W$
	(1) Only I is true	(2) Only II is true
	(3) Both are true	(4) None of these
24.	Let $T_1: U \to V$ and $T_2: V \to W$ be two	linear transformation. Then:
	(I) If T_2T_1 is one-one, then T_1 is one-or	ne
	(II) If T_2T_1 is onto, then T_2 is onto	
	(1) Only I is true	(2) Only II is true
	(3) Both are true	(4) None of these
25.	The finite dimensional vector space $V(F)$ such that dim $W_1 = 2$, dim $W_2 = 3$. Then	\widetilde{V}) is the direct sum of its subspaces W_1 and W_2 dim V is :
	(1) 2	(2) 3
	(3) 5	(4) 6

26.	If $(m, 3, 1)$ is a linear combination of vectors $(3, 2, 1)$ and $(2, 1, 0)$ in \mathbb{R}^3 . Then the value of m is:	
	(1) 1	(2) 3
	(3) 5	(4) None of the above
27.	Let U , V be elements of an inner $\ U + V\ = 8$, then $\ U - V\ $ is:	product space such that $ U = 3$, $ V = 5$,
	(1) 2	(2) $\sqrt{34}$
	(3) 0	(4) None of the above
28.	Every field F is a vector space over itsel	f of dimension :
	(1) 1	(2) 2
	(3) 3	(4) 0
29.	If W is a subspace of V such that dim W	$= m \ and \ dim \ V = n.$ Then:
	(1) $m \neq n$	(2) m < n
	(3) m=n	(4) m > n
30.	A bijective linear transformation is calle	d:
	(1) homomorphism	
	(2) monomorphism	
	(3) epimorphism	
	(4) isomorphism	

31.	Let U , V be normal vectors in an inner product space V s. t. $ U+V =1$. Then $ U-V $ is:	
	(1) $\sqrt{3}$	(2) 1
	(3) 0	(4) $\sqrt{2}$
32.	Let $u, v \in V$. Then $ U + v \le U + v $	√ . This result is known as:
	(1) Bessel's inequality	(2) Cauchy-Schwarz inequality
	(3) Triangle inequality	(4) None of these
33.	Which is an orthogonal set ?	
	$(1) \ \{(1,0,1),(1,0,-1)(0,1,0)\}$	
	$(2) \ \{(1,0,1),(1,0,-1)(-1,0,1)\}$	
	$(3) \ \{(1,0,1),(1,0,-1)(0,3,4)\}$	
	(4) None of these	
34.	Let w be a subspace of $R^4(R)$ gene $u_2 = (2, 4, 5, -1)$. Then dim w^{\perp} is:	rated by the vectors $u_1 = (1, 2, 3, -2)$ and
	(1) 1	(2) 2
	(3) 3	(4) 4
35.	Which of the following is <i>not</i> a subspace	e of R^3 ?
	(1) $\{(x, 0, 0) : x \text{ is real}\}$	
	(2) $\{(a, a + b, -a + 2b) : a, b \text{ real}\}$	
	(3) $\{(a, a-b, b) : a, b \text{ real}\}$	
	(4) $\{(a, b, c) : a, b, c \text{ integers}\}$	
60579/	'(C)	P. T. O.

36.	Let V be a vector space over the fiestatements:	ld F of dimension n . Consider the following	
	(I) Every subset of V containing n elem	nents is a basis of V .	
	(II) No linearly independent subset of V	contains more than n elements.	
	Which of the above statement is/are correct?		
	(1) (I) only		
	(2) (II) only		
	(3) Both (I) and (II)		
	(4) Neither (I) nor (II)		
37.	The set W of ordered triplets (a_1 , a_2 , 0) of R^3 has dimension:	
	(1) 1	(2) 2	
	(3) 3	(4) 4	
38.	Largest Linearly independent subset of R^3 contains elements.		
	(1) 1	(2) 2	
	(3) 3	(4) 4	
39.	. The finite dimensional vector space $V(F)$ is the direct sum of its subspace W_1 and W_2 such that dim $W_1 = 2$, dim $W_2 = 3$. Then dim V is:		
	(1) 2	(2) 3	
	(3) 5	(4) 6	
40.	40. Let V be the vector space of all polynomials of degree $\leq n$ over R. Then dim V is:		
	(1) <i>n</i>	(2) $n-1$	
	(3) $n + 1$	(4) n^2	
60579/	/(C)		

41.	A one-one linear transformation is called:	
	(1) homomorphism	(2) monomorphism
	(3) epimorphism	(4) isomorphism
42.	Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be linear transformation. Then nullity (T) is:	on defined by $T(x_1, x_2) = (x_1 - x_2, x_2 - x_1, -x_1)$.
	(1) 0	(2) 1
	(3) 2	(4) None of these
43.	Let $X = (1, 2, 1)$ be relative to standard basis $Y_1 = (1, 1, 0)$, $Y_2 = (1, 0, 1)$, $Y_3 = (1, 0, 1)$	d basis. Then its coordinates relative to a new $(1, 1, 1)$ are :
	(1) (1, 2, 1)	(2) (2, 1, 1)
	(3) (0, -1, 2)	(4) (1, 1, 3)
44.	Let V be the vector space of all 3×3 ske	ew symmetric matrices over R . Then dim V is:
	(1) 6	(2) 3
	(3) 4	(4) 9
45.	Let $T: U \to V$ be a linear transfor $\rho(T) + \mu(T)$ is:	mation where U is finite dimensional. Then
	(1) dim <i>U</i>	(2) $\dim R(T)$
	(3) dim $V(T)$	(4) $\dim N(T)$

46.	If $S = \{(1, 1, 0), (2, 1, 3)\} \subseteq \mathbb{R}^3$, then which one of the following vectors of \mathbb{R}^3 is not in the span of S ?	
	(1) (0, 0, 0)	(2) (3, 2, 3)
	(3) (1, 2, 3)	(4) $\left(\frac{4}{3},1,1\right)$
47.	If W_1 and W_2 are linear subspace of a vector space V such that $W_1 \cap W_2 = \{0\}$, then $\dim (W_1 + W_2)$ is equal to:	
	(1) dim W_1	(2) dim W_2
	$(3) \dim W_1 + \dim W_2$	$(4) \dim W_1 - \dim W_2$
48.	Which of the following is <i>not</i> a subspace	e of R^3 ?
	(1) $\{(a, b, c) : a + b = c; a, b, c \text{ being res}\}$	al}
	$(2) \{(0,0,0)\}$	
	(3) $\{(a, a, z + 2b) : a, b \text{ real}\}$	
	(4) $\{(a, a - b, 1) : a, b \in \text{ real number}\}$	
49.	Let U be n -dimensional vector space ov F . Then $L(U, V)$ is a vector space of dim	er F and v be m -dimensional vector space over ension:
	(1) m	$(2) m^2 n^2$
	(3) 1	(4) None of these
50.	Dimension of subspace $W = \{(a, b, c) : a \in A \}$	$a = -b = c$ } of a vector space $R^3(R)$ equals:
	(1) 0	(2) 1
	(3) 2	(4) 3

- **1.** Write the linear transformation corresponding to the matrix $T: \mathbb{R}^3 \to \mathbb{R}^3 \begin{bmatrix} 1 & 2 & -3 \\ 0 & 1 & 1 \\ 1 & 0 & -1 \end{bmatrix}$:
 - (1) $T(x_1, x_2, x_3) = (x_1 + 2x_2 3x_3, x_2 + x_3, x_1 x_3)$
 - (2) $T(x_1, x_2, x_3) = (x_1 + 2x_2 3x_3, x_2 x_3, x_1 + x_3)$
 - (3) $T(x_1, x_2, x_3) = (x_1 2x_2 + 3x_3, x_2 x_3, x_1 x_3)$
 - (4) $T(x_1, x_2, x_3) = (x_1 2x_2 3x_3, x_2 x_3, x_1 + x_3)$
- **2.** Which of the following is *not* an orthonormal set ?
 - $(1) \{(1,0,0),(0,1,0),(0,0,1)\}$
 - (2) $\left\{ \left(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}} \right), \left(\frac{1}{\sqrt{2}}, 0, \frac{-1}{\sqrt{2}} \right), (0, 1, 0) \right\}$
 - $(3) \{(3,0,4), (-4,0,3), (0,4,0)\}$
 - (4) $\left\{ \left(\frac{3}{5}, 0, \frac{4}{5}\right), \left(\frac{-4}{5}, 0, \frac{3}{5}\right), (0, 1, 0) \right\}$
- **3.** Let $T_1: R^3 \to R^2$ such that $T_1(x, y, z) = (3x, 4y z), T_2: R^2 \to R^2$ such that $T_2(x, y) = (-x, y)$. Compute T_1T_2 :
 - (1) T_1T_2 is defined
 - (2) T_1T_2 is not defined
 - (3) $T_1T_2 = (-2x, 3y, z)$
 - (4) None of these

4. Let $T_1: U \to V$ and $T_2: V \to W$ be two linear transformation then :

- $(1) \quad \rho(T_2T_1) \le \rho(T_2)$
- (2) $\rho(T_2T_1) = \rho(T_2)$
- (3) $\rho(T_2T_1) > \rho(T_2)$
- $(4) \quad \rho(T_2T_1) \ge \rho(T_2)$

5. Let the linear transformation $T_1: R^3 \to R^2$ such that $T_1(x, y, z) = (4x, 3y, -2z)$ and $T_2: R^2 \to R^2$ such that $T_2(x, y) = (-2x, y)$. Compute $T_2T_1:$

- (1) T_2T_1 is not defined
- (2) (-8x, 3y 2z)
- (3) (8x, 2y 3z)
- (4) (6x, 2y 2z)

6. Find the coordinates of vector (1, 1, 1) relative to the basis (1, 1, 2), (2, 2, 1), (1, 2, 2):

- $(1) \left(\frac{1}{3}, 0, 0\right)$
- (2) $\left(\frac{1}{3}, 0, \frac{1}{3}\right)$
- (3) $\left(\frac{1}{3}, \frac{1}{3}, 0\right)$
- (4) $\left(0, 0, \frac{1}{3}\right)$

- 7. The linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by T(1, 0) = (2, 3), T(0, 1) = (5, 6) is:
 - (1) one-one and onto
 - (2) one-one but not onto
 - (3) onto but not one-one
 - (4) neither one-one nor onto
- **8.** The norm of vector U = (2, -3, 6) is :
 - (1) 8

(2) 6

(3) 7

- (4) 5
- **9.** Let $T: U \to V$ be a linear transformation where U is a finite dimension. Then :
 - (1) rank(T) + nullity(T) = dim U
 - (2) rank(T) + nullity(T) = dim V
 - (3) $\operatorname{rank}(T) = \dim U$
 - (4) rank(T) = nullity(T)
- **10.** Normalize the vector U = (1, -2, 5) is:
 - (1) $\left\{ \frac{1}{\sqrt{30}}, \frac{-2}{\sqrt{30}}, \frac{5}{\sqrt{30}} \right\}$
 - (2) $\left\{ \frac{1}{\sqrt{32}}, \frac{-2}{\sqrt{32}}, \frac{5}{\sqrt{32}} \right\}$
 - $(3) \ \left\{ \frac{1}{\sqrt{25}}, \frac{-2}{\sqrt{25}}, \frac{5}{\sqrt{25}} \right\}$
 - (4) $\left\{ \frac{1}{\sqrt{28}}, \frac{-2}{\sqrt{28}}, \frac{5}{\sqrt{28}} \right\}$

4.4		$\begin{bmatrix} 1 & 1 & 2 \end{bmatrix}$
11.	Consider the linear transformation in R^*	3 given by $y = AX$ where $A = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 2 & 5 \\ 1 & 3 & 3 \end{bmatrix}$. Then
	image of $X = (2, 0, 5)$ is:	
	(1) (12, 27, 17)	(2) (17, 12, 27)
	(3) (27, 12, 17)	(4) (12, 17, 27)
12.	Using Cauchy Schwarz inequality, the al	bsolute value of cosine of an angle is:
	(1) atmost 1	(2) at least 1
	(3) exactly 1	(4) None of these
13.	Let <i>V</i> be a finite dimensional inner produ	act space and W be a subspace of V . Then:
	$(\mathrm{I}) V = W \oplus W^{\perp}$	(II) $W^{\perp\perp} = W$
	(1) Only I is true	(2) Only II is true
	(3) Both are true	(4) None of these
14.	Let $T_1: U \to V$ and $T_2: V \to W$ be two	linear transformation. Then:
	(I) If T_2T_1 is one-one, then T_1 is one-on	e
	(II) If T_2T_1 is onto, then T_2 is onto	
	(1) Only I is true	(2) Only II is true
	(3) Both are true	(4) None of these
15.	The finite dimensional vector space $V(F)$ such that dim $W_1 = 2$, dim $W_2 = 3$. Then	T) is the direct sum of its subspaces W_1 and W_2 dim V is:
	(1) 2	(2) 3
	(3) 5	(4) 6

16.	If $(m, 3, 1)$ is a linear combination of vectors $(3, 2, 1)$ and $(2, 1, 0)$ in \mathbb{R}^3 . Then the value of m is:		
	(1) 1	(2) 3	
	(3) 5	(4) None of the above	
17.	Let U , V be elements of an inner $\ U + V\ = 8$, then $\ U - V\ $ is :	product space such that $ U = 3$, $ V = 5$,	
	(1) 2	(2) $\sqrt{34}$	
	(3) 0	(4) None of the above	
18.	Every field F is a vector space over itself	f of dimension :	
	(1) 1	(2) 2	
	(3) 3	(4) 0	
19.	If W is a subspace of V such that dim W	$= m \text{ and } \dim V = n. \text{ Then } :$	
	$(1) m \neq n$	(2) m < n	
	(3) m=n	(4) m > n	
20.	A bijective linear transformation is calle	d:	
	(1) homomorphism		
	(2) monomorphism		
	(3) epimorphism		
60570	(4) isomorphism	р т О	
60579/	(D)	P. T. O.	

21.	Let U , V be normal vectors in an in $ U-V $ is:	ner product space V s. t. $ U+V = 1$. Then
	(1) $\sqrt{3}$	(2) 1
	(3) 0	(4) $\sqrt{2}$
22.	Let $u, v \in V$. Then $ U + v \le U + v $	$v \parallel$. This result is known as :
	(1) Bessel's inequality	(2) Cauchy-Schwarz inequality
	(3) Triangle inequality	(4) None of these
23.	Which is an orthogonal set ?	
	$(1) \ \{(1,0,1),(1,0,-1)(0,1,0)\}$	
	(2) {(1, 0, 1), (1, 0, -1) (-1, 0, 1)}	
	(3) {(1, 0, 1), (1, 0, -1) (0, 3, 4)}	
	(4) None of these	
24.	Let w be a subspace of $R^4(R)$ gene $u_2 = (2, 4, 5, -1)$. Then dim w^{\perp} is:	erated by the vectors $u_1 = (1, 2, 3, -2)$ and
	(1) 1	(2) 2
	(3) 3	(4) 4
25.	Which of the following is <i>not</i> a subspace	te of R^3 ?
	(1) $\{(x, 0, 0) : x \text{ is real}\}$	
	(2) $\{(a, a+b, -a+2b) : a, b \text{ real}\}$	
	(3) $\{(a, a-b, b) : a, b \text{ real}\}$	
	(4) $\{(a, b, c) : a, b, c \text{ integers}\}$	
60579/	/(D)	

26.	Let V be a vector space over the field statements:	d F of dimension n . Consider the following	ıg
	(I) Every subset of V containing n elem	ents is a basis of V.	
	(II) No linearly independent subset of V	contains more than <i>n</i> elements.	
	Which of the above statement is/are corr	ect?	
	(1) (I) only		
	(2) (II) only		
	(3) Both (I) and (II)		
	(4) Neither (I) nor (II)		
27.	The set W of ordered triplets $(a_1, a_2, 0)$	of R^3 has dimension:	
	(1) 1	(2) 2	
	(3) 3	(4) 4	
28.	Largest Linearly independent subset of	R ³ contains elements.	
	(1) 1	(2) 2	
	(3) 3	(4) 4	
29.	The finite dimensional vector space $V(R)$ such that dim $W_1 = 2$, dim $W_2 = 3$. Then	$V(V)$ is the direct sum of its subspace W_1 and W_2 dim V is:	' 2
	(1) 2	(2) 3	
	(3) 5	(4) 6	
30.	Let V be the vector space of all polynom	ials of degree $\leq n$ over R . Then dim V is:	
	(1) <i>n</i>	(2) $n-1$	
	(3) $n + 1$	(4) n^2	
60579/	(D)	P. T.	o.

31.	A one-one linear transformation is called	d:				
	(1) homomorphism	(2) monomorphism				
	(3) epimorphism	(4) isomorphism				
32.	Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be linear transformation. Then nullity (T) is:	on defined by $T(x_1, x_2) = (x_1 - x_2, x_2 - x_1, -x_1)$.				
	(1) 0	(2) 1				
	(3) 2	(4) None of these				
33.	Let $X = (1, 2, 1)$ be relative to standar basis $Y_1 = (1, 1, 0)$, $Y_2 = (1, 0, 1)$, $Y_3 =$	d basis. Then its coordinates relative to a new (1, 1, 1) are :				
	(1) (1, 2, 1)	(2) (2, 1, 1)				
	(3) (0, -1, 2)	(4) (1, 1, 3)				
34.	Let V be the vector space of all 3×3 ske	ew symmetric matrices over R . Then dim V is:				
	(1) 6	(2) 3				
	(3) 4	(4) 9				
35.	Let $T: U \to V$ be a linear transfor $\rho(T) + \mu(T)$ is:	mation where U is finite dimensional. Then				
	(1) dim <i>U</i>	(2) $\dim R(T)$				
	(3) dim $V(T)$	(4) $\dim N(T)$				

P. T. O.

36.	If $S = \{(1, 1, 0), (2, 1, 3)\} \subseteq R^3$, then which one of the following vectors of R^3 is not in the span of S ?			
	(1) (0, 0, 0)	(2) (3, 2, 3)		
	(3) (1, 2, 3)	(4) $\left(\frac{4}{3},1,1\right)$		
37.	If W_1 and W_2 are linear subspace of a vector space V such that $W_1 \cap W_2 = \{0\}$ then $\dim (W_1 + W_2)$ is equal to :			
	(1) dim W_1			
	(2) dim W_2			
	(3) dim W_1 + dim W_2			
	$(4) \dim W_1 - \dim W_2$			
38.	Which of the following is <i>not</i> a subspace	e of R^3 ?		
	(1) $\{(a, b, c) : a + b = c; a, b, c \text{ being re} \}$	al}		
	(2) {(0, 0, 0)}			
	(3) $\{(a, a, z + 2b) : a, b \text{ real}\}$			
	(4) $\{(a, a - b, 1) : a, b \in \text{real number}\}$			
39.	Let U be n -dimensional vector space over F . Then $L(U, V)$ is a vector space of dimensional vector space of F .	er F and v be m -dimensional vector space over ension:		
	(1) <i>m</i>	$(2) m^2n^2$		
	(3) 1	(4) None of these		

40.	Dimension of subspace $W = \{(a, b, c) : a \in A \}$	$a = -b = c$ } of a vector space $R^3(R)$ equals:
	(1) 0	(2) 1
	(3) 2	(4) 3
41.	Let e_1 , e_2 , e_3 denote the standard basis orthonormal basis of R^3 iff:	is of R^3 . Then $ae_1 + be_2 + ce_3$, e_2 , e_3 is an
	(1) $a \neq 0$, $a^2 + b^2 + c^2 = 1$	(2) $a = 1, b = c = 0$
	(3) $a = b = c = 1$	(4) a = b = c
42.	Let $V(F)$ be the vector space of all p	polynomials is x in which an inner product is
	defined by $(f,g) = \int_{0}^{1} f(x)g(x)dx$. Then	for $f(x) = x + 2$, $g(x) = x^2 - 2x - 3$, $\langle f, g \rangle$ is:
	(1) $\frac{5}{2}$	(2) $\frac{-37}{4}$
	(3) $\frac{5}{8}$	$(4) \frac{37}{4}$
43.	The dimension of $C(R)$ is:	
	(1) 1	(2) 2
	(3) 3	(4) 4
44.	Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be a linear transformat Then Rank T is :	ion given by $T(x_1 - x_2) = (x_1 + x_2, x_1 - x_2, x_2)$
	(1) 0	(2) 1
	(3) 2	(4) 3

45. Consider the mapping :

(I)
$$T: \mathbb{R}^3 \to \mathbb{R}^2$$
, $T(x, y, z) = (x + 1, y + z)$

(II)
$$T: \mathbb{R}^3 \to \mathbb{R}$$
, $T(x, y) = xy$

(III)
$$T: \mathbb{R}^3 \to \mathbb{R}^2$$
, $T(x, y, z) = (|x|, 0)$

Which of the above are linear transformation?

- (1) (I), (II) and (III)
- (2) (I) and (III) only
- (3) (II) and (III) only
- (4) None of these

46. Let U = (1, 1, 1), V = (1, 2, -3) and W = (1, -4, 3) in \mathbb{R}^3 . Then which of the following is *not* true?

- (1) U is orthogonal to V
- (2) U is orthogonal to W
- (3) V is orthogonal to W
- (4) V is not orthogonal to W

47. Let *M* and *N* be subspaces of a finite dimensional inner product space *V*. Then show that $(M + N)^{\perp} =$

(1)
$$M^{\perp} \cup N^{\perp}$$

(2)
$$M^{\perp} \cap N^{\perp}$$

(3)
$$M^{\perp}$$

60579/(D) P. T. O.

48.	Find the dimension of the vector space $Q(\sqrt{2})$ over Q :			
	(1) 1	(2) 2		
	(3) 0	(4) 3		
49. The set of vectors $(1, 2, 0)$, $(0, 3, 1)$ and $(-1, 0, 1)$ of $V_3(X)$ is linearly independent.				
	(1) <i>X</i> is set of rational number			
	(2) X is set of irrational number			
	(3) Neither (1) and nor (2)			
	(4) None of these			
50.	For what value of K will the vector $u = (1, K, 5)$ in $V_3(R)$ be a linear combination of vectors $v = (1, -3, 2)$ and $w = (2, -1, 1)$?			
	(1) -8	(2) 8		
	(3) 0	(4) 4		

60579

Revised

Subject Mathematics (Hory soi -A.

ANSWER - KEY

'		
		- 10
_	1 2 3 4 5 8 7 8 2 3 1 2 4 2 2 3 [3 3
1.	1高市宜田2231	I.
1,1	2 3 11 12 18	19 20
. }	11 3 2 1 3 3 4	29 30
1.	74 25 20	
		39 40
1	31 32 33 34 35 36 37 38 31 32 33 34 35 36 37 38	39
. }	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
ł	10 47 48	49 50
· ,	1 3 4 1 2 48 41 42 43 44 45 46 47 48 1 3 3 3 3 1	2 4
•		

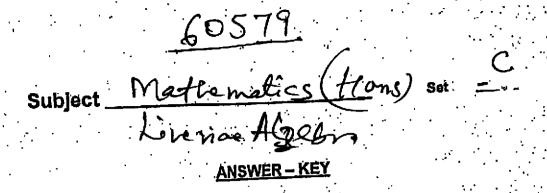
(Slansture of the Paper-Setter

Degli

60579

Mathematics (Hong) set B.
Linearias Algebra
ANSWER-KEY Subject

-		
	1 2 3 4 5 6 2 1 3 2 1 3	7 8 9 10 3 4 1 2
<u> </u>	11 12 13 14 15 16 2 2 2 3 4 3	17 18 19 20 2 2 1 1
.	21 22 23 24 25 26 1 3 4 1 2 3	
	31 32 33 34 35 36 1 1 3 3 3 3	37 38 39 40 1 1 2 4
	41 42 43 44 45 46 2	47 48 49 50 3
1.		



					•		٠ '
1 2 2 2	3 4 2 3	54	6 3	7	2	9	10
11 12 1 3	13 14	15	16 3	17	18	19	20
21 22	23 24 3 3	25	26 3	27	28	29	30 [4]
31 32 2 3	33 34 1 2	35 4	36	37 2	38	39	40
41 42	43 44 2 3 2	45	46	47	48	49	50 2
	· 		· · ·				

(Signature of the Paper-Setter)

Degli

60579

Subject Mathematics Hons) Livean Alebo

ANSWER - KEY

