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Max. Marks : 100
Time : 3 Hours

Note: Question paper will consist of three sections. Section I consisting of one question with ten parts covering whole of
the syllabus of 2 marks each shall be compulsory. From Section II, 10 questions to be set selecting two questions from each
unit. The candidate will be required to attempt any seven questions each of five marks. Section III, five questions to be set,
one from each unit. The candidate will be required to attempt any three questions each of fifteen marks.

Unit I

Analysis of Strain: Affine transformation. Infinite simal affine deformation. Geometrical interpretation of the
components of strain. Strain quadric of Cauchy. Principal strains and invariants. General infinitesimal deforma-
tion. Saint-Venant’s equations of Compatibility. Finite deformations.

Unit II

Equations of Elasticity: Generalized Hooke’s law. Homogeneous isotropic media. Elasticity moduli for isotro-
pic media. Equilibrium and dynamic equations for an isotropic elastic solid. Strain energy function and its con-
nection with Hooke’s law. Uniquness of solution. Beltrami-Michell compatibility equations. Saint-Venant’s prin-
ciple.

Unit III

Two — dimensional Problems: Plane stress. Generalized plane stress. Airy stress function. General solution
of Biharmonic equation. Stresses and displacements in terms of complex potentials. Simple problems. Stress
function appropriate to problems of plane stress. Problems of semi-infinite solids with displacements or stresses
prescribed on the plane boundary.

Unit IV

Torsional Problem: Torsion of cylindrical bars. Tortional rigidity. Torsion and stress functions. Lines of shear-
ing stress. Simple problems related to circle, elipse and equilateral triangle.

Variational Methods: Theorems of minimum potential energy. Theorems of minimum complementary energy.
Reciprocal theorem of Betti and Rayleigh. Deflection of elastic string, central line of a beam and elastic mem-
brane. Torsion of cylinders. Variational problem related to biharmonic equation. Solution of Euler’s equation by
Ritz, Galerkin and Kantorovich methods.

Unit V

Elastic Waves: Propagation of waves in an isotropic elastic solid medium. Waves of dilatation and distortion
Plane waves. Elastic surface waves such as Rayleigh and Love waves.
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Chapter-1
Cartesian Tensors

1.1 INTRODUCTION

There are physical quantities which are independent or invariant of any
particular coordinate system that may be used to describe them.
Mathematically, such quantities are represented by tensors. That is, a tensor is
a quantity which describes a physical state or a physical phenomenon.

As a mathematical entity, a tensor has an existence independent of any
coordinate system. Yet it may be specified in a particular coordinate system by
a certain set of quantities, known as its components. Specifying the
components of a tensor in one coordinate system determines the components in
any other system according to some definite law of transformation.

In dealing with general coordinate transformations between arbitrary
curvilinear coordinate systems, the tensors defined are known as general
tensors. When one is dealing with cartesian rectangular frames of reference
only, the tensor involved are referred to as cartesian tensors. From now
onwards, the word “tensor” means “cartesian tensors” unless specifically
stated otherwise.

1.2 COORDINATE TRANSFORMATIONS

Let us consider a right handed system of rectangular cartesian axes X; with a
fixed origin O. Let P be a general point whose coordinates with respect to this
system O X1XpX3 are (X1, X2, X3).
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Let r be the position vector of P w.r.t. O.
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Then

r= X18, +X,8, +X,8, )

and (X1, X, X3) are the components of the vector OP.  Here, &,, &,, &, are

unit vectors along axes.

Let a new system OXx1'Xy'X3" of axes be obtained by rotating the “old system”
of axes about some line in space through O. The position vector T of P has the
following representation in the new system

=X 84X, '8, +x, '8, 2
where &, is the unit vector directed along the positive x;’-axis, and

s e {1for|=1

8= g
|0 fori=j

and
é,'x8,'=8,’", etc.

and (x1', X', X3') are the new components of OP = r relative to the new axes
Ox1'X2'X3".  Let ap;i be the direction cosines of new x,’-axis w.r.t. the old x;-
axis.
That is,

api = COS(Xp', Xi)

cosine of the angle between the positive x,'-axis
(new axis) and the positive x;-axis (old axis)

= e, € 3)
Form (2), we write

r.ep:xp

=Xp= 18, = (X186 +X,8, +X4€5).8",
= X'p = X, +8,,X, $8,,X3 =8, X 4)
Here p is the free suffix and i is dummy.

In the above, the following Einstein summation convection is used.

“Unless otherwise stated specifically, whenever a suffix is repeated, it is to
be given all possible values (1, 2,3) and that the terms are to be added for
all”.

Similarly

(X1 &' +X,8',+x,8',).8, ,
=i X1 + azX'z2 + aziX's
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= dpj X'p . 5)
Here i is a free suffix and p is dummy. When the orientations of the new axes
w.r.t. the old axes are known, the coefficients a, are known. Relation (4)
represent the law that transforms the old triplet x; to the new triplet X’y and (5)
represent the inverse law, giving old system in terms of new system.
Remark 1. The transformation rules (4) and (5) may be displaced in the
following table

X1 X2 X3
X1 a1 a1 ai3
X'y do1 a2 a3
X'3 ds1 ds2 ds3

(6)

Remark 2. The transformation (4) is a linear transformation given by
Xll a11 a12 a‘13 Xl

Xlz =|dy 8p Axn | X, (7
X3 aSl a32 a33 X3

The matrix
[L] = (aij)3xs (8)
Xl
may be thought as an operator operating on the vector | X, | and giving the
X3
X|1
vector | X',
X'3

Remark 3. Since this transformation is rotational only, so the matrix L of the
transformation is non-symmetric.

Remark 4. Relations (4) and (5) yield

axl

gip =a; ©)
and

OX.

ox, o (10)

1.3. THE SYMBOL Sij
It is defined as
_lifi=]

i = . 1
! Oif 1] (1)
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That is,
011 = 822 = 833 = 1,
812 = 821 = 031 = 023 =032 =0 .
The symbol §;; is known as the Kronecker & symbol, named after the German

mathematician Leopold Kronecker (1827-1891). The following property is
inherent in the definition of §;;

6ij = Sji .
By summation convention
i =011 + 022 + 9833 =3. 2

The unit matrix of order 3 is
I3 = (8ij) and det(5) = 1.

The orthonormality of the base unit vectors &, can be written as

éi'éj :8” . (3)
We know that
ox, _|1ifi=]
;o odfi=]
Therefore,
OX;

j
Theorem 1.1. Prove the following (known as substitution properties of &;;)

(i) uj = 6ijui
(i) Sijujk = Uik, SijUik = Ujk

(iii) 6ijuij = Up1 + Uz + U3z = Ujj

Proof. (i) Now &;u; = dsuy + dajuz + 83j.U3

3
=uj+ Zsijui
i1

[E3]

= Uj

- 3

(ii) SijUjk = Zaijujk
=1

= Giilik (for j =1, &;; = 0), here summation over i is

not taken
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= Uik

(i) Sity = zhaijuij}

= > (L.uy) , inu; summation is not being taken

= Zuii

= Ujj = Ugg + U2 + Us3 .
Question. Given that
aij = odijbik + Pbij
where 8 = 0, 3o+ = 0, find bj; in terms of a;; .
Solution. Setting j = i and summing accordingly, we obtain
aii = a..3.bkk + Bbii = (3o + B)bkk

— bkk = akk -

3o+ 3

Hence

bij = — a; —OLS--bkk

ij ij

3 o
= b” = E{au —m&jal«} .

Theorem 1.2. Prove that

() apidgi = Opg

(i) apiag = &

(iii) 2l =1, (@)™t = (ay)" .

Proof. From the transformation rules of coordinate axes, we have

X'p = api Xi 1)

Xi = api X'p (2)
where

api = COS(X'p, Xi) 3)
(i) Now
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= api(aqi X'q)
= apj dgj X'q (4)
Also
Therefore,
or
or
_ 3pi g = g (6)
This proves that (i).
(if) Similarly, X; = api X'p
= ApidpjXi (7)
Also
Xi = 8ijX; (8)
Hence,
Bpidpj = Ojj . 9)
(iii) Relation (6) gives, in the expanded form,
aZ +al, +a’ =1,
a5, +as, +a5 =1,
aZ, +al, +a5 =1
a11dp1+taggaxtazas =0,
1831 +aggasy + axgazs =0,
az1d11tagae + aszaz =0 . (10)

The relations (6) and (9) are referred to as the orthonormal relations for a;; . In
matrix notation, relations (6) and (9) may be represented respectively, as

follows

or

ay; 8y Ay 100

8, 8y a5 =010 (11)
1813 8p3 8y 001

ay; a;, g 100

8y 8y 8, | =|010 (12)

dy Ay Agg 001

LL'=L'L=1. (13)
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These expressions show that the matrix L = (a;;) is non-singular and that

(@)™ = (ay) and fag|= 1.

(14)

The transformation matrix L = (a;) is called the proper orthogonal matrix.
For this reason, the transformation laws (3) and (4), determined by the matrix L

= (a;), are called orthogonal transformations.

Example. The x’j-system is obtained by rotating the x;-system about the Xs-

axis through an angle © in the sense of right handed screw.

Find the

transformation matrix. If a point P has coordinates (1,1, 1) in the x;-system,
find its coordinate in the X’;-system. If a point Q has coordinate (1, 1,1) in the

x'i-system, find its coordinates in the x;-system.

Solution.  The figure (1.2) shows how the X’;-system is related to the Xx;-

system. The table of direction cosines for the given transform is

A X3= X3'

X2
b/
AP
X2
0 \ll ,
X1 X1
Fig. (1.2)
é 1 é 2 é 3
e’y cos0 sind 0
e’ —-sind cosh 0
8’3 0 0 1
Hence, the matrix of this transformation is
cos® sine O
(@)= | —sing cosp O 1)
0 0 1
The transformation rules for coordinates are
X'p = apiXi, (2
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The coordinates P(x'1, X'z, X'3) of the point P(1, 1, 1) in the new system are
given by

X'1 = a1iXi = a11X1 + a12X2 + a13X3 = C0OSO + Sind

X' = @iXi = 821X1 + axpXo + a23X3 = COSO — SINO

X3 = agiXj = 31X + agXp + agsXz = 1. 4
Therefore, coordinates of P in the x’;-system are (cos6 + sinf, cos6 — sing, 1).
The coordinates (X1, X2, X3) of a w.r.t. old system are given as

X1 = 8p1X'p = a11X'1 + ax1X'z + a31X'3 = oSO — sind

Xo = apoX'p = a12X'1 + azpX'2 + agpX'3 = COSHO + Sind

X3 = apaXp = A1aX'1 + axnX'> + azx'3 = 1. (5)
Hence, the coordinates of the point Q in the old x;-system are (cos6-sin6, cos 6
+sinod, 1).
1.4 SCALARS AND VECTORS

Under a transformation of certesian coordinate axes, a scalar quantity, such as
the density or the temperature, remains unchanged. This means that a scalar
IS an invariant under a coordinate transformation. Scalaras are called tensors
of zero rank.

We know that a scalar is represented by a single quantity in any coordinate
system. Accordingly, a tensor of zero rank (or order) is specified in any
coordinate system in three-dimensional space by one component or a single
number.

All physical quantities having magnitude only are tensors of zero order.
Transformation of a Vector

Let u be any vector having components (u;, U,, us) along the xj-axes and
components (U'1, U'5, U’'3) along the X’-axes so that vector u is represented by
three components/quantities. Then we have

u=u; é 1)

and u=u’ &, 2

where &; is the unit vector along x;-direction and €'; is the unit vector along x'-

direction.
Now
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= (U| él) . e'p
= (é 'p . e i)Ui
=  Up =ap Ui. (3)
where
api = &'p. &i=cos(Xp, Xi) . (4)
Also
u=10.§8&;

= (é'p.é'l) u'p

where (api) is the proper orthogonal transformation matrix.

Relations (3) and (5) are the rules that determine u’y in terms of u; and vice-
versa. Evidently, these relations are analogous to rules of transformation of
coordinates.

Definition (Tensor of rank one)
A cartesian tensor of rank one is an entity that may be represented by a set of
three quantities in every cartesian coordinate system with the property that its

components u; relative to the system ox;x;xs are related/connected with its
components U’y relative to the system ox’1x’,x’3 by the relation

where the law of transformation of coordinates of points is
X'p = apiX; and api = CoS(X'p, Xi) = €'5 &; .

Note: We note that every vector in space is a tensor of rank one. Thus,
physical quantities possessing both magnitude and direction such as force,
displacement, velocity, etc. are all tensors of rank one. In three-dimensional
space, 3 real numbers are needed to represent a tensor of order 1.

Definition (Tensor of order 2)
Any entity representable by a set of 9 (real) quantities relative to a system of
rectangular axes is called a tensor of rank two if its components wj; relative to
system 0x;XpX3 are connected with its components W'y, relative to the system
0X'1X',X’3 by the transformation rule

W'pg = @pi Qgj Wij
when the law of transformation of coordinates is

X'p = @piXi ,

141
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api = COS(X'p, Xi) = €' .8;.
Note : Tensors of order 2 are also called dyadics. For example, strain and

stress tensors of elasticity are, each of rank 2. In the theory of elasticity, we
shall use tensors of rank 4 also.

Example. In the x;-system, a vector U has components (-1, 0, 1) and a second
order tensor has the representation

0 1 0
(Wij) =/-1 0 2
0 -2 0

The X’i-system is obtained by rotating the x;-system about the xz-axis through
an angle of 45° in the sense of the right handed screw. Find the components of
the vector U and the second ordered tensor in the x’;-system.

Solution. The table of transformation of coordinates is

X1 X2 X3
X'1 i i 0
V2 V2
X'o B i i 0
J2 V2
X'z 0 0 1

If u’, are the components of vector in the new system, then

This gives u'y = S
T2
, 1
u 2= —F=,
2
uz=1

Let w'yq be the components of the given second order tensor in the x';-system.
Then the transformation law for second order tensor yields

Wpg = apidgWij (2)
We find (left an exercise to readers)
0o 1 2
We=| -1 0 2 ©)
V2 V2 0
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Definition 1. A second order tensor uj; is said to be symmetric if
uij = u; foralliandj.

Definition 2. A second order tensor uj; is said to be skew-symmetric if
uij=—ujforalliandj.

Tensors of order n

A tensor of order n has 3" components. If Ujj.....are components of a tensor of
order n, then, the transformation law is

where the law of transformation of coordinates is
X'p = api Xi,
and
api = COS (X'p, Xi) .
Importance of the Concept of Tensors

(a) Tensors are quantities describing the same phenomenon regardless of the
coordinate system used. Therefore, tensors provide an important guide in the
formulation of the correct forms of physical laws.

(b) The tensor concept gives us a convenient means of transforming an
equation from one system of coordinates to another.

(c) An advantage of the use of cartesian tensors is that once the properties of a
tensor of order n have been established, they hold for all such tensors
regardless of the physical phenomena they present.

Note : For example, in the study of strain, stress, inertia properties of rigid
bodies, the common bond is that they are all symmetric tensors of rank two.

(d) With the use of tensors, equations are condensed, such as
Tij,j t fi=0,

is the equation of equilibrium in tensor form. It consists of 3 equations and
each equation has 4 terms.

(e) Equations describing physical laws must be tensorially homogeneous,
which means that every term of the equation must be a tensor of the same rank.
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1.5 PROPERTIES OF TENSORS

Property 1 : If all components of a tensor are 0 in one coordinate system, then
they are 0 in all coordinate systems.

Proof : Let Ujj.... and u’pys. ....be the components of a nth order tensor in two
systems 0X1xox3z and 0Xy1'X2'X3’, respectively.

Suppose that

Uijkt..... = 0.
Then, the transformation rule yields

U'pgrs. - ... = api Agj Ark Asm. - - - Uikl - .-
giving
U'pgrs....= 0.

This proves the result.
Zero Tensor

A tensor whose all components in one Cartesian coordinates system are 0 is
called a zero tensor.

A zero tensor may have any order n.

Property 2 : If the corresponding components of two tensors of the same order
are equal in one coordinate system, then they are equal in all coordinate
systems.

Corollary : A tensor equation which holds in one Cartesian coordinate system
also holds in every other Cartesian coordinate system.

Equality of Tensors

Two tensors of the same order whose corresponding components are equal in a
coordinate system (and hence in all coordinates) are called equal tensors.

Note : Thus, in order to show that two tensors are equal, it is sufficient to show
that their corresponding components are equal in any one of the coordinate
systems.

Property 3 (Scalar multiplication of a tensor)

If the components of a tensor of order n are multiplied by a scalar o, then the
resulting components form a tensor of the same order n.
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Proof : Let Ujj.... be a tensor of order n. Let U'py.... be the corresponding
components in the dashed system 0 X;" X2’ X3'. The transformation rule for a
tensor of order n yields

u'pqrs..... =ap| aqj ....uijk|.... (l)
where api = oS (Xp' ,X;) . (2)
Now (o U'pgr--..) = (api agj. - -..) (& Uijk.-..) (3)

This shows that components o Ujj.... form a tensor of rank n.
Tensor Equations
An equation of the form
Qijk — Pij Uk =0
is called a tensor equation.

For checking the correctness of a tensor equation, there are following two rules

Rule (i) In a correctly written tensor equation, no suffix shall appear more than
twice in a term, otherwise, the operation will not be defined. For example, an
equation

Uj" = otij Uj Vj

is not a tensor equation.

Rule (ii) If a suffix appears only once in a term, then it must appear only once
in the remaining terms also. For example, an equation

u' - liju;=0
is not a tensor equation.
Here j appears once in the first term while it appears twice in the second term.
Property 4 (Sum and Difference of tensors)
If Ujjk... and vijk..... are two tensors of the same rank n then the sums
(Uijk- - F Vijk-ooe0)

of their components are components of a tensor of the same order n.
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Proof : Let
Wijk. . .. = Ujjk. ... T Vijk..... (1)

Let U'pgr..... and V'pqr.... be the components of the given tensors of order n
relative to the new dashed system 0 x;’ X" X3'. Then, transformation rules for
these tensors are

U'pgr- - ... = pi Agj - - .- Uijjk. - - (2)
and

V' pgrs- - «.. = Qpi Agj - - +-Vijkl- - - 3
where

api = oS (Xp' , Xj). (4)
Let

Wpgre.oe. =Wpgre.o-. . Vipgre- oo (5)

Then equations (2) — (5) give
W,pqr..... = Apj Qjj -+ -+ Wijkeeeen-- (6)

Thus quantities Wijx..... obey the transformation rule of a tensor of order n.
Therefore, they are components of a tensor of rank n.

Corollary : Similarly, Ujj...—Vik.... are components of a tensor of rank n.
Property 5 (Tensor Multiplication)

The product of two tensors is also a tensor whose order is the sum of orders of
the given tensors.

Proof : Let Uij..... and vpq..... be two tensors of order m and n respectively.
We shall show that the product

Wijk....pqr.... :uijk.... qur.... (1)
is a tensor of order m + n.

Let u'il o and V'Iolql ..... be the components of the given tensors of orders m
and n relative to the new system 0 x,’ x,' X3'. Then
u';
"1

Jl e T aili ajlj ....... Uijkeeeeennn (2)
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v'Iolql ...... =885 e Vogre .- (3)
where
api = CoS (Xp', X;) . (4)
Let
W'iljl eyl e u'iljl ...... Vb (5)

Multiplying (2) an (3), we get

WI j1 ERRERN e FIERER = (alll ahJ ...) aplpaqlq .....)Wijk....pqr.... (6)

1
This shows that components Wijx. ....pgr. . .. obey the transformation rule of a
tensor of order (m + n). Hence Ui....Vpqr. ... are components of a (m + n) order
tensor.

Exercise 1 : If u; and v; are components of vectors, then show that u; v; are
components of a second — order tensor.

Exercise 2 : If a; are components of a second — order tensor and b; are
components of a vector, show that a;; by are components of a third order tensor.

Exercise 3 : If a; and b;; are components of two second — order tensors show
that a;j bim are components of fourth — order tensor.

Exercise 4 : Let u; and v; be two vectors. Let w;jj = uj Vj + Uj v and oj = U; Vj —
u; vi. Show that each of w;; and oi;j is a second order tensor.

Property 6 (Contraction of a tensor)

The operation or process of setting two suffices equal in a tensor and then
summing over the dummy suffix is called a contraction operation or
simply a contraction.

The tensor resulting from a contraction operation is called a contraction of the
original tensor.

Contraction operations are applicable to tensor of all orders (higher than 1) and
each such operation reduces the order of a tensor by 2.

Theorem : Prove that the result of applying a contraction to a tensor of order n
is a tensor of order n— 2.

Proof : Let Ujj..... and u’py .... be the components of the given tensor of order

n relative to two cartesian coordinate systems 0 X; X, X3 and 0 X1’ X" X3'. The
rule of transformation of tensors is
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U'pqr ...... = Qpj dgj Ark- ... . .- Ujjk- -+ - - - (l)
where
api = COS (Xp', Xi) . (2

Without loss of generality, we contract the given tensor by setting j = i and
using summation convention . Let

Vileooo = Uiikleevee- (3)
Now U'pqr..... = (api aqj) Arkeven.. Uiikl+«----
= 6pq ark R § [ R
This gives
u pprs = ark a5| Vkleoeon
or
V'rs ....... = ark..-VKkl.-- (4)

Property 7 (Quotient laws)
Quotient law is the partial converse of the contraction law.

Theorem : If there is an entity representable by the set of 9 quantities uj;
relative to any given system of cartesian axes and if ujj v; is a vector for an
arbitrary vector v;, then show that ujj is second order tensor.

Proof : Let
Wi = Ujj Vj @
Suppose that u’yg, Uy, W' be the corresponding components in the dashed

system 0 X1’ X" X3'. Then

V'q = g Vi, (2)
where
api = C0S (X', Xi) . (4)

Equation (1) in the dashed system is
W'y = U'pg Vg - (5)
Inverse laws of (2) and (3) are
Vi = agj V', (6)
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Now U'pg Vq' = Wp'
= dpi Wi
= api (Ujj vj)
= i (ag) Vq') Ui
= api agj Uij Vq'-

This gives
(U'pq - api agj Uij ) Vg =0, (8)

for an arbitrary vector vq'. Therefore, we must have
U'pg = @i 8gj Uij- 9)

This rule shows that components uj; obey the tensor law of transformation of a
second order.

Hence, uj; is a tensor of order two.

Question : Show that &;; and &;; are tensors, each of order two.

Solution : Let u; be any tensor of order one.

(a) By the substitution property of the Kronecker delta tensor &;;, we have
Ui = &ij Uj. 1)

Now u; and v; are, each of tensor order 1. Therefore, by quotient law, we
conclude that &;; is a tensor of rank two.

(b) The transformation law for the first order tensor u; is

Up" = api Ui, 2
where

api = COS (Xp', Xi). 3

Now u; is a vector and a; U; is a vector by contraction property. Therefore, by
quotient law, the quantities a,; are components of a second order tensor.

Hence the result.

Note (1) The tensor §;; is called a unit tensor or an identity tensor of order
two.

Note (2) We may call the tensor a;; as the transformation tensor of rank two.
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Exercise 1 : Let a; be an ordered triplet and b; be a vector, referred to the
Xi — axis. If a; b; is a scalar, show that a; are components of a vector.

Exercise 2 : If there is an entity representable by a set of 27 quantities uijx
relative to 0 X1 X» X3 system and if ujx Vi is a tensor of order one for an
arbitrary tensor vj. of order 2, show that uijx is a tensor of order 3.

Exercise 3 : If ujjx Vi is a tensor of order 2 for an arbitrary tensor vy of order
one, show that uiji is tensor of order 3.

1.6 THE SYMBOL €jj

The symbol <jj is known as the Levi — civita € - symbol , named after the
Italian mathematician Tullio Levi — civita (1873 — 1941).

The < - symbol is also referred to as the permutation symbol / alternating
symbol or alternator.

In terms of mutually orthogonal unit vectors €;,€,,€5 along the cartesian axes
, it is defined as

€i.(€jx €y = €ijk,
fori,j,k=1,2,3. Thus, the symbol €jj gives

1 ifi,j,ktakevalues in the cyclic order
eijw= ¢ —1 ifi,j,ktakesvaluein the acyclic order
0 if twoorallofi, j,ktake the same value

These relations are 27 in number.

The < - symbol is useful in expressing the vector product of two vectors and
scalar triple product.

(i) We have

€ix €)= €jjk €k
(i) For two vectors a; and b; , we write

ax b =(ae) x (be) =aibj (& x &) = ik a b ex.
(iii) For vectors

a=ajei,b=Dbje, c=cex

we have
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[a,b,c]=(axb).C

= (<ijk ai bj ex) . (ck ex)

= €ijk & bj Ck
al a2 a3

=|b b, b
Cl C2 C3

Question: Show that €jj is a tensor of order 3.
Solution: Let @ =a;and b = b; be any two vectors. Let
C=¢ci=a x b.
Then
Ci = Eijk & b Q)
Now a; by is a tensor of order 2 and <ij« a; by is a tensor of order one. Therefore

, by quotient law, €ij« is a tensor of order 3.

Note (1) Due to tensorial character of the € - symbol , it is called an
alternating tensor or permutation tensor.

Note (2) The symbols &; and e were introduced earlier to simplifying the
writing of some equations.

Vector of a Second Order Tensor
Let ujj be a second order tensor. The vector
€ijk Ujk

is called the vector of the tensor ujx.

Example 1: Show that wj; = €jj« Uk is a skew — symmetric tensor, where u is a
vector and eijx is an alternating tensor.

Solution: Since €ijx is a tensor of order 3 and uy is a tensor of order one , so by
contraction , the product €jj U is a tensor of order 2 . Further

Wji = €jik Uk
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This shows that wi; is a tensor which is skew — symmetric.
Example 2: Show that ujj is symmetric iff ;j ujj = 0.
Solution: We find
Eij1 Uij = €231 U2z + €321 Usz = Uzz — U3
€ijj2 Ujj = U31 — U1z, €jj3 Ujj = U2 — U2z
Thus, u;; is symmetric iff

Uij = Uji
or

U23 = U3z , U3 = U3z, U2 = U2s.
1.7 ISOTROPIC TENSORS

Definition: A tensor is said to be an isotropic tensor if its components remain
unchanged / invariant however the axes are rotated.

Note (1) An isotropic tensor possesses no directional properties. Therefore a
non — zero vector (or a non — zero tensor of rank 1) can never be an
isotropic tensor.

Tensors of higher orders , other than one , can be isotropic tensors.

Note (2) Zero tensors of all orders are isotropic tensors.

Note (3) By definition , a scalar (or a tensor of rank zero) is an isotropic tensor.
Note (4) A scalar multiple of an isotropic tensor is an isotropic tensor.

Note (5) The sum and the differences of two isotropic tensors is an isotropic
tensor.

Theorem: Prove that substitution tensor &; and alternating tensor e are
isotropic tensors.

Proof: Let the components & relative to X; system are transformed to
quantities &'pq relative to i’ - system. Then , the tensorial transformation rule is

&'pg = api &gj Oij 1)
where

api = COS(Xp' , Xi) (2
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Now

RHS of (1) = ayi [ag; & ij]

= pq
_ 0 if p-q 3)
1 if p=gq

Relations (1) and (3) show that the components &;; are transformed into itself
under all co-ordinate transformations. Hence , by definition , §;; is an isotropic
tensor.

We know that €jj is a system of 27 numbers. Let
cijk=[€i, €j, €] = €i.(€jx €y, 4

be related to the x; axes. Suppose that these components are transformed to
€'pqr relative to x;" - axis. Then , the third order tensorial law of transformation
gives

€ par = 3pi Agj Ak Eijk ()
where | is defined in (2)

we have already checked that (exercise)

Apr  dp2  Ap3
Sijk @pidgj &k = [ Qg1 Qg2 8g3 (6)

drp drp A3

and
[ep . €4, EF]= dgr Qg2 ag3 (7
From (5) — (7) , we get

€'oor=[€p", €4, &/]

= ép'.(éq'X ér')

153
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(8)

This shows that components €ij are transformed into itself under all
coordinate transformations. Thus, the third order tensor €jj is an isotropic

tensor.

Theorem: If ujj is an isotropic tensor of second order , then show that

for some scalar o.

Ujj= o 6ij

Proof: As the given tensor is isotropic , we have

uij = Ujj ,

1)

for all choices of the x;" - system. In particular , we choose

Then

and

Now

X1"=Xo, X2' = X3, X3 =X

010
ajj = 0 0 1

1 00
U'pq = 8pi 8gj Uij -

U1 = Uy1" = agi agj Uj

= ajp azz Uzz = U22,
U22 = Upp" = Ay ayj Uj

= dp3 dz3 U3z = Usz,
Ugz = Ug2" = agj agj Uj

= a2 dp3 Upz = Uz3,
U2z = Up3" = api agj Uj

= dpz asy U3y = U3z,

U1z = Ugz" = ayj asj Ujj

)

©)

(4)



CONSTITUTIVE EQUATIONS OF LINEAR ELASTICITY

=dj2 az U = U2y,
Uz1 = Up1" = ayi ayj Uj
=dzz a1z U2 = Uz2 .
Thus
Ugg = U2z = Us3,
U2 = U2z = U3y,
U21 = U3z = U13 .

Now , we consider the transformation

X1 =Xo, X2' =-X1 , X3’ = X3.

Then
0 1 0
(ai,-) =|-1 0 0 ,
0 0 1
W'pg = api 8gj Uij
This gives
Uiz = U'13 = ayj a3j Ujj
= ajp as3 Uzz = U23
U3 = U'23 = A azj Ujj
=adp1dzgz Uiz = —Uiz.
Thus
Uiz = U3 =0.

From (5) and (9), we obtain

aij = o Ojj
where

oL = d11 = d2 = dss.

155
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(6)

()

(8)

(9)

(10)

(11)

Note 1: If ajx are components of an isotropic tensor of third order, then
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dijk = O - Eijk
for some scalar a.

Note 2: If ajjkm are components of a fourth — order isotropic tensor , then
aijkm = o Oij Okm + B dik Ojm *+ ¥ dim Ojk

for some scalars o, B, v .

Definition: (Gradient)

If Upgr... (X1, X2, X3) is a tensor of order n, then

v _ 0
spqr...... = A, par...
OXq
= Upqr...., s

is defined as the gradient of the tensor field Uy, (X1, X2, X3).

Theorem: Show that the gradient of a scalar point function is a tensor of order
1.

Proof: Suppose that U = U(Xy , X2, X3) be a scalar point function and

Vi = ZTU = U,; = gradient of U. Q)

Let the components of the gradient of U in the dashed system o0 X1’ X," X3’ be
V', so that,

W= S @
where the transformation rule of coordinates is
Xp'=ap Xj, )
Xj = ayp; xp' 4)
api = COS (Xp' , Xi) . (5)

By chain rule
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_oU ox
% OX,

_, U
i OX;

=api Vi
which is a transformation rule for tensors of order 1.
Hence gradient of the scalar point function U is a tensor of order one.

Theorem: Show that the gradient of a vector u; is a tensor of order 2. Deduce
that &;; is a tensor of order 2.

Proof: The gradient of the tensor u; is defined as

8ui
Wij = — = Ui j. 1)
Xj

Let the vector u; be transformed to the vector uy’ relative to the new system o
X1' X2" X3'. Then the transformation law for tensors of order 1 yields

where the law of transformation of coordinates is

Xq' = agj X;, 3)
Xj = agj Xq', 4)
api = COS (X'p, Xi). (5)

Suppose that the 9 quantities wi; relative to new system are transformed to W’ pq.
Then
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oy 9%
p1 8Xj an'

ou;

—_n . A i
= Qi Ag; x
j

= api agj Wij, (6)
which is the transformation rule for tensors of order 2.

Hence , wj; is a tensor of order 2. Consequently , the gradient of the vector u; is
a tensor of order 2.

Deduction : We know that

_ 0%

-
T ox

j

and that x; is a vector. So , §; is a gradient of the vector Xx;. It follows that 9
quantities &;; are components of a tensor of order 2.

1.8 EIGENVALUES AND EIGEN VECTORS OF A SECOND
ORDER SYMMETRIC TENSOR.

Definition: Let u;j be a second order symmetric tensor. A scalar A is called an
eigenvalue of the tensor uj; if there exists a non — zero vector v; such that

ujvj=av;, fori=1,2,3.

The non — zero vector v; is then called an eigenvector of tensor uij;
corresponding to the eigen vector A.

We observe that every (non - zero) scalar multiple of an eigenvector is also an
eigen vector.

Article: Show that it is always possible to find three mutually orthogonal
eigenvectors of a second order symmetric tensor.

Proof: Let uj; be a second order symmetric tensor and A be an eigen value of uj;
. Let v; be an eigenvector corresponding to A.

Then Ujj Vj = A Vi
or

(Uij = A &) v = 0. 1
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This is a set of three homogeneous simultaneous linear equations in three
unknown vy , V2 , v3. These three equations are

(U — AV +Up, V, + UV, =0
Up Vi + (Upp = AV +UpsVy =0 (2)
Ugy Vy +Ugy V, + (Ugg — A) V5 =0

This set of equations possesses a non — zero solution when

U, — 4 U, Uy
Uy Uy — A4 Uy | =0,
Uy Uz, Ugs — A4
or
| uij — A & | = 0. €))

Expanding the determinant in (3) , we find
(U1r —A) [(uz2 — &) (Uss — A) — U3z Ua3]

— Uz [U21 (Uss — A) — U3 Uzs] + Uss [Uo1 Usp— Usg (Ugo —
AM]=0

or
3 2
— A%+ (u1g + Uz + Uszz) A — (U11 Uzp + Upp Usz + Usg Upg —
U23 Usz — U3z Uis — Ug2 Uz1) A + [u11 (Uz2 Usz — Uzs

U3z) — Uz2 (U1 Usz — Ugg Uz3)
+ U13(Uz1 Usp — U3g Uz2)] = 0. 4)
We write (4) as
B+ -Al+13=0, (5)
where
l1 = U1z + Uz + Uss
= Ui, (6)

I2 = Ug1 U2 + Ugo Usz + Usz Ugg — U2 Upg — Ugpg Uzp — Ugg Ugz
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1
=3 [uii ujj — Uij Ujil, (7)
3= ujj |
= Eijk Ui1 Uj2 U3 (8)

Equation (5) is a cubic equation in A. Therefore , it has three roots , say , A1, A2
, Az which may not be distinct (real or imaginary). These roots (which are
scalar) are the three eigenvalues of the symmetric tensor uj;.

Further
MtA+tis=1 )
MA+thAzs+tAsh=1 (10)
MA2Az =13 (12)

Each root A; , when substituted in equation (2) , gives a set of three linear
equations (homogeneous) which are not all independent. By discarding one of
equations and using the condition

V12 + V22 + V32 =1
for unit vectors , the eigenvector v; is determined.
Before proceeding further, we state and prove two important lemmas.

Lemma 1: Eigenvalues of a real symmetric tensor u;; are real.
Proof: Let A be an eigenvalue with corresponding eigenvector u;.
Then Uij Vj = A Vi. Q)

Taking the complex conjugate on both sides of (I) , we find

UijVj =7\,Vi uij Vj =A Vi
Uij Vj = 7» Vi (||)
since ujj is a real tensor. Now

Uij Vj Vi = (Uij VJ) Vi

]
—
>
<l
N—r
=<

= A ViVi (1)

Also Ujj VjVi = UjjV;V;
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This shows that quantity u;; v; v is real. Hence A v; v; is real.
Since v v is always real, it follows that A is real.

Therefore A is real.

Lemma 2: Eigen vector corresponding to two distinct eigen values of the
symmetric tensor uj; are orthogonal.

Proof: Let A, = A, be two distinct eigenvalues of uj;. Let A; and B; be the
corresponding non — zero eigenvectors. Then

uj A = M A
uij Bj = A2 Bi. m
We obtain
uij Aj Bi = A1 A Bj,
Uij Bj Ai = 22 A B; . (1
Now

uij Aj Bi = u;i A B;
= uj; Bj A (1

From (1) & (I11) , we get

A A Bi =k A Bi

(M -2A2) AiBi=0

A Bi=0. (0 M A)
Hence , eigenvectors A; and B; are mutually orthogonal.
This completes the proof of lemma 2.

Now we consider various possibilities about eigenvalues A , A, , Az of the
main theorem.

Case 1: If Ay = Ao = A3, 1. €., when all eigenvalues are different and real.

Then, by lemma 2, three eigenvectors corresponding to A; are mutually
orthogonal. Hence the result holds.
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1
Case 2: If A1 # A2 = As. Let v; be the eigenvector of the tensor uj
corresponding to the

2
eigenvalue A; and v; be the eigenvector corresponding to A,. Then

1 2
v; v, =0.

Vi
1
Vi
1 2
Let p; be a vector orthogonal to both v; and v, . Then
1 2
piVvi =piv; =0, (12)
and
1 1
Ujj Vj =M v, o,
2 2
Ujj V; = A2 V. (13)
Let
Uij pj = gi = a tensor of order 1 (14)

we shall show that g; and p; are parallel.

Now

=0. (15)
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Similarly

gi v, =0. (16)

Thus q; is orthogonal to both orthogonal eigenvectors \}i and \Z :
Thus g; must be parallel to p;. So , we may write

Uij Pj= 0 = oL pi 17
for some scalar o .

Equation (10) shows tha o must be an eigenvalue and p; must be the
corresponding eigenvector of uij;.

Let

v = P (18)

Pi
| pj |

Since ujj has only three eigenvalues A3 , A2 = Az, SO o must be equal to A, = As.

3 1 2 1 2
Thus v, is an eigenvector which is orthogonal to both v, and v, where v, Lv;,.

Thus, there exists three mutually orthogonal eigenvectors.

Further , let w; be any vector which lies in the plane containing the two
2 3
eigenvectors v; and v; corresponding to the repeated eigenvalues. Then

2 3
for some scalars k; and k, and

Wi V, =0,

and

2 3
Ujj Wj = Uij(kl Vj + kg Vj )

2 3
=k; Ujj VJ- + ks Uj Vj

2 3
:k17\,2 vV +k27\,3 vV

163
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(19)

1
Thus w; is orthogonal to v, and w; is an eigenvector corresponding to A,.

1
Hence , any two orthogonal vectors that lie on the plane normal to v, can be

chosen as the other two eigenvectors of ui;.

Case 3: If A1 = A2 = As.

In this case , the cubic equation in A becomes
(L-21)*=0,

or

Comparing it with equation (3) , we find
uij =0 fori=]j
and
U1 = U2 = Uz = Aq.
Thus
Uij = A1 djj
Let v; be any non — zero vector. Then
Uij Vj = A1 O Vj

= 7\,1 Vi.

(20)

(21)

(22)

This shows that v; is an eigenvector corresponding to A;. Thus , every non —
zero vector in space is an eigenvector which corresponds to the same
eigenvalue A;. Of these vectors , we can certainly chose (at least) there vectors

1 2 3
Vv, , V; , Vv, that are mutually orthogonal.
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Thus, in every case , there exists (at least) three mutually orthogonal
eigenvectors of uj;.

Example: Consider a second order tensor u;; whose matrix representation is
0 -1
2 1]
2 3

N P

It is clear , the tensor uj; is not symmetric. We shall find eigenvalues and
eigenvectors of uj;.

The characteristic equation is

1-2 0 -1

or
QA-MN[2-M)B-M)-2]-1[2-22-1M)]=0
or
1-2)@2-2)B-A)=0.
Hence , eigenvalues are
M=1,=2,2=3
which are all different.

We find that an unit eigenvector corresponding to A = 1 is
L 1 1
vV, = _’_10 ’
| [ﬁ J2 ]
an unit eigenvector corresponding to A = 2 is
2 (2 1 2)
Vi =~ T <y~ |
3 3 3

and an unit eigenvector corresponding to A = 3 is
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\7_(L _ 1 _ij
"\ V6 V6
We note that
1 2 2 3 1 3
viv; 20, v v; 20, v v, =0.

This happens due to non — symmetry of the tensor uj;.

Example 2: Let the matrix of the components of the second order tensor ujj be

O N DN

2 0
2 0|
01

Find eigenvalues and eigenvectors of it.
We note that the tensor is symmetric. The characteristic equation is
2-1 2 0

2 2— 4 0]=0

0 0 1- 4
or

MA-1)(A-4)=0.
Thus eigenvalues are
M=0,A=1,A3=4,

which are all different.

1
Let v, be the unit eigenvector corresponding to eigenvalue A; = 0. Then , the
system of homogegeous equations is

1
Vv

-

l—‘N<l—‘
11
o

O N DN

2 0
2 0
01

<

3

. . 1 1 1 2 1
Thisgivesv, +v, =0, v, +v, =0, Vv,

11
o

we find
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Similarly
2
v, =(0,0,1) ,
and
i \/E 1 \/5 1 )
are eigen vectors correspondingto A, =1and A3 =4, respectively.
Moreover, these vector are mutually orthogonal.
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Chapter-2

Analysis of Stress

2.1 INTRODUCTION

Deformation and motion of an elastic body are generally caused by external
forces such as surface loads or internal forces such as earthquakes, nuclear
explosions, etc. When an elastic body is subjected to such forces , its
behaviour depends upon the magnitude of the forces , upon their direction ,
and upon the inherent strength of the material of which the body is made.
Such forces give rise to interactions between neighbouring portions in the
interior parts of the elastic solid. Such interactions are studied through the
concept of stress. The concepts of stress vector on a surface and state of stress
at a point of the medium shall be discussed.

An approach to the solution of problems in elastic solid mechanics is to
examine deformations initially , and then consider stresses and applied
loads. Another approach is to establish relationships between applied
loads and internal stresses first and then to consider deformations.
Regardless of the approach selected , it is necessary to derive the
component relations individually.

2.2. BODY FORCES AND SURFACE FORCES

Consider a continuous medium. We refer the points of this medium to a
rectangular cartesian coordinate system. Let t represents the region
occupied by the body in the deformed state. A deformable body may be
acted upon by two different types of external forces.

(i) Body forces : These forces are those forces which act on every volume
element of the body and hence on the entire volume of the body. For example
, gravitational force is a body force (magnetic forces are also body
forces). Let p denotes the density of a volume element At of the body .
Let g be the gravitational force / acceleration. Then , the force acting on
the mass pAt contained in volume At is g.pAt.

(i1) Surface forces : These forces are those which act upon every surface
element of the body. Such forces are also called contact forces. Loads
applied over the exterior surface or bounding surface are examples of
surface forces. A hydrostatic pressure acting on the surface of a body
submerged in a liquid / water is a surface force.

Internal forces : In addition to the external forces , there are internal forces
(such as earthquakes , nuclear explosions) which arise from the mutual
interaction between various parts of the elastic body.
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Now , we consider an elastic body in its undeformed state with no forces
acting on it. Let a system of forces be applied to it. Due to these forces , the
body is deformed and a system of internal forces is set up to oppose this
deformation. These internal forces give rise to stress within the body. It is
therefore necessary to consider how external forces are transmitted through
the medium.

2.3 STRESS VECTOR ON A PLANE AT A POINT

Let us consider an elastic body in equilibrium under the action of a system
of external forces. Let us pass a fictitious plane = through a point P(x; , X2,
X3) in the interior of this body. The body can be considered as consisting of
two parts, say , A

and B and these parts are in welded contact at the interface n. Part A of
the body is in equilibrium under forces (external) and the effect of part B
on the plane . We assume that this effect is continuously distributed over
the surface of intersection.

Fig. (2.1)

Around the point P, let us consider a small surface &S (on the place =) and
let v be an outward unit normal vector (for the part A of the body). The
effect of part B on this small surface element can be reduces to a force Q
and a vector couple C . Now, let 8S shrink in size towards zero in a
manner such that the point P always remain inside 8S and vV remains the
normal vector.

Q

We assume that 5—Stends to a definite limit T (x1, X2 , X3) and that 6C_S
tends to zero as &S tends to zero. Thus

lim

0S—>06S

Q|

= T (X1, %2, X3),

im C

Now T is a surface force per unit area.

This force, T, is called the stress vector or traction on the plane = at P.
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Note 1: Forces acting over the surface of a body are never idealized point
forces , they are, in reality, forces per unit area applied over some finite
area. These external forces per unit area are called also tractions.

Note 2: Cauchy’s stress postulate

If we consider another oriented plane =’ containing the same point P(x;) ,
then the stress vector is likely to have a different direction. For this
purpose, Cauchy made the following postulated — known as Cauchy’s
stress postulate.

“The stress vector T depends on the orientation of the plane upon which it

acts”.

Let Vv be the unit normal to plane = through the point P. This normal
characterize the orientation of the plane upon which the stress vector acts.

For this reason , we write the stress vector as T, indicating its dependence

on the orientation v .

Cauchy’s Reciprocal relation

When the plane = is in the interior of the elastic body , the normal vV has
two possible directions that are opposite to each other and we choose one
of these directions.

Fig. (2.2)

For a chosen V , the stress vector Tis interpreted as the internal surface

force per unit area acting on plane © due to the action of part B of the
material / body which V is directed upon the part A across the plane =.

-
Consequently , T is the internal surface force per unit area acting on &

due to the action of part A for which V is the outward drawn unit normal.
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- v
By Newton’s third law of motion , vector T and T balance each other as

the body is in equilibrium. Thus

which is known as Cauchy’s reciprocal relation.

Homogeneous State of Stress

If = and =’ are any two parallel planes through any two points P and P’ of
a continuous elastic body , and if the stress vector on & at P is equal to the

stress on ©' at P’ , then the state of stress in the body is said to be a
homogeneous state of stress.

2.4 NORMAL AND TANGENTIAL STRESSES
In general , the stress vector 'E is inclined to the plane on which it acts and

\
need not be in the direction of unit normal V. The projection of T on the

A

normal Vv is called the normal stress. It is denoted by ¢ or o, The
v v
projection of T on the plane =, in the plane of T and V , is called the

tangential or shearing stress. It is denoted by t or o:.
v

Fig. (2.3)
Thus,

\Y
.V , T=ot=T.

T

G =0n-=

v
| TP =00’ + 0/ )

where { is a unit vector normal to vV and lies in the place 7.

A stress in the direction of the outward normal is considered positive (i.e.
o > 0) and is called a tensile stress. A stress in the opposite direction is
considered negative (o < 0) and is called a compressible stress.
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\ v
If 6 =0, Tis perpendicular to V. Then, the stress vector T is called a pure

shear stress or a pure tangential stress.

v v
If t=0, then T is parallel to V. The stress vector T is then called pure

normal stress.

v
When T acts opposite to the normal v , then the pure normal stress is
called pressure (¢ <0, T =0).

From (1) , we can write

0
T=zocvV+1f 3)
Voo
and 1=,/|T|" o (4)
v . \"
Note:oi=1=|T|sina = |c|=|T x V|, as| Vv |=1.

\
This t in magnitude is given by the magnitude of vector product of T and
V.
2.5 STRESS COMPONENTS

Let P(x;) be any point of the elastic medium whose coordinates are (X , Xz ,
X3) relative to rectangular cartesian system o X; Xz Xs.

X3

€3 POy

X
Oe2 2

€1

Fig. (2.4)
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1
Let T denote the stress vector on the plane , with normal along x; — axis ,

1
at the point P. Let the stress vector T has components ti1 , T12, T13, I.€.,

1
T =111 él + T12 é2 + T13 é3

2
Let T be the stress vector acting on the plane || to x; X3 — plane at P. Let

= Tyj é. . (2)

Similarly

T =1a1 € t 1326 +133 €

= T3j éj . (3)

Equations (1) — (3) can be condensed in the following form

T =1 €. 4)
Then T.& =(wé). 6
= Tij ik
= Tik- (5)

Thus, for given i & j , the quantity t;; represent the jth components of the
i
stress vector T acting on a plane having é as the unit normal. Here , the

first suffix i indicates the direction of the normal to the plane through P
and the second suffix j indicates the direction of the stress component. In
all , we have 9 components t;; at the point P(x;) in the 0 X1 X2 X3 system.
These quantities are called stress — components. The matrix
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(W)=| Tw T T |
T T3 Ts3
whose rows are the components of the three stress vectors, is called the
matrix of the state of stress at P. The dimensions of stress components are
force =M L1172
(Length)

The stress components ti11 , T2 , 133 are called normal stresses and other
1
components Ti2 , T13, T21 , T23 , Ta1 , Ta2 are called shearing stresses (- T .é, =

1
e, I -éz =e€12, etc)

In CGS system, the stress is measured in dyne per square centimeter.

In English system , it measured in pounds per square inch or tons per square
inch.

Dyadic Representation of Stress

It may be helpful to consider the stress tensor as a vector — like quantity
having a magnitude and associated direction (s) , specified by unit vector.
The dyadic is such a representation. We write the stress tensor or stress
dyadic as

=l

= Tij € €;
=111 66 t112€6 €6 +tT1T13€ € +116,€6 +106,6

+ 703 6, 6, + 1316, 6, + 1326, 6, + 1336, 6, Q)

where the juxtaposed double vectors are called dyads.

i
The stress vector T acting on a plane having normal along €, is evaluated
as follows :

_|
1

Q

D>

(’Cjk éj ek) . €
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= Tjk €; (Oki)

=T €

= Tjj éj.

2.6 STATE OF STRESS AT A POINT-THE STRESS TENSOR

We shall show that the state of stress at any point of an elastic medium on
an oblique plane is completely characterized by the stress components at
P.

'
Let T be the stress vector acting on an oblique plane at the material point

P, the unit normal to this plane being Vv =v;.

Through the point P , we draw three planar elements parallel to the
coordinate planes. A fourth plane ABC at a distance h from the point P
and parallel to the given oblique plane at P is also drawn. Now, the
tetrahedron PABC contains the elastic material.

Fig. (2.5)

Let 1;; be the components of stress at the point P. Regarding the signs
(negative or positive) of scalar quantities t;; , we adopt the following
convention.

If one draws an exterior normal (outside the medium) to a given face of
the tetrahedron PABC ,then the positive values of components t; are
associated with forces acting in the positive directions of the coordinate
axes. On the other hand , if the exterior normal to a given face is pointing
in a direction opposite to that of the coordinate axes , then the positive
values of t; are associated with forces directed oppositely to the positive
directions of the coordinate axes.

Let o be the area of the face ABC of the tetrahedron in figure. Let 61 , o2,
o3 be the areas of the plane faces PBC , PCA and PAB (having normals
along X1 -, X2 - & X3 — axes) respectively.

Then

175
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Gi=0cCos (X, V) =aoV; D

The volume of the tetrahedron is

1

vzghc. 2

Vv "
Assuming the continuity of the stress vector T = T, , the xj — component of

the stress force acting on the face ABC of the tetrahedron PABC (made of
elastic material) is

(T, +e)o, ©)
provided rlmiTo €i=0. (3a)

Here , €’s are inserted because the stress force act at points of the oblique
plane ABC and not on the given oblique plane through P. Under the
assumption of continuing of stress field , quantities ;’s are infinitesimals.

We note that the plane element PBC is a part of the boundary surface of
the material contained in the tetrahedron. As such , the unit outward
normal to PBC is -é,. Therefore , the x; — component of force due to stress

acting on the face PBC of area o3 is

(-’Cli + Eli) o1 (43.)
where lim €4 =0.
h—0

Similarly forces on the face PCA and PAB are
(-t2i + €2i) G2,
(-t3i + €3i) O3

€ri = lim €3 =0. (4b)
h—0

with lim
h—0

On combining (4a) and (4b) , we write
(i + €ji) oj, ®)
as the x; — component of stress force acting on the face of area o; provided

lim €ji = 0.

h—0
In equation (5) , the stress components 1;; are taken with the negative sign
as the exterior normal to a face of area o;j is in the negative direction of the
Xj — axis.
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Let F; be the body force per unit volume at the point P. Then the x; —
component of the body force acting on the volume of tetrahedron PABC is

%h ofF + &) (6)

where €i’s are infinitesimal and

lim e’ =0.
h—0

Since the tetrahedral element PABC of the elastic body is in equilibrium,
therefore , the resultant force acting on the material contained in PABC
must be zero. Thus
v 1
(T, + €)oo+ (-1 + €j)oj + é(Fi +¢i)ho =0.

Using (1) , above equation (after cancellation of ) becomes

(-Fi +€i) + (i + €y + %(Fi +¢€i')h=0. (7

As we take the limit h — 0 in (7) , the oblique face ABC tends to the given
oblique plane at P. Therefore , this limit gives

T —’CjiVjZO

or

<

i = Ti Vi (8)

\
This relation connecting the stress vector T and the stress components 7;;
is known as Cauchy’s law or formula.

It is convenient to express the equation (8) in the matrix notation. This has
the form

<

< -

(82)

N
iy
N
N
N
o
N
<
)

—<
iy
w
N
N
w
By
@

Vv
As T, and v; are vectors. Equation (8) shows , by quotient law for tensors ,

that new components t;; form a second order tensor.
This stress tensor is called the CAUCHY’S STRESS TENSOR.
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We note that , through a given point , there exists infinitely many surface
plane elements. On every one of these elements we can define a stress
vector. The totality of all these stress vectors is called the state of stress at
the point. The relation (8) enables us to find the stress vector on any
surface element at a point by knowing the stress tensor at that point. As
such , the state of stress at a point is completely determined by the stress
tensor at the point.

Note : In the above , we have assumed , first , that stress can be defined
everywhere in a body , and , second , that the stress field is continuous.
These are the basic assumptions of continuum mechanics. Without these
assumptions , we can do very little. However , in the further development
of the theory , certain mathematical discontinuities will be permitted /
allowed.

2.7 BASIC BALANCE LAWS

(A) Balance of Linear Momentum :

So far , we have discussed the state of stress at a point. If it is desired to
move from one point to another , the stress components will change.
Therefore, it is necessary to investigate the equations / conditions which
control the way in which they change.

While the strain tensor ej; has to satisfy six compatibility conditions , the
components of stress tensor must satisfy three linear partial differential
equations of the first order. The principle of balance of linear momentum
gives us these differential equations. This law , consistent with the
Newton’s second law of motion , states that the time rate of change of linear
momentum is equal to the resultant force on the elastic body.

Consider a continuous medium in equilibrium with volume t and bounded
by a closed surface ¢. Let F; be the components of the body force per unit

'
volume and T, be the component of the surface force in the x; — direction.

For equilibrium of the medium , the resultant force acting on the matter
within T must vanish . That is

[ Fidee | T do=0, fori=1,2,3. (1)

We know the following Cauchy’s formula

T =gy, (i=1,2,3), 2



CONSTITUTIVE EQUATIONS OF LINEAR ELASTICITY 179

where T is the stress tensor and vj is the unit normal to the surface. Using
(2) into equation (1) , we obtain

I ,:idTJ,I Givjdo =0, (i=1,2,3) (3)

g

We assume that stresses tj and their first order partial derivatives are also
continuous and single valued in the region 1. Under these assumptions ,
Gauss — divergence theorem can be applied to the surface integral in (3)
and we find

j. Tjide(S:J Tji,jd T (4)

g

From equations (3) and (4) , we write

| ii+F)de=0, ()

for each i = 1, 2, 3. Since the region t of integration is arbitrary (every
part of the medium is in equilibrium) and the integrand is continuous, so ,
we must have

’Cji,j+Fi:0, (6)

foreach i =1, 2,3 and at every interior point of the continuous elastic
body. These equations are

0Ty, N 0Ty N 0Ty
X DXy O%g

+F=0,

0t 0Ty 0Ty . _ ()
8Xl axz aXS i 1
0713 n 0Ty n 073
axl aXZ 8X3

+F=0.

These equations are referred to as Cauchy’s equations of equilibrium. These
equations are also called stress equilibrium equations. These equations are
associated with undeformed cartesian coordinates.

These equations were obtained by Cauchy in 1827.

Note 1 : In the case of motion of an elastic body , these equations (due to
balance of linear momentum) take the form
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Tij + Fi=p U, (8)

where U, is the acceleration vector and p is the density (mass per unit
volume) of the body.

Note 2 : When body force F; is absent (or negligible) , equations of
equilibrium reduce to

Tjij = 0. 9

Example: Show that for zero body force, the state of stress for an elastic
body given by

T =X +y+3722 1 =2X+Yy? +227, t3=-2X+y+7°
0 3 2 2
T12=T1=XY+Z ,T13=T1 =Y —XZ,T3=T32=X" —-YZ
is possible.

Example: Determine the body forces for which the following stress field
describes a state of equilibrium

T11=-2X° =3y’ =52, 1 = -2y’ + 7, T3 = 4X +y +32-5
T2 =T =Z+4XY—-6,T3=11 =-3X+2y+ 1,153 =132=0

Example: Determine whether the following stress field is admissible in an
elastic body when body forces are negligible.

yz+4 z24+2x  5y+z
[ti] = . XZ + 3y 8x>
2Xyz
(B) Balance of Angular momentum
The principle of balance of angular momentum for an elastic solid is —

“The time rate of change of angular momentum about the origin is equal to
the resultant moment about of origin of body and surface forces.”

This law assures the symmetry of the stress tensor ;.

Let a continuous elastic body in equilibrium occupies the region =t
bounded by surface . Let F; be the body force acting at a point P(x;) of
the body. Let the position vector of the point P relative to the origin be T =
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X; €. Then , the moment of force F is T x F = ejjx Xj Fx , Where ej is the
alternating tensor.

As the elastic body is in equilibrium , the resultant moment due to body
and surface forces must be zero. So,

j & Xj Frdt+ j ey Xj Tcdo =0, 1)

T g

foreachi=1, 2, 3.

Since , the body is in equilibrium , so the Cauchy’s equilibrium equations
gives

Fk = -tk (2a)

v
The stress vector T, in terms of stress components is given by

T =KV (2b)
The Gauss — divergence theorem gives us

.[eijk Xj Tik VI do = J.[Eijk Xj ’l7|k],| dz

g T

= Ieijk [Xj Tk, t 5j| ’l7|k] dt

T

= Ieijk [Xj Tk + ‘Cjk] dt. (3)

T

From equations (1) , (2a) and (3) ; we write

Ieijk Xj (—tiks) dt + Ieijk [Xj Tik, T ’l?jk] dt=0.

T T

This gives

J.eijk Tjk dT = 0, (4)

T

for i =1, 2, 3. Since the integrand is continuous and the volume is
arbitrary , so

Eijk Tjk = 0, (5)
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fori=1, 2,3 and at each point of the elastic body. Expanding (5) , we
write

€123 T3+ €132 132 =0

= T3 — 132 = 0,
€23T13+ €231 131 =0

= T13 = T31, (6)

€32 T2t €321 121 =0
= T12 = T21.
That is

Tij = Tji fori=j @)
at every point of the medium.

This proves the symmetry of stress tensor.

This law is also referred to as Cauchy’s second law. It is due to Cauchy in
1827.

Note 1 : On account of this symmetry , the state of stress at every point is
specified by six instead of nine functions of position.

Note 2 : In summary , the six components of the state of the stress must
satisfy three partial differential equations (t;;; + Fi = 0) within the body

and the three relations (T, = tj v;) on the bounding surface. The equations

\
T, = vj are called the boundary conditions.

Note 3 : Because of symmetry of the stress — tensor , the equilibrium
equations may be written as

tijj + Fi=0.
Note 4 : Since T; = 7; , equations of equilibrium (using symmetry of <)

may also be expressed as
i
Ty =—Fi
or

divT =—F.
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Note 5 : Because of the symmetry of 1;; , the boundary conditions can be
expressed as

\')
T =7 Vj

Remark : It is obvious that the three equations of equilibrium do not
suffice for the determination of the six functions that specify the stress
field. This may be expressed by the statement that the stress field is
statistically indeterminate. To determine the stress field , the equations of
equilibrium must be supplemented by other relations that can’t be
obtained from static considerations.

2.8 TRANSFORMATION OF COORDINATES

We have defined earlier the components of stress t; with respect to
cartesian system o X; X2 X3. Let Oxy" Xp" X3’ be any other cartesian system
with the same origin but oriented differently. Let these coordinates be
connected by the linear relations

Xp' = api Xi (@D)]

where ap; are the direction cosines of the xp’ - axis with respect to the x; —
axis. That s,

api = COS(Xp' , Xi) . (2

Let 1'pq be the components of stress in the new reference system (Fig.).

A X3
AL33
/ ’
/Lizz
—X2
T11
X1

Given stresses

Fig. (2.6)
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Desired stresses

Fig. (2.7) Transformation of stress components under rotation of co-ordinates
system.

We shall now obtain a general formula ,in the form of the theorem given
below , which enables one to compute the component in any direction v of
the stress vector acting on any given element with v’ .

Theorem: let the surface element Ac and Ac’ , with unit normalsv and v’
v
pass through the point P. Show that the component of the stress vector T

acting on Ac in the direction of V'’ is equal to the component of the stress

\%
vector T acting on Ac’ in the direction of V.

Proof: In this theorem , it is required to show that

T V= % v @A)
The Cauchy’s formula gives us

T =4y @)
and

T, = Tij Vi, ®)

due to symmetry of stress tensors as with

V=vjand V' =vj.

Now '[.\7:T.vi
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= (Tij vj) V¥

\

=T

Vi’

= <

=T . 9" (6)

This completes the proof of the theorem.

Article : Use the formula (3) to derive the formulas of transformation of
the components of the stress tensor ;.

Solution : Since the stress components 1’y is the projection on the x’q — axis
of the stress vector acting on a surface element normal to the x’, — axis (by
definition) , we can write

P
Tq=T, =T,V (7)

q

where

V' is parallel to the x’p — axis

vV is parallel to the x’q — axis. (8)
Equations (6) and (7) imply

Tpg = Tij Vi’ Vj.. )
Since

Vi’ = cos(Xp , Xi) = api

Vj = COoS(X'q , Xj) = ag;- (10)
Equation (9) becomes

T'pq = @pi Agj Tij- (11)

Equation (11) and definition of a tensor of order 2 show that the stress
components T transform like a cartesian tensor of order 2. Thus , the
physical concept of stress which is described by 1 agrees with the
mathematical definition of a tensor of order 2 in a Euclidean space.

Theorem: Show that the quantity

0=111+ 10+ T3

185
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is invariant relative to an orthogonal transformation of cartesian
coordinates.

Proof: Let 1;; be the tensor relative to the cartesian system o X; X Xs. Let
these axes be transformed to o X;" X’ X3’ under the orthogonal
transformation

X’p = Qpi Xj , 1)
where
api = COS(Xp , Xi). 2

Let t',q be the stress components relative to new axes. Then these
components are given by the rule for second order tensors,

T'pg = 8pi g Tij- 3)
Putting g = p and taking summation over the common suffix , we write
T'pp = 8pi Apj Tjj
= Bij Tij
= Tjj.
This implies
T+ tTn+t=t1+12+133=0 4)
This proves the theorem.

Remark: This theorem shows that whatever be the orientation of three
mutually orthogonal planes passing through a given point , the sum of the
normal stresses is independent of the orientation of these planes.

Exercise 1 : Prove that the tangential traction , parallel to a line | , across a
plane at right angles to a line I’ , the two lines being at right angles to each
other , is equal to the tangential traction , parallel to the line I , across a
plane at right angles to I.

Exercise 2 : Show that the following two statements are equivalent.
(a) The components of the stress are symmetric.

(b) Let the surface elements Ac and Ac’ with respective normals v and v’

pass through a point P. Then 1V' =T V.
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<
11
QD
-]
o
=3
1
—

Hint: (b) = (a). Let

Then

<
=3
Il
L=
—
11
— _
Il
a

<

—
>
1
1 =]
_"
1
i [
1
Kal

and

v v'
by assumption, T . v'=T . ¥V , therefore tjj = 1j

This shows that ;; is symmetric.

Example 1: The stress matrix at a point P in a material is given as

3 1 4
[ti]=]1 2 -5
4 -5 0

Find

(i) the stress vector on a plane element through P and parallel to the plane
2X1+Xo—X3=1,

(i) the magnitude of the stress vector , normal stress and the shear stress ,
(iii) the angle that the stress vector makes with normal to the plane.

Solution: (i) The plane element on which the stress — vector is required is
parallel to the plane 2X1 + X2 — X3 = 1. Therefore , direction ratios of
the normal to the required plane at P are < 2, 1, -1>. So, the d.c.’s of the
unit normal Vv =v; to the required plane at P are

Vv \
Let T =T, be the required stress vector. Then , Cauchy’s formula gives

<

-

3 1 47 26
1 2 —5|| 16 |
4 -5 0]|-1/6

<

N

o<

or
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So , the required stress vector at P is

T= \E(é1+3é2+é3)

and

(if) The normal stress G is given by

6=T.7 \F \/1_(2+3 1)——><4 2,

and the shear stress 71 is given by

v 33 5
= TZ— 2:\/——4:—
= |1TF o7 = Fa=2

Vv
(As t=0, so the stress vector T need not be along the normal to the plane

element)

v
(iii) Let 6 be the angle between the stress vector T and normal v

Then

1—|<

cos 0 = 1/

IT | IVI /

This determines the required inclination.

Example 2: The stress matrix at a point P(x;) in a material is given by
X% X 0

[ij] = Xy 0 =X |-
0 — X, 0
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Find the stress vector at the point Q (1, 0, -1) on the surface x,* + X3* = X.
Solution: The stress vector 'IV' is required on the surface element
(X1, X2, X3) = X1— X" —X3° =0,
at the point Q(1, 0, -1).
We find Vf= & +26, and | Vf|= /5 at the point Q.

Hence , the unit outward normal v = v; to the surface f = 0 at the point

Q(L,0,-1)is

1
V=—=—"+(6+26
v e @28
giving
2
Vl:T’VZZO’VFﬁ
The stress matrix at the point 2,0,-1Dis
-1 0
[tjJ=| 1 0 O
0O 0 O

<

Let T =T, be the required stress vector at the point Q. Then , by

Cauchy’s law

<

-
|
[EEY
=
o
[y
~

<

We find T, -

Hence , the required stress vector at Q is
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v 1 . .
T = E(—eﬁez).

Example 3: The stress matrix at a certain point in a material is given by

3 1 1
[j]=|1 O 2.
1 2 0

Find the normal stress and the shear stress on the octahedral plane
element through the point.

Solution: An octahedral plane is a plane whose normal makes equal angles
with positive directions of the coordinate axes. Hence , the components of
the unit normal v = v; are

\

Let1i’ =T

be the stress vector through the specified point. Then ,

Cauchy’s formula gives

<

<

N

I
o
PR oW
o N B
(TN SN

I
™
wWw W o1

\

3

The magnitude of this stress vector is

Let ¢ be the normal stress and t be the shear stress. Then

11

NV==0B+3+3)=—,
( ) 3

Q

11

1 =<
Wl

and

9 9 3

T _—— =

_ [43 121_\/129:121_ 8 22
3 9 -
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Since ¢ > 0, the normal stress on the octahedral plane is tensile.

Example 4: The state of stress at a point P in cartesian coordinates is given
by

T11 — 500 , T12 — To1 — 500 , T13 — T31 — 800 , Too — 1000 s
T33 — -300 , To3 = T32 = —750.

Compute the stress vector T and the normal and tangential components

on the plane passing through P whose outward normal unit vector is

1, 1,
V_Eel+§e2+

D>
w

Sl

Solution: The stress vector
T=Té
IS given by
Ti = 1 Vj.
We find
T1 = T13 Vi + Toy Vo + T3y V3 = 250 + 250 + 400+/2
=500 + 400 x (1.41)
=500 + 564 = 1064, approx.

To=1T1o V1 + T Vo + 132 V3 = 250 + 250 + @

J2

=221, App.

T3 =13 V1 + To3 Vo + 133 V3 = 400 — 375 - 150\/5 =25 -
150(1.41)

=-187, app.
2.9 STRESS QUADRIC

In a trirectangular cartesian coordinate system 0 X; X2 X3 , consider the
equation

Tij Xi Xj = + K2 1)
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where (X1 , Xo , X3) are the coordinates a point P relative to the point P°
whose coordinates relative to origin O are (xi°, x2° , X3°) , wjj is the stress
tensor at the point P°(x;°) , and k is a real constant .

The sign + or — is so chosen that the quadric surface (1) is real.
The quadric surface (1) is known as the stress quadric of Cauchy with its
centre at the point P°(x;°).

X3
Aj P ,
T
P 0 X2
X1
X3

X2
X1

Fig. (2.8)

Let A; be the radius vector , of magnitude A , on this stress quadric
surface which is normal on the plane = through the point P° having stress
tensor T;;. Let ¥ be the unit vector along the vector A;. Then

Vi = Aj /A = Xi /A. (2)

Let T denote the stress vector on the plane = at the point P°. Then , the
normal stress N on the plane = is given by
v '
N=-[.\’/\:Ti Vi = Tjj Vj Vi = Tjj Vi Vj. (3)
From equations (1) and (2) , we obtain
i (A V) (Av;) = + K2

TijViVj == k2 /A2
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N =+ k%/A% (4)

This gives the normal stress acting on the plane © with orientationV = v; in
terms of the length of the radius vector of the stress quadric from the point
(centre) P° along the vector vi;.

The relation (4) shows that the normal stress N on the plane = through P°
with orientation along A is inversely proportional to the square of that

radius vector A; = P°P of the stress quadric.

The positive sign in (1) or (4) is chosen whenever the normal stress N
represents tension (i.e., N > 0) and negative sign when N represents
compression (i.e. , N <0).

The Cauchy’s stress quadric (1) possesses another interesting property.
This property is

“The normal to the quadric surface at the end of the radius vector A is parallel

'
to the stress vector T acting on the plane & at P°.”
To prove this property , let us write equation (1) in the form
G(X1, X2, X3) = Tij Xi X F kK*=0. (5)
Then the direction of the normal to the stress quadric surface is given by

the gradient of the scalar point function G. The components of gradient
are

oG

— =17j (Sin) Xj + Tij Xi(Sjn) = 2 Tnj X;

X,
=2AT,. (6)
rmal

Fig. (2.9)
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Equation (6) shows that vectors T, and G

are parallel. Hence the stress

n

\
vector T on the plane & at P° is directed along the normal to the stress

quadric at P, P being the end point of the radius vector A;= P°P.
Remark 1: Equation (6) can be rewritten as

v
T = (V0. ™

\
This relations gives an easy way of constructing the stress vector T from
the knowledge of the quadric surface G(x; , X» , X3) = constant and the
magnitude A of the radius vector A;.

Remark 2: Taking principal axes along the coordinate axes , the stress
guadric of Cauchy assumes the form

T1 X12 + 1 X22 + 13 X32 =+ k2 (8)

Here the coefficients 11 , 12, 13 are the principal stresses. Let the axes be so
numbered that t; > 1, > 13.

If t1 > 1, > 13> 0, then equation (8) represents an ellipsoid with plus sign.
Then , the relation N = k%A% implies that the force acting on every surface
element through P° is tensile (as N < 0).

If 0> 1 > 1, > 13, then equation (8) represents an ellipsoid with a negative
sign on the right and N = -k%A? indicates that the normal stress is
compressive (N>0).If iy =, #130ru =1t =130r T3 =13# T2, then the
Cauchy’s stress quadric is an ellipsoid of revolution.

If 11 = 1, = 13, then the stress quadric is a sphere.
2.10 PRINCIPAL STRESSES

)
In a general state of stress , the stress vector T acting on a surface with

outer normal vV depends on the direction of V.

\'
Let us see in what direction v the stress vector T becomes normal to the

surface , on which the shearing stress is zero. Such a surface shall be called
a principal plane , its normal a principal axis , and the value of normal stress
acting on the principal plane shall be called a principal stress.
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Let V define a principal axis at the point P°(x;°) and let t be the
corresponding principal stress and ;; be the stress tensor at that point. Let

\'
T be the stress vector. Then

'Ii' =1V,
or
T=tv )
Also 'Fi = Tjj Vj 2
Therefore Tij Vj = Vi = T 8ij Vj
or (tij - ©d;) vj =0. 3)
The three equations ,i=1, 2, 3, are to be solved for vy, v, , v3. Since V is

a unit vector , we must find a set of non — trivial solutions for which
ViZ+ Vvl +vs? =1,

Thus , equation (3) poses an eigenvalue problem. Equation (3) has a set of
non — vanishing solutions v , v, , vs iff the determinant of the coefficients
vanishes , i.e.

| tij - ©8;[ =0,
=7 T 713
or T Ty —T Ty3 =0. (3a)
713 T3 T3 — T

On expanding (2) , we find
1 +0:17°—0,1+0;=0, (3b)

where

01 =111 + T2 + T33
(4a)

Ty T3 T T

, (4b)

Tz 133 Ta1 a3 Ty T
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03 = €ijk T1i T2 Tak = det.(Tj). (4c)

Equation (3) is a cubic equation in 7. Let its roots be t; , 12, 3. Since the
matrix of stress, (t;) is real and symmetric , the roots t; of (3) are all real.
Thus, 11, T2, T3 are the principal stresses.

A

For each value of the principal stress , a unit normal vector vV can be
determined.

1 2 3
Case | : When 11 # 10 # 13, let vi,v,,v, be the unit principal axes

corresponding to the principal stresses t; , 12 , T3 , respectively. Then
principal axes are mutually orthogonal to each other.

3
Case Il : If 1y = 12 # 13 are the principal stresses , then the direction v,
corresponding to principal stress 13 is a principal direction and any two

3
mutually perpendicular lines in a plane with normal v, may be chosen as
the other two principal direction of stress.

Case Il : If 1, = 12 = 13, then any set of orthogonal axes through P° may be
taken as the principal axes.

Remark : Thus , for a symmetric real stress tensor t; , there are three
principal stresses which are real and a set of three mutually orthogonal
principal directions.

If the reference axes x; , X2 , X3 are chosen to coincide with the principal
axes , then the matrix of stress components becomes

, O 0
k=0 7, O 5)
0 O 7,

Invariants of the stress — tensor :
Equation (3) can be written as

(t-n)(t-12) (t-13) =0, (6)
and we find

0=+t +1

=ttt T
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0:=T117213 (7)

Since the principal stress 11 , T2, T3 Characterize the physical state of stress
at point, they are independent of any coordinates of reference.

Hence , coefficients 0; , 0, , 63 of equation (3) are invariant w.r.t. the
coordinate transformation. Thus 0 , 6, , 05 are the three scalar invariants
of the stress tensor ;.

These scalar invariants are called the fundamental stress invariants.
Components of stress t;; in terms of s

Let X, be the principal axes. The transformation law for axes is

Xa = Aig, Xi
or

Xi = Qig Xq (8)
where

Qi = COS(Xj , Xo)- 9

The stress — matrix relative to axes X, is
Top = diag(ti, 12, 13). (10)

Let t;j be the stress — matrix relative to x; — axis. Then transformation rule
for second order tensor is

Tij = Qia Aip Top

3
= Zam (Yo Ta)-
a=1
This gives

3
Tij = Zam djo Ta- (11)
a=1

Definition (Principal axes of Stress)

A system of coordinate axes chosen along the principal directions of stress
is referred to as principal axes of stress.

Question: Show that , as the orientation of a surface element at a point P
varies , the normal stress on the surface element assumes an extreme value
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when the element is a principal plane of stress at P and that this extremum
value is a principal stress.

Solution: Let 7 be the stress tensor at the point P. Let t be the normal

stress on a surface element at P having normal in the direction of unit
vector V =v;. Then, we know that

T=Tij Vi Vj (D)

we have to find vV = v; for which t is an extremum. Since V = v; is a unit
vector , we have the restriction

Vkk—1=0 (2)

We use the method of lagrange’s multiplier to find the extremum values of
7. The extreme values are given by

8i\/i {Tij Vi vj - A(vik vk = 1)} =0 ®)

where A is a Lagrange’s multiplier. From (3) , we find
Tij {Vj + ij Vi} — A{2vi Gik} = 0
= 27jVj—2Av; =0
= Tij Vi - A 6 vj =0
= (tij-Adij) vj=0. 4)

These conditions are satisfied iff V = v; is a principal direction of stress
and t = A is the corresponding principal stress.

Thus , T assumes an extreme value on a principal plane of stress and a
principal stress is an extreme value of t given by (1).

2.11 MAXIMUM NORMAL AND SHEAR STRESSES

Let the co-ordinate axes at a point P° be taken along the principle
directions of stress. Let 13, 12, T3 be the principal stresses as P°. Then

T11 =T, T2 =T2, T33 = 13,

T12 = T3 =131 = 0.
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\
Let T be the stress vector on a planar element at P° having the normal V

=v;. Let N be the normal stress and S be the shearing stress. Then

Vv

| T =N +8% )
The relation

Vi = Tij Vj
gives

TV1:T1V1,-|\-/2212V2:'|\'/3213V3, (1a)
so that

N=T . 0=T vizuvl+nvliiw . (1b)

N is a function of three variables v; , v, , v3 connected by the relation
VkVk—1=0. (2
From (1) & (2) , we write
N = 11(1 — Vo2 — v5?) + To Vo? + 13 V5°
=11+ (12 - TV + (13 - 1) Vs’ 3)

The extreme value of N are given by

Ny N
N, oV,
which yield
V2:0,V3:0f0r’52¢’51&’53¢’51.
Hence

Vlzil,V2:V3:0&N:’C1.
Similarly , we can find other two directions
vi=0,v, =41, vy=0,N=1,

V1:0,V2:0,V3:i1,N:’53
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Thus , we find that the extreme values of the Normal stress N are along the
principal directions of stress and the extreme values are themselves
principal stresses. So , the absolute maximum normal stress is the
maximum of the set {t; , 12 , t3}. Along the principal directions , the
shearing stress is zero (i.e. , the minimum).

Now S?= (1’ Vi + 17 Vo2 + 1P V) — (Vi  + T2 Vo2 + 13 vsY)  (3a)

To determine the directions associated with the maximum values of |S].
We maximize the function S(vy , v2, v3) in (3) subject to the
constraining relation v; v; = 1.

For this , we use the method of Lagrange multipliers to find the free
extremum of the functions

F(vi, V2, Vv3) = S%- A(vivi— 1) (4)

For extreme values of F. We must have

T
7
T

d_F_F_, (5)
Ny OV, OV

The equation F 0 gives
ov,

212V —4 T vi(u Vil + oVl + 13V —2A v = 0
or A=1% =2 1t Vi¥ + To Vo + T3 V) (6)
Similarly from other equations ,we obtain

A= 10- 20 (T Vil + T Voo + T3 V59) | (7)

A= - 213 (T Vil + To Vol + T3 V) . (8)
Equations (6) & (7) yield

7 - 1% = 2(12 - 1) (T Vi + T2 Vo? + T3 VaP)
For t; # 12, this leads to

Tp + 11 = 2(TL Va2 + T Vo + T3 Vad)
or vii-1) 1+ @2 —-1) 1 +2vif13=0.

This relation is identically satisfied if
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Vi =

1 1
+—— ,v,= — ,v3=0. 9
NN R ©)
From equations (1b) , (3a) and (9) , the corresponding maximum value of |
S|is
1
|S|max: E|T2-11|

and |N|:%|rl+rz| (10)

For this direction

1 2
g2 = E(le + 1) - (Tl-iz'rzj

[2112 + 27,7 —(rl2 + 7,2+ 214 )]

N

(rl2 + 1% - 21 T2) .

N

This implies
|S|max: ElTl_TZ .
Similarly , for the directions
Vi==%
we have
1
|'S |max = E | T3-11],
1
IN|= 5 | T3+ 11|

Also, for the direction

V]_:O,Vz:i =+

4l

1
— ,V
2 2
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the corresponding values of | S |max and | N | are , respectively ,
1 1
—|rz—13|and —|’l72+’l73|.
2 2

These results can recorded in the following table

V1 V, V3 |S|max/min IN |
0 0 +1 MinS=0 | T3] = Max.
0 +1 0 0 (Min)) | T2 | = Max.
+1 0 0 0(Min.) | 71 | = Max.
0 1 1 1 1
+— | +— | =|1—13|Max. — |+
7 7 2| 2 — T3 | > | T2+ 3|
Min.
1 0 1 1 1 .
+—— +— | = - Max. | — + Min.
N 7 2|’l73 T | 2|T3 1 |
1 1 0 1 1 .
+— | £t— —|t -1 |Max. | =|1+ 1| Min.
\/E \/E 2 | 1 2 | 2 | 1 2 |

If T1 > 1 > 13, then 1y is the absolute maximum values of N and 73 is its
minimum value, and the maximum value of | S | is

1
| S |max = E (T3 - Tl)-

and the maximum shearing stress acts on the surface element containing
the x, principal axis and bisecting the angle between the x; — and x; — axes.
Hence the following theorem is proved.

Theorem : Show that the maximum shearing stress is equal to one — half the
difference between the greatest and least normal stress and acts on the
plane that bisects the angle between the directions of the largest and
smallest principal stresses.

2.12 MOHR’S CIRCLE
(GEOMETRICAL PROOF OF THE THEOREM AS
PROPOSED BY 0.(OTTO) MOHR(1882))

We know that
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N=1 V12 + T V22 + T3 V32 (1)
and 52 + N2 = ‘512 V12 + ’522 V22 + ’532 V32 . (2)
Also viZ+ vl vt =1, (3)

Solving equations (1) — (3) , by Cramer’s rule , for V2, Vo2, va? s we find

V12 — 82 +(N _72)(N _2-3) ’ (4)

(7, — 7)) (7, — 73)

o S*+(N=r;)(N-1,)

" (7, — 1) (7, — 75)

: ()

V32 - S? +(N-7)(N-17,) ’ (6)

(t3— 1) (75— 17,)

Assume that 11 > 1, > 13 50 that 1, — T, > 0 and 11 — 13 > 0. Since v4® is non —
negative. We conclude from equation (4) that

S+ (N=1) (N=13)>0.

or SZ+N2—N(T2+T3)+T2T320

2 2
or 32+(N_’2;’3j 2(72_T3j . (7)

2

This represents a region outside the circle

SZ+ N—TZ+T3j2= Z-Z_T3j2
2 2 ’

inthe (N, S) plane.
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Fig. (2.10) Mohr’s Circles

This circle , say C; , has centre (TZTJFTSOJ and radius % in the

cartesian SN-plane with the values of N as abscissas and those of S as
ordinates.

Since 1, - 13 >0 and 1, - t1 <0, we conclude from (5) that
S+ (N-13) (N—11)<0. (8)

Thus , the region defined by (8) is a closed region , interior to the circle ¢, ,

whose equation is
S+ (N—13) (N—11)=0. (8a)

The circle C, passed through the points (13, 0) , (11, 0) and have centre on
the N — axis.

Finally , equation (6) yields

SP+(N-t)(N-1)=0, (9)
since

3—11<0and 13— 1 <0.

The region defined by (9) is exterior to the circle c3 , with centre on the
N —axis and passing through the points (1, 0) , (2, 0).

It follows from inequalities (7) to (9) that the admissible values of S and N
lie in the shaded region bounded by the circles as shown in the figure.

From figure , it is clear that the maximum value of shearing stress S is
represented by the greatest ordinate O'Q of the circle C..

Hence max = % (10a)

The value of N, corresponding to Spmax is OO’ where

Tl_T3 — Tl+T3

2 2

00’ =13+ (10b)
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Putting the values of S & N from equations (10a , b) into equations (4) —
(6). We find

or
Vi=+ — ,vz3=+ — v, =0. (11)

Equation (11) determines the direction of the maximum shearing stress.
Equation (11) shows that the maximum shearing stress acts on the plane
that bisects the angle between the directions of the largest and smallest
principal stresses.

2.13 OCTAHEDRAL STRESSES

Consider a plane which is equally inclined to the principal directions of
stress. Stresses acting on such a plane are known as octahedral stresses.
Assume that coordinate axes coincide with the principal directions of
stress. Let 11, 12, T3 be the principal stresses. Then the stress matrix is

7, O 0
0 7, O
0 O 75

A unit normal v =y; to this plane is
Vi=Vp = V3= L
1—=V2—=V3—= —=-
J3
\
Then the stress vector T on a plane element with normal V is given by

Vv
Ti = Tjj Vj .

This gives

\ \ \
T, =uvi, T, =Vvo, T, =13V3.

Let N be the normal stress and S be the shear stress. Then

N =

1 =<

R 1
.V :‘51V12+‘52V22+’53V32: §(T1+’Cz+’l73),

and
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$2=| -|i-|2—N2

1
= (T12 Vi? + 17V + 1 V32) ) (it + T3)2

%(le + 77+ 150) - é(u + T+ T3)°

1
§ [3(’512 + ’C22 + ’C32) - (’l712 + ’sz + ’532 +2 11T + ToT3 + T3T1)]

é [(t% + T2 - 2TT0) + (T0° + 13° —2T013) + (T3° + T1° — 2T1T3)]

Ll + (2= + (=)

9

giving

5= :_]3-\/(71 _72)2 +(z, _73)2 + (73 _71)2 .

Example : At a point P, the principal stressesare 11 =4 , 1, =1, 13 = -2.
Find the stress vector , the normal stress and the shear stress on the
octahedral plane at P.

[Hint:N=1,5=6, T = %(4 6 +6,—26)]

2.14. STRESS DEVIATOR TENSOR

Let v;; be the stress tensor. Let
1 1
oo = 3 (ta1 + T2 + T33) = 3 (t1+ 12 + T3)

Then the tensor

(d)

T ij = Tij — G0 Ojj

is called the stress deviator tensor. It specifies the deviation of the state of
stress from the mean stress oo



CONSTITUTIVE EQUATIONS OF LINEAR ELASTICITY

Chapter-3

Analysis of Strain

207

3.1 INTRODUCTION
Rigid Body

A rigid body is an ideal body such that the distance between every pair of its
points remains unchanged under the action of external forces.

The possible displacements in a rigid body are translation and rotation.
These displacements are called rigid displacements. In translation , each point
of the rigid body moves a fixed distance in a fixed direction. In rotation about a
line , every point of the body (rigid) moves in a circular path about the line in a
plane perpendicular to the line.

Line
Fig. (3.1)

In a rigid body motion , there is a uniform motion throughout the body.

Elastic Body

A body is called elastic if it possesses the property of recovering its original
shape and size when the forces causing deformation are removed.

Continuous Body

In a continuous body , the atomistic structure of matter can be disregarded and
the body is replaced by a continuous mathematical region of the space
whose geometrical points are identified with material points of the body.

The mechanics of such continuous elastic bodies is called mechanics of
continuum. This branch covers a vast range of problems of elasticity ,
hydromechanics , aerodynamics , plasticity , and electrodynamics |,
seismology , etc.

Deformation of Elastic Bodies

The change in the relative position of points in a continuous is called
deformation , and the body itself is then called a strained body. The study of
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deformation of an elastic body is known as the analysis of strain. The
deformation of the body is due to relative movements or distortions within the
body.

3.2 TRANSFORMATION OF AN ELASTIC BODY

We consider the undeformed and deformed both
positions of an elastic body. Let Oxi;x,x3 be
mutually orthogonal cartesian coordinates fixed
In space. Let a continuous body B , referred to
system OXx;X,X3 , occupies the region R in the
undeformed state. In the deformed state, the
points of the body B will occupy some region ,say
R'.

X2

X1
Fig. (3.2)

Let P(x1, X2, X3) be the coordinates of a material point P of the elastic body in
the initial or unstained state. In the transformation or deformed state , let this
material point occupies the geometric point P'(€; , &, , &3). We shall be
concerned only with continuous deformations of the body from region R into
the region R" and we assume that the deformation is given by the equation

&1=E&1(X1, X2, X3) ,
&2 = Ea(X1, X2, X3) ,
&3 =Ea(X1, X2, X3) . 1)

The vector PP' is called the displacement vector of the point P and is
denoted by ui.

Thus
Ui:E_,i—Xi ; i:1,2,3 (2)
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or

& =X+ Uj. i=1,2,3 3)
Equation (1) expresses the coordinates of the points of the body in the
transformed state in terms of their coordinates in the initial undeformed state.

This type of description of deformation is known as the Lagrangian method
of describing the transformation of a continuous medium.

Another method , known as Euler’s method expresses the coordinates in the
undeformed state in terms of the coordinates in the deformed state.

The transformation (1) is invertible when

J#0.
Then , we may write
Xi:Xi(él,az,ag) s i:1,2,3. (4)

In this case , the transformation from the region R into region R’ is one —
to —one.

Each of the above description of deformation of the body has its own
advantages. It is however, more convenient in the study of the mechanics of
solids to use Lagrangian approach because the undeformed state of the
body often possesses certain symmetries which make it convenient to use a
simple system of coordinates.

A part of the transformation defined by equation (1) may represent rigid body
motions

(i.e. , translations and rotations) of the body as a whole. This part of the
deformation leaves unchanged the length of every vector joining a pair of
points within the body and is of no interest in the analysis of strain.

The remaining part of transformation (1) will be called pure deformation.

Now , we shall learn how to distinguish between pure deformation and
rigid body motions when the latter are present in the transformation
equations (1).

3.3 LINEAR TRANSFORMATION OR AFFINE
TRANSFORMATION

Definition: The transformation

i = Ei(X1, X2, X3)

is called a linear transformation or affine transformation when the functions &;
are linear functions of the coordinates x; , Xz , Xs.
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In order to distinguish between rigid motion and pure deformation , we
consider the simple case in which the transformation (1) is linear.

We assume that the general form of the linear transformation (1) is of the type
E1=ouo + (o + 1) Xy + o2 X2 + at13 X3,
&2 =00 + 021 X1 + (1 + al22) X2 + 023 X3, 5)
&3 =030 + o3 X1 + 032 X2 + (1 + a33) X3,
or
&i = aio + (atij + &jj) X; (6)
where the coefficients oj are constants and are well known.

Equation (5) can written in the matrix form as

&~y 1+ ay, (247 3 X
Er—tyy | = | Oy 1+ ay, 275 X, ) (7)
&y —ay O3y O I+ og || X
or
U — g (/%] [2/P) U3 Xy
U=y | = | On (277) Oy || X5 |- (8)
Us — g U3 U3 Oz || X3

We can look upon the matrix (o + dij) as an operator acting on the vector
X = X; to give the
vector jo.

If the matrix (ouj + &;) is non — singular , then we obtain

Xy &~y
X, | = (cuj + Esij)_1 &~y ) 9
X3 &y —ay

which is also linear as inverse of a linear transformation is linear.

Infact, matrix algebra was developed basically to express linear
transformations in a concise and lucid manner.

Result (1) : Sum of two linear transformations is a linear transformation.
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Result (2) : Product of two linear transformations is a linear transformation
which is not commutative.
Result (3) : Under a linear transformation , a plane is transformed into a plane.
Proof of (3) : Let

axi+tbx;+cxz+d=0,

be an equation of a plane in the undeformed state. Let

é 1 al bl Cl Xl
& 1=la b o x|,
& a; by Cf| X

be the linear transformation of points. Let its inverse be

Xl Ai Bl Cl § 1
X | =|A B, GC, &
X3 A B G &

Then the equation of the plane is transformed to
a(A1 &1+ B &+ Cp &3) + b(A: + B2 &2 + C2 &)
+C(AgEL+ B3 +CsE3) +d=0
or
a1+ Préa+yi&+d=0,
which is again an equation of a plane in terms of new coordinates (&; , &2, &3).
Hence the result.
Result (4) : A linear transformation carries line segments into line segments.

Thus , it is the linear transformation that allows us to assume that a line
segment is transformed to a line segment and not to a curve.

3.4 SMALL/ INFINITESIMAL LINEAR DEFORMATIONS
Definition (Small / Infinitesimal Deformations)

A linear transformation of the type
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&i = atio + (atij + Oij) X

is said to be a small linear transformation of the coefficients o are so small
that their products can be neglected in comparison with the linear terms.

Result (1) : The product of two small linear transformations is a small linear
transformation which is COMMUTATIVE and the product transformation is
obtained by superposition of the original transformations and the result is
independent of the order in which the transformations are performed.

Result (2) : In the study of finite deformations (as compared to the
infinitesimal affine deformation), the principle of superposition of effects and
the independence of the order of transformations are no longer valid.

Note : If a body is subjected to large linear transformations , a straight line
element seldom remains straight. A curved element is more likely to result.
The linear transformation then expresses the transformation of element P; P, to
the tangent P, T4’ to the curve at Py’ for the curve itself.

X3
R!
R
T,
P2'
Py X,

X1

Fig. (3.3)

For this reason , a linear transformation is sometimes called linear tangent
transformation.
It is obvious that the smaller the element P; P, , the better approximation of

P1'P,’ by its tangent P1'T;'.
3.5 HOMOGENEOUS DEFORMATION

Suppose that a body B, occupying the region R in the undeformed state ,
is transformed to the region R’ under the linear transformation.

&i = atio + (atij + ij) X 1)

referred to orthogonal cartesian system Oxix;x3 . Let € ,€,, é;be the unit base
vectors directed along the coordinate axes Xi , X2 , X3 (Fig. 3.4)
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X3

X1
Fig. (3.5)

1 1 1 2 2 2
Let P1(x;,X5,X3) and Pa(xq,X5,,X3) be two points of the elastic body in the
initial state. Let the positions of these points in the deformed state , due to

1 1 1 2 2 2
linear transformation (1) , be P1'(&,€,,&3 ) and P2'(€;,€5,E3 ).

Since the transformation (1) is linear , so the line segment P,P, is transformed
into a line segment P,'P,".

Let the vector P,P, has components A; and vector P,'P,' has components A;'.
Then

_ 2 1
PR, =A & Ai= X=X, 2
and
X 2 1
PR =A"¢ , A'=E-& . (3)
Let SA = A A, (4)

be the change in vector A.

The vectors A; and Ay’ , in general , differ in direction and magnitude.

From equations (1) , (2) and (3) , we write
2 1
A= &=¢

= [otio + (otij + i) ij 1 [otio + (cij + i) Xl,- ]

213
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2 1 2 1
= (X=X )+ oij(X; — %)

= A+ ai A .
This implies
A’ - A= g A
SA = aij A . (5)

Thus , the linear transformation (1) changes the vector A; into vector A" where

A’ 1+ oy o O3 A
A= oy 1+ ay O3 A, (6)
A O3 (047! 1+ g A

or

oA o 27F} O3 A
OA | =| ay ) o || AL ()
oA U3 U3 ag || A

Thus , the linear transformation (1) or (6) or (7) are all equivalent.

From equation (6) , it is clear that two vectors A; and B; whose components are
equal transform into two vectors Ay and B; whose components are again
equal. Also two parallel vectors transformation into parallel vectors.

Hence,two equal and similarly oriented rectilinear polygons located in different
parts of the region R will be transformed into equal and similarly oriented
polygons in the transformed region R’ under the linear transformation (1).

Thus , the different parts of the body B , when the latter is subjected to the
linear transformation (1) , experience the same deformation independent of
the position of the parts of the body.

For this reason , the linear deformation (1) is called a homogeneous
deformation.

Theorem: Prove that the necessary and sufficient condition for an infinitesimal
affine transform

&ij = atio + (otij + Bij) X

to represent a rigid body motion is that the matrix a; is skew — symmetric
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Proof: With reference to an orthogonal cartesian system o x; Xz X3 fixed in
space , let the line segment P°P of the body in the undeformed state be

transferred to the line segment P°'P' in the deformed state due to infinitesimal
affine transformation

&i = oo + (oj + Oij) Xj 1)

in which aj are known constants. Let A; be vector P°P and A be the vector
POIPI

X3

X1

Fig. (3.6)

Then
Ai=x-X° , AV=§&-§&° . (2
Let SAI= A -A . ©)
From (1) and (2) , we find
A'=¢&-&°
= (otio + atij Xj + Xi) — (ctio + 04 Xj° + X;°)
= (X - %i®) + aij (% - %°)
= A+ o Aj.
This gives
SAI =AY - A= aij A (4)

Let A denote the length of the vector. Then

A=|Ai|= VA A =JA + A+ A’ (5)
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Let SA denote the change in length A due to deformation. Then
SA=|Al-[Ai]. (6)

It is obvious hat A = | A, |, but

5A= J(A+3A)A+5A) -JAA.

This imply
(A +8A)° = (A + 8A) (A + 8A)
or
(8A)? + 2 A SA = (8A) (BA) + 2 A (BA) . (7

Since the linear transformation (1) or (4) is small , the terms (5A)? and (8A))
(0A\) are to be neglected in (7). Therefore , after neglecting these terms in (7) ,
we write

2AB8A=2Ad0A,
or
AOJSA =Ai0Ai = A1 8A1 + Ay 8A; + A3 8A; . (8)

Using (4) , equation (8) becomes
ASA= A (o A)
= aij Ai A
= ot Al + 02 A%+ gy AgE + (o + 021) Ar Ay
+ (o3 + os1)As Ar + (023 + o) A2 As. (9)

Case 1: Suppose that the infinitesimal linear transformation (1) represents a
rigid body motion.

Then , the length of the vector A; before deformation and after deformation
remains unchanged.

That is

SA=0, (10)
for all vectors A,.
Using (9) , we then get

2 2 2
o1 Ar” + o2 Ax oz As” + (a2 + 1) ArAg + (ostasz) Az As
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+ (ous + oa)A1Az =0, (12)

for all vectors A,.
This is possible only when

o1 =02 =033 =0,

oz + o1 = oyt oer =03 tozp=0,
ie., oij=—oji, foralli&j] (12)
.e., the matrix o is skew — symmetric.
Case 2: Suppose aij is skew — symmetric. Then , equation (9) shows that

ABA=0, (13)
for all vectors A;. This implies

5A=0 (14)
for all vectors A;

This shows that the transformation (1) represents a rigid body linear small
transformation.

This completes the proof of the theorem.

Remark: When the quantities aj; are skew — symmetric , then the linear
infinitesimal transformation

SA = aij Aj

equation (11) takes the form

0AL = — o1 Az + ous As,

0Az = a1 A1 — a2 Az,

SAs=—ouz At t oz As . (15)
Let W1 =032 = — 023,

W2 =013 = — 031,

W3 =0l = — 012 . (16)
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Then , the transformation (15) can be written as the vector product
SA=WxA, A7)
where w = w; is the infinitesimal rotation vector. Further
SAi = A - A
=(&i—-&°) - (xi—x°)
= (&i—xi) — E&° —x°)

= OX; — OXi°. (18)
This yields
OX; =0 Xi° + 0A ,
or
Sxi=oxi°+ (wx A). (19)

Here , the quantities
OXi® = &i° - X°

are the components of the displacement vector representing the translation of
the point P° and the remaining terms of (19) represent rotation of the body
about the point P°.

3.6 PURE DEFORMATION AND COMPONENTS OF STRAIN

TENSOR
We consider the infinitesimal linear
transformation
6Ai = Otij Aj . (1)
1
Let Wi = o (ctij - 04i) (2)
and
1
€ = - (@i + 04) ®)

Then the matrix w;; is antisymmetric while e;; is symmetric .
Moreover ,
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oij = &jj + Wiy, (4)

and this decomposition of o;; as a sum of a symmetric and skew — symmetric
matrices is unique.

From (1) and (4) , we write
SA i =g Aj+ Wi Ay . 5)
This shows that the transformation of the components of a vector A; given by

SAI = Wi A, (6)

represents rigid body motion with the components of rotation vector w; given
by

Wi =Wz , Wo =Wi3, W3 =Wy, (7
and the transformation

SAi = ejj Aj, (8)
with eij = ji 9)
represents a pure deformation.
Strain Components
The symmetric coefficients , e;j , in the pure deformation

OA; = g Aj
are called the strain components.

Note (1) : These components of strain characterize pure deformation of the
elastic body. Since A; and 8A; are vectors (each is a tensor of order 1) ,
therefore , by quotient law , the strain components e; form a tensor of
order 2.

Note (2) : For most materials / structures , the strains are of the order of 10>,
Such strains certainly deserve to be called small.

Note (3) : The strain components e1; , € , €33 are called normal strain
components while e, , €13 , €3 , €1 , €31 , €3 are called shear strain
components.

Example : For the deformation defined by the linear transformation

E1=X1+X2,82=X1—2X2, E3= X1+ X2 — X3,
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find the inverse transformation , components of rotation and strain tensor , and
axis of rotation.

Solution : The given transformation is expresses as

& 1 1 0 X,
E1=11 -2 0 X, | D
& 1 1 -1 X,
and its inverse transformation is
X, 11 07" &
X, | =1 -2 0 &
X, 1 1 -1 &
2 1 0114
I @)
1 0 -1||¢&

giving

Xy = %(Zil"‘iz),

1
Xo = g(il'iz) ,
X3 =& -&3 . 3
Comparing (1) with
& = (o + 8i) X : ()
we find
0 1 0
()=]1 -3 0. ®)
1 1 -2
Then
0 0 -1
1 1
wij = E(Otij—(xji) =3 0 o -1/, (6)
1 1 0

and
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1
&jj = 5 (otij + i)

o 1 I
2
1
=1 -3 — 7
> (7)
1 1,
| 2 2 i
and
atij = Wij + €jj (8)
The axis of rotation is
VV = Wi éi
where
Wi = W3y = 1
1 32 2 ’
Wy = Wi3 = -1
2 13 2 ’
W3 =Wy = 0. (9)

3.7 GEOMETRICAL INTERPRETATION OF THE
COMPONENTS OF STRAIN

Normal Strain Component ej;

Let ej; be the components of strains. The pure infinitesimal linear deformation
of a vector A, is given by

6Ai = & Aj , (1)
with €ij = &ji.

Let e denote the extension (or change) in length per unit length of the vector A;
with magnitude A. Then , by definition,

_0A
e—T. 2

221
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we note that e is positive or negative depending upon whether the material line
element A; experiences an extension or a contraction.

Also e = 0 iff the vector A retains its length during a deformation.

This number e is referred to as the normal strain of the vector A,.

Since the deformation is linear and infinitesimal , we have (proved earlier)

A SA = A; 8A (3)
or 5_A = A g A .
A A2

Now from (1) — (3) , we write

_6A _ AS
€= —= 2
A A

1
=?AieijAj.

This implies

e= % [e1r Ar® + €20 A + €3z Ad” + 261 Ap Ag + 2013 Ay Az + 2653 Ay Ag]\
(4)
since ejj = €ji.

In particular , we consider the case in which the vector A; in the undeformed
state is parallel to the x;- axis. Then

Ale,A2:A3:O (5)
Using (5) , equation (4) gives
e=eq1 . (6)

Thus , the component e;; of the strain tensor represents , to a good
approximation the extension or change in length per unit initial length of a
material line segment (or fibre of the material) originally placed parallel to
the x; — axis in the undeformed state.

Similarly , normal strains ey, and es; are to be interpreted.
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e, 0 O
Illustration : Letejj= |0 0 0].
0 0 O

Then all unit vectors parallel to the x; — axis will be extended by an amount ey;.
In this case , one has a homogeneous deformation of material in the direction
of the x; — axis. A cube of material whose edges before deformation are ‘I’
units long will become (after deformation due to e;) a rectangular
parallelopiped whose dimension in the x; — direction is | (1 + e1;) units and
whose dimensions in the direction of the x, — and x3— axes are unchanged.

Remark: The vector
A=A =(A,0,0)

is changed to (due to deformation)
A= (A+3A;1) & +AE, + AL,

in which

OA; = €ij Aj =ej A
give

6A1 =en A , 6A2 = e A , 6A3 = €13 A.

X2

X1

Ai:A él

X3
Fig. (3.7)
Thus

/_A\':(A+611A,912A,613A).
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This indicates that vector A; = (A, 0, 0) upon deformation , in general ,
changes its orientation also.

The length of the vector due to deformation becomes (1 + e1;) A.

Question : From the relation 5A; = ej; Aj, find 3A and 6A; for a vector lying
initially along the x —axis (i.e., A= A#§)) and justify the fact that

5—:‘ =eg1. Does 8A,; lie along the x — axis ?

Answer : Itis given that Ai = (A, 0, 0). The given relation

OA; = g Aj 1)
gives

dA1=e11 A,0A2=en A, 0As=e3A. 2

Thus , in general , the vector 8A; does not lie along the x — axis.

Further

(A +5A) = \[AL+e,) +(€,A) + (B,A)

=A \/1+ 2e, + ell2 + 9122 + 6132 . (3
Neglecting square terms as deformation is small, equation (3) gives
(A+8A¥=A*(1+2en) ,
- AZ+2A6A=}(X+2A2611,
2A8A=2A"ey

oA
— =e11. 4
A 11 ()

This shows that e;; gives the extension of a vector (A, 0, 0) per unit length
due to deformation.

Remark : The strain components e;; refer to the chosen set of coordinate axes.

If the axes are changed , the strain components e;; will , in general , change as
per tensor transformation laws.

Geometrical Interpretation of Shearing Stress e;3
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The shearing strain component ep;; may be interpreted by considering
intersecting vectors initially parallel to two coordinate axes — X, — and X3 —
axes.

Now , we consider in the undeformed state two vectors.
A = A2 é2 ,

B=B;é,, (1)

directed along x, — and x3 — axis , respectively.

The relations of small linear deformation are
SAi -
eij Aj ,

0Biss, €ij Bs (2)
Q

Further , the vectors A; and B; df%e to deformation become (Figure)

X3

68 / P
< 6A SA; P

0B B, %

Fig. (3.8)

X1

A= YAV él + (A2 + 6A2) é2 + 0A3 és,
B’ =8B, &, + 8B, 6, + (B3 + 8Bs) &,. ?3)

Deformed vectors A’ and B’ need not lie in the X, X3 — plane. Let 6 be the
angle between A’and B’. Then
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A B _ OAB, + (A, +A)B, + A (B, + B,) .
AB' [(6A)2 + (A, +A) + (M) /(B,)? + (SB,)? + (B, + 8B,)’

(4)

Since , the deformation is small , we may neglect the products of the
changes in the components of the vector A; and B;. Neglecting these
products , equation (4) gives

cos 0 =

c0s 8 = (A, 8B, + B3 8As) (A; + 8A,) ™ (B3 + 8By)™

AQSBZ + 83 8A3 8A2 - 883 -
1+ 1+ —
A2 Bs Az

(320262

neglecting other terms. This gives

cosG:@Jr% (5)
B, A

neglecting the product terms involving changes in the components of the
vectors Aj and B;.

Since in formula (5) , all increments in the components of initial vectors A;
and B; have been neglected except 8A; and 3B, , the deformation of these
vectors on assuming (w.l.0.q)

0A1 =0A,=0 ,
and 0B; =06B;=0,

can be represented as shown in the figure below (It shows that vectors Ay’
and By’ lie in the X2 X3 — plane). We call that equations (3)
now may be taken as

/_A\'=A2 é2 +6A3é3 s

_B’ = 682 éz + B3 é3. (6)
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R!

Bs
0 €32, \g’_ 0 X2
Ao FA-
Fig. (3.9)
From equations (1) and (2) ,we obtain
dAs=en Az
8B, = €53 By (1)
This gives
es = e =tan| P'OP (8)
A,
and €23 = SBE = tan|_QLO Q. 9
3
Since strains e,3 = es are small , so
ZP'OP=42Q0Q = €3 ,
and hence
283 ~ 90°-0=7m/2-0 . (10)

Thus , a positive value of 2e,3 represents a decrease in the right angle
between the vectors A; and B; due to small linear deformation which were
initially directed along the positive x, — and x3 —axes. The quantity /strain
component eys is called the shearing strain.

A similar interpretation can be made for the shear strain components ej
and ejs.

Shear strain components represent the changes in the relative orientations
of material arcs.
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Remark 1: By rotating the parallelogram R'OP'Q’ through an angle e,;
about the origin (in the x; x3 — plane) , we obtain the following

configurations (Figure)
X3

€3

P(P) X2
Fig. (3.10)

This figure shows a slide or a shear of planar elements parallel to the x; x,
— plane.

Remark 2: Figure shows that the areas of the rectangle OQRP and the
parallelogram OQ’R’P’ are equal as they have the same height and same
base in the x, x3 — plane.

0 0 0
Remark 3: For the strain tensor |0 0 € |
0 €3, 0

a cubical element is deformed into a parallelopiped and the volumes of the
cube and parallelopiped remain the same.

Such a small linear deformation is called a pure shear.

3.8 NORMAL AND TANGENTIAL DISPLACEMENTS

Consider a point P(x; , X2 , X3) of the material. Let it be moved to Q under
a small linear transformation. Let the components of the displacement

vector PQ be u; , Uy, us. In the plane OPQ , let PN = n be the projection
of PQ on the line OPN and let PT = t be the tangential component of
PQ in the plane of OPQ or PQN.

X3

Fig. (3.11)

X1
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Definition: Vectors n and t are , respectively , called the normal and the
tangential components of the displacement of P.

Note: The magnitude n of normal displacement n is given by the dot
product of vectors

@:(X11X21X3) and % :(U]_,UZ,US)-

The magnitude t of tangential vector t is given the vector product of
vectors OP and PQ (This does not give the direction of t).

Thus
_ _ OP.PQ
n = PQ cos|NPQ = o)
~ . _ (OP)(PQ)sin(NPQ) |OP x PQ]|
t—PQsmlM = oP ~ T op|
and

n? +t% = u® + U? + U

3.9 STRAIN QUADRIC CAUCHY

Let P°(x1°, X2°, X3°) be any but fixed point of a continuous medium , with
reference axes o x; X, X3 fixed in space.

We introduce a local system of axes with origin at the point P° and with
axes parallel to the fixed axes (figure).

X3
X3

X2

Fig. (3.12)
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With reference to these local axes , consider the equation

€ij Xi Xj =% k2 , (1)
where k is a real constant and ej; is the strain tensor at P°. This equation
represents a quadric surface with its centre at P°.

This quadric is called the quadric surface of deformation or strain quadric or
strain quadric of Cauchy.

The sign + or — in equation (1) be chosen so that the quadric surface (1)
becomes a real one.
The nature of this quadric surface depends on the value of the strains e;; .

If |ejj| # 0, the quadric is either an ellipsoid or a hyperboloid.

If |ej;| = 0, the quadric surface degenerates into a cylinder of the elliptic or
hyperbolic type or else into two parallel planes symmetrically situated
with respect to the origin P° of the quadric surface.

This strain quadric is completely determined once the strain components
ejj at point P° are known.

Let P°P be the radius vector A of magnitude A to any point P(x1 , X2, X3) ,
referred to local axis , on the strain quadric surface (1). Let e be the
extension of the vector A; due to some linear deformation characterized by

6Ai:eij Aj . (2)
Then , by definition,
o= OA_AA_ AR
AN AT
This gives
e A.
T lalay 3)
using (2).

Since PP = A; and the coordinate of the point P , on the surface (1) ,
relative to P° are (X1, X2, X3) , it follows that

Ai =Xj. (4)

From equations (1) , (3) and (4) ; we obtain
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EAzzeiinAj:einin:ikz
or e A2=+ K2

k2
or e=i—2

()

Result (1) : Relation (5) shows that the extension or elongation of any radius
vector A; of the strain quadric of Cauchy , given by equation (1) , is inversely
proportional to the square of the length A of that radius vector. This
determines the elongation of any radius vector of the strain quadric at the point
P°(xi°).

Result (I1) : We know that the length A of the radius vector A; of strain
guadric (1) at the point P°(x;°) has maximum and minimum values along
the axes of the quadric. In general , axes of the strain quadric (1) differs
from the coordinate axes through P°(x;°).

Therefore , the maximum and minimum extensions /elongations of radius
vectors of strain quadric (1) will be along its axes.

Result (111) : Another interesting property of the strainﬂadric (1) is that

normal v; to this surface at the end point P of the vector P°P = A is parallel
to the displacement vector 8A.;.

To prove this property , let us write equation (1) in the form
G:einin$k2:0. (6)

Then the direction of the normal v to the strain quadric (6) is given by the
gradient of the scalar function G. The components of the gradient are

oG
ax—k = 6jj Oik Xj * €jj X Skj
= €kj Xj * €ik Xi
=2 €kj Xj ,
or
oG
~ = =25A. )
an

This shows that vector g—f and 8A are parallel.
k
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OA; || vi

Fig. (3.13)

Hence , the vector § A is directed along the normal at P to the strain
quadric of Cauchy.

3.10 STRAIN COMPONENTS AT A POINT IN A ROTATION
OF COORDINATE AXES

Let new axes 0 X1’ X2" X3” be obtained from the old reference system o x; x,
X3 by a rotation (figure).

Fig. (3.14)

Let the directions of the new axes x;’ be specified relative to the old system
X; by the following table of direction cosines in which ay; is the cosine of the

angle between the X, - and x; — axis.

That is,
api = Cos (Xp', Xi) .
Thus
X1 X2 X3
X1"|  ann ap a3
Xo' ao1 axo do3
X3’ as1 asp ds3
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Then the transformation law for coordinates is
Xi = api Xp' ,
or
Xp' = api Xi . (2)
The well — known orthogonality relation are
pi 8qi = dpq @)
api apj = Oij , (4)
with reference to new X,' system , a new set of strain components e’y is
determined at the point O while ej; are the components of strain at O
relative to old axes O X3 Xz X3.
Let
eij Xi Xj = £ K, (5)

be the equation of the strain quadric surface relative to old axis. The
equation of quadric surface with reference to new prime system becomes

€' pg X'p Xqg=+ K, (6)

as we know that quadric form is invariant w.r.t. an orthogonal
transformation of coordinates.

Further , equations (2) to (6) together yield
€'pg X'p X'q = €ij Xi Xj
= &ij (api X'p) (agj X'q)
= (&ij api aqj) X'p X'q,
or
(€"pg — @pi agj €ij) X'p X'q = 0. (7
Since equation (7) is satisfied for arbitrary vector x’, , we must have
€'pq = api Aqj &ij - (8)

Equation (8) is the law of transformation for a second order tensor.
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We , therefore , conclude that the components of strain form a second
order tensor.
Similarly , it can be verified that

€ij = @pi Agj &'pq - )

Question : Assuming that e;; is a tensor of order 2 , show that quadratic
form e;j; X; X is an variant.

Solution : We have
€ij = @pi Aqj €'pq »
S0 €ij Xi Xj = api Agj €'pq Xi Xj
= €'pq (@pi Xi) (aqj Xj)
=€'pg X'p X'q .
Hence the result.

3.11 PRINCIPAL STRAINS AND INVARIANTS

From a material point P°(x;°) there emerges infinitely many material arcs
/filaments , and each of these arcs generally changes in length and
orientation under a deformation.

We seek now the lines through P°(x;°) whose orientation is left unchanged
by the small linear deformation given by

SA =g A 1)
where the strain components e;; are small and constant.
In this situation , vectors A; and 8A, are parallel and , therefore ,
SAi=eA )
for some constant e.

Equation (2) shows that the constant e represents the extension

of vector A;.

From equations (1) and (2) , we write
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eij Aj= e A
=edi A ©)
This implies
(eij— e &;j) Aj = 0. 4)

We know that ej; is a real symmetric tensor of order 2. The equation (3)
shows that the scalar e is an eigenvalue of the real symmetric tensor e;;
with corresponding eigenvector A;. Therefore , we conclude that there are
precisely three mutually orthogonal directions whose orientations are not
changed on account of deformation and these directions coincide with the
three eigenvectors of the strain tensor e;;.

These directions are known as principal directions or invariant directions of
strain.

Equation (4) gives us a system of three homogeneous equations in the
unknowns A; , Az, As. This system possesses a non — trivial solution iff the
determinant of the coefficients of the A; , A, , Az is equal to zero, i.e.,

€,—€ € €13
€1 €, —€ €23 =0, (%)
€31 €3, €33 —€

which is a cubic equation in e.

Let e; , e, , e3 be the three roots of equation (5). These are known as
principal strains.

Evidently , the principal strains are the eigenvalues of the second order
real symmetric strain tensor e;; . Consequently , these principal strains are
all real (not necessarily distinct).

Physically , the principal strains e; , e, , e3 (all different) are the extensions

of the vectors , say A , in the principal /invariant directions of strain. So,

i 1 i i
vectors A, 8A, A+ 8A are collinear.

] Sh
PO
Fig. (3.15) J
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At the point P°, consider the strain quadric

€ij Xi Xj = £ K2, (6)

i i
For every principal direction of strain A, we know that & A is normal to

the quadric surface (6). Therefore , the principal directions of strain are
also normal to the strain quadric of Cauchy. Hence, principal direction of
strain must be the three principal axes of the strain quadric of Cauchy.

If some of the principal strains e; are equal , then the associated directions
become indeterminate but one can always select three directions that all
mutually orthogonal (already proved).

If e; # e, = e3, then the quadric surface of Cauchy is a surface revolution
and our principal direction,

1
say A , will be directed along the axis of revolution.

1

A
Fig. (3.16)

In this case , any two mutually perpendicular vectors lying in the plane

1
normal to A may be taken as the other two principal directions of strain.

If e; = e, = e3, then strain quadric of Cauchy becomes a sphere and any
three orthogonal directions may be chosen as the principal directions of
strain.

Result 1 : If the principal directions of strain are taken as the coordinate
axes , then

€11=€1,€2=62,€33=€3
and
ep=€13=€23=0,
as a vector initially along an axis remains in the same direction after

deformation (so changes in right angles are zero). In this case , the strain
guadric of Cauchy has the equation
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1 X1% + €, X2 + 632 Xg? = + K. (7)
Result 2: Expanding the cubic equation (5) , we write
e +viel—ve+v;=0.
where Vi =€11 +exn +es3
= eji = tr(E) , (8)

V2 = €11 €2 + €2 €33 + €33 €11 — €23° — €13° — €17
P N |
=tr(E”) = > (i &jj — &ij &ji) ) ©)

V3 = €ijk €1i €25 €3k

= | e | = tr(E%). (10)

Also, e, e, , ez are roots of the cubic equation (8) , so
vi=eLtey+e;
Vo= er+erye3+eze; (11)
V3 = €1 € €3

We know that eigenvalues of a second order real symmetric tensor are
independent of the choice of the coordinate system.

It follows that v , v2, v are, as given by (10) , three invariants of the strain
tensor ej; with respect to an orthogonal transformation of coordinates.

Geometrical Meaning of the First Strain Invariant v = g;;

The quantity v = e;i has a simple geometrical meaning. Consider a volume
element in the form of a rectangular parallelepiped whose edges of length
I, 2, I3 are parallel to the principal directions of strain.

Due to small linear transformation /deformation , this volume element
becomes again a rectangular parallelepiped with edges of length I;(1+e;) ,
I,(1+ey) , I3(1+e3) , where e; , e, , e3 are principal strains.

Hence , the change 8V in the volume V of the element is

ovV=1I1 I3(1+e1) (l+92) (1+E3)—|1 Ih 13
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=hhhlzs(Q+er+ex+tes)-lilo 13, ignoring small strains e;.

=l 13 (e +ex+63)
This implies

% e teytez=wv;

Thus , the first strain invariant v; represents the change in volume per unit
initial volume due to strain produced in the medium.
The quantity v; is called the cubical dilatation or simply the dilatation.
Note : If e; > e, > e3 then e; is called the minor principal strain , e, is called
the intermediate principal strain , and e; is called the major

principal strain.

Question : For small linear deformation , the strains e;; are given by

X, (X, +X%,)/2 X3
i) =a | (X +X,)/2 X, Xq , a
X3 X3 2(X; +X,)

= constant.

Find the strain invariants , principal strains and principal directions of
strain at the point P(1, 1, 0).

Solution : The strain matrix at the point P(1, 1, 0) becomes

o o 0
(eij) - |l o o 0 ,
0 0 de

whose characteristic equation becomes
e(e—-2a) (e—4a)=0.
Hence , the principle strains are
e.=0,e,=2a, es3=4a.
The three scalar invariants are

V1261+62+63:60(,\/2:8(12,\/3:0
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The three principal unit directions are found to be
! 1 -1 2 1 1
= _1_10 y = _1_a0 )
A [ﬁ V2 j A [ 2'\2 j

Exercise : The strain field at a point P(x , y, z) in an elastic body is given
by

20 3 2
ej=| 3 ~10 5| x10°.
5 -8

Determine the strain invariants and the principal strains.

Question : Find the principal directions of strain by finding the extremal
value of the extension e.

OR
Find the directions in which the extension e is stationary.

Solution: Let e be the extension of a vector A; due to small linear
deformation

OA; = €ij Aj . (1)

Then

e=

oA
<. @

We know that for an infinitesimal linear deformation (1) , we have

ASA = A 8A. (3)
A A
Thus e= AAfA: A‘AfA _5 '22 L. (4)
A .
Let L =3. 5
A (%)
Then ajai=1, (6)

and equation (4) then gives
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e(ar, a2, as) = &jj & a;. (7)

Thus , the extension e is a function of a; , a, , az which are not independent
because of relation (6). The extreme/stationary(or Max/Min) values of the
extension e are to be found by making use of Lagrange’s method of
multipliers.

For this purpose , we consider the auxiliary function
Far, a2, a3) =ejaia—Maai-1), 8)
where A is a constant.

In order to find the values of a; , a; , ag for which the function (7) may
have a maximum or minimum, we solve the equations

oF
T _0 k=1,2,3 ©)
aak

Thus , the stationary values of e are given by

Eij (aik a; t+ a; ﬁjk) —A2a06ik=0

or ek,-aj+eikai—2xak=0
or 2eai—2Aa=0
or exi & = A a . (10)

This shows that A is an eigenvalue of the strain tensor e;; and a; is the
corresponding eigenvector. Therefore , equations in (10) determine the
principal strains and principal directions of strain.

Thus , the extension e assumes the stationary values along the principal
directions of strain and the stationary/extreme values are precisely the
principal strains.

Remark : Let M be the square matrix with eigenvectors of the strain tensor
gjj as columns. That is

<

1
PR 2aP 2a
?I\J v\j.)>N ’_J>v\.>
Pe e peo
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1 1
Then &ij AJ— =€ A ,
2 2
€ij AJ =€ A )
3 3
€ij Aj =e3 A

The matrix M is called the modal matrix of strain tensor e;;.

Let

E = (ejj) , D =dia(er, e, €3).
Then , we find

EM=MD
or MTEM=D.

This shows that the matrices E and D are similar.

We know that two similar matrices have the same eigenvalues. Therefore ,
the characteristic equation associated with M™EM is the same as the one
associated with E. Consequently , eigenvalues of E and D are identical.

Question : Show that , in general , at any point of the elastic body there
exists (at least) three mutually perpendicular principal directions of strain
due to an infinitesimal linear deformation.

Solution : Let e; , e, , e3 be the three principal strains of the strain tensor
ejj. Then, they are the roots of the cubic equation

(e—e1)(e—e2) (e—e3)=0,

and € +ex+e3=en +exntess=ej,
1
e1€ +eye3+teze; = E(eii ejj — €ij ji) ,

1 €2 €3 = | &jj | = Eijk €1i €2j €3k .

We further assume that coordinate axes coincide with the principal
directions of strain. Then , the strain components are given by

€11=€1,€x»n=€2,€33=¢€3,

erp=e3=ex3=0,
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and the strain quadric of Cauchy becomes
e X12 +6e X22 +e3 X32 =+ kz. (1)
Now , we consider the following three possible cases for principal strains.

Case 1 : When e; # e, # es. In this case , it is obvious that there exists three
mutually orthogonal eigenvectors of the second order real symmetric
strain tensor ej;. These eigenvectors are precisely the three principal
directions that are mutually orthogonal.

Case 2 : When e; e, = e;.

1 2
Let A and A be the corresponding principal orthogonal directions
corresponding to strains (distinct) e; and e, , respectively. Then

1
€ij Aj =er

i~

2 2
&ij Aj =€ A (2)

1 2
Let p; be a vector orthogonal to both A and A . Then

1 2
pi A =pi A =0. 3)

Let &j Pi=0j . (4)

1 1 1 1
Then ai Ay = Eipi) A = (e Aj)pi=er A pi=0

(5a)

2

Similarly g A, =0. (5b)

1 2
This shows that the vector g; is orthogonal to both A; and A, . Hence , the
vectors g; and p; must be parallel. Let

di=api, (6)
for some scalar o.. From equations (4) and (6) , we write

ejpj=di=api, (7)
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which shows that the scalar o is an eigenvalue/principal strain of the
strain tensor e;; with corresponding principal direction p; .

Since ej; has only three principal strains e; , e; , a and two of these are
equal , so o must be equal to e; = e3.

3
We denote the normalized form of p; by A .

This shows the existence of three mutually orthogonal principal directions
in this case.

1
Further , let v; be any vector normal to A . Then v; lies in the plane

2 3
containing principal directions A and A . Let
2 3
vi=ki A+ky A for some scalars k; and ko,  (8)
2 3
Now eijVvi=eij (ki A; +ka A))
2 3
= kl(eij Aj ) + kz(ei,- Aj )
2 3
=ki(e2 A) +ka(es A)

= ez[kl'gx + kz'g\ ] ("re2=e3)
=€V

This shows that the direction v; is also a principal direction corresponding

to principal strain e,. Thus, in this case , any two orthogonal(mutually)
1

vectors lying on the plane normal to A can be chosen as the other two

principal directions. In this case , the strain quadric surface is a surface of
revolution.

Case 3: When e; = e, = e3, then the strain quadric of Cauchy is a sphere
with equation

e1(x1” + X2° + x32) =+ K2,
2

or Xi2+ X7+ Xf =4 —
el
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and any three mutually orthogonal directions can be taken as the
coordinate axes which are coincident with principal directions of strain.

Hence , the result.

3.12 GENERAL INFINITESIMAL DEFORMATION

Now we consider the general functional transformation and its relation to
the linear deformation. Consider an arbitrary material point P°(x°) in a
continuous medium. Let the same material point assume after
deformation the point Q°(¢;°). Then

Ei°® = X + Ui(X1° , X2° , X3°) , 1)

where u; are the components of the displacement vector P°Q°. We assume

that u; , Uz , uz , as well as their partial derivatives are continuous
functions.

X3

7 X2

X1
Fig. (3.17)

The nature of the deformation in the neighbourhood of trﬂooint P° can be

determined by considering the change in the vector PP = A; in the
undeformed state , where P(x; , X2 , X3) is an arbitrary neighbouring point
of P°.

Let Q(&1, &2, &3) be the deformed position of P. Then the displacement u;
at the point P is

ui(Xa1, X2, X3) = & — Xi. (2
The vector A =X - X°, (3)

has now deformed to the vector
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&i-&° = A (say). (4)
Therefore, A=A/ -A
= (&i-&°) - (xi-x°)
= (&i—x) - (&° - xi°)
= Ui(X1, X2, X3) = Ui(X1° , X2°, X3°)
= Ui(X1° + A, X% + Ay, X3® + Ag) — Ui(X1°, X2°, X3°)

_(ou) .
(3]~

/e

plus the higher order terms of Taylor’s series. The subscript - indicates
that the derivative is to be evaluated at the point P°.

If the region in the nbd. of P° is chosen sufficiently small , i.e. , if the vector
A is sufficiently small , then the product terms like A; Aj may be ignored.

Ignoring the product terms and dropping the subscript o in (5) , we write
6Ai = Uij Aj ) (6)
ou;
where the symbol u;; has been used for a_xl :
j
Result (6) holds for small vectors A;.

If we further assume that the displacements u; as well as their partial
derivatives are so small that their products can be neglected , then the
transformation (which is linear) given by (4) becomes infinitesimal in the
nbd of the point (P°) under consideration and

SAI = aij Aj (7)
with

oj = Uij. (8)
Hence , all results discussed earlier are immediately applicable.

The transformation (6) can be splitted into pure deformation and rigid
body motion as

245
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U.+U.. U.—U..
SAiZUi,jAj:( R TR J"]A,—

2 2
= i Aj + Wij A 9)

1

where eij = 5 (uij + uji) , (10)
1

Wi =2 (Ui — uji) - (11)

The transformation
A = €ij Aj ) (12)

represents pure deformation and
6Ai = Wij Aj s (13)

represents rotation . In general , the transformation (9) is no longer
homogeneous as both the strain components e;; and components of
rotation wij; are functions of the coordinates. We find

V=gji= = uji =div u. (14)

That is , the cubic dilatation is the divergence of the displacement vector u
and it differs, in general , from point to point of the body.

The rotation vector w; is given by
W1 = Wsp , Wp = Wiz, W3 = Wy . (15)
Question : For the small linear deformation given by
u=ax; X(€ + &)+ 20(x1 + X2) X3 & , o = constant.
find the strain tensor , the rotation and the rotation vector.
Solution: We find

Up = X1 X2, Up = o X1 X2, Ug = 200(X1 + X2)X3,

ou ou aou
e11:_1 :(XX2,922:,\_2:(XX11E33:_3 :2a(X1+X2)
X1 OXZ aXS
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1({ou ou, o
== 2+ |=Z(X1+X),
12 2 5'Xl + 5’X2 2 ( 1 2)
1({ou, ou
€13 = 5 g:+&: = Q X3, €23=0QX3
Hence
X, (X, +x%,)/2 Xq
(&) = o] (X +X,)/2 X, X,
X3 X3 2(%, + X,)
We know that
1 { ou; auJ
WU = — -
2 oXj O
We find
W11 =W =W33=0,
_ o _
Wip = 2 [X1—X2] = -Waq ,
W13 = -0X3 = -W3y ,
Wa3 = -0X3 = -W32
Therefore
0 (X, —%,)/2 — X,
(wij) = a| — (% —x%,)/2 0 — Xy |- )
Xs X3 0

The rotation vector w = w; is given by w; = €jjk uxj. We find

o
W1 =W32 =0 X3, Wp = W13 = -0X3, W3 =Wp1 = E(XZ—Xl)-

So Vv:ax3(él-é2)+%(x2—x1) é,.
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Exercise 1: For small deformation defined by the following displacements ,
find the strain tensor , rotation tensor and rotation vector.
(Dup=-a X2 X3,U2s =0 Xy X2, U3=0.
(i) Up = 0%(X1 = X3)® , Up = a®(Xz + X3)? , Uz = -0t X1 X , 0L = constant.
Exercise 2: The displacement components are given by
u=-yz,v=xz,w=¢(X,Yy)
calculate the strain components.
Exercise 3: Given the displacements
u=3x’y,v=y*+6xz,w=62"+2yz,

calculate the strain components at the point (1 , 0 , 2). What is the
extension of a line element (parallel to the x — axis) at this point ?

Exercise 4: Find the strain components and rotation components for the
small displacement components given below

(a) Uniform dilatation—- u=ex,v=ey,w=ez,

(b) Simple extension - u=ex,v=w=0,

(c) Shearing strain - u=2sy,v=w=0,

(d) Plane strain - u=ux,y),v=v(x,y),w=0.

3.13 SAINT-VENANT’S EQUATIONS OF COMPATIBILITY

By definition , the strain components e; in terms of displacement
components u; are given by

eij = %[Ui,i + Uj] 1)

Equation (1) is used to find the components of strain if the components of
displacement are given. However , if the components of strain , e;; , are
given then equation (1) is a set of 6 partial differential equations in the
three unknowns u; , U, , us. Therefore , the system (1) will not have a single
— valued solution for u; unless given strains e;j; satisfy certain conditions which
are known as the conditions of compatibility or equations of compatibility.

Geometrical meaning of Conditions of Compatibility
R!
R
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19(2a)

Fig (1) shows a portion of the material of the body in the undeformed state
in the form of a continuous triangle ABC. If we deform the body by an
arbitrarily specified strain field then we might end up at the points C’ and
D’ with a gap between them , after deformation , as shown in fig(2a) or
with overlapping material as shown in fig(2b).

For a single valued continuous solution to exist the points C’ and D’ must
be the same in the strained state. This cannot be guaranteed unless the
specified strain components satisfy certain conditions , known as the
conditions (or relations or equations) of compatibility.

Equations of Compatibility

We have 8ij = %(ui,j + Uj;i) . (1)

1
So, 8ijk = 5 (Uijii + Ujikt) - (2)
Interchanging i with k and j with | in equation (2) , we write
1
B = o (Ukiij + Ut kij) - 3
Adding (2) and (3) , we get
1
€ijki + €xlij = > [Uijki + Ujik + Uklij + Uil - (4)
Interchanging i and | in (4) , we get
1
Blj.ki  €kilj = 3 [Unjki + Ujiki + Ukij + Uigjk] - (5)

From (4) and (5) , we obtain
€ijkl T €kiij = €lj ki T+ €kilj s

or Bij.ki T+ €xdij — Cikjl — Ejlik = 0 . (6)

249
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These equations are known as equations of compatibility.

These equations are necessary conditions for the existence of a single
valued continuous displacement field. These are 81 equations in number.
Because of symmetry in indicies i, j, and k , |; some of these equations are
identically satisfied and some are repetitions.

Only 6 out of these 81 equations are essential. These equations were first
obtained by Saint — Venant in 1860.

A strain tensor ej; that satisfies these conditions is referred to as a possible
strain tensor.

Show that the conditions of compatibility are sufficient for the existence of a
single valued continuous displacement field.

Let P°(x;°) be some point of a simply connected region at which the
displacements u;° and rotations w;;® are known. The displacements u; of
an arbitrary point P’(x;") can be obtained in terms of the known functions
ejj by means of a line integral along a continuous curve C joining the
points P, and P’.

P(xi)

Pe(Xi®)
Fig. (3.18)
o
Uj(X1", X2", X3") = Uj°(X1°, X2°, X3°) + Iduj . @)
5

If the process of deformation does not create cracks or holes , i.e. , if the
body remains continuous , the displacements u;’ should be independent of
the path of integration.

That is , uj” should have the same value regardless of whether the
integration is along curve C or any other curve. We write

ou;
du; = 8_)(1 dXi = Uj i dXk = (ejk + Wik) dXk . (8)
k

Therefore,
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P P

Ui':Ui°+I ejk dxy + I Wik dxx, (P(x«) being point the joining
P° P°

curve).

(9)

Integrating by parts the second integral , we write

P P
I Wi dXk = I Wik d(Xk - Xk) (The point P’(xx’) being fixed so dxy’=0)
5 5

o
= {(Xk - X") Wik Ef - I (XK = XK") Wik, dXi
J.

P!
= (Xk' - Xko)ijo + I (Xk' - Xk) Wik dx, . (10)
e
From equations (9) and (10) , we write
P P
Uj(Xl' , X2, X3') = Ujo + (Xk' - Xko)ijo + I €jk dxy + I (Xk' - Xk) Wik dx,
P° pP°

pr
= Ujo + (Xk' - Xko) ijo + j [Ej| + (Xk' - Xk) ij,|] dX| , (11)
pe

where the dummy index k of ejc has been changed to I.

1 ¢
But Wik = = — [Ujk — Uk;j
jkil 2 6X, [ j,K k,J]
1
=3 [Uj = Ukiji]
1 1
= 5 [Uj i + U] - 5 [unjk + Uil

= €jik — Bikj (12)

Using (12) , equation (11) becomes

o
uj(xa’, X2', X3") = Uj° + (Xi’ - Xk°) Wjk°® + I [e51 + {XK" - Xk} {€j1.k — €, i}] X
5
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o
= U+ (XK - X®) Wi® + I Updx (13)
3.

where for convenience we have set
Uji = eji + (Xk” - Xk) (&ji.k — €xtj) : (14)
which is a known function as e;; are known.

The first two terms in the right side of equation (13) are independent of
the path of integration. From the theory of line integrals, the third term
become independent of the path of integration when the integrands Uj; dx
must be exact differentials.

Therefore , if the displacements ui(x;’ , X2’ , X3') are to be independent of
the path of integration , we must have

v,

— , fori,j,1=1,2,3. 15
X, X, J (15)

Now
Ujii = &jii + (X - Xi) (&j1ki — €xiji) - Oki (Ejik — €Kij)
= ej1,i — €jii * €ij + (X' - Xk) (&jiki — €xiji) » (16a)
and
Ujii = €jit + (X" - Xk) (i — €xijt) - Oki(€jik — €xij)

= €jit — i) + €iij + (Xk' - Xk) (&ji ki — Exijr)
(16b)

Therefore , equations (15) and (16 a, b) yields
(XK" - Xk) [€j1,ki — €xiji — Ejiki + €xiji] = 0.

Since this is true for an arbitrary choice of xi" - xx (as P’ is arbitrary) , it
follows that

Bijki + €wlij — Eikjl — €jiki = 0, @17
which is true as these are the compatibility relations.

Hence , the displacement (7) independent of the path of Integration. Thus ,
the compatibility conditions (6) are sufficient also.
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Remark 1: The compatibility conditions (6) are necessary and sufficient for
the existence of a single valued continuous displacement field when the strain
components are prescribed.

In detailed form , these 6 conditions are

& = i _ae23+8931+5912

o’e,,
XX,

_8e31 + 8e12 + 8e23
XKy Xy OK

2o

& :i —0912+0623+0631
XX, — OXg\ OXg X OX,

282e12 — 82ell + aze22
XX, X, X

20%, _ 0y |, Oty |
KXy Xy Xy

20%, _ Oty , 0%ty .
MOX, XS DXy

These are the necessary and sufficient conditions for the strain
components ej; to give single valued displacements u; for a simply
connected region.

Definition : A region space is said to be simply connected if an arbitrary
closed curve lying in the region can be shrunk to a point , by continuous
deformation , without passing outside of the boundaries.

Remark 2: The specification of the strains ej; only does not determine the
displacements u; uniquely because the strains e;j characterize only the pure
deformation of an elastic medium in the neighbourhood of the point x;.

The displacements u; may involve rigid body motions which do not affect
€ij-

Example 1 : (i) Find the compatibility condition for the strain tensor e;j; if
e11, €22, €12 are independent of x3 and e3; = ez, = e33 = 0.

(i) Find the condition under which the following are possible strain
components.

253
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— 2 2 — -
e11 = K(X1“—X2%) , e12 =K' X1 X2, €220 = K X1 X2,
€31 = e =e33 =0, k & k’ are constants

(ilf) when ej; given above are possible strain components , find the
corresponding displacements , given that u; = 0.

Solution : (i) We verify that all the compatibility conditions except one are
obviously satisfied. The only compatibility condition to be satisfied by e;j is

€1122 t €211 =2 €1212 . (1)

(if) Five conditions are trivially satisfied. The remaining condition (1) is
satisfied iff

k'=k
as e1122 = -2k, e1212 =K', €211 = 0.
(iii) We find

— — 2 2 _ _
€11 = U1 = K(X1© — X2%) , U2 = K Xy X2, Uzp + Uzt = -2K X1 X2,
(... kr - _k)

Up3=Uy3 = 0.

This shows that the displacement components u; and u, are independent
of x3. We find (exercise)

1
Up = 6(2)(13 —BX1 X2 + X)) —C Xy + Cy

1
uzzzkx1x22+cx1+cg,

where c; , C; and ¢ are constants.

Example 2: Show that the following are not possible strain components
€11 = k(X12 + X22) y €22 = k(Xz2 + X32) ,€33=0 ,
e12 =K' X1 X2 X3, €13 = €23 =0, k & K’ being constants.

Solution : The given components e;; are possible strain components if each
of the six compatibility conditions is satisfied. On substitution , we find

2k = 2k’ X3.
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This can’t be satisfied for x3 = 0.
For x3 =0, this gives k = 0 and then all e;; vanish.
Hence , the given ejj are not possible strain components.

Exercise 1: Consider a linear strain field associated with a simply
connected region R such that en = A X2, e =AXE, en B XX,
e13 = ex3 = e33 = 0. Find the relationship between constant A and B such
that it is possible to obtain a single — valued continuous displacement field
which corresponds to the given strain field.

Exercise 2: Show by differentiation of the strain displacement relations
that the compatibility conditions are necessary conditions for the existence
of continuous single — valued displacements.

Exercise 3: Is the following state of strain possible ? (¢ = constant)
— 2 2 - 2 — — — —
€11 = C(X1” + X2°) X3, €22=C X2" X3, €12 = 2C X1 X2 X3, €31 = €32 = €33 = 0.

Exercise 4: Show that the equations of compatibility represents a set of
necessary and sufficient conditions for the existence of single — valued
displacements. Derive the equations of compatibility for plane strain.

Exercise 5: If e =exp =epp=es3 =0, e13=d2and ex3 = ¢y ; where ¢ is a
function of x; and x; , show that ¢ must satisfy the equation

V2 ¢ = constant

Exercise 6: If e13 and e,z are the only non — zero strain components and ej3
and e,z are independent of x3 , show that the compatibility conditions may
be reduced to the following single condition

€132 — €231 = constant.

Exercise 7: Find which of the following values of ej are possible linear
strains.

- _ 2 2 _ U2 _ . _
(1) enn = o(X1” + X2°) , €2 = 0X2" , €12 = 200 X1 X2 , €31 = €3 = €33 =0, . =
constant.

X, +X, X, X,
(ii) (eij) = X Xy + X3 X3
XZ X3 Xl + X3

compute the displacements in the case (i).
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3.14 FINITE DEFORMATIONS

All the results reported in the preceding sections of this chapter were that
of the classical theory of infinitesimal strains. Infinitesimal
transformations permits the application of the principle of superposition
of effects.

Finite deformations are those deformations in which the displacements u;
together with their derivatives are no longer small.

Consider an aggregate of particles in a continuous medium. We shall use
the same reference frame for the location of particles in the deformed and
undeformed states.

Let the coordinates of a particle lying on a curve C, , before deformation ,
be denoted by (a; , a2 , az), and let the coordinates of the same particle
after deformation (now lying on some curve C) be (X1, X2,

X3).
Then the elements of arc of the curve C, and C are given, respectively , by
ds>=dajda;, 1)
and
ds? = d x; d xi. 2)
We consider first the Eulerian description of the strain and write
ai =aj (X1, Xz, X3). ©)
Then
daj = ajj d Xj = ajx dXk . (4)
Substituting from (4) into (1) , we write
dso” = ajj ajk dx; dxy . (5)
Using the substitution tensor , equation (2) can be rewritten as
d s” = §jx dx; dxu . (6)
we know that the measure of the strain is the difference ds” — ds,’.
From equations (5) and (6) , we get

d82 - d802 = (Sjk— ai ai,k) de ka
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= ZT]jk de ka s (7)
where
2njk = bjk — @ijj Aik- (8)

We now write the strain components njx in terms of the displacement
components u; , where

Ui = Xi — a;. ©)
This gives
aj = Xi — Ui
Hence
aij = dij— Uij, (10)
aik = ik — Uik - (11)

Equations (8) , (10) and (11) yield
2njk = djk — (8ij — Uij) (Bik — Uik)
= ik — [Bjk — Ukj — Ujk + Uij Uix]
= (Ujk + Ukj) — Uij Uik (12)
The quantities njx are called the Eulerian strain components.

If , on the other hand , Lagrangian coordinates are used , and equations of
transformation are of the form

Xi=Xi(a1,az, as), (13)
then

dx; = x;j daj = Xi« day , (14)
and

ds® = x;j X da; da, (15)
while

ds,’ = 8jk daj day. (16)

The Lagrangian components of strain . are defined by
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ds® — ds,” = 2€jx daj da . (17)
Since

Xi = aj + Uj, (18)
therefore ,

Xij = Oij + Uij ,

Xik = Oik * Uik -
Now

ds® — ds,” = (Xij Xik — Sjk) da; dax
= [(8ij + Ui ) Bik + Uik) — Ojk] daj da=
= (Ujk + Ukj + Ujj Ujx) daj dax.  (19)
Equations (17) and (19) give
2€jk = Ujk + Ukj + Uij Uik (20)

It is mentioned here that the differentiation in (12) is carried out with
respect to the variables x; , while in (20) the a; are regarded as the
independent variables.

To make the difference explicitly clear , we write out the typical
expressions mjkx and €jcin unabridged notation,

R (ORI

_(ou ov ouou vV oW oW
My = | —+— || ==+ ——+—— |, (22
oy X OX 0y OXoy oOx oy
au 1(fauY (v (awY
SE i | ek Ak el 23
o aﬂzﬂaaj +(abj +(aa” (@3)
c = a_u‘i‘@j‘i‘ @@4_@@4’_@@) (24)
Y léb o6a) \eadb ocacb dadh)

When the strain components are large , it is no longer possible to give
simple geometrical interpretations of the strains €j and njx.
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Now , we consider some particular cases.
Case I: Consider a line element with

ds,=da;,da;=0,daz=0. (25)
Define the extension E; of this element by

E, = ds—ds, .
ds

0

Then
ds=(1+E;)ds,, (26)
and consequently
ds®—dsy” =2 €jkd a; d ak
=2epndaf. (27)
Equations (25) to (27) yield
(1+E)*-1=2€n

or

Ei=1+2¢, —-1. (28)
When the strain <13 is small , (28) reduces to

Eizen,
as was shown in the discussion of infinitesimal strains.
Case Il: Consider next two line elements

ds,=day,,da;=0,daz; =0, (29)
and

dso=d az,d a;=d a,=0. (30)
These two elements lie initially along the a, — and as- axes.

Let O denote the angle between the corresponding deformed elements dx;
and dx, , of lengths ds and d's , respectively. Then
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ds ds cos®=dx; dx,

= Xia ;i,ﬁ dag da_ﬁ

= Xi2 ;iyg da, da_3
=2 ey day da_3 (31)
Let
23 = % -0, (32)

denotes the change in the right angle between the line elements in the
initial state. Then , we have

Sinas =2 €23 d&j d_3;3 . (33)
ds A ds
2€y
= , 34
142, 1+ 2, 349

using relations in (26) and (28).

Again , if the strains €;; are so small that their products can be neglected ,

then
o3 =2 €33, (35)

as proved earlier for infinitesimal strains.

Remark: If the displacements and their derivatives are small , then it is
immaterial whether the derivatives of the displacements are calculated at
the position of a point before or after deformation. In this case , we may
neglect the nonlinear terms in the partial derivatives in (12) and (20) and
reduce both sets of formulas to

ank = Ujk + Ukj = 2€jk ,
which were obtained for an infinitesimal transformation.

It should be emphasized that the transformations of finite homogeneous
strain are not in general commutative and that the simple superposition of
effects is no longer applicable to finite deformation.
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Chapter-4
Constitutive Equations of Linear Elasticity

4.1. INTRODUCTION

It is a fact of experience that deformation of a
solid body induces stresses within. The
relationship between stress and deformation is
expressed as a constitutive relation for the
material and depends on the material properties
and also on other physical observables like
temperative and , perhaps , the electromagnetic
field.

An elastic deformation is defined to be one in which the stress is
determined by the current value of the strain only , and not on rate of
strain or strain history : © = 1(e).

An elastic solid that undergoes only an infinitesimal deformation and for
which the governing material is linear is called a linear elastic solid or
Hookean solid.

From experimental observations , it is known that , under normal loadings
, many structural materials such as metals , concrete , wood and rocks
behave as linear elastic solids.

The classical theory of elasticity (or linear theory) serves as an excellent
model for studying the mechanical behaviour of a wide variety of such
solid materials.

Hook’s law : In 1678 , Robert Hook , on experimental grounds , stated that
the extension is proportional to the force. Cauchy in 1822 generalized
Hook law for the deformation of elastic solids. According to Cauchy , «
Each component of stress at any point of an elastic body is a linear
function of the components of strain at the point”.

This law is now known as Generalized Hooke’s Law. Here , linearity means
that stress — strain relations are linear.
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4.2. GENERALIZED HOOKE’S LAW

In general , we write the following set of linear

relations
T11 =Cru11 €1+ Cupp €t .ol +C1133 €33
T12 =Crp11 €11 ¥ Cppp €2+ ooeeenii, + Cio33 €33 ,
T33 = C3311 €11+ C332 €12+ .oeenni, + C3333 €33
or
Tij = Gijki €1 1)

where Tjj is the stress tensor and ey is the strain tensor. The coefficients , which
are 81 = 3" in number , are called elastic moduli.

In general , these coefficients depend on the physical properties of the medium
and are independent of the strain components ej;.

We suppose that relations (1) hold at every point of the medium and at every
instant of time and are solvable for e;; in terms of t;;.

From (1) , it follows that t;; are all zero whenever all e;; are 0.

It means that in the initial unstrained state the body is unstressed. From
quotient law for tensors , relation (1) shows that cjq are components of a
fourth — order tensor.

This tensor is called elasticity tensor. Since e;; are dimensionless quantities ,
it follows that elastic moduli cijq have the same dimensions as the stresses
(force/Area).

If , however , cijq do not change throughout the medium for all time , we
say that the medium is (elastically) homogeneous.

Thus , for a homogeneous elastic solid , the elastic moduli are constants so
that the mechanical properties remain the same throughout the solid for
all times. The tensor equation (1) represents the generalized Hooke’s law
in the x; — system.

Since T;j is symmetric and ey is symmetric , there are left 6 independent
equations in relation (1) and each equation contains 6 independent elastic
moduli.
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So, the number of independent elastic coefficients are , in fact , 36 for a
generalized an anisotropic medium.
For simplicity , we introduce the following (engineering) notations
T11=T1,T22=T2,T33=T3,T23=T4,W1=T5,T12=Ts , }
€11 =€1,€2 =€2,€33=€3,263 =64, 2631 = €5, 2612 =66 . (2
Then , the generalized Hooke’s law may be written in the form

Ti = Cjj €j ; i,j=1,2, ...... ,60, (3)

or in the matrix form

7 Cy Clp veverereen Co | [ &
7, Cor Cpp veerrvrenes Cos | | &
2 I I P & | @
7, Cpgeveeennmmmennnemmnneeenns e,
7 Cop eveeeomrneeesmnennreeeens &

75 | | Cq Cogrrveeerrmnnnns Cos | | & |

If the elastic properties (or mechanical properties) of a medium at a point
are independent of the orientation (i.e. ¢'ij = cj;) of the coordinate axes ,
then we say that the medium under consideration is isotropic.

If at a point of the medium , properties of medium (i.e. , Cjj’s) depend upon
the orientation , then medium is called an Anisotropic or Aelotropic
medium.

The 6 x 6 matrix (c;;) in (4) is called stiffness matrix.
4.3. HOMOGENEOQOUS ISOTROPIC MEDIA

When the elastic coefficients Cijq in the generalized Hooke’s law are
constants throughout the medium and they are independent of the
orientation of the coordinate axes , the elastic media is termed as
homogeneous isotropic media.

We know that the generalized Hooke’s law is
Tij = Cijkl €kl 1)

where 1;; and ey are symmetric strain and stress tensor , respectively , and
Cijia are the components of a tensor of order 4.
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Since the media is isotropic , therefore , the tensor cj is an isotropic
tensor. Hence , it can be represented in the form
Cijki = o Oij O + B Sik Oji + ¥ Oil djk 2
where o, 3, y are some scalars. From equations (1) and (2) , we obtain
Tij = (ot 8ij O + B Bik Oji + ¥ Sil Sjk) €wi
= a dijj exk + B dik exj + v il €
= o, Ojj ekk + Peij *+ ¥ &ji
=adjek+t(P+y)ei ®)
since ej; = gji. On redesignating o by A and (8 + y) by 2u, relation (3) yields
Tij = A Ojj Bk + 2L €5 . 4)

The two elastic coefficients A and . are known as Lame constants. §;; is the
substitution tensor.

Let
V=ekk, 0= Tii. (®)
Taking j =i in (4) and using summation convention according , we find
0=3Av+2pv
=(BA+t2pu)v
=3kv, (6)
where
k=A+ 2 u, @)
3
is the bulk modulus.
From (4) , we write
€ijj = i dij v+ i Tij
2u 2u
-4

1
= ——————— Sijj Tk + — Tjj - 8
2u(BA+2u) b 2 K ®
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This relation expresses the strain components as a linear functions of
components of stress tensor.

Question : Show that if the medium is isotropic , the principal axes of stress
are coincident with the principal axes of strain.

Solution : Let the x;-axes be directed along the principal axes of strain.
Then

€12 = €13 = €3 =0. 1)
The stress — strain relations for an isotropic medium are

Tij = A Ojj e T 2 L gjj - )
Combining (1) & (2) , we find

T2 =T3=1T23=0 . (3)

This shows that the coordinates axes x; are also the principal axes of stress.

This proves the result. Thus, there is no distinction between the principal
axes of stress and of strain for isotropic media.

4.4. PHYSICAL MEANINGS OF ELASTIC MODULI FOR AN
ISOTROPIC MEDIUM

We have already introduced two elastic moduli A and p in the generalized
Hooke’s law for an isotropic medium. We introduce three more elastic
moduli defined below

E:M’ G:L , k:}\’+zu . (1)

A+ u 2(A+ u) 3
The quantity o is dimensionless and is called the Poisson ratio. It was
introduced by Simon D. Poisson in 1829.

The quantity E is called Young’s modulus after Thomas Young who
introduced it in the early 19™ century , probably in 1807. Its dimension is
that of a stress (force/area).

The elastic modulus k is called the modulus of compression or the bulk
modulus.

Solving the first two equations for A and p (in terms ¢ and E) , we find
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Eoc E

A= , = 2
(1+0)1-20) H 20+ o) @
From (2) , we find the following relations
A+ 2p= E(l-o) 1 /1+,u: 1 1
(1+0)1-20) U 1-20
A+2u _23-0 A o 3)

u 120  'i+2u l-o
Generalized Hooke’s Law in terms of Elastic Moduli ¢ and E

We know that the generalized Hooke’s law (giving strain components in
terms of stresses) in terms of Lame’s constants A and p is

-A

1
iz —M8M 6 + — Tii . 4
ij 2‘u(3ﬂ,+2‘u) ij Tkk Tij ( )

2u

Substituting the values of A and p in terms of E and ¢ from (2) into (4) , we
find

g Tij - (5)

gij = %Sij Tk +
Note : (1) Out of five elastic moduli (namely ; A, u, E, o, K) only two are
independent.

Note : (2) The Hooke’s law , given in (5) , is frequently used in engineering
problems.

Remark : The following three experiments give some insight into the
physical significance of various elastic moduli for isotropic media.

() Simple Tension :

Consider a right cylinder with its axis parallel to the x; — axis which is
subjected to longitudinal forces applied to the ends of the cylinder. These
applied forces give rise to a uniform tension T in every cross — section of
the cylinder so that the stress tensor t;; has only one non — zero component
T11 = T.

That is

T1=T ,T2=T3=T12=T3=-131=-0 . (1)
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Fig. (4.1)

Since the body forces are absent (f; = 0) , the state of stress given by (1)
satisfies the equilibrium equation t;;; = 0 in the interior of the cylinder.

A normal v to the lateral surface lies in the plane parallel to x, X3 plane ,
so V :(O,Vz,V3).

The relation T, =t vjimpliesthat T, =T, =T, =0.

Vv
Hence T =0.

This shows that the lateral surface of the cylinder is free from tractions.

The generalized Hooke’s law giving strains in terms of stresses is

-2 1
gji = ————— §jj + — Tii . 2
T 2uGir2u) T 2 @
We find from equations (1) & (2) that
_ Atu
en=——--—~1T,
H(3A+2u)
-2
ep=egp=— T
27 21(32+ 211)
ep=€3=€33=0 . 3)
Since /1‘}‘—# = i and g = # , (4)
u@Bi+2u) E E  2u(31+2u)

Therefore

en= L
11 Ea
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€22 :e33:—% T=-cen , (5)

and e1p=€13=6»=0
These strain components obviously satisfies the compatibility equations
€ij,kl T €kiij — Cikji — €jlik =0 ,

and therefore , the state of stress given in (1) actually corresponds to one
which can exist in a deformed elastic body. From equation (5) , we write

€ €
Q:E ﬁ:ﬂ:_cl (6)

€11 €11 €1

Experiments conducted on most naturally occurring elastic media show
that a tensile longitudinal stress produces a longitudinal extension
together with a contraction in a transverse directions. According for t;; =
T >0, we take

enp>0andex<0,e;3<0 .
It then follows from (6) that
E>0andc>0 . (7)

From equation (6) , we see that E represents the ratio of the longitudinal
stress 111 to the corresponding longitudinal strain e;; produced by the
stress 111.

From equation (6) , we get

Bl =g . (8)

Thus , the Poisson’s ratio o represents the numerical value of the ratio of
the contraction e, (or es3) in a transverse direction to the corresponding
extension ej; in the longitudinal direction.

(1) Pure Shear

From generalized Hooke’s law for an isotropic medium , we write

B _ T3 _ Tz (9)

2u=
elZ e13 eZ3
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The constant 2u is thus the ratio of a shear stress component to the
corresponding shear strain component. It is , therefore , related to the
rigidity of the elastic material.

For this reason , the coefficient p is called the modulus of rigidity or the
shear modulus.

The other lame constant A has no direct physical meaning.

The value of p in terms of Young’s modulus E and Poisson ratio G is given
by

E
= 10
" 21+ 0) (10)
SinceE>0,0>0, it follows that n>0 (11)

(1) Hydrostatic Pressure
Consider an elastic body of arbitrary shape which is put in a large vessel
containing a liquid. A hydrostatic pressure p is exerted on it by the liquid

and the elastic body experience all around pressure. The stress tensor is
given by t; = —p &;. That s,

T =T2=T3=-P,T2=Ts=T31=0.

L

Fig. (4.2)

These stress components satisfy the equilibrium equations for zero body
force. We find

Tk = =3P,

and the generalized Hooke’s law giving strains in terms of stresses

1 -1
iz —|—2 5 S 13
! 2/1{3/1+2,u iy Pk +T”} (13)
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gives
ep=€x=e3=0 ,
1 { 31p

€11 =@y = Q3= —
11 22 33 2# 3&4_2#

P
+(—p)}— 3+2n (14)

which obviously satisfy the compatibility equations. We find

o= 30 __-p _-p
3+2u 5 2 k
+3‘u
Thatis,
v (cubical dilatation) = _Tp . (15)

From experiments , it has been found that a hydrostatic pressure tends to
reduce the volume of the elastic material. That is, if p >0, then

ek =V <0.
Consequently , it follows from (15) that k>0 .

Relation (15) also shows that the constant k represents the numerical value
of the ratio of the compressive stress to the dilatation.

Substituting the value of A and p in terms of E and o, we find

E

K= 3 20) (19)

Sincek>0and E >0, it follows that o <o < % for all physical substances.

Since

_ Eo
A= 1+o)1-20) '

(17)

andE>0,0<c<% , it follows that A > 0.

Remark : The solutions of many problems in elasticity are either exactly or
approximately independent of the value chosen for Poisson’s ratio. This



CONSTITUTIVE EQUATIONS OF LINEAR ELASTICITY 271

fact suggests that approximate solutions may be found by so choosing
Poisson’s ratio as to simplify the problem. Show that , if one take
c =0, then

E
A=0,u=— k=
H= 5
and Hooke’s law is expressed by
1
Tj=Eej= EE(Ui,j +Uj i)

Note 1: The elastic constants u , E , o, k have definite physical meanings.
These constants are called engineering elastic modulus.

Note 2: The material such as steel , brass , copper , lead , glass , etc. are
isotropic elastic medium.

Note 3: We find

e = ﬂ = —1_20- T
kk 3K E kk -

Thusew =0iffo = % , provided E and 1y remain finite.

Whenc—>% ,A—>ow, K—>ow,u=

w|m

, V=6ii=Ui=0,

This limiting case corresponds to which is called an incompressible elastic
body.

Question : In an elastic beam placed along the x; — axis and bent by a
couple about the x,—axis , the stresses are found to be

Ts T oo X1 T T T T T2 T T3 T T = 0, R = constant

Find the corresponding strains.

Solution : The strains in terms of stresses & elastic moduli E and o are
given by the Hooke’s law

1
€ij = —% Bij Tkk + -;_EO- Tij - @

Here
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Tkk = —— X1.
R

Hence , (1) becomes

l+o

€ij = %Xl oij + Tij - 2)

. o 1
This gives eqp = €xp = E X1,€33= _E X1,€12=€33=€13= 0.

Question : A beam placed along the x; — axis and subjected to a

longitudinal stress ;1 at every point is so constrained that e, = e33 = 0 at
2

every point. Show that 1 = 6111, €11 = T11 , €33 =
—ol+0 .
I——

E

Solution : The Hooke‘s law giving the strains in terms of stresses is

o l+o
&jj = —E dij Tk + ?Tij : )
It gives
€20 = —%(Tn + Tpo + T33) + to T22
1
= E T2 —%(Tn +1T33) . (2)
Putting e =e33=01in (2) , we get
T2 =0 T11 - (3)
Also, from (1) , we find
o
ey = ~E (ta1 + To2 + T33) + T11
= —g(Tn +tot)+ to T11
E
_ 1 2 _ 1—0'2
= —[-o-c"+1l+c]t1= T11 4)

E E
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Also , from (1) , we get

€33 = —%(Tn + Tp0) + g 133
= _g (Tll + [e) Tll) = ﬂ:rll . (5)
E E

Exercise 1: Find the stresses with the following displacement fields :
Q) u=kyz,v=kzx,w=kxy

(i) u=kyz,v=kzx,w=k(x*-y?

where k = constant.

Exercise 2 : A rod placed along the x; — axis and subjected to a longitudinal
stress 111 IS SO constrained that there is no lateral contraction. Show that
i-oE
= = €1
1+0)1-20)

T11

4.5. EQUILIBRIUM AND DYNAMIC EQUATIONS FOR AN
ISOTROPIC ELASTIC SOLID

We know that Cauchy’s equation’s of equilibrium in term of stress
components are

T+ Fi=0 1)
where F; is the body force per unit volumeand i,j=1,2,3.
The generalized Hooke’s law for a homogeneous isotropic elastic body is
Tij = A Oij €k + 2L €]
= A &ij Ukk + (uij + uj) 2

where A and p are Lame constants. Putting the value of t;; from (2) into
equation (1) , we find

A Sij Uk kj + m(uijj + uj) +Fi=0

AUkki + 1L VAU + pUgki + Fi=0

(x+u)%+uvzui+ﬁ=0 : )
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where 6 = uy = div u = cubical dilatationandi=1, 2, 3.

Equations in (3) form a synthesis of the analysis of strain, analysis of stress
and the stress — strain relation.

These fundamental partial differential equations of the elasticity theory
are known as Navier’s equations of equilibrium , after Navier (1821).

Equation (3) can be put in several different forms.
Form (A) : In vector form , equation (3) can be written as
(A+p)graddiv u+pu v?> u+ F= 0 . (4)
Form (B) :We know the following vector identity :
curlcurl u=graddiv u-v? u . (5)
Putting the value of V2 u from (5) into (4) , we obtain
(A + p) grad div u +u [grad div u—curlcurl u]+ F= 0
or
(A +2p) grad div u—pcurlcurl u+ F=0. (6)
Form (C) : Putting the value of grad div u from (5) into (4) , we get
(A+w[V? u+curlcurl ul+puv? u+ F=0
or
A+2w) V2 u+(+wecurlcurl u+ F=0  (7)

Form D : We know that

ﬂ+,u: 1 (®)
U 1-20
From (8) and (4) , we find
) = 1 =1 = =
Viu + graddivu+ = F=0. 9
1-20 U

Dynamical Equations for an Isotropic Elastic Solid
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Let p be the density of the medium. The components of the force (mass x
2

. : oy,
acceleration/volume) per unit volume are py.

Hence , the dynamical equations in terms of the displacements u; become

o0 Al
A+ u)& +uVeu+Fi= pat—z'

fori=1,2,3.
Various form of it can be obtained as above for equilibrium equations.

Question : In an isotropic elastic body in equilibrium under the body force
f=ax; X2 & , where ais aconstant, the displacements are of the form

U1:AX12X2X3,U2:BX1X22X3,U3:CX1X2X32

where A, B, C are constants. Find A, B, C. Evaluate the corresponding
stresses.

4.6. BELTRAMI-MICHELL COMPATIBILITY EQUATIONS IN
TERMS OF THE STRESSES FOR AN ISOTROPIC SOLID

The strain — stress relations for an isotropic elastic solid are

l1+o o
gij = ?‘Cij— Eﬁije , 0=t , Q)
in which o is the Poisson’s ratio and E is the Young’s modulus.

The Saint — Venant’s compatibility equations in terms of strain
components are

€ij.ki T+ €idij — Cikjl — Ejlik =0 , )

which impose restrictions on the strain components to ensure that given e;;
yield single — valued continuous displacements u; .

When the region 7 is simply connected, using (1) in (2) , we find

l+o

{Tij.k + Tij — Tikji — Tilki} = %{Sij 0,11 + O 0, — Sik 0 i — 6j1 0k}

Tij K+ Tl ij — Tik, jl — Tjl , ki = L(Sije,kI+6kle,ij_6ike,jl—6jle,ik) ,(3)
l+o

275
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o’z o’

X, 0%, U ok,

with Tijkl =

These are equations of compatibility in stress components. These are
81(=3" in number but all of them are not independent. If i & j or k & | are
interchanged , we get same equations. Similarly for i=j=k =1, equations
are identically satisfied. Actually , the set of equations (3) contains only six
independent equations obtained by setting

k=I=1 | i=j=2

I
I
N
I
N s
I
w

I
1
w
I
N
1
[

~ X X X =X
I I
I I
N =
I I
w N
_— -
I I
= w

3 , i=1,j=2

Setting k =1 in (3) and then taking summation over the common index , we
get

o
Tij,kk T Tkk,ij — Tikjk — Tik,ik = s (Sij O 1k + Ok 0,ij — Oik O jk — Sjk O,ik)
o

Since O = V?0 , Tj= V'Tij ,
Tikiij = 0ij , Okk = 3,

therefore , above equations become
V2 i + 0. — Tikjk — Tikik = 7 [5i V20 + 30, — 20 ij]
l1+o

or

1
\% Tjj + 0,ij — Tikjk — Tjkik = g dij V20. 4
l+o l1+o
This is a set of 9 equations and out of which only 6 are independent due to
the symmetry of i & j. In combining equations (3) linearly , the number of

independent equations is not reduced.

Hence the resultant set of equations in (4) is equivalent to the original
equations in (3).
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Equilibrium equations are
Tikk T Fi=0
where F; is the body force per unit volume.
Differentiating these equations with respect to x; , we get
Tikkj = —Fi ]
Using (5) , equation (4) can be rewritten in the form

o

VZ’Cij+
l+o

8ij V’O=—(Fi j+F i) .

0
l+o "

Setting j =i in (6) and adding accordingly, we write

1 VZG—B—JVZG:—ZFM
l+o l+o

V2 0+

(1+i—£j V20 = —2F;;
l1+0 l+o

2(1-0)

Vze =-2Fii= —ZdiVI_f ,
l+o

giving

Vo= -1t givE
l-o

Using (7) in (6) , we find the final form of the compatibility equations in

terms of stresses.
We get

1 R
VZ’Cij'F meyij:—ﬁﬁij divF —(Fi,j+F.) .

These equations in cartesian coordinates (X , y , z) can be written as

1 5% o -
V2T + =_ divF -2
Tl o 1-o

(6)

()

(8)

X

()
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2 . F
Vg + 00 0 giF_ o
l+o oy l1-o oy
1 0% o .= .0F
Vi1 + =- divF —2 =2
“r e 1-o oz
2 F
vzryZJ,_l 00 __(oF R} N
l+o oyoz o oy
1 &% oF  oF
Vo T + = =L+ ” (9
T o a1ox [5x azj ®
2 F
VZ’ny+ 1 ¢ =-— al:X+ay
1+o OXoy y X

In 1892 , Beltrami obtained these equations for F = 0 and in 1900 Michell
obtained then in form as given in (9).

These equations in (9) are called the Beltrami — Michell compatibility
equations.

Definition : A function V of class C* is called a biharmonic function when
V2VAV =0 .

Theorem : When the components of the body F are constants , show that
the stress and strain invariants 6 and v are harmonic functions and the
stress components 1;; and strain components e;; are biharmonic functions.

Proof : The Beltrami — Michell compatibility equations in terms of stress
are

1 L=
Vi + e,i,-:_—la & divF —(Fi j+Fj.0) )

+0 -0
in which F is the body force per unit volume.

It is given that the vector F is constant. In this case, equations in (1)
reduce to

% Tjj —|:-Lo' 0;=0. (2

Setting j =i in (2) and taking summation accordingly , we get
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1

V2T + 0i=0
+0
2 1 .
Voo + vee=0
l+o
[1+ij V0 =0
l+o
Ve=0. 3)

This shows that the stress invariant 6 = 1. is a harmonic function.
The standard relation between the invariants 6 and v is
0=(CBr+2wv , 4
and equation (3) implies that
Viv=0 , (5)

showing that the strain invariant v = ey is also a harmonic function.

Again
V2 Vit = V[ 0.)
N 1+ ") "’
1
= ——— V(0,1
l+o
1
= —1—(V29),ij !
to
giving VZVi1;=0 . (6)

This shows that the stress components 1;; are biharmonic functions.
The following strain — stress relations

) 1
= 0+ Ty
T uBa2um) VT 2y

give
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2 72 7/1 2 72 1 2 72
Voeij= ———6j V 0+ —V ij
U @ T Y
V2V ei=0 . @)

Equation (7) shows that the strain components ej; are also biharmonic
functions.

Theorem 2: If the body force F is derived from a harmonic potential
function , show that the strain and stress invariants ey & Tk are harmonic
functions and the strain and stress components are biharmonic function.
Proof : Let ¢ be the potential function and F is derived from ¢ so that
F=V¢ or Fj=¢;j. )

Then

divF =¢;=V’$=0, )
since ¢ is a harmonic function (given). Further

Fi,i=Fji=9,j 3)

The Beltrami — Michell compatibility equations in terms of stresses , in
this case , reduce to

1
+0

2
Vo +

0,ij=-2¢,ij - (4)

Putting j =i in (4) and taking the summation accordingly , we obtain

1
+0o

V2 i + 1 0i = — 24

=-2V’$
=0
giving
V0=0, (®)
This shows that 6 is harmonic.

The relation 6 = (3A + 2u) v immediately shows that v is also harmonic.
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From equation (4) , we write

V2 Vi + ! V20 =-2(V* )
l+o
=0
This gives
VA V=0 ©)
as Vo=V ¢=0.

It shows that the components tj; are biharmonic.

The strain — stress relations yields that the strain components are also
biharmonic function.

Question : Find whether the following stress system can be a solution of an
elastostatic problem in the absence of body forces :

Ti1=Xp X3, T2 = X3 X1, T2 = X3~ , T13 = Ta3 = T3 = 0.

Solution : In order that the given stress system can be a solution of an
elastostatic problem in the absence of body forces , the following equations
are to be satisfied :
Q) Cauchy’s equations of equilibrium with fi =0, i.e.,

Ti11 + T2 + 1133 =0

Tiz1 + T2+ T33=0

Ti31+ 32+ 1333 =0 . 1)

(i) Beltrami — Michell equations with fi=0, i.e. ,

2 —_
Vot + (t11+ T2+ 133)11 =0,

2 —
Vot + (ta1 + T2 + T33)22=0 ,

2 —
V133 + (ta1 + T2 + T33)33=0 ,

+0
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1
2 —
Vo 112 + (t11 + T2+ 133)12=0 ,
l+o
2 1 _
Ve 13+ (t11 + T2+ 133)13=0 ,
l+o

(ta1 + T2 + T33)23=0 . 2

VZ To3 + 1
l+o

It is easy to check that all the equilibrium equations in (1) are satisfied.

Moreover, all except the fourth one in (2) are satisfied by the given stress
system.

Since the given system does not satisfy the Beltrami — Michell equations
fully , it can not form a solution of an elastostatic problem.

Remark : The example illustrates the important fact that a stress system
may not be a solution of an elasticity problem even though it satisfies
Cauchy’s equilibrium equations.

Exercise 1: Show that the stress — system 111 = To» = T13= T3 = 112 = =0, 133
= pg X3 , where p and g are constants ,satisfies that equations of
equilibrium and the equations of compatibility for a suitable body force.

Exercise 2: Show that the following stress system can not be a solution of
an elastostatic problem although it satisfies cauchy’s equations of
equilibrium with zero body forces :

-y 2 2 2 —_ v 2 2 2 - 2 2
T11 = X"+ o (X" = X27) , 122 = X1© + o(X2” — X1%) , 133 = 6 (X" + X2)
T2=—26 X1 X2, T3 =131 =0
where o is a constant of elasticity.

Exercise 3. Determine whether or not the following stress components are
a possible solution in elastostatics in the absence of body forces :
— — - - 2
TI1=aXe X3, T2 =0 Xg X1, T3=CXy X2, 12 =d X3
T13:eX22,T23:fX12,
wherea,b,c,d, e, fareall constants.
Exercise 4: In an elastic body in equilibrium under the body force f = a x;
X2 €; , Where a is a constant , the stresses are of the form
Ti1 = @ Xy X2 X3, T22 = 0 X1 X2 X3, 133 = C X1 X2 X3

2= (@X2+ D %%) Xa, To3 = (D X7 + € X37) X1, T3 = (€ Xe* + ax1%) Xz
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where a, b, ¢ are constants. Find these constants.
Exercise 5: Define the stress function S by
o°S
OX; OX;

and consider the case of zero body force. Show that , if ¢ = 0, then the
equilibrium and compatibility equations reduce to

V2 S = Constant.
4.7. UNIQUENESS OF SOLUTION

The most general problem of the elasticity theory is to determine the
distribution of stresses and strains as well as displacements at all points of a
body when certain boundary conditions and certain initial conditions are
specified (under the assumption that the body force f is known before
hand).

In the linear elasticity , the displacements , strains and stresses are
governed by the following equations

Tij = S,ij =

Q) ejj = %(Ui’j + U;;) strain — displacement relations Q)

(1) 755 = Adij exk + 21 € = Adij Uik + p(uij + uj)material law (2)
or

l+o

_
eij = —Eﬁij Tkk t+ Tij

(I) 7555 + fi = 0 Cauchy’s equation of equilibrium
or 3

(A+pgraddivu +p V> u+ f =0  Navier equation of equilibrium
Accordingly , solving a problem in linear elasticity generally amounts to

solving these equations for u; , ejj and T under certain specified boundary
conditions and initial conditions.

Let a body occupying a region V has the boundary S.
Initially , It is assumed that the body is in the undeformed state. That is,
ui=0 for ;=0 inV . (attimet=0) 4)

The boundary conditions specified are usually of one of following three
kinds :

(i) The stress vector is specified at every point of boundary S for all times, i.e. ,

1 — <

=S onS

where s is a known vector point function.
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(i) the displacement vector is specified at every point of S and for all times
1 i'e' '

u=ux* onS (6)
when u * is a known function.

(i) the stress vector is specified at every point of a part S, of S and the
displacement vector is specified at every point of the remaining
part S;=S-S;; i.e.,

<

=5 on S,

[ =

=u* onS,=S-S; . @)

The problem of solving equations (1) , (2) , (3) under the initial
condition(4) and one of the boundary conditions in (5) — (7) to determine u; ,
&jj , Tij Is known as boundary value problem in elastostatics.

A set {u;, e, Tij} so obtained / determined , if it exists , is called a solution
of the problem.

When the boundary condition is of the form (5) , the problem is referred
to as the traction (or stress) boundary value problem ; and when the
boundary condition of the form (6) , the problem is referred to as the
displacement BV problem ; and when the boundary condition is of the form
(7) , the problem is referred to as mixed BV problem.

The three problems are together called the fundamental boundary value
problems. The boundary conditions valid for all the three problems can be
written down in the form of (7). For the traction problem S;=Sand S, = ¢
, for the displacement problem S =S, and S; # ¢ , and for mixed problem
Su#zS#S..

Uniqueness : The solutions of an elastostatic problem governed by
equations (1) — (3) and the boundary condition (7) is unigue within a rigid
body displacement.

Remark 1: The displacement boundary value problem is completely solved
if one obtains a solution of the Navier equation subject to the boundary
condition (6). Note that we need not adjoin the compatibility equations

€ij.kl + €klij — Cikjl — €jlik =0, (8)

for the only purpose of the latter is to impose restrictions on the strain
components that shall ensure that the e;; yield single — valued continuous
displacements u; , when the region is simply connected. From the
knowledge of functions u; , one can determine the strains , and hence
stresses by making use of Hooke’s law in (2).



CONSTITUTIVE EQUATIONS OF LINEAR ELASTICITY 285

Remark 2: The stress boundary value problem suggests the desirability of
expressing all the differential equations entirely in terms of stress. The
compatibility equations (Betrami — Michell compatibility equations) in
terms of stresses are

1 —
V? Tij m Tkk,ij = —ﬁ OijdivF —(Fij + Fj,) ) 9

In order to determine the state of stress in the interior of an elastic body |,
one must solve the system of equations consisting of Cauchy’s equations of
equilibrium (3) and B—-M compatibility equations subject to the boundary
conditions in (5).

4.8. ST. VENANT’S PRINCIPAL

In the analysis of actual structures subjected to external loads , it can be
invariably found that the distributions of surface forces are so complex as
to define them more accurately for solving the appropriate governing
equations. It is true that the solutions obtained for such problems using
the elasticity equations are exact only if the external loads are applied in a
specific manner. However , in many cases it is possible to predict the net
effect of the external surface tractions without worrying about the precise
manner in which they are distributed over the boundary.

In 1853 in his “Memoire Sur la Torsion des Prismes” , Saint — Vanant
developed solutions for the torsion of prismatic bars which gave the same
stress distribution for all cross — sections. He attempted to justify the
usefulness of his formulation by the following : “ The fact is that the means
of application and distribution of the forces towards the extremities of the
prisms is immaterial to the perceptible effects produced on the rest of the
length , so that one can always , in a sufficiently similar manner , replace the
forces applied with equivalent static forces or with those having the same total
moments and the same resultant forces”.

St. Venant’s Principal : If a certain distribution of forces acting on a portion
of the surface of a body is replaced by different distribution of forces
acting on the same portion of the body ,then the effects of the two different
distributions on the parts sufficiently far removed (large compared to
linear dimensions of the body) from the region of application of forces ,
are essentially the same , provided that the two distributions of forces are
statically equivalent (that is , the same resultant forces and the same
resultant moment).

St . Venant principal is profitable when solving problems in rigid — body
mechanics to employ the concept of a point force when we had a force
distribution over a small area. At other times , we employed the rigid —
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body resultant force system of some distribution in the handling of a
problem. Such replacements led to reasonably accurate and direct
solutions. From the viewpoint of rigid — body mechanics , this principal
states that the stresses reasonably distant from an applied load on a
boundary are not significantly altered if this load is changed to another
load which is equivalent to it. We may call such a second load the statically
equivalent load.

This principal is actually summarized by one of its more detailed names,

“The principal of the elastic equivalence of statically equipollent systems
of load”.

St. Venant’s principal is very convenient and useful in obtaining solutions
to various problems in elasticity. However , the statements are in general
vague. They do not specifically state either the extent of the region within
which the effects of two different statically equivalent force systems are
not quite the same or the magnitude of the error.

Therefore , St. Venant’s principal is only qualitative and expresses only a
trend.

Nevertheless , St. Venant’s principal has many important implications
with respect to many practical problems. For instance , in many structures
, the overall deflections are not unduly affected by the local changes in the
distribution of forces or localized stress concentrations due the holes |,
cracks , etc. But it should be realized that the presence of defects in a
region , or a non — uniform application of load will cause changes in stress
distribution.

This principle is mainly used in elasticity to solve the problems of
extension/bending/torsion of elastic beams. Under this technique , certain
assumptions about the components of stress , strain and displacements are
made , while leaving enough degree of freedom , so that the equations of
equilibrium and compatibility are satisfied . The solution so obtained will
be unique by the uniqueness of solution of the general boundary — value
problems of linear elasticity.
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Table for various elastic coefficients for an isotropic media
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Chapter-5

Strain-Energy Function

5.1. INTRODUCTION

The energy stored in an elastic body by virtue of its deformation is called the
strain energy. This energy is acquired by the body when the body forces and
surface tractions do some work. This is also termed as internal energy. It
depends upon the shape and temperature of the body.

5.2. STRAIN - ENERGY FUNCTION

Let 1;; be the stress tensor and e;; be the strain tensor for an infinitesimal affine
deformation of an elastic body. We write

T11=T1 , T22="T2, T33 = T4
} 1)
T23=T4,T31=T5, T12 = Ts )
and
€11 =€1,€2=€2,€33=¢€3
(2)
23 =€4,2€13=6€5,28120=6 J ,

in terms of engineering notations.

We assume that the deformation of the elastic body is isothermal or adiabatic.
Love(1944) has proved that , under this assumption there exists a function of
strains

W=W(e1,e2,e3, ....... 5 66) , (3)
with the property

%:ri , fori=1,2,.....,6. 4

e,

This function W is called the strain energy function.

W represents strain energy , per unit of undeformed volume , stored up in
the body by the strains e;.

forcexL force

The units of W are 3 > that of a stress.
L L
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The existence of W was first introduced by George Green (1839).

Expanding the strain energy function W , given in (3) in a power series in
terms of strains e; , we write

2W:d0+2diei+di,-eie,- ,1,]j=1,2,....,6 . (5)

after discarding all terms of order 3 and higher in the strains e; as strains e; are
assumed to be small. In second term , summation of i is to be taken and in 3"
term , summation over dummy sufficies i & j are to be taken.

In the natural state , e; = 0, consequently W = 0 for ¢; = 0.
This gives
do =0. (6)

Even otherwise , the constant term in (5) can be neglected since we are
interested only in the partial derivatives of W. Therefore ,equations (5) and (6)
yield

2W = 2di e + dij eig . (7)
This gives
oW 1 ¢
— =d; dix + = —{d; & e
e, - e, {dij ei e}
1
=dy + 5 {dij Sxi &; + dij & Oxj]
1
=dy + 3 [dyj & + dii €]
1
=di + > (i + d) €;
=0+ (dig &) &
This gives
Ti=di+Cijg (8)
where

1
Gy = % (dj + i) = Gji . 9)
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We observe that c;j is symmetric.
We further assume that the stresses t; = 0 in the undeformed state , when g; = 0.
This assumption , using equation (8) , gives

di=0 , i=1,2,...,6
(10)

Equations (7) , (8) and (10) give

Ti = Cjj €j (11)
and
1 1
W= E Cij€i €= E €T , (12)

since , two quadric homogeneous forms for W are equal as

dijeieg=cijeieg . (13)
Equation (12) shows that the strain energy function W is a homogeneous
function of degree 2 in strains ¢; ,i=1,2, ....., 6, and coefficients c;j are
symmetric.

The generalized Hooke’s law under the conditions of existence of strain energy
function is given in equations (9) and (11).

In matrix form , it can be expressed as

i [Z¥! I Cuy Ci Ci3 Cia Cis Ci 11 €11 |
T2 Ci Ca Ca3 Co4 Cas Cas €2
Tz | _ Cis Ca3 Cs3 Ca4 Css C3s €33 . (14)
T3 Cua Co4 Cay Cus Css Css 2€,,
713 Cis Cos Css Css Css Cse 2e;
L 712 | | Cis Co C3s Css Cse Cos | | 261

This law contains 21 independent elastic constants.

Result 1: From equation (2) ; we write

W = [‘Clel""l?zez+‘C3€3+’C4E4+’C585+’5685]

N |-
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1
5 [t11 €11 + T22 €22 + T33 €33 + 2 To3 €23 + 2713 €13 + 2712 €12]

=%rijeij , 1,]=1,2,3. (15)
This result in (14) is called Claperon formula.

Result 11 : For an isotropic elastic medium , the Hooke’s law gives

y=ASjew+2ue; , i,j=1,2,3.  (16)
This gives
1
W= 5 eij[A3ij ek + 211 €jj]
1
= Elekkekk*' LL €ij &jj .

1
= EK e’ + Meijz

1
= 3 Merr + €5 + €33)? + p(e1r” + €27 + e33” + 28157+ 2e15° + 2 €557) . (17)

Result 3: Also , we have

l+o0

ej = -% Sij Tk + Tj - (18)
Hence
1 o lvo
W = 5 i [-ESij Tkk + E Tij]
= —i'fii Tkk Iro Tij Tij - (19)
2E 2E

Result 4: From equation (12) , we note that in the value of W , we may
interchange ej and t; . Consequently , interchanging e;
and 7; in equation (4) , we obtain

— =g , fori=1,2,3,....... 6. (20)
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This result is due to Castigliano (1847 — 1884).
It follows from the assumed linear assumed linear stress — strain relations.

Result 5: We know that the elastic moduli A and p are both positive for all
physical elastic solids. The quadratic form on the right side of (17) takes only
positive values for every set of values of the strains.

This shows that the strain energy function W is a positive definite form in the
strain components ejj , for an isotropic elastic solid.

Question : Show that the strain — energy function W for an isotropic solid is
independent of the choice of coordinate axes.

Solution : We know that the strain energy function W is given by

1
= 5 & (M Oy et 2 ey)

1
= 3 Merr + €y + €33)° + 1 (e11” + €20° + €33 + 2e1,” + 2e13” + 253°] . (1)

Let

l1=eji =€ +ex+ess, 2
I2 = eii &j; — &ij &ji - 3)

be the first and second invariants of the strain tensor ej. As the given medium
is isotropic , the elastic moduli A and p are also independent of the choice of
coordinate axes. We write

1. 2 2
= > A+ uf(ern+exntes) —2een—2exnes
2 2 2
— 2eszenn +2ep" +2e13” + 2e3°]

AP+ 12— 2{(e11 €22 — €129) + (22 €33 — €23°) + (€11 €33 — €13°}]

N |-

:%Mfwlf—zmz
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= (%-ﬁ-‘ujllz-zu |2. (4)

Hence , equation (4) shows that the strain energy function W is invariant
relative to all rotations of cartesian axes.

Question : Evaluate W for the stress field (for an isotropic solid)
T11= T2 =133 =T12=0

Tiz=-L X, T;s=pnaXy , o=0isaconstant and p is the
Lame’s constant

Solution : We find

Tkk = T11 + T22 + 133 = 0.

Hence , the relation

1 A ..
eij:Z[Tij‘—:g/l_i_zluSikak] ci,j=1,2,3.
gives
&= 1y
ij 2[! ij
Thatis , ei1=ep=ex=ep =0, (@)
1
913:—§OCX2 ,912=§OCX1- 2

The energy function W is given by
1
W = E Tij €ij

4# IR

Bl

— [us? + s
U

nod(Xe? + x29).

NG
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Exercise : Show that the strain energy function W is given by

W=W;+W; ,

where W; = 1 K ej i = i Tii Tii k = bulk modulus
2 18k

1
and W= 3 nf(e11 — €22)° + (B22 — €33)° + (€33 — €11)" + 6(€12° + €23° + €31°)]

1
= — (- T22)2 + (T2 — T33)2 + (T35 — T11)2 + 6(T122 + T232 + T312)] .
124

Question : If W = % [A e + 21 & &;j] , prove the following ,
(i) e, = Tij
. 1
(i) W= > Tij €ij
(iii) W is a scalar invariant.
(iv) W=x=0andW=0iffe;=0

oW
v — =&
(v) oz, O

Solution : We note that W is a function of e;. Partial differentiation of this
function w.r.t. e;; gives

= Tij - (1)
(if) We write

1
W = E [7\, ek Bk + 2 L €jj ei,-]
1
=3 [ ew{Sij eij} + 2 p ejj e

1
=3 (A Oij ek + 2 1 €j) &
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1
W= 5 Tij €ij - (2

(iif) Since 7 and e;; are components of tensors , each of order 2 , respectively.

. 1 . Lo
So by contraction rule, W = o i gjj Is a scalar invariant.

(iv) Since A>0, 1 >0, e’ > 0and gjj . €ij = 0, if follows that W > 0.

Moreover W = 0 iff exx = 0 and e;; = 0. Since e;; = 0 automatically implies that
ew = 0. Hence W = 0 holds iff e;; = 0.

(v) Putting
e; = ]-—I_—O- Tii - ET 6
] E ij E kk Oij
into (2) , we find
1.1 1.1
w=3 [% Tij Tij - %Tkk Ol =3 [—TEG Tij Tij - %Tkkz] :

This implies

MW _lio o 0t _ W _l+o

o
—Tjj- — T Tii - — Tkk Oij = &jj - (3
(%ij E ij kk ar ij kk Qij ij ( )

E 0T, E E

ij ij
Theorem : Show that the total work done by the external forces in altering
(changing) the configuration of the natural state to the state at time t is equal

to the sum of the Kinetic energy and the strain energy.

Proof : the natural / unstrained state of an elastic body is one in which there is
a uniform temperature and zero displacement with reference to which all
strains will be specified.

Let the body be in the natural state when t = 0. Let (X; , X2 , X3) denote the
coordinate of an arbitrary material point of the elastic body in the undeformed /
unstrained state.

t
t=0 ,
Ui P

P
0
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If the elastic body is subjected to the action of external forces , then it may
produce a deformation of the body and at any time ‘t’ , the coordinate of the
same material point will be X; + uj(X1 , X2, X3, t).

The displacement of the point P in the interval of
time (t, t + dt) is given by

N Gt = g dt
o

where

au

u = i
ot

The work done by the body forces F; acting on the volume element dzt , in time
‘dt’ sec , located at the material point P is
(Fidr) (u, dt) =F; u,dtdt ,

v
and the work performed by the external surface forces T, in time interval (t, t
+dt) is

T dodt |

1
where do is the element of surface.

Let E denote the work done by the body and surface forces acting on the elastic
body.

Then , the rate of doing work on the body originally occupying some region t
(by external forces) is

E o Fud+] T udo, (1)
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where X denotes the original surface of the elastic body.

Now I -|!i U, do = I (tijvj) U; do
z )

= I (’Cij Ui)Vj do

z

=J(Wm)qm,

= [ [t + Uy lde

=I Tij,j Uj d‘c+j Tij éij d‘C+J Tij Wijd‘t , 2
where
e =(u,+tu;)z
Wy = (0 - 0502 . 3)
Since
W =—Ww; and T = T,
SO

w W =0, (4a)
From dynamical equations of motion for an isotropic body , we write
Tijj=p U -F
Therefore, T U =p U U -Fu . (4b)
Using results (4a ,b) ; we write from equations (3) and (1) ,

dE

- :j F U, dr+j [pU U, - F ui]dr+j Tj & dr

T

:Jp{jiuidr+ITijéide. (5)

T T

15
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The kinetic energy K of the body in motion is given by

1 .
K—E! p U U dt (6)
Then
dK _
E—J. puiui dT. (7)

T

We define the engineering notation
T11=T1,T22=T2,T33 =13
T23= T4, T13=T5, 112 = T (8)

€11=€1,€»=€2,€33=¢€3

2e)3=€4,2€13=€5,2€12=€¢ /

. o8,
Then j Tj 6; dt= j T E‘dr , 9)
fori=1,2,3,...,6, andunder isothermal condition , there exists a energy
function

with the property that

W _

aei T (10)

1<i<6. From equations (9) and (10) , we write

¢ (awaee ), _ d
! Tij eijd’l?—.[ (gﬁjd’t—a! Wd’C
du
UL 11
i (11)

where

u=j Wdt . (12)
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From equations (5) , (7) and (11) , we write

%—E = Z—T + dd—ltJ . (13)
Integrating equation (13) w.r.t. ‘t” between the limits t =0 and t = t , we obtain

E=K+U, (14)
since both E and K are zero at t = 0.

The equation (14) proves the required result.

Note 1: If the elastic body is in equilibrium instead of in motion , then K =0
and

consequently E = U.

Note 2: U is called the total strain energy of the deformation.

5.3. CLAPEYRON’S THEOREM

Statement. If an elastic body is in equilibrium under a given system of body

v
forces Fi and surface forces T, , then the strain energy of deformation is

equal to one — half the work that would be done by the external forces (of the
equilibrium state) acting through the displacements u; form the unstressed
state to the state of equilibrium.

Proof : We are required to prove that
I Fiuidr+J. 'I\ii UidGZZI Wdr , (@)
T > T

where X denotes the original surface of the unstressed region <t of the body and
W is the energy density function representing the strain every per unit volume.
Now

I -|!i UidG:I ’CijUideG
2z P

= f (zij ui) ,j dt

= f {7ij,j Ui + Tij Ui, j} dt
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U.+U.. U.—U..
ZJ rij,juidr+J Tij{”; LA "12 J"}dr

T T

J Tij, j Ui dt + J. Tij (ei,- + Wij) dt

T

:I (Tij,j Ui * Tij €;j) dt )
since
Wij = — W and Tij = Tji -
Again from (2)
f T uido = [ CFiu+awydr, ®)
2 T
since
tijjtFi=0,

being the equilibrium equations and
1
W = E Tij €ij -
From (3) , we can write

J' FiUidT"'j 'FiuidGZZI Wdr |, (4)
T z 4

proving the theorem.

5.4 RECIPROCAL THEOREM OF BETTI AND
RAYLEIGH

Statement : If an elastic body is subjected to two systems of body and surface
forces producing two equilibrium states , show that the work done by the
system of forces in acting through the displacements of the second system is
equal to the work done by the second system of forces in acting through the
displacements of the first system.

Proof : Let the first system of body and surface forces {F; , 'I!i } produces the

v

displacement u; and the second system {F;", T, "} produces displacements u;'.
Let
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W; = work done by the first system of forces in acting through the
displacement of the second system.

Then

= [Fu/dv+ [T ud
W, J,u. v+_S[,uI S

= IFI Ui’ dv + J Tij Vj Ui’ ds
v

S

IFI Ui’ dv + J (Tij ui’) ,j dv
v v

IE Ui’ dv + J.Tij,j ui" dv + ITij u'i,j dv
v

\ \

= J.(Tij,j + Fi)uil dV + J.Tij erij dV y
\%

\

= J.Tij &jj dv , @

v
using equations of equilibrium

tij,j+Fi=0
Hence

W, = I[ﬂ 6ij exk + 21 eij] e'jj dv
v

= I[ﬂ Bk E'kk + 2 L €jj E'ij] dv. (2)
v

This expression is symmetric in primed and unprimed quantities.

We conclude that W; = W, where W, is the workdone by the forces of the
second system in acting through the displacements u; of the first system.

This completes the proof of the theorem.

(€] (@ ()
Corollary : Let 7; be the stresses corresponding to the strains e; and z; be

(2)

the stresses corresponding to the strains €; , in an elastic body. Prove that

ij 1
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@ @) (2 @

Remark 1: Reciprocal theorem relates the equilibrium states of an elastic solid
under the action of different applied loads.

Remark 2: An alternative form of the reciprocal theorem is

T

I TiUi'dG +I FiUi'dT:I ’CijE'ijd’C.
z T

5.5. THEOREM OF MINIMUM POTENTIAL
ENERGY

Now, we introduce an important functional , called the potential energy of
deformation , and prove that this functional attains an absolute minimum
when the displacements of the elastic body are those of the equilibrium
configuration.

Statement : Of all displacements satisfying the given boundary conditions,
those which satisfy the equilibrium equations make the potential energy an
absolute minimum.

Proof : Let a body t be in equilibrium under the action of specified body and
surface forces. Suppose that the surface forces T; are prescribed only over a
portion Xt of the surface ¥ , and over the remaining surface X, the
displacements are known.

We denote the displacements of the equilibrium state by u;. We consider a class
of arbitrary displacements u; + bu; , consistent with constraints imposed on the
elastic body. This means that

Sui=0 |, on X, 1)
but du; are arbitrary over the part 1, except for the condition that they belong
to class C* and are of the order of magnitude of displacements admissible in
linear elasticity.

Displacements du; are called virtual displacements .

We know that the strain energy U is given by the formula

u:der, (2

where the strain energy function W is given by the formula
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W =

N~

A Bk Bkk T L €j &

A and p being Lame constants , and e;; strain tensor.

21

©)

The strain energy U is equal to the work done by the external forces on the
elastic body in the process of bringing the body from the natural state to the

equilibrium state characterized by the displacements u;.

The virtual work U performed by the external force F; and T; during the

virtual displacements du; is defined by the equation

6U=I Fi6uidr+f T; duj do .
T z

(4)

Since the volume 7 is fixed and the forces Fiand T;do not vary when the
arbitrary variations du; are considered , equation (4) can be written in the form

6U:6[IFiui dr +ITiuid0j
T Z

From equation (2) , we have

U :6(!w dr] .

Equations (5) and (6) provide

ESUW dr - [Fuy dr —ITiuida] =0 .
T T Z

The potential energy V is defined by the formula

V= [Wdr - [Ru dr - [Tudo
T T z

In view of equation (8) , relation (7) reads

dV=0.

(5)

(6)

(")

(8)

(9)

This formula shows that the potential energy functional V has a stationary
value in a class of admissible variations du; of the displacements u; of the

equilibrium state.
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We shall finally show that the functional V assumes a minimum value when
the displacements u; are those of the equilibrium state.

To show this , we demonstrate that the increment AV produced in V by
replacing the equilibrium displacements u; by u; + du; is positive for all non —
vanishing variations du;.

First , we calculate the increment AW in W. From (3)

2 Uj +Uj 2 uj
Now
1
Eij |ui+&1i = E(ui,j + uj,i) |ui+&,|i
1 1
=5 (Uij + uji) + 5 [(oui) + (Auj),i]
1 1
=g+ (o) + = (o), (11)
2 2
and
Vlui +8U; = ekk |ui +8U;
= eji + (Bui) i
=Vv+ (6Ui) i (12)
Therefore , equations (10) to (12) yield
_[4 1 1
AW = 2 [v+ (Sui)i] [V + (Bui) ,i] + nlei; + 5 (ui),i + 5 (6uj),]
1 1 A
X [eij + E (6Ui),j + E Bui) il - (Ej Vi - L €ij €j
:kv(éui),i+2uei,— (6Ui)’j+P ) (13)

where

=4 o) 1+

NG

j[(éuo S+ w20 . (14)
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Equation (13) can be rewritten in the form

AW =24 v & (Bui) j+2pe;Ou) j+P

= (A v &+ 2 ey [(Bui) ] +P
= 7ij [(6u) ,j] + P.
The increment AU in strain energy is , therefore ,

AU:J AW dt

:j ri,-(ésui),,-dwj P dt

T

= | [(t ) - v U] de+Q

:I (’Cijﬁui),jd’t—J. ’Cij,jﬁuid’t+Q

T T

:I ’CijVjSUidG—f ’Cij,jﬁuid’t+Q .

z T

In equation (16) , we have used divergence theorem and

Q:j Pdt>0 .

Since P > 0 by virtue of (14).
If the body is in equilibrium , then we have

’Cij,j:—Fi , int

v
tjVvi=T, , onZ

and , therefore , equation (16) becomes

AU= | Tvizsuidmj F, ou; dr + Q.

z

Using the definition (8) for potential energy. we get

(15)

(16)

17)

(18)

(19)

(20)
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AV=AU- [ Fidude- | Toudo . (20
T 2

Substituting (20) in (21) , we obtain
! \%
AV = ITidJida+IFidJidr+Q —J Fi6uidr-f T. du; do
) T 4 J

=Q. (22)
Since
Q=0,
(Q =0 in the case of equilibrium only as P = 0 in this case), we find
AV > 0. (23)
This completes the proof of the theorem.

Converse : Assume that there is a set of admissible functions u; + du; which
satisfy the prescribed boundary conditions and such that

AV=[AU- [ Toudo- [ Fidude]=0,  (24)
2 T

on this set of functions.
From equation (16) , we write
AU = I Tij Vj Ou; do — J Tij, jouidt+ Q
2

T

where Q is given in (17). Inserting this value of AU in (24) , we obtain
—I (Tij,j+Fi)6UidT+J‘ TijVi— T;)duidoc+Q | >0. (25)
T z

On the part Z1 of £ , where T; are assigned ,
Tij Vj — Ti=0 (26)

and over the remaining part X, of X ,
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6Ui =0 . (27)
Therefore ,

[ (v T ) 8u; do = 0. (28)

P

Hence , equation (25) reduces to
- Gyj+F)duidt+Q|=0. (29)
Since Q is essentially positive and the displacements du; are arbitrary , the
inequality (29) implies that
Tijj t Fi=0 , (30)
for every point interior to T.

Thus , the equations of equilibrium are satisfied for every interior point in .
This proves the converse part.

5.6. THEOREM OF MINIMUM
COMPLEMENTARY ENERGY

Definition : The complementary energy V* is defined by the formula

V*=U - j Tiuido:j W dt - j Tiuido |
>u T >u

where U is the strain energy and W is the strain energy function.

Statement : The complementary energy V* has an absolute minimum when

the stress tensor j; is that of the equilibrium state and the varied states of stress
fulfill the following conditions :

(I) (S‘Cij) = 0inrt,
(i) (@ Tj))vj=0 onZy,
(ilf) Oty are arbitraryon X, .

Proof : Let a body t be in equilibrium under the action of body forces F; and
surface forces T; assigned over a part Zt of the surface X. On the remaining
part £, of ¥ , the displacements u; are assumed to be known.
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If the 1;; are the stress components of the equilibrium state , then we have

tij,j+Fi=0 int, (D)
Tij Vj = Ti onXxt, (2)
u; = f; onzy . 3)

1
We introduce a set of functions z; of class C? the body 7 , which we shall also
write as

éj =17 + 875, 4)
satisfying the conditions :
Q) rijlvj +Fi=0 ,inzt (5)
(i) rlij vi=T;, onZXZr (6)

1
(ili)  z; are arbitrary on the surface X, .

From equations (4) and (5) at each point of 1 ; we
write

(tj+dTj),j+Fi=0

(zij,j + Fi) (6t ,j=0

®Tp);=0 int . ©)
Also from equations (4) and (6) , we have

(tj+ 8 t) vi=T; on Zr

v+ (Gt) vi=Ti  onZr,

(Btj) vj=0 onXr . (8)
1
Since z; are arbitrary on I, , so the variations dt;; are arbitrary on Z.

As the stresses 7j; are associated with the equilibrium state of the body , so 7j;
satisfy the Biltrami — Michell compatibility equations. Let W denote the strain
— energy density function. It is given by the formula

1
W = (%j'ﬁj Tij - [%j Ti Ti )
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where ¢ = Poisson ration and E = Young’s modulus.

The increment AU in the strain energy U is given by the formula

AU = j AW dt | (10)

1
where the increment AW in W is produced by replacing v in (9) by 7; =7 +
& tjj. That is ,

W+ AW = (1;—;) (ij + 87i) (mij + & ) - [%j (tii + 8ti)?

=W+ (]S-Uj [Z’Cu(6 ’Cu) + (8 Tu)] [ j [2 Tii (6 Tii) + ( ’C“) 1.

Hence ,
aw= (22 )5 6 a5 )+ W ), (11)
where
W(ésfij):[(l*“j(a 5)(67,) - (“Ej(&ﬂzo, (12)

since the strain energy function W is a positive definite quadric form in its
variables.

From Hooke’s law for isotropic solids , we have

ij = (“?Gj Tij - [%j Tkk 6ij . (13)

From equations (11) to (12) , we write

1
AW = K%jr (g jrkk }(6 )+ W (6 1)

= (&) (6 ) + W(3 i)

: (“ ; ](6 ) + WG 1)

27



28

MECHANICS OF SOLIDS

= (Uij) (6 ) + W(S i)

= [(ui 6 Tig) j — ui(® 7ij) ] + W(B Tij). (14)
Since the stress components tj; were assumed to satisfy the Beltrami — Michell
compatibility equations , therefore, the displacements u; appearing in (14) are

those of the actual equilibrium state of the body.

Using (14) in (10) , the increment AU in the strain energy becomes

AU = f [(ui & 7ij) ,j— ui (8 7)) ,j + W(Stij)] dt

= J (Ui 6’Cij),j drt - I Ui(ﬁ’tij),j dt + J W(S’Cij) dt

T T

= j (U, 8t vjdo + P, (15)
Zuy

using the Gauss divergence theorem and equations (7) and (8). In equation (15)

k)

P= j W(3 ;) dt > 0. (16)

As the variations dt;; are arbitrary on the surface X, , we write
(S’Cij) V)= AT, on X, a7
then , equation (15) reads as

AU = Iui ATido +P. (18)
Zu

Since the displacements u; are assigned on the surface X, , we can write (18) as
A(U - jui T)=P>0,
Zu
or
AV* > 0. (19)

That is , the increment AV* in the complementary energy V* (for the
equilibrium state) is essentially positive.
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Hence , the complementary energy functional V* has an absolute minimum in
the case of an equilibrium state of the body.

This completes the proof.

5./. THEOREM OF MINIMUM STRAIN

ENERGY

Statement : The strain energy U of an elastic body in equilibrium under the
action of prescribed surface forces is an absolute minimum on the set of all
values of the functional U determined by the solutions of the system

tjj+tFi=0 int tivi=Ti on X .

Proof : Continuing from the previous theorem on complementary energy , we
write

(6’Cij)Vj:O onx=27U2%,,

and equation (15) reduces to
AU=P>0,

showing that the increment AU in the strain energy U of a body in
equilibrium state is positive. Therefore , U is an absolute minimum.

Hence the result.

29
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Chapter-6

Two-Dimensional Problems

6.1 INTRODUCTION

Many physical problems regarding the deformation of elastic solids are
reducible to two-dimensional elastostatic problems. This reduction facilitates
an easy solution.

6.2 PLANE STRAIN DEFORMATION

An elastic body is said to be in the state of plane strain deformation, parallel to
the x; Xo-plane, if the displacement component uz vanishes identically and the
other two displacement components u; and up are function of x; and X
coordinates only and independent of x3 coordinate.

Thus, the state of plane strain deformation (parallel to x;xp-plane) is
characterised by the displacement components of the following type

Uy = Ul(Xl, Xz), U, = U2(X1, Xz), Uz = 0. (1)

The plane strain deformation is a two-dimensional approximation.

A plane strain state is used for a body in which one dimension is much larger
than the other two.

For example, a long pressurized pipe or a dam between two massive end walls
is a suitable case of plane strain deformation.

The maintenance of a state of plane strain requires the application of tension or
pressure over the terminal sections, adjusted so as to keep constant the lengths
of all the longitudinal filaments.

The states of plane strain deformation can be maintained in bodies of
cylindrical form by suitable forces. We take the generators of the cylindrical
bounding surface to be parallel to the xs-axis. We further suppose that the
terminal sections are at right angles to this axis. The body force, if any, must
be at right angles to the x3-axis and independent of it.

The strain components, e; are given by the following strain-displacement
relation

Ejj = %(Ui,j + Uj) - ...(2a)

We find, for plane strain deformation parallel to x;x,-plane,



CARTESIAN TENSORS 31

€13 =633 =€33 = 0, (3)
and
ou au
911:_1,322:_21
OXq OX
1(eu, o,
e, =2 —L4+52 (4
12 2(8)(2 axlj ()

which are independent of x.

It shows that all non-zero strains are on the Xjyx,-plane and Xz-axis is strain-
free/extension-free.

The strain matrix is, thus

auy o ou 0
Xy 2\ 0X, X

(&) = 1fou Uy Ny 0
AC oX,
0 0 1

The stress components t; in terms of strains components e;; are governed by
generalized Hooke’s law for isotropic elastic solids

Tij = A 6ij ek + 21 €ij - ...(52)

We find, for plane strain deformation parallel to x;x,-plane,

11 = Merr +€e2) +2nenn = (A +2u) e + A ey, ...(5b)
T2 = Me11 + €22) + 2 e = hep + (A +2p)ez, ...(5¢)
T12 = 2L €12, ...(5d)
T13 = T23 = 0, ...(6a)

T33 = AMe11 + €22) = o (t11 + 122)
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=3 (73; ") (T11 + 122). ...(6b)

where

X
2(h+p)

is the Poisson’s ratio.

These relations shows all stress components are also independent of X3
coordinate.

Since stress
T3 = T3 =0, but 133 # 0,
so the strain-free axis (xs-axis) is not stress-free, in general.

The Cauchy’s equilibrium equations for an elastic solid are
Tijj + fi=0, ...(7)

where f = fj is the body force per unit volume.

In the case of plane strain deformation parallel to x;x,-plane, these equations
reduce to, using equations (6),

Titq + T22+f1=0,
Tizq + T2+ 2 =0,
f,=0. (8

It shows that, for a plane strain deformation parallel to Xx;x,-plane, the body
force is also independent of x3 coordinate and the body force must be
perpendicular to xz-direction.

In general, there are 6 Saint-Venant compatibility conditions for infinitesimal
strain components. In the state of plane strain deformation five out of these 6
conditions are identically satisfied and the only compatibility condition to be
considered further, for plane strain deformation parallel to x;x2-plane, is

11,22 + €2211 =2 €12,12. ...(9)

Remark :- To distinguish plane strain case from the general case, we shall use
subscripts o, 3 instead of i, j. We shall also assume that o, 3 vary form 1 to 2.

From equations (5a) and (8a, b); we write as follows:
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’Cag,g'?fazo, fora=1, 2,
A Bap(11 + €22),p + 1 (Uapp + Upap) + fu =0,

Mer + €22) . + 1 [V Uy + (11 + €22),0] + =0

(A +p) axi(e11+e22)+uV2 Ug + T, =0 ...(10)

o

foraa=1, 2 and

2 2
VZZ 8_+8_

: ...(10a)
X2 AXy2

These are the equations of equilibrium (or Navier equations) for plane strain
deformation, parallel to x;x,-plne.

Beltrami - Michell Conditions of Compatibility for Plane Strain
Deformation Parallel to x;x»,-Plane.

Solving equations (5b, c, d) for strain components in terms of stresses, we

write

— (A +2p)ty3 —A1pp
Au(r +p)

_ (A +21)T95 — ATyy
4u( +p)

22

1
1

Substituting the values of these strain components into Saint-Venant
compatibility condition (9), we obtain

1 1
————[(A+21) 11,22 —A T2222 H(A+21) T22.11 —A T1111] = — T12,12
Au(h+ p) n

(A+20) (T11,22 + T22,11) —A (T11,11 + T2222) = 4(A 1) T12,12 ...(12)

Differentiating the equilibrium equations
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Tocﬁ,ﬁ + foc: O y

w.r.t. X, and adding under summation convention, we find

Tap,ap + foc,oc =0 )

Ti111 + To2,22 ¥2 1212 + T = 0. ...(13)

Eliminating 11212 from (12) and (13), we get
(A+21) (T11,22 + T22,11) —MTa1.11 + T22.22) + 2(A+1) [T11,11tF T22,220 + Fa] = 0

(A +2p) [t11,20 + T2211 + Ta1,11 T2220] + 2(A+) T =0

o2 5 201
[ +—2] (t11 + 122) + }E ) (fi1+f2) =0

2 oX, +2p

2 2 _
8_2+8_2 (Tll+rzz)+idiv f=0. ...(14)
axl axz l-o

When the body force is constant or absent, then the Beltrami-Michell
compatibility condition (14) for plane strain deformation (parallel to X;Xo-
plane) reduces to

o2 8
—2+ > (‘5114“522):0. ...(15)
2 ox,

Equation (15) shows that the stress t1; + T2, is harmonic, when the body force
is either absent or constant, and consequently (e1; + €;2) is harmonic.

Note :- The generalized Hooke’s law

Tj = £ [eij By ekk} :
l1+o 1-2¢

may also be used to calculate the stress components for plane strain
deformation parallel to x;x,-plane is term of elastic modulli E, c instead of A ,

LL.
Examples of Plane strain deformations
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(A) The problem of stresses in an elastic semi-infinite medium subjected to a
vertical line-load is a plane strain problem.

v

-
X1

.- = X2
X3
Here, the line-load extends to infinity on both sides of the origin. The

displacement components are of the type

Ui = 0, Uz = Uz(X2, X3), Uz = U3(X2, X3) ,

(B) The problem of determination of stresses resulting from a tangential line-
load at the surface of a semi-infinite medium is a plane strain problem.

i/
=

N
X2

X1
X3

(C) The stresses and displacements in a semi-infinite elastic medium subjected
to inclined loads can be obtained by superposition of the vertical and
horizontal cases. If the components of the line-load are q cosa and g sina,
the stresses can be determined.

q L
o ! ’//
qsin o \V .- cosa
-->-- T X2
L_/,
X1
X3

(D) The problem of deformation of an infinite cylinder by a force in the x;x,-
plane is a plane strain problem.

35
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X
1 Xa

In Cartesian coordinates

Uz = Uz(X1, X2), U2 = Uz(X1, X2), Uz = 0.
In cylindrical coordinates
ur=u(r, 8), ug=v(r,0),u,= 0,

Principal Strains And Directions For Plane Strain Deformation

A deformation for which the strain components e1s, e2; and e;, are independent
of x3 and e13 = ex3 = e33 = 0 is called a plane strain deformation parallel to the
X1Xo-plane.

For such a deformation, the principal strain in the direction of xs-axis is zero
and the strain quadric of Cauchy

€ij Xi Xj:ik2 , ...(1)

becomes

e11 X12 + 2 €12 X1Xo + €2 X22 ==+ k2 , (2)

which represents a cylinder in three-dimensions. Let the axes be rotated about
Xz-axis through an angle 6 to get new axes Ox;’ X»' X3’

X2
'
L X1
.
’ .
X2 2 L7
\\ \‘ //
. \ -
AN \ e e
RN . -1
~ \ Vi -
N _-
SN //’\‘e' )'(I)
L.
6\ /’” Xl

Let
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ajj = cos (Xi', X;) . ...(3)
Then
X1 X2 X3
Xi' |cos® |sin@ |0 (%)
X, | -sin® |cosO |0
X3’ 0 0 1

The strains e'pq relative to primed system are given by the law

e'pq = Qpj agj €jj , ...(5)
for (ij) = (11), (22), (12), (21). We find
elllz dii ayj €ij = 3121 e + 3122 €2 + a1 ajp €12 + a2 a11 €12

= ¢0S%0. €11 + Sin%0 e, + 2 Sind cos O e,

1+ cos20 1-co0s20 .
=en — +€9 — + eq2 Sin 20

(11 texp)+ % (e11 — €22) €COS 20 + €1, Sin 20, ...(6a)

N |-

Similarly

C1 1 .
e > (e11 + €22) -3 (611 — €22) COS 20 — €12 Sin 20, ...(6b)

e'12 = —% (e11—€22) SIN20 + €17 C0S20 ...(6¢)

e'31 :el32 :e;33 :0. (6d)

The principal directions in the x1x,-plane are given by

eI12= 0
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This gives
52129:1 c0s20 _ : 1 (T2
12 5(911—322) \/efz +=(egg —€9)°
4
and
tan2g= 12 28 ..(Tb)

1

5 (C11-€2) f11 ~ €22

Let ¢ be the angle which the principal directions O; and O, make with the old
axes in the x3xo-plane. Then
2
tan 2= — <12 .8

€11 €2
The principal strains e; and e; given by equations (6a, b) and (7a). We find (e;

_ 1 1
= €11, 8 =€)

1 1
€1, €= 3 (€11 + €22) i\/z(en —e22)2 +e122 , ...(9)

the shearing strain e';, will be maximum when

d

d_eellz =0

—(e11 —€22) COS 20 —2€1,8IN20=0

€0s20 sin26 1
= = ...(10a)

1 1
——(e11—-€5)) \/ez + (611 —€,,)°
2 11 =22 12 4( 11 22)

€12

This gives the direction in which the shearing strain e';, is maximum and

maximum value of €';, is given by equations (6¢) and (10a). We find
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' 1
412 o :\/efz +Z(e11_e22)2 : ...(10b)

From equations (9) and (10b), we obtain

= 42 o ..(11)

This shows that maximum value of shearing strain is half of the difference of
two principal strains in the x1x, plane.

6.3 ANTIPLANE STRAIN DEFORMATION PARALLEL TO
X1X2'PLANE

This deformation is characterised by
Uy =u, =0, Uz = U3(X1, X2) .

The strains are

e11=0,ex=epp=e33=0, ~..(1)

loug , _10ug

Thus, only shear strains in the xs-direction are non-zero we can now find
stresses from the Hooke’s law

Tij = AV. 6ij + 2“ €ij ,
giving T11 = T22 = T33 — 0, T12 = 0 ) (3)
and non-zero shear stresses are

— .1 —
Maxl 23

—uaxz . ...(4)

T13 =

The equations of equilibrium are

Tijj t Fi=0.

Using the above values of stresses, we see that for i = 1, 2, we must have
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Fi=F=0, ...(5
and for i = 3,
Ta11 + Ta22 + 1333t F3 =0
%+@+F3:0_ ...(6)

8X1 OoX 2

In term of us, this may be written as

2 ~2

u u
K 3122 +R=0.
wVauz+F3=0.

Example of Anti-plane Deformation
Suppose that a force is applied along the line which is parallel to x;-axis and is
situated at a depth h below the free-surface of an elastic isotropic half-space.

e X2

The resulting deformation is that of anti-plane strain deformation with
Uz = Uz(X2, X3), U2 = Uz = 0.

Remark :- Two-dimensional problems in acoustics are antiplane strain

problems.

6.4 PLANE STRESS
An elastic body is said to be in a state of plane stress parallel to the x1x,-plane

if
(D)

T31=T32=T133=0,



CARTESIAN TENSORS 41

and the remaining stress components t11, T2, T12 are independent of Xs.
The equilibrium equations
Tij,j + fi=0,

for the case of plane stress reduce to

Ti1+ T2 =0, ...(2a)
T2+ 122+ =0, ...(2b)
f3=0, ...(2¢)

which are the same as for the case of plane strain deformation parallel to X;X,-
plane. In the state of plane stress, the body force f = (fi, f,, 0) must be
independent of X3 as various stress components in Cauchy’s equilibrium
equations in (2) are independent of X.

The strain components ej; and stresses components tj; are connected by the

Hooke’s law

Tij = A Ojj ek + 211 €5 . ...(3)
This gives
1
€12= — T12,€13=0,€623=0,
2u
and
T3z = M€11 + €22 + €33) + 21 €33
eggz—Mi 0. ...(53)
A+2u
Hence

My +€5))

Bkk = €11 + €20 + €33 = (11 + €22) —
A+2u
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2
= €11 + €2). ...(5b
}Vi_zu(ll 22) (5b)

This shows that strain component e;3 and e,z are zero but ez3 is not zero.

Hence, a state of plane stress does not imply a corresponding state of plane
strain.

In view of Hooke’s law (3), the strain components also do not depend upon Xs.

Let
7= 2 ..(6)
A+21
From (3), we write
2 _ _
L=\ H (811 + 822) + 211 €11 = ( A +2LL) enn+ Aexy ...(721)
A+20
Too = 7\,(@11 + 822) +2LL €2 = 7\, €11 +( 7\,"‘2“) €27 (7b)

comparing equations (7a, b) with the corresponding relations for plane strain
deformation parallel to xixo-plane, it is evident that solutions of plane stress
problems can be obtained from the solutions of corresponding plane strain

problems on replacing the true value of A by the apparent value A = }sz“;l :
Strain Components in terms of Stress Components
Solving equations (7a, b) for e1; and e;,, we find
ey = 2(A+ 1)1y — Mg
2u(3A + 2u)
B 2(L+ )T — ATy _ (8)

e,, =
2 231+ 21)
Substituting these values of e;; and ey, into equation (5a), we find

—Mry1 +7T22)
= ——" ...(9
BT 203+ 2u) ©)
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Other strain components have been obtained in equation (4) already. All strain
components are independent of X3 by Hooke’s law.

In this plane stress problem, two compatibility equations are identically
satisfied and the remaining four are

1122 + €2211 = 21212 ...(10a)
€3311 = €3322 = €3312 = 0. ...(10b)

Since es3 is independent of x3 and satisfies all conditions in (10b), so e33 must

be of the type
€33 = C1 *+ C2 X2 + C3Xy ..(11)

where ¢y, C, C3 are constants.

In most problems, equation (10a) is taken into consideration and requirement
of equations in (10b) is ignored. This is possible, although approximately,
when the dimension of the elastic body in the xs-direction is small.

In the plane stress state, strain components e;1, €2, €33 are independent of X3
but the displacements may depend upon Xs.

Hence, plane stress problems are not truly two-dimensional.
Compatibility Equation in terms of Stresses

From equations (4), (8) and (10a), we write

1
2u(3n+2u)

2(A+ ) (ta1,20%T2211) — MT2222 Ta111) = 2B A420) T1212 . ...(12)

2
[2(A+1W)T11,20 —A To222 + 2(A+) To211 —A T11,11] = ﬂm,lz

From equation in (2), we write
Tita1 + T1212 ¥ 11 =0, Ti212 + T 20 + F22=0

(Tir11 + To222) + (fra+ F22) =2 11212 . ...(13)

From (12) and (13) , we have
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2(A+) (T11,22 + T22,11) —MT2222 + T11.11) = —(BA + 21) [T11,11 + To222 + fr11 + T2 2]

2(A+p) (ti122 + 22,11 H(2A+21) (22,22 +7111,11) H(BA+2) (fat+f22) =0

2(M+) [(t11.22 + T22.22) + (T11.01+7T22.11)] + (BA +2) (fr1 + f22) =0

0% 8 3+2
LT (g T+ B fi+f2)=0, .14
X© DXy 2L +p)

which is the same as obtained from the corresponding equation for plane strain

deformation parallel to x;x,-plane on replacing A by % .
+2p

Remark :- Since 131 = 132 = 0, SO Xz-axis a principal axis of stress and the
corresponding principal stress 13 is zero because

Ta1 = T32= 133 = 0.
In the state of plane stress, one principal stress is zero or when one of the
principal stress is zero, the state of stress is known as plane stress state.

Note :- A state of plane stress is obviously a possibility for bodies with one
dimension much smaller than the other two. This type of state appears in the
study of the deformation of a thin sheet plate when the plate is loaded by force
applied at the boundary.

When the lengths of the generators in a cylindrical body are small in
comparison with the linear dimensions of the cross-section, the body becomes
a plate and the terminal sections are its faces.

The maintenance in a plate of a state of plane stress does not require the
application of traction to the faces of the plate, but it required the body forces
and tractions at the edge (or curved boundary) to be distributed in certain
special ways.

In such a state, the stress components in the direction of the thickness of the
plate are zero on both faces of the plate.

Question :- Discuss the principal stresses and principal directions of stress in a
state of plane stress.

Answer :- Let an elastic body be in the state of plane stress parallel to the x;x,-
plane. Then the stress components ts1, Ts2, T33 Vanishes, i.e.,

T31 = 132 = 133 = 0.
The equation of stress quadric in the state of
plane stress becomes
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2
T11 X™ + T2 y2 + 2T Xy =+ K2,

Let us rotate the 0x; X, X3 System about Oxz-axis by an amount 6 .

X2
X '
2 Xl'
R !
N s
N 4
N
AV
’\4;, \ Xl
4 AN
7’ N
e A
, AN
’ N
A Y

Then

a11 = €os (X1', X1) = €0s 6,
a12 = COS (X1', Xp) =+sin O,
a13=0

a1 = Ccos(Xy’, X1) = —sind,
a2 = COS (X', X2) = €OS 6,
a3 = C0S (X2, X3) =0
a31=0,a3,=0,a33=1.

Let r'pq be the stresses relative to new system. Then
‘Clpq = dpj dgj Tijj-
This gives

T11= 81i &) Tj
= 111 €0S?0 + T2, SIN°0 + 2 11, €OS O sin 6.

= % (t11 + T™22) +% (T11 — T22) COS 26 + 112 SiN 26

Similarly,
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. 1 1 .
T22 = E (Tll + ’522) —E ('Cl]_ — 'C22) COoS 26 — T12 Sin 26,

- 1 .
Ty = -3 (T11 — T22) SIN 26 + 115 COS 20,

T3y = T3p =T33 = 0.
To obtain the other two principal directions of stress, we put
T;I_Z =0.
o 1 .
This gives 3 (11 — T22) SIN 26 = 132 COS 20
c0s20  sin20 1

1 - 1
E(Tll_TZZ) 12 \/4('[11—'[22)2 +sz

tan 26 = 2T_12

T11 = T22

This determines 6 and hence the directions of two principal stresses
0x, and 0x,.

Let 1y and 1, be the principal stresses in the directions O0x, and Ox,
respectively. Then

2 2
1 (T11—T22) T2
T = E(T11+Tzz)+ 2 +

1 1
\/4(T11—T22)2 +T122 \/4(T11_T22)2 +T122

1 1
= E(Tll —T22)+\/2(T11 —15)2 41

and

1 1
T2 = E(Tﬂ —Tzz)—\/z(fn —T22)2 +T122 -
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The principal stress in the direction 0x3 or oxs' is
T3 — 0.
The stress quadric with respect to principal axes becomes

2 2 5
T1 X1 +To Xs =tk ,

which is a cylinder whose base is a conic (where may be called stress conic);
its plane contains the directions of the two principal stresses which do not
vanish.

Note : (The stress of plane stress is also defined as the one in which one
principal stress is zero).

6.5 GENERALIZED PLANE STRESS
Consider a thin flat plate of thickness 2h. We take the middle plane of the

plate as x3 = 0 plane so that the two faces of the plate are x3 = h and x3 = —h.
We make the following assumptions :

X1

(a) The faces of plate are free from applied loads.

(b) The surface forces acting on the edge (curved surface) of the plate lie in
planes, parallel to the middle plane (x3 = 0), i.e., parallel to x;x,-plane and
are symmetrically distributed w.r.t the middle plane x3 = 0.

(c) f3 = 0 and components f; and f, of the body force are symmetrically
distributed w.r.t the middle plane.

Under these assumptions, the points of the middle plane will not
undergo any deformation in the xz-direction. Let

1 n

Us(X1, X2) = on [ us(xq, X2, X3) dxs, (D)
“h

denote the mean value of us over the thickness of the plate. Then us(Xy, X») is
independent of x3. The symmetrical distribution of external forces w.r.t. the
middle plane implies that
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Us(X1, X2) = 0. .2
Since the faces x3 = + h of the plate are free from applied loads (as assumed in

(@), so
T31(X1, X2,  h) = 132(X1, X2, £ h) = T33(X1, X2, £N) =0, ...(3a)

for all admissible values of x; and x,. Hence

T311 = T322=0, atx==+h. ...(3b)
Third equilibrium equation (with f3 = 0) is

Ta11 + Ta22 + 7333 =0 . (4
Using (2b), equation (4) reduce to

T333(X1, X2, £h) =0. ...(5

We note that t33 and its derivative w.r.t. X3 vanish on the faces of the plate.
Since the thickness of plate is assumed to be very small, the stress component
133 IS small throughout of plate. Therefore we make assumption that

133=0, (6)

throughout the plate.
Now, we make the following definition.

Definition :- The stressed state of a thin plate for which 133 = 0 everywhere

and 131, 132 vanish on the two faces of the plate is known as generalized
plane stress.

The remaining equilibrium equations for an elastic body are

Ta1l t Ta2,2 T Taz3z + f,=0 fora=1,2.

Integrating w.r.t X3 between the limits —h and +h, we obtain

h
Z_JH J. [To11 + Ta2,2 + Tazz + fo] dX3 =0
-h
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Tar1+ Tazp + o =0, (7

for o = 1, 2, because,
h
J. Ta3,3 OX3 = Toa(X1, X2, N) — Taa(X1, X2, —h)
-h

=0-0=0, ...(7a)

as 131 and T3, vanish on the two faces of the plate.

Equations in (7) are the equilibrium equations for the mean values of the
stresses and forces. Here 1, etc. represents mean values.

When a plate is thin, the determination of the mean values of the components
of displacement, strain and stress, taken over the thickness of the plate, may
lead to knowledge nearly as useful as that of the actual values at each point.
The actual values of the stresses, strains and displacements produced in the
plate are determined in the case of plane stress state.

We note that the mean values of the displacements and stresses (which are
independent of x3) for the generalized plane stress problem satisfy the same set
of equations that govern the plane strain problem, the only difference being is

2\

that we have to replace A by .
A+2u

The state of generalized stress is purely two-dimensional and similar to the
plane strain deformation, parallel to x;x,-plane.

We introduce the average field quantities u;,e;;, T;; as defined in equation (1)
for us. Then

Gl = Hl(xl, Xz), az = az(Xl, X2), ag =0 (8)
Since 133 =0, s0

Me11 + €2 + €33) +21e33=0

A+2

€33 = " (611 + €22) ...(8a)

49
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€11+ €2 + €33 :(1— (e11+€5,) . ...(8b)
A+

A 2u
e, +€ =
2]_1]( 11 22) }\,+2]_,[

The generalized Hooke’s law gives

Tap = A Oap (B11 + €22 + €33) + 21 e0p foro, p=1,2

Tap = ﬂ . 6(1[3. (611 + 822) + 211 €aup -
A+20

Integrating over X3 and taking mean value over the thickness, we find

_ 0 _ _

Tap = —u Saﬁ( eq + 622) +2LL €ap » (9)
A+2u

fora, =1, 2.

The five equations consisting of equations in (6) and (9) serve to determine
the five unknown mean values u;, Uz, T11, T22, Ti2.

The substitution from (9) into (6) yields two equations of the Navier type
_ a _ _ _ _
( A+ “)ax_( e+ €22) U V2 Uy + Fo(X1, X2) =0, ...(10)

o

from which the average displacements Uge can be determined when the values
of the u, are specified on the contour. Here A = 2Au/(A+2p).

Example 1 :- Thick-walled Tube Under External and Internal Pressures

We consider a cross-section of a thick-walled cylindrical tube whose inner
radius is a and external radius b. We shall determine the deformation of the
tube due to uniform internal pressure p; and external pressure p, acting on it.

P2

We shall use the cylindrical coordinates (r, 6, z) to solve the problem and axis
of cylinder tube is taken as z-axis.
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This problem is a plane strain problem and due to symmetry, the cylindrical
components of displacement are of the type

ur=u(r),us=0,u,=0. ..(1)

We know that for an isotropic elastic medium, the Stoke’s Navier equation of
equilibrium for zero body force is

(L +2u) grad div u—pcurlcurl u= 0. .(2)

We find
o é, e, &, B
curl u=—|o/or o/o0 olaz| =0, ..3)
u, 0 0

and

- _1[d du u

div u==| —(ru)|=—+—,

Vol r_dr( )} dr+r

as u is a function f r only. We have used %instead of g

From equations (2)—(4), we find
graddiv u= 0
div u = constt. 2A (say)

11(ru):ZA
rdr

d
— =2A
dr(r u) r

ru = Ar? + B, B = constt.
U=Ar+BIr .5

where A and B are constants to be determined from the boundary conditions.

The strains in cylindrical coordinates (r, 6, z), using (1) and (5), are found to be
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- — 2
er=ur =A-B/r

€00 = % = A+ B/ ..(6)

el’e = eGZ = erz = ezz = 0

diVG:err+eee:2A. J

The generalized Hooke’s law for an isotropic material gives the expressions for
stresses. We find

B

T = A div U +2p e = 2AN +21 (A-BIr’) = 200 )A —2u—
"

Too = A div U +2p ego = 2(A+p) A + 2 B/

T2 = A div U+ 21 e = 2AN =6 (T + Too), ..(7)
Tro = Toz = Trz = 0.
Here,
_ A
2(M+p)

Boundary conditions : The boundary conditions on the curved surface of the
tube (or cross-section) are

Trr = _p]_ at r= a

Tr=—-pz atr=b ...(8)
From equations (7) and (8), we write

—p; = 2(A+w) A —2p Bfa?

—p, = 2(A+p) A—2p B/b?

Solving these equations for A and B, we find

_ pa” —p,b’?
200+ (0% -a%)’
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azbz(p2 -py)
_ —P1) O
2u(b” —a?) ©

Putting these values of A and B in (5) and (7), we obtain the expressions for
the displacement and stress which are

2 2 21,2
b = u(r) = — P18 —Pob” - (pz-py)ath” 1 ’ .(10)

T 20+p)®b2—a%)  2uMbZ-a?) T

This gives the displacement
u=ué,

that occurs at a point distance r from the axis of the tube (a<r<b).
The stresses are

o= plazfpzszrazbz(pl*pz) 1 (11a)
T p?-a? (b2-a%) 1%’
_ P’ —pob® a’h*(p—p) 1 (11b)
T T g2 (02-a?) 2’
A a% —p,b?
T2z = (T + Tog) = 7»+u£plb2 _222 ] ...(11¢c)

Equation (11c) show that 1., is constant. Hence, there is a uniform extension |
contraction in the direction of the axis of the tube. Moreover, cross-sections
perpendicular to this axis remain plane after deformation.

Rotating Shaft

Suppose that a solid long right circular cylinder (without an axle-hole) of
radius a is rotating about its axis with uniform (constant) angular velocity .

We assume that the cylinder is not free to deform longitudinally.

We shall be using the cylindrical co-ordinate system (r, 6, z) to determine the
displacement and stresses at any point of the cylinder.

We consider a cross-section of long right circular cylinder of radius a. This
cross-section is a circle with radius a. Consider a point P(r, 8) at a distance r
from the origin.
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Due to symmetry, the displacement components are dependent on r only and

U =u(r),up=u,=0 . ..(1)

This problem is a plane strain problem.
We know that radial and transverse components of acceleration are

F—r0% 2r0+ro0.
Since
t=00=0,f=0=0,

so the components of acceleration are
—r?0.
Hence equation of motion is
(A +2p) grad div u—p curl curl u=—pro® @, , .(2)

where p is the density of the shaft. In view of (1),
- — . — _du
curlcurl u= 0,div u= a+ u/r . ...(3)

From (2) and (3), we find

(L +2p) grad[%Jru/rj +pr 0?8, =0
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du 2 2
—+ulr+ Pe —=2A
dr A+2u 2
1d 3
T un+22 oA
dr A+21 2
pa? I
—(ur)+ — =2Ar
dr A+2u 2
ot 1
u.r+ —=Ar+B
A+2u 8
B >l
un=Ar+ P2 (&)
ra+2u 8

where A and B are constants to be determined from boundary conditions.

Since cylinder is a solid cylinder, we must take
B =0,

since, otherwise, |u|—> as r—0. So (4) reduces to

2 3
Ay PO r
u(r) = Ar 2 (—8 ] . ...(5

We know that the generalized Hooke’s law in term of cylindrical coordinates

gives

Trr=7\/div a+2u err:xdiv a+2u %

du wu du
=A|—+—|+2u—
[errr}r Mdr
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2 2 2 2

r 3r

SNy S P I S
A+2u 2 A+2u 8

2(h+y) A-—P o (20 +3 )r2 (6)
= ———— (21 +3u)— .
: A+2u H 4

The surface r = a of the shaft is traction free, so the boundary condition is
ww=0atr=a ...(7)
From equations (7) and (8); we find

B po’ (21 +3p) a?
(A+w(+2p) 8

.(8)

Hence, at any point P(r, 6) of the shaft, the displacement and stress 1., due to
rotation with angular velocity o is

_ r [2n+3
u=u(r) .8, = b T2y 8, ...(9)
8(A+2u)| A+u
2
o [ 2A+3
= PO | 2T [a—17] . ...(10)
4 \ A+2u

The other non-zero stresses are

o0 =\ div U+2pege = Adiv u+2y. (%j
2
pw

. 2_ 2
= 20.122] [(2% +3w) a° —(2\ +w) 7], ..(11a)

2 2
.= r
T2z = 6(Tr +700) = A diV U=A {ZA — xp +(D2M .?}
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2
__ M | 2432 2| ..(11b)
200+ 20) | 200+ )

6.6 AIRY’S STRES FUNCTION FOR PLANE STRAIN
PROBLEMS

In plane elastostatic problems, it is convenient to use the standard notation X, y,
z instead of X1, X,, X3 for Cartesian system.

The plane strain Cauchy’s equilibrium equations on the xy-plane are
Txx,x+Txy,y+fx:0 ) ...(1)
TXy,X + Tyyyy + fy = 0 . . (2)

Assume that the external body force is conservative, so that
f=-VV,
where V is the force potential. This gives
fx=-V,and fy=-V,,.
Using this, equations (1) and (2) can be put in the form
(tx —V)x + Txyy = 0 ...3)

Txy'x + (Tyy _V)’y = O . .. (4)

Equations (3) and (4) can be satisfied identically through the introduction of a

stress function @ = d(X, y) such that
2
Txx = % +V,
0%
Ty =—>+V,
yy aXZ
_ 82(1)

..(3)
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The function @ is know as Airy’s stress function, after the name of a British
astronomer G. B. Airy. The function ¢ is called a stress function as ¢ generates
stresses.

The Beltrani—Michell compatibility equation for plane strain deformation (in
term of stresses) is

V2t + Tyy) +

2 +p) (. =
div f}=0 ,
k+2u{ }

which now in the case of conservative body force and stress function ®

becomes, using (5),

V2 {V2¢+ 2V} + 2>E7¥+ )

{-V?V}=0
+2u

v v+ |2 | vev=o, .(6)
A+20

2 2
where V2= 8—2 + 9

OX ayz'

Equation (6) shows that the stress-function ® is a biharmonic function
whenever V is harmonic.

If the body force is absent/vanish, then for plane strain problem, the stress
function @ satisfies the biharmonic equation

ViVig=0 (7

4 4 4
e 2)(? +2 8X828¢;/2 + gyj’ -0, .(7a)
The formula’s for displacements in terms of stress function ¢ can be obtained
by integrating the stress-strain relations for plane strain, which are

1= G2 = (A +2p)en + A ez ...(8)

T2 = Q11 = A ew + (A+2p) e, ...(9)
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T2 = —$12 = 21 €12 = W(Uz2 + Uz,) - --(10)

Solving equations (8) and (9), for e1; and e;,, we get

7&-}-2}1 2
2LU11=2ne1 =— + Voo, ...(11
U1 =2pen=-¢un 200+ 1) ¢ (11)
)\,+2},l 2
2U Uz =21 €20 = — V. (12
U2 =210 =~ + 200+ 1) ¢ (12)
The integration of equations (11) and (12) yields
A+ 2
2uuy = g+ Iv ¢ dx + f(y) , .(13)
2(M +
X+2u 2
2UUs =~y + Voo dy + g(x ...(14
LU =—bo 20+ )I ¢ dy +g(x), (14)

where f and g are arbitrary functions. Substituting the values of u; and u, from
(13) and (14) into equation (10),, we find that

f'y)+g(x)=0

f(y) = -g'(x) = constt = a(say)
fy)=ay+8,

g(x) = —ox + v,

where o, B, v are constants.

The form of f and g indicates that they represent a rigid body displacement and
can thus be ignored in the analysis of deformation.

Thus, whenever ¢ becomes knows; the displacements, strains and stresses can
be obtained for the plane strain problem.

Biharmonic Boundary-Value Problems

Let the body occupies the region bounded by the curve C. Then the boundary
conditions are of the form
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Tap VB = Tal(S) ..(1)

where T,(s) are known functions of the are parameter s on C, the are length s
being measured along C from a fixed point, say A.

X2
C
v
R
A
0 X
N : dx, dx, )
The direction cosines of a tangent are o ds , so the d. ¢’.s of a normal to
the curve is
ds ' ds )
Choosing
dx, dx,
V = _—, = -,
YT s ? ds
equation (1) can be written as
dx, dx,
—4 Ty ——= =T (S
s T2 1(5)
dX2 Xm
—4 Ty —==T,(9). .2
e T2 g 2(5) (2)

The Airy stress function ¢ generates the stresses as given below

5% 5% &%
= —r, =—T =— . ...(3
w ox3 f22 ox? 12 XK, @)

From (2) and (3), we write
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dx, dxq
__ < _:T
.22 s +0,12 i 1(s)

- 0 ] & dx2+ 0 ] dX1=T1(S),
OX, [OXy ) ds  Oxg (OX, | ds

and
dX2 Xm
— — < _ —==T
d.12 & d.11 as 2(s)
o [ o ]dx 0 | o |dx
b2, D1 1),
OX, [ OXy | ds Xy [ 6Xy | ds
Using chain rule, we write
d( o
—| — [=T,(9),
ds(&xzj 1)
d( o
—| = | == To(s).
ds(&xlj )
Integrating these equations along C, we get
0
gd)l =—[ Ta(s) ds = fy(s) ,
...(4a)
0
ax_d) = [ T1(s) ds = fa(s) . ...(4b)

2

Hence, the stress boundary problem of elasticity is related to the boundary

value problem of the type

ViVi4=0 inR,
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ba="Tu(s) onC, ...(5)

where f,(s) are known functions.

The boundary value problem (5) is know as the fundamental biharmonic
boundary-value problem.

This boundary-value problem can be phrased in the following form.

1%
Normal derivative of ¢ = %) =V v
= Qo Uo
dx dx
=f 22 f (s)=2L
1(s) ds »(8) ds
=g(s), say, ...(6)
on C,
Since do = ¢, dXq
=f, dXx, ,
SO (I) = J.foc dxoc
dx
=J|f % 1ds
(%)
= f(s) say. ..(7
onC.

Thus, the knowledge of the ¢ ,(s) on C leads to compute the value of ¢(s) and

0
its normal derivative %) onC.

0
Conversely, if ¢ and a—d) are know on C, we can compute ¢ ,(S).
\%

Consequently, the boundary value problem in (5) can be written in an
equivalent form
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V?V%=0inR
d¢

d="f(s)and —=g(s)onC. ...(8)
dv

The boundary value problem in (8) is more convenient in some problems.

6.7 STRESS FUNCTION FOR PLANE STRESS PROBLEM

For plane stress case, the Airy stress function ¢ is defined in the same way as
for the plane strain problem. The generalized Hooke’s law gives

1
en1 = E (T11 —0 T22),

1
€20 = E (t22 —0 T11),

11 = é[(b,zz -G ¢11 + (1-0)V],

2 = é[d),n —G ¢22 + (1-0)V],

l+o

Epp=-
12 2

LEPR
Substitution into the Cauchy’s compatibility equation, we find
ViV? § + (1-6) V2V = 0.

For zero body forces, the stress function ¢ in plane stress problems, satisfies
the biharmonic equation

VZVi$ =0.
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Exercise :- Show that, when body force is absent, the stress function ¢ is a
biharmonic function for both elasto-static problems-plane strain problem and
plane stress state of the body

Airy Stress Function in Polar Coordinate
(for both cases of plane stress and plane strain)

For zero body force, components f,, fo; the equilibrium equations in terms of
2-D polar coordinates  (r, 6)
10 10 Too

rar gt T 0

10 , 1o
r—zg(r Ter)+?%%e:0’

are identically satisfied if the stresses are derived from a function ¢ = ¢(r, 6)

160 1 0%
Tr= ——+—5—>,
"Troar 2 92

&%

Too — 2
or

_ a(laq)]
Tre—__ - |
orir oo

The function ¢(r, 8) is the Airy stress function.
In this case, the compatibility equation shows that ¢(r, 6) satisfies the

biharmonic equation
ViVig=0,

62 16 1 0% \o% 1ap 182
[ ][ 0 10 ¢]:0. e

— Attt || 5ttt
oz ror r2ee? )l ar? rar r? e

which is know as the compatibility equation to be satisfied by the Airy stress
function ¢(r, 6).
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If one can find a solution of («) that also satisfies the given boundary
conditions, then the problem is solved, since by uniqueness theorem (called
Kirchoff’s uniqueness theorem), such a solution is unique.

6.8. DEFORMATION OF A SEMI-INFINITE ELASTIC
ISOTROPIC SOLID WITH DISPLACEMENTS OR
STRESSES PRESCRIBED ON THE  PLANE
BOUNDARY

We consider a semi-infinite elastic medium with x;-axis pointing into the
medium so that the medium occupies the region x; >0 and x; = 0 is the plane
boundary.

X]_:O X2

X1 >0

X1
(x3 = 0 cross-section of the medium)

We consider the plane strain deformation parallel to x;x,-plane. Then, the
displacements are of the type

Ur = U1(X1, X2) , U2 = Ua(X1, X2), U3 =0 . (1)

The stresses are generated by the Airy stress function ¢ = ¢(x1, X2) such that

T11= ——> , T2 y T12=— ) (2)

o _ % %
8X§ 12 OX10X,

where ¢ satisfies the biharmonic equation

4 4 4
4p e o
axl 8X18X2 aXZ

For convenience, we write
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(X1, X2, X3) =(X,Y,2), (U, Uz, U3) = (U, vV, W) . (4)

We use the Fourier transform method to solve the biharmonic equation (4).

We use f(x, k) to denote the Fourier transform of f(x,y). Then
_ 1 .
f(x, k)= F :—J.fx, exp {-iky}dy. (5
(x, k) = F[f] N (x,y) exp {-iky} dy. (5)

If f(x, y) satisfies the Dirichlet conditions then at the points where it is
continuous, we have the inverse transformation

w0

1 .
fx,y) = —— |f (x, k) exp (iky) dk, (6)
Vor J
for—o<y<ow. Alsoif
n
gy: —0, wheny—>+ow

forthecasen= 0, 1,2,....,r -1, then
o'f o=
F y = (-ik)" f(x, k). @)

Taking the Fourier transform of equation (3) w.r.t. the variable y, we obtain

d‘® o2 d‘®

—— +K'®=0, 8
dx* dx? ®

where ®(x, k) is the Fourier transform of ¢(x,y). Equation (8) is an ODE of
fourth order. Its solution is

@ (x, k) = (A + Bx)exp (—|k| x) + (C + Dx) exp(|k| x) , 9

where A, B, C, D are constants and they may depend upon k also.

Since we require that (9) is bounded as x — oo, we conclude that
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C=D=0,

so that (9) becomes
d(x, k) = (A + Bx) exp(—|k| x) .

Inverting (11) with the help of (6), we write
Bxy) = wj[ (A+Bx) exp(~ [kix)] exp (iky) dk .
on

From equations (2) and (12), the stresses are found to be

w0

11 = %i K’[(A + Bx) exp(—|k| x)] exp (iky) dk ,

T2 = \/ﬂ T Ikl T A+ B( k] x-2)] exp(~ k| X) exp (iky) dk

w0

T2 = - ﬁ j ik [ KIA — B(1- [K| X) ] exp (=K| X) exp(iky) dk .

—0

We know that the displacements u(x,y) and v(x, y) are given by

op 1 ’
2u:——+—V dx ,
H oX 20 J ¢

o0 1 (>
2uwv = — 4+ — |Vbdy,
0 x 2g ) ¢ dy

after neglecting the rigid body displacements, and

_ A+U
A 20

we find

(10)

(11)

(12)

(13)

(14)

(15)

(16)

17)

(18)
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2, _
Voo =111+ 12

LT _ -
= \/2_75_;[ (-2B) |k| exp(— |k[x) exp (iky) dk . (19)
Hence, we find
1] 1 .
2uu(xy) = —— _f [+ IKIA+B(-1+ — +klx ) exp (-[klx) exp (iky) dk ,
271 . o
(20)
2uv (x,y) = 1 O} [(IK)A + B(—ikx — M)] exp(— |k[x) exp(iky) dk .
’ N i kot
(21)

Case I. When stresses are prescribed on x = 0.
Let the boundary conditions be

111(0,y) = h(y), (22)

w12(0, ) = g(y), (23)

where h(y) and g(y) are known functions of y. Then

g(y) exp (iky) dy, (24)

N -
3

= gk = ——
T

8

8

2= h(k) = —=—
TC

h(y) exp (-iky) dy, (25)

NI -
[ S—

so that

wOy) =h(y) = ——

> h(k) exp(iky) dk , (26)

a
—,3

8

112(0y) = g(y) = jé(k) expliky) dk . (27)

%“I—‘
=]
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Putting x = 0 in equations (13) and (15), and comparing with respective
equations (26) and (27), we obtain

~k’[A]= h(k), (28)
ik [kl A-B]= g(K). (29)

Solving these equations for A and B, we obtain

a= - B0 (30)
B= — (K h(k) gi(;))' (31)

Putting the values of coefficients A and B from equations (30) and (31) into
(13) — (15) and (20) and (21), we obtain the integral expressions for
displacements and stresses.

1 K|\ 1 )\
2uu(xy) = T I K———— ” jg(k)+(—mxjh(k)},
exp(| k| ) exp(ky)dk (32)
o1 (- ). i ikx i)
2uv (x,y) = T J KOH K] +xjg(k) +(E +m_k_ocjh(k)} .
exp(—| k | x) exp(iky)dk (33)
(k) = % j [(Cike) g(k) + (1+ x k) h(k)] exp(—lkix) exp(iky) dk |
(34)
rzz(XY)—% j Kuxk—%j (K)+ Q- x|k|)h<k)}

exp(—| k| x)exp(ky)dk (35)
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wky) = % j 1% [ k| 3(K) + (Cik)R(K) exp(— k| x)exp(iky)dk.

(36)

Now we consider two particular situations in which specific surface stresses

are known.

Particular Cases

(@) Normal line-load :- In this particular case, a normal line-load, P, per unit
length acts on the z-axis, then

h(y) = -Pa(y), (37)
g(y) =0. (38)
Consequently,
h(k) = —P ) (39
J2r
g(k)=0. (40)

Putting the values of h(k) and g(k) from equations (39) and (40) into
equations (34) to (36), we find the following integral expressions for stresses at
any point of isotropic elastic half-space due to a normal line-load acting on the
z-axis.

t1(X,y) = _2—: J (1 +xk|) exp(-|k|x) exp (iky) dk (41)
P .

T22(X,Y) = o 'f (1-x [K| ) exp(-|k| x) exp(iky) dk, (42)
P, .

T12(Xy) = o J (—ixk) exp(— |k| x) exp (iky) dk . (43)

We shall evaluate the integrals (41) to (43). We find
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T11(Xy) = _Z_n

—2P

L 2x +2x(x2—y2)
Ly +x?) (X +y?)?

TZZ(va) = _2_7_[

S
} , (44)

_(XZ +y2)2

y2+X2 (X2+y2)2

P 2x 2x(x? —yz)}

2
i } , (45)

_(XZ +y2)2

&l
T i (XZ +y2)2

B 2
*J } (46)

_(XZ +y2)2

using the following standard integrals.

w0

(1) J'e”k(y) dk = 210 5(-y)

—0

) f (ki)™ e™e™dk = —log (y* +x?)

[e'e]

3) I KL e X g g = 2i tan™® [Xj

—0

@) I ek gk g =

X

2X
y2 + XZ
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T K e ~2i(-y) _ 2y
5 R =
® | v vy

¥ ZKIX i 4iyx
6 kekkekygy= 22
©) .[ (y? +x2)?
J (X2+y2)2
I %
(x* +y?)?

—0

@

© [ Keeva= WOCYD
(X +y?)°

—0

The corresponding displacements can be found from equations (32), (33), (39)
and (40). We find

o= —P 'f (_x_ijexp(qk|x)expaky)dk

27 o K|
2 2, \2
Ty +X 201

2uv=_—Pf 1ok 1) (e k[ x)expliky)dk
k1K) ok

Pl xy +(°°—1jtan—1(ij. (48)
| x%+y? \ « X

(b) Normal pressure : Suppose that a uniform normal pressure po acts over
the strip —a <y < a on the surface x = 0 in the positive x-direction. The
corresponding boundary conditions give
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h(y) = {‘go ylsa (49)
ly|>a
g(y)= 0. (50)
We find
(k) = ~2po [S‘” "aj 3 =0. (51)

Proceeding as in the previous case, we find the following integral expressions
for the stresses and displacements at any point of an isotropic elastic half-space
due to normal pressure.

(X, y) = —% j(1+x|k|)£3i”kkaj exp(—|kx) exp(iky) dk ,  (52)

aley) = j(l—x|k|)[3i”kkaj exp(kix) exp(iky),  (53)
(%) = 72%0 j(—ixk)(s“‘ kajexp(—uqx) expliky) dk,  (54)

_—2p0°°_ 1 sin ka 3 .
Zuu(x,y)——m _ X oclklj( ” jexp( |k|x) exp(iky) dk , (55)

-2p, t(1 xk 1 )(sinka .
2 V)= — jH —+—-—— exp(—lk|x) e ky) dk . (56
wixy) = 2 [k+|k| ak]( . jxp<||x) xp(iky) dk . (56)

—c0

The earlier case of the normal line-load, P per unit length, becomes the
particular case of the above uniform normal strip-loading case, by taking

Po= —, (57)

and using the relation
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. (sinka) _
!ILT(])[ @ j-l. (58)

Case 2. When surface displacements are prescribed on the boundary x = 0.

Let the boundary conditions be
u(0,y) = ha(y) . (59)

v(0,y) = au(y) - (60)
Then, we write, as before,

(o]

u(,y) = %;‘[ ha(k) exp(iky) dk , (61)
v, y) = ij a(K) expiky) dk . (62)
Tom

Proceeding as earlier, we shall get the result.

6.9 GENERAL SOLUTION OF THE BIHARMONIC

EQUATION
The biharmonic equation in two-dimension is
VZV% (X1, X2) =0 inR. (D

Here R is a region of x;x,-plane.

Let V2 = P1(x1, X2) . .2
Then

VZP, =0, ..3)
showing that P1(x1, X2) is @ harmonic function. Let P,(x1, X2) be the conjugate
harmonic function. Then, the function

F(z) =P +iPy, ...(4)

is an analytic function of the complex variable

Z=X1+iXy

satisfying the Cauchy-Riemann equations
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P11 =P22,
P21 =—P12.
1 .
Let G(2) = ZI F(z) dz = p; + ip2.

Then G(z) is also an analytic function such that
1
G'(z2)= = F(2),
(2) 2 (@)

and by virtue of CR-equations for G(z),

P11=P22,
P12=-P21,
15 10 1
we find ﬂ+ﬁ=—(P1+in).
X, X, 4
. 1
This gives P11 = P22 = 2 Py,
-1
Pio=-p21= 7 P>.
Now V2(p1 . X1) = p1Va X1+ X1 V2 pp + 2 Vp; . VX

—0+0+2| P11 X
OX1 X1 Xy OXy

=2[p11 + (]
=2p11
Similarly, VZ(p2. X2) = 2 pa2.
As p; and p, are harmonic functions therefore,

VA — p1 X1 — PaXa) = VZ-2(p11 + P22)

1 1
=P -2 | =P +=P[.
' [41 41}

.5

..(6)

(7

.(8)

...(9)

...(10)

(1)

..(12)
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This implies
V2 (0 — p1x1 — pax2) =0in R .(13)
Let & —P1X1 — P2X2 = Q1 (X1, X2), say . ...(14)

Then gi(x1, X2) is a harmonic function in R. Let g2(x1, X2) be a conjugate
function of gi(Xx1, X2) and let

H(z) = q. +ige. ...(15)
Then H(z) is an analytic function of z.
From (14), we write

d(X1, X2) = P1Xy + P2X2 + Q1
d(x1, X2) = Re [ 2 G(2) + H(2)]. ...(16)

Here, z = Xy —i X, and Re denotes the real part of the bracketed expression.
The representation (16) of the biharmonic function ¢(x1, X2) in terms of two
analytic functions G(z) and H(z) was first obtained by GOURSAT.

Deduction : From (16), we write

& = piX1 + p2X2 + 01

de 7= %[ 2G(2) +2G(z2) + H(@) + H@)] , .(17)

since H(z) + H(z) =2q; and G(z) = p1 + ip2, G(2) =p1 — ip2.

Some Terminology Involving Conjugate of Complex Functions
Suppose that t is a real variable and

f(t) = U(t) + V(1) . (1)

is a complex valued function of the real variable t, where U(t) and V(t) are
functions of t with real coefficients. The conjugate f(t) of f(t) is defined

f(t) = U(t) — iV() ..(2)
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If we replace the real variable t by the complex variable z(= x + iy), then f(z)
and f(z) are defined to be
f(z) =U(2) +1V(2)
f(z) = U(2) -iV(2) . ..(3)

Similarly f( z) and f( z), functions of the complex variable Z=Xx+iy = x
—iy, are defined to be

f(2)=U(zZ)+ iV(Z)
f(z)=U(Z)-i V(Z) (4
Now f(z) = conjugate of f(2)
= conjugate of {U(2) +iV(2)}

=U(Z)-iV(Z) (on changingi — -iand zto Z)

= f (z), using (4)

(i) Thus f(z)= f(2). ..(5)
N d =, _ d . .
(i) —[f(2)] = —[U(2) - 1V(2)], using (4a)
dz dz
=U'(2)-iV'(2)
=U(z) +iV'( 2)

=[U@)+ivV(E@T

=7 2). ..(6)

Similarly
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%[ﬁ]: U(z)-iv'(z) = [f'(2)]. (7

Stresses and Displacements in terms of Analytic Functions G(z) and H(z).

The stresses in terms of Airy stress function ¢ = ¢(x1, X2) are given by

T11 = $.22, 122 = d11, T12 = b 12. ~..(1)
This gives
T+t iT2=¢2 112
. 0 ]
=—1— +1 , ...(2
x, [d1+1d2] ()
T —1T2=011+101n
=% [hi+idd]. .(3)
Xy '
We have
Z=X1+iXy, Z=X1— 1%
x1:%(2+2),x2=%(2—2). ..(4)
By chain rule
0 _0.,0
X, oz a7
i:i[g_gj ..(5)
X, 0z 0z
0
Now ¢+ia¢—8+8¢
Xy OXy Xy Xy
[2.2-(2_2]]
oz 07 \oz oz
of
=2 —. ...(6
oz ©)

Since
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d= %[Z G(2) +z G(z) + H(2) + H(Z)]

where G and H are analytical functions, we find

2D 62 L {G@}+ 0+ L {AE)

=G(2) +2G'(2) + H(2)
=G(@2)+2 G'(2) +K(2) ,
where
K(2) =H'(2)
From equations (2), (3), (5), (6) and (8), we find
o)
74

ot i [g—a—j [6(2) +26' @) + K@)

={G'(2) +1 G'(2)}-{zG"(2) + K'(2)}

=G'(2) +G'(2) -z.G"(2) - K'(2),

because

G -2

S(E@-6"Q .

R

Also

20— i 112 = [ﬁ+ﬁ_j[e<z>+z.e-—<z>+m
0z 0Z

=G'(2) + G'(2)+2.G"(2) +K'(2) .
Adding and subtracting (10) from (10a), we obtain

111 + 122 = 2[G'(2) "‘G—(Z)]

..(7)

..(8)

...(9)

...(10)

(1)

..(12)
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=22Re {G'(2)}

=4 Re[G'(2)], ...(13)

T2 — T11 — 2i 112 = 2 [2G"(2) + K'(2)]
On taking conjugate both sides, we obtain
To—T11+ 2112, =2[2G"(2) + K'(2)]. ...(14)
Equations (13) and (14) provide expressions for stresses for plane strain
deformation in terms of analytic functions G(z) and H(z).

Expressions for Displacements :- We know that, for plane strain deformation

parallel to x1x,-plane,

T11 = ¢22 = (A+20) Uy + AUz, ...(15)
T2 = Q11 = Mg + (A +2u) Uz2, ...(16)
Tz =—h12 =W (U2 + Uz1) . ...(17)

Solving equations (15) and (16) for uy; and uy in terms of ¢1; and ¢2o, we
find

A+20

2uUi1 =g + V2, ...(18
Ui (|>,11 2(?»+u) <|> ( )
7\,+2u 2
2u U2 =—022 + V. ..(19
U2z = —b22 200+ ) () (19)
We know that
Vo =Pi=4pL1=4p2. ...(20)

Putting the values of V ¢ from equations (20) into equations (18) and (17), we
obtain
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2(L+2
2utiys = - g+ 2EE2) @D
(A+p)
2(A+2
2“ Uz = —(I),22 +w P2,2. (22)
At+p
The integration of these equations yields,
2(A+2
2“ up = _d),l +% p1+ f(Xz), (23)
2(A+2
2u U =0 +w P2 + g(X1)- -(24)

A+

where f(x2) and g(x1) are, as yet, arbitrary functions. Equation (17) serves to
determine f and g.
Since p12 = —p2.1, We easily obtain from equations (17), (23) and (24) that

F(2) + (1) = 0

f'(x2) = —g'(x1) = constt = o (say).
Hence f(x2) =ax2 + B,

g(Xy) = —oxy +v. ...(25)
where o, 3 and y are constants.

From equations (23), (24) and (25), we note that f and g represent a rigid body
displacements and therefore can be neglected in the analysis of deformation.

Setting f =g =01in (23) and (24), we write

2ty =~y + 22 ...(26)
A+
2(AL+2

2u Uz =—¢2 » 2020 P2 -(27)
A+u

This implies, in compact form,
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20 (11 + 109) = (4 +162) + 202 (4 iy
= _[G(2) +2G'(2) + H' (2)] + 2242 2(“2“) G(@2)
- {M—l}G(z)—zG'—(Z)—H'—(z)
A+p
=ko G(z) - 2G'(z) -H'(2), ...(28)
where
ko= 23 —3 4 ..(29)
A+u

The quantity ko is called the Muskhelishvile’s constant.

The formulas given by (13), (14) and (28) are called Kolosov-Muskhelishvilli
formulas. This result corresponds to the state of plane strain.

Remark :- In the generalized plane-stress problem, A must be replaced by A =
2\

A+ 21

and if ko is the corresponding value of in (29). We find

7_»+3u_57u+6u_3—0
r+n A+2u l+o

koz

We note that both k and kg are greater than 1.
First and Second Boundary Values Problem of Plane Elasticity

We first consider the first boundary-value problem in which the stress
component T,z must be such that

Tap Vg = Ta(S), a, B=1,2, (D

where the stress vector T,(s) is specified on the boundary.

In terms of Airy stress function ¢ = ¢(X1, X2), the condition (1) is equivalent to

b1(s) = - Ta(s) ds, .2
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b2(s) = Ti(s) ds,

on C. Now, we write

b1+ido=il[To(s)+iTa(s)] ds on C. ..(3)
we know that

b1+i¢,=6G@)+z G'(2)+H () , (%)

where G and H are analytic functions. Thus, the boundary condition in terms

of Gand H is
G(z)+z G'(z)+H'(z) =i[[Tu(s) +iTa(s)] dsonC. ..(5)

The determination of the corresponding boundary conditions in the second
boundary-value problem is as follows.

In this type of boundary value problem, boundary conditions are
U = gu(S), On C, ...(6)

where the functions g.(s) are know functions. Equation (6) yields

2n(ug + i Uz) = 2 [9a(s) +ig2(s)], on C,
This implies

= koG(@) -2z G'(2)-H(z) =2u[gu(s) +igx(s)], on C. (7)
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Chapter-7
Torsion of Bars

7.1 TORSION OF A CIRCULAR SHAFT

Let us consider an elastic right circular beam of length I. We choose the z-axis
along the axis of the beam so that its ends lie in the planes z = 0 and z = |,
respectively. The end z = 0 is fixed in the xy-plane and a couple of vector

moment M=M&; about the z-axis is applied at the end z = | . The lateral

surface of the circular beam is stress-free and body
forces are neglected.

D

<~—, > z=1

X (Torsion of a circular beam)

The problem is to compute the displacements, strains and stresses developed in
the beam because of the twist (or torsion) it experiences due to the applied
couple.

Because of the symmetry of the cross-section of the beam by planes
normal to the z-axis, these sections will remain planes even after
deformation.

That is, if (u, v, w) are the displacements, then

w =0, ceu(1)

However, these plane sections will get rotated about the z-axis through some
angle 6. The rotation 6 will depend upon the distance of the cross-section from
the fixed end z = 0 of the beam. For small deformations, we assume that

0=az 2

where « is a constant.
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The constant o represents the twist per unit length ( for z = 1).

Now, we consider a cross-section of the right circular beam. Let P( x, y) be
a point on it before deformations and P’ (X', y’) be the same material point
after deformation.

(Rotation of a section of the circular shaft)
Then
u=x"-x

=r [ cos(6+p) —r cos B]
=r[cos 6 cos B —sin 6 sin 3] —rcos B
=rcos (cos®—1)—ysin0
=x(cos®—-1)-ysinB. ....(3)
Since 6 is small, so
cosO~=1, sin6~0.
Therefore
u=-yo =—-ayz. ee(4)
Similarly
V=y -y
=rsin(B+06)-rsinf

=xsin®+y(cosO—-1). «...(5)
For small deformations, 0 is small, so

V=X0=axz. .e..(6)
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Thus, the displacement components at any point (x, y, z) of the beam due to

twisting are
u=-ayz, V = Xz, w =0, )

where o is the twist per unit length. Therefore, the displacement vector T is
U=—-az (yi-X)) . .(8)
Then

U.T=—oz(yi—Xj).(xi+yj))=0, ...(9)

U=0z\|X* +y* =oazr, ...(10)

in polar coordinates ( r, 6).

and

That is, the displacement vector is in the tangential direction and is of

magnitude orz.

The corresponding strains are

exx = 0, Eyy = 0,e,; =0,
exy:O, EyZ: %OLX, ezxz_%ay. ...(11)

The stress-strain relations

Tij = A Ojj Bk + 21165,
yield

Txx:Tyy:Tzz:Txy:01
Tyz = HOX, Tyxz = — HOY . ...(12)

This system of stresses clearly satisfies the equations of equilibrium (for

zero body)
Tij,j = 0.
Also the Beltrami-Michell compatibility conditions for zero body force
Vi + 1 Tk ij =0 -.(13)
l+o

are obviously satisfied.
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Since the lateral surface is stress-free, so the boundary conditions to be
satisfied on the lateral surface are

TijVi=o0 , fori=1,2,3. ..(14)
Since the normal is perpendicular to z-axis, so
v3=0, ...(15)

on the lateral surface of the beam. The first two conditions are identically
satisfied. The third condition becomes

Txz VX + Tszy = 0 . (16)

Let ‘a’ be the radius of the cross-section. Let (X, y) be a point on the boundary
C of the cross-section. Then
X2 + y2 — a2
and
Vx = €0s (V ,X) = x/a,

v, =cos(V,y)=y/a .
Therefore, on the boundary C,

Tyz Vx + TyzVy = —pLaty.(x/a) + pox.(y/a) = 0. .(17)
That is, the lateral surface of the circular beam is stress-free.

Onthebasez=1, let
I_: = (FX1 Fy, FZ) ]

be the resultant force. Then

Fy = jszdedy
R
= —ua ij dxdy
R

=0, .(18)

since the y coordinate of the C. G. is zero. Also,

Fy= Ijrzydxdy = ax .HX dxdy =0, .(19)
R R
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Fz = ijzdedy: 0, ...(20)
R

because the x coordinate of the C. G. is zero as the C. G. lies on the z-axis.

Thus, on the base z = |, the resultant force F is zero.

Let M = (My, My, M,) be the resultant couple on the base z = 1. Then

M = Ij(xél +Y8; +183) % (1,,8) +1,8, +1,85)dxdy.  .(21)

R
This gives
My = jj(yTzz _ITZy)dXdy = pal jjdeXdy =0, -(22)
R R
My = _f."(lrXZ —X1,,)dxdy = —pal ” ydxdy =0, -(23)
R R

M, = II(Xsz — Y1, )dxdy
R

= X Ij(xz +y? )dxdy
R

= noX [moment of inertia of the cross-section z = | about the z-axis]

ma’ e
= oL ——.
"2
As M= M§&,, so we write
nuoca4
M=M,= ——— ...(25)
2
where a is the radius of the circular cross-section at z =£.
This gives
2M
o=—7, ...(26)
pra
which determines the constant o in term of moment of the applied couple M,
radius of the cross-section ‘a’ and rigidity p of the medium of the

beam.
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The constant o is the twist per unit length. With o given by (26), the
displacements, strains and stresses at any point of the beam due to applied twist
became completely known by equations (7), (11), (12).

Stress -Vector
The stress vector at any point P(x, y) in any cross-section (z = constant) is
given by

4

T =1l +rzy] +1, K . .(27)

Using (12), we find
-i_ = szi + sz]

= pa (-yi +xJ) .(28)

which lies in the cross-section itself, i.e., the stress-vector is tangential.
zZ

Moreover, we note that the stress-vector T is perpendicular to the radius

vector r = xi+yj as

e

.[:0.

The magnitude t of the shier vector 'i' is given by

T= \/Tzzx + Tzzy =MOLﬂX2 + y2 = ual, ...(29)

which is maximum when r =a, and

2M
Tmax = HO@ = — . ...(30)
Ta

Note:- The torsinal rigidity of the beam, denoted by D, is defined by
M na*

Do= —=p.— . ..(31
0 o MZ (31)

The constant Dy provides a measure of the rigidity of the beam. It depends on
the modulus of rigidity n and the shape of the cross-section of the beam only.

M
The constant Dy (which is equal to — ) represents the moment of the couple
o

required to produce a unit angle of twist per unit of length.

It is also called the torsinal stiffness of the beam.
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Example: Consider a circular shaft of length I, radius a, and shear modulus p,
twisted by a couple M. Show that the greatest angle of twist 6 and the
maximum shear stress

— 2 2
T=NT x+T »y

are given by
2MI 2M
max — > Tmax = —3
T.ua ma
Solution: We know that
porma’
0 =az, M= > T=paor. ...(D)
We find
2M
o= n ....(2)
uma
Now
2M
Omax = OC-(Z)max = al= 7
pma
and

Tmax = HO (r)max = M(xa = 3
Ta

7.2. TORSION OF BARS OF ARBITRARY CROSS-SECTION

Consider an elastic beam of length | of uniform but arbitrary cross-section. The
lateral surface is stress free and body forces are absent. Suppose that a couple

of vector moment M about the axis of the beam is applied at one end and the
other end is fixed.

The problem is to compute the displacements, strains and stresses developed in
the beam.

We choose z-axis along the axis of the beam. Let the end z = 0 be fixed and the

end z = ¢ be applied the vector couple of moment M.

(T

(Torsion of a beam of arbitrary cross-section)
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Let (u, v, w) be the components of the displacement. In the case of a circular
cross-section, a plane cross-section remains plane even after the deformation.
However, when the cross-section is arbitrary, a plane cross-section will not
remain plane after deformation, it gets warped (curved surface).

This phenomenon is known as warping.

We assume that each section is warped in the same way, i.e., warping is

independent of z. We write
w=ad(xy), (1)

which is the same for all sections. Here a is the angle of twist per unit

length of the beam.

The function ¢ = ¢ (X, y) is called the Saint-Venant’s warping function or
torsion function.

Due to twisting, a plane section get rotated about the axis of the beam. The
angle 6 of rotation depends upon the distance of the section from the fixed
end. For small deformations, we assume that

=0z . .(2)

Let P (X, y) be any point on a cross section before deformations P’ (x’, y")
be the same material point after deformation.

OP=0P' =r
Then
U=Xx"—-x=rcos(®+p)—-rcosp
=rcosHcosfB—rsinBsinf—rcosf
=x(cos6-1)-ysin6
=-y0. .3
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Similarly
V=X6. .(4)

Hence, for small deformations, the displacement components are given by the

relations

u=-ayz,
V =Xz,
w=ad(X,y). -(9)

The strain components are

u
Exx = Z_X =0,
By = @ :01
oy
e,, = % =0 , (6)
and
1fou ov) 1 ~
Exy= | —+— |=7 ¢0aZ+0Z =0,
2loy ox) 2 -
eyz = Ea X+@ ,
2] oy
1 [ o
eZX = — - +_ . . 7
ol -y 22| )
The stresses are to be found by using the Hooke’s law
Tij = A Ojj Bk + 2 WL €jj. .(8)
We find
Txx = Tyy = T2z = Ty = 0, ...(9)
Tyz = ua(x+@j, ..(10)
oy

sz:MOC[—er%j . ..(11)
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These stresses must satisfy the following equilibrium equations for zero body
force

Tij5j=0, .(12)
fori=1,2,3 in R. First two equations are identically satisfied. The third

equation gives

sz,x""fzy,y:O inR
3 30 o a6
or o —|—=yY+— |+po—| X+— | =0
ox ox EYIEY
2 2
or %4‘% =0, --(13)

in the region R of the cross-section.

This shows that the torsion function ¢ is a harmonic function.

Let C be the boundary curve of the region R representing the cross-section of
the beam. Since the lateral surface is stress free, so the boundary conditions to
be satisfied are

Tij V) = 0 , onC ...(14)
fori=1,2,3. The first two conditions are identically satisfied as v3 = 0. The
third condition is

Tox Vx + Tzy Vy = 0 onC.
or
0 0
—y+—¢ v, + X+—¢ vy,=0 onC
OX oy
or
e
—Vy+—V,TyW—-xv, onC
ox "oy
or
d
d—izyvX — X Vy on C. ...(15)

since
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d_ = normal derivative of ¢

\'
= V.V
_ %vx +f_a$vy. .(16)

Thus, the torsion function/ warping functions ¢ must be a solution of the
two dimensional following Neumann boundary value problem.

V=0, inR,

av = normal derivations of ¢ = (y. vx — X. vy) onC. ..(17)
Y
So, we solve the torsion problem as a Neummann problem (17).

Onthebasez=1, let F be the resultant force. Then

Fy = urzxdx dy=pio u (%yjdxdy
o (IR e

= no i— x(%erjdXer(%—yjdy}, ...(18)
using Green’s theorem
—[fR_P
.[ Pdx +Qdy = J.Fg‘(ﬁx ayjdxdy : ..(19)

which converts surface integral into a line integral.
In case of two-dimensional curve C, directions cosines of the tangent are

< %,% >, and therefore, d. c.’s of the normal are < +ﬂ,—% >, i.e.,
S as

ds ds

vy =dy/ds, vy =—dx/ds. ...(20)

From equations (18) and (20), we write
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_ ap\dx (e _\dy]
Fx = no .[X{(_X_ﬁyjds-i_(ﬁx yjds_ S

) i

_&.vx +8—yvy + Xvy, —Yyv, (s

%Jr v, —yvy, jds

o

]

=

R
br—s

X

I

=

R
&=

X

=0, .(21)

since, on the boundary C, the integrand is identically zero.

Similarly

Thus, the resultant force F on the cross-section R of the beam vanishes.

On the base z = |, let M be the resultant couple. Then

M = ”yrzz — 71, dxdy

R
. Hrzydxdy : (vz=1)
R
=-1F
=0. ..(23)
Similarly
My = 0. ..(24)
Now
M, = IIXrZy — YT, axdy:pocj. x2 +y2 +x@—y@ xdy ,
— 8y ax
R R
This gives
M = ot J‘J‘{x2 +y? +x%+y%}dxdy, ...(25)

R



96

MECHANICS OF SOLIDS

as it is given that M is the moments of the torsion couple about z-axis.

We write
M=aD ...(26)

where M is applied moment, o is the twist per unit length and D is the torsinal

rigidity given by
D= X% +y? £ x— _y=* dxd , (27
U 'Fﬂ y = y5 y (27)

which depends upon p (i. e., the material of the beam) and the shape of the
cross-section R (i. e., the geometry of the beam).

For given M, a can be determined from equation (26).

However, when o is given, then we can calculate the required moment M, from
equation (27), to produce the twist o, per unit length.

After finding ¢ (by solving the Neumann boundary value problem) the torsion
function ¢ becomes know and consequently the torsinal rigidity D becomes
known.

7.3. DIRICHLET BOUNDARY VALUE PROBLEM

Let y (X, y) be the conjugate harmonic function of the harmonic function

(X, y). Then
X _vah_ v (28)
oX oy oy OX
and the function ¢ + iy is an analytic function of the complex variable x + iy.
Now
do 00 oo
—=—V,+—V
dv  ox oy 7
_opdy opdx

~ ox ds oy ds
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_ Opdy  dydx
dy ds ox ds’
d
= d—"s’ ...(29)

On the boundary C, the boundary condition (15) now becomes

dy
EZyVX—XVy onC ,
or
dy dy _dx
—=yY——+X— onC ,
ds de+ ds
or
1, 2
\V=§ X° +y° +constt, onC. ... (30)

Thus, the determination of the function y = y (X, y) is the problem of
solving the Dirichlet problem

o’y o°
ax‘l’ +_ay“2' -0 inR
1., 2
‘I’ZE‘ +y?® +constt.  onC -(31)

whose solution is unique.

Once  becomes known, the torsion function ¢ = ¢ (X, y) can be obtained from
relations in (28).

We generally, take, constt. =0 in (31).

The Dirichlet problem of potential theory can be solved by standard
techniques.

7.4. STRESS- FUNCTION
Stress-Function: The stress function, denoted by ¥, is defined as

YO =YY -3 Ky -(32)

where v (X, y) is the solution of the Dirichlet problem (31).
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We know that v (X, y) is also the conjugate function of the harmonic torsion
function ¢ (x, y).
The stress W(x,y) was introduced by Prandtl.

From equation (32), we find

oF _ow_
x X
or
8—\V=@+x , .(33)
X  OX
and
¥ v
oy oy
or
oy oV
—=—+Y. .(34)
oy oy
Further, we find
, oY oY
\Y% = > +—2
OX oy
2 2
(=
=-2 inR. ..(35)
From equations (31) and (32), we find
Y =constton C. ..(36)

The differential equation in (35) is called Poisson’s equation.

Thus, the stress function (X, y) is a solution of the boundary value problem
consists of equations (35) and (36).

The shear stresses T, and 1y, given in (11), can also be expressed in terms of
stress function . We find
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= uo —, ..(37)

oy
= ———+X
““[ o j

oL (38)
= —uor — .
M ox

The torsional rigidity D in term of stress function W(x, y) can be found.
We know that

D= 1 Ijkrzy — YT, axdy
ol -

[ e

=- ‘”_x@wﬁ dxdy
U o oy

- f 9wy 9 g dxdy-+2u ”Ldedy
R ox T R

=—u ‘[LPXVX +Yyvy §|S+ 2u J.deXdy : ..(39)
¢ R

using the Green theorem for plane.
On the boundary, C,

¥ = constt.

We choose
¥Y=0on C. ..(40)
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Then

D=2u .”\dedy, ..(41)

R

which is the expression for torsinal rigidity D in terms of stress function ¥

7.5. LINES OF SHEARING SHEER
Consider the family of curves in the xy-plane given by

Y = constt. ...(42)
Then

oY oY dy
_—t =
oX oy dx
This gives

dy ¥
dx Wy
_ ua'P'x

o'ty

LA .(43)

This relation shows that at each of the curve, W = constt, the stress vector

~n

T=1, i+rzy J ..(44)

y Y = constt

Al

P(X, y

is defined along the tangent to the curve ¥ = constt. at that point.
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The curves
Y = constt

are called lines of shearing stress.

7.6. SPECIAL CASES OF BEAMS : TORSION OF AN
ELLIPTIC BEAM

Let the boundary C of the cross-section be
2 2
§—2+§ 1. (A1)
We assume that the solution of the Dirichlet boundary values problem (31) is
of the type
v y)=c (¢ -y) + K, +(A2)
for constants ¢ and k2.
It is obvious that
Viy=0. .(A3)

At each point (x, y) on the boundary C, we must have

Oy +KE= 08+ )

) X(3-c) +y'(3 +c) =K’ (Ad)
which becomes the ellipse (Al) if
c?<l
and
a= K : b= K
1_¢? 14¢?
or
a’= K , b% = K
4-c’ 14¢?
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or

¢*=

N[~

a® +b? " a’+b?
Therefore, solution of the Dirichlet problem (31) for this particular type of

2 2 22
(a —b j 2= 20 .(A5)

elliptic beam is

a‘2 _ b2 ) ) a_2b2
YY) = ————(X"—y) + : ..(A6
Vo= a6 (A5)
The torsion function ¢ is given by the formula
_ ([ A4, O
X,y) = || —dx+—d
o (xy) = | ( S,
= J' O_de_a_wdy
oy OX
a’ —b? -
= T [ ydx+xdy
a’—b’
=— : (A7
a’+b? Y (A7)
The stress function ¥(x,y) is given by the formula
Y=y xy) - 106 +Y)
_a%b? (%2 y2 . ”8)
= =+—=-1], .
a’+b*la® b?
using (A6).
To calculate the torsional rigidity D and twist o .
The non-zero shear stresses are
Tox = UL %V—yj
. [ a?_b?
! | a’+b? y=y
—2uoa’y
PO A89)

and
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-(A10)

Let M be the torsion moment of the couple about z-axis. Then

M = ”xrzy — Y1, dxdy
R

- 22“%2 [b2 Iszdxdy+ a? J.J.yzdxdy]
a’+ ) )

2uo g, 2;
= az-i_—bzd |y+a IX E (All)

This implies

where I, and |y are the moments of inertia of the elliptic cross-section about x—

and y—axis, respectively.

We know that

I = ”Zb?’ = n‘fb - (A12)
Putting these values in (A11), we find
nuoa’b®
= ipr (A13)
The torsional rigidity D¢ is given by the formula
M = Deor . ...(A14)
Hence, we find
3,3
De = %, .(A15)
M(a? +b?)
o = P ...(A16)

Equations (A9) , (A10) and (A16) imply
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Tox —2My , 1 . (A17)
nab’
—2Mx

Tzy = naTb ...(A18)
Lines of shearing stress: The line of shearing stress are given by the formula

Y = constt. ...(A19)
Equations (A8) and (A19) imply

z—z+3b/—2:constt ...(A20)
as the lines the shearing stress.
This is a family of concentric ellipses, similar to the given ellipse a—§+z—z =1.

ZN
N

Displacements. The displacements at any point of the given elliptic beam are
now given by the formulas

a’-b’
u=-ayz, V = Xz, WZOL(I):—( 5 2jocxy ...(A21)
a‘+b

with the twist per unit length, o, as given by equation (A16).

Maximum shear stress: The shear stress 7 is given by

T= \ITZZX +’szy
2ua
S b2 Jaty? +b*x2. ...(A22)

a’+

We know that the maximum shear stress occurs on the boundary C
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. X2 yZ
C: a—z-l-F:l.

So, on the boundary C , the shear stress becomes

2 NG
T= %\/34*32[1——2]4- b4X2
a‘+b a

2ucab
= azu—(xbzx/az—x2+b2x2/a2
+
2ucab
- %\/az—xz(l—bzlaz)
+
2n0ab oo 7
(’C)C: > 2 a - —e"x", (A23)
a‘+b
where
e?=1-b¥a® , ...(A24)

is the eccentricity of the ellipse.

We note that the maximum value of shearing stress (A23) occurs when x =
0.

Thus,
2uca’b  2M

b2

at the points (0, tb) . ...(A25)

Tmax =

a’+b®> ma
Thus, the maximum shear stress occurs at the extremities of the minor

axis
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of the ellipse and maximum shear stress is given by (A25).

Warping curves: The warping curves are given by the relation

W = constt.
or
Xy = constt., ...(A26)

using (A21).
These are rectangular hyperbolas. We know that

a? —b?
a’+b?

w = a Xy .

In the first quadrant, x and y are both positive so w < 0.

In the third quadrant x <0,y <0, sow < 0.

Therefore, in | and Il quadrants, the curves becomes concave. In figure, —ve
sign represents concave curves.

In the Il and IV quadrants, the curves become convex which are

represented by + sign in the figure.

Remark 1. Let A be the area of the ellipse and | be the moment of inertia
about z-axis. Then
A =mab,



CARTESIAN TENSORS

=1+ 1y = ™2 @2 4 p?)
4

pA*

4r’l

Remark 2. The results for a circular bar can be derived as a particular case of

the above—a bar with elliptic cross section, on taking b = a. We find

D, = ..(A27)

¢ (x,y)=0,
w(xy)=0,
Y(x,¥y)=0.

7.7. TORSION OF BEAMS WITH TRIANGULAR CROSS-SECTION

Consider a cylinder of length | whose cross section is a triangular prism. Let z-
axis lie along the central line of the of the beam and one end of the beam lying
in the plane z = 0 is fixed at the origin and the other end lie in the planez=1. A
couple of moment M is applied at the centriod (0, 0,1 ) of end.

We shall determine the resulting deformation.

Let
b+iy=ic(x+iy)d+ik, .(B1)
where ¢ and k are constants. We find
d=c(-3xy +y), .(B2)
wv=c(xX=3xy)+k. .(B3)
We shall be solving the Dirichlet problem in :
(i) V2y=0 inR, .(B4)
i)y y=1(+y) on C, .(B5)

where C is the boundary of a triangular cross section occupying the region R.
We note that vy, given by (B3), is a harmonic function in the two-dimensional
region R.

On the boundary C, we must have

c(®-3xy)+k=1 (X +y%) ..(B6)

By altering the value of constant ¢ and k, we obtain various cross-sections of
the beam. In particularly, if we set
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C:—i and k=
6a

in equation (B6), we have

1 2
—a(xe’—?;x y) + gaz =3 (x*+Y?)

a’, .(B7)

wilN

or
x*—3xy*+3ax’+3ay’—4a°=0
or
(x—a) (x—yV3+2a) (x+yV3+2a)=0. ..(B8)

This shows that the boundary C consists of an equilateral triangle ABC

y
X —y\3+2a F 0
/{ C (a, V3 a)
X
a
) D
X=a
B (a, —\3 a)
formed by the st. lines

X=a,
X +\3y+2a=0,
X-V3y+2a=0. .(B9)

The altitude of this cross-section is 3a and each length of the triangle is
2v3 a. The centroid of this cross-section is origin , lying on the central line
of the beam.

The unique solution of the Dirichlet problem (B4, 5) is

1 2
v = —g(x3—3x yo) + §a2 . ...(B10)
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The torsion function becomes
1
<|>:—6—(y3—3x2y). ...(BI11)
a

The stress function ‘Y is given by
Y=y y) - 30¢+Y)

= —6—t[x3—3xy2+3x2a+3y2—4a3]. .(B12)

The non-zero shear stresses are

- 8_\11_)
T uoc(ay y

Lo
=— (x-a)y, ...(B13)
a
0
Tzy = L [—a—\)t[erj
o
- B (x? + 2ax — y°) . ...(B14)
2a
The displacement at any points of the triangular beam are given by
u=-ayz,
V = oL XZ,
o 2 3
w=ap=— BXYy-Y) ...(B15)
6a

where o is the twist per unit length.

We know that the maximum value of the shearing sheers t occurs at the

boundary C.
On the boundary x = a, we find
T =0, =1, = B2 32— ), ...(B16)
2a
which is maximum where y = 0. Thus
3
Tmax = Euoca, ...(B17)

at the point D(a,0), which is the middle point of BC.
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Also, T = 0 at the points (corner pts B & C) where y = +V3a.

At the point A( —2a, 0), T is zero. Thus, the stress 1 is zero at the corner points
A, B, C. We note that at the centroid O( 0, 0), the shear stress is
also zero.

Similarly, we may check that the shearing stress t is maximum at the middle
points of the sides AC and AB, and the corresponding maximum shear stress is

each equal to guoca .

Torsional rigidity: We know that M is the moment of the applied couple along

z-axis. Therefore

M = ”xrzy —Y 1 dxdy
R

a —
= Z— jjﬁ +2ax% — xy? — 2y?x + 2y?a dxdy
3 d
R

_X+2a
o o F -
=2 o j Ix3 +2ax® —xy® —2y?x + 2ay’ dydx . ...(B18)
a x=-2a y=0
C
X = y\3 - 2a %/
A D
(-2a, 0) (a,0)
This gives
M = ?uaa‘l, ...(B19)
Consequently, we obtain
D= ? uat ...(B20)
o= oM ...(B21)

B 9/3ua*’
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with a = %rd of the altitude of the equilateral triangle, each side being equal to

2+3a.
Equation (B21) determines the constant o. when the moment M and the cross-
section are known. Equation (B13), (B14), and (B21) yield

Tox = \/_ -y(x - a), ...(B22)

X2+ 2ax -y . ...(B23)

_ M
7 1803

Equations (B17) and (B21) imply

Tmax = , ...(B24
18434 (B29)

at the point D (a, 0).

Theorem. Show that the points at which the shearing stress is maximum lie on
the boundary C of the cross-section of the beam.

Proof. To prove this theorem, we use the following theorem from analysis.

“Let a function f(x, y) be continuous and has continuous partial
derivatives of the first and second orders and not identically equal to a
constant and satisfy the in equality V2 f >0 in the region R. Then f (X, y)
attains its maximum value on the boundary C of the region R”.

We knows that the shear stress 7t is given by

12=u2a2(‘1’f+‘{’5 ) , (D
where W is the stress function. Now
0
— 1 =120 JE W, + 2, P
oX
= 2 Mzaz[‘{jxqjxx+l{,yl{,yy] y . .(2)
and
iz—zzzwz Y. +P2 P, 3
axzt—uoc 7 TV W + yXeryxx....()
Similarly

2

2 22 W W, W W, - (d)

Adding (3) and (4),
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- a — 8 -
Vel = 2],L20c2|: w2 +LP5y + P, x W, +Yy, +Y¥, 8_)/ W+ + ijfy}
= Zuzocz ‘PXZX —l—‘{'fy +2‘Pfy . -+(5)
>0 inR.

Therefore, by above result, t° (and hence stress t) attains the maximum value
on the boundary C of the region R.

Question. Let Dy be the torsional rigidity of a circular cylinder, D, that of an
elliptic cylinder, and D that of a beam whose cross-section is an equilateral
triangle. Show that for cross-section of equal areas

De= kD D 23 Do, where k = —220_ <1
= H = H W = — H
B TR a’ +b?
and a, b are the semi-axis of the elliptical section.
Solution. We know that for a circular cylinder of radius r,
T 4
Do=—ur. (1
0 2 u 1)
X2 y2
We know that for an elliptic cylinder ?JFF =1,
33
_ ma’b
De = g7 (2)

We know that for an equilateral triangle (with each side of length 2v3x)

943
D = ?MXL‘. (3)
Since the areas of all the cross-section are equal, so
rri=mab=3V3x%. ..(4)
\3a
60°
3a

Now
D, mwa’h® 2
= X
D, a’®+b* nw

2
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=K. ..(5)
Also
D, aJ3ux* 2
—t o

Do S ﬁpw4

_ 18,/3x*

5rrt

183!
5r(27x* /1)

18V3n 2n/3 ©
" 5x27 15 .

Hence, the result.
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Chapter-8

Variational Methods

8.1. INTRODUCTION

We shall be using the minimum principles in deriving the equilibrium and
compatibility equations of elasticity.

8.2. DEFLECTION OF AN ELASTIC STRING

Let a stretched string, with the end points fixed at (0, 0) and (¢, 0), be deflected
by a distributed transverse load f(x) per unit length of the string. We suppose
that the transverse deflection y(x) is small and the change in the stretch force T
produced by deflection is neglible.

These are the usual assumption used in deriving the equation for y(x) from
considerations of static equilibrium.

We shall deduce this equation from the Principle of Minimum Potential
Energy.

We know that the potential energy V is defined by the formula

14
V=U - jf(x) ydx, ()

where the strain energy U is equal to the product of the tensile force T by the
total stretch e of the string. That is

U=Te, ()

where

e= [ds—dx’

Oe

= [ 1+ )2 —1é|x‘. o)

0
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Since, we are dealing with the linear theory, so

() <<, - (4)
and equation (3) can be written as

2L "2 dx 5
e_§£y~ . ...(5)

From equations (1), (2) and (5), finally we write

Nl 2
V=] ETg/J—f(x)y X. ...(6)
0
The appropriate Euler’s equation of the functional (6) is (left as an
exercise)
d’y
T—+f(x)=0. (7)
dx

This equation is the familiar / well known equation for the transverse
deflection of the string under the load f(x).

8.3. DEFLECTION OF THE CENTRAL LINE OF A BEAM

Let the axis of a beam of constant cross-section coincides with the x-axis.
Suppose that the beam is bent by a transverse load

p="f(x), ..(1)
estimated per unit length of the beam.

As per theory of deformation of beams, we suppose that the shearing stresses
are negligible in comparison with the tensile stress

= @ )

Txx

where M is the magnitude of the moment about the x-axis and I is the
moment of inertia of the cross-section about x-axis.

The strain ey is then given by
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e - TXX
XX E
My
=2 (4
E “4)
where E is the Young’s modulus.
The strain-energy function W is given by
1
W= E Txx Exx
MZ 2
=2Y ..(5)
2El

The strain energy per unit length of the beam is found by integrating W over
the cross-section of the beam, and we get

MZ
Wdo = Izd
.[ © 2El2 ydo
R R

MZ

= —. ...(6
2El ©)
The well known Bernoulli- Euler law is
2
M=_gdY A7)

dx?’

The total strain energy U obtained by integrating the expression (6) over the
length of the beam, and using (7), we find

1/. d2
U = EIE |(ﬁjdx. .(8)
0

We suppose that the ends of the beam are clamped, hinged, or free, so that the
supporting forces do not work and contribute nothing to potential energy V.

If we neglect the weight of the beam, the only external load is p = f(x), then the
formula

V:U—If(x)ydx, ..(9)
0
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for the potential energy gives

4
d2
V= ﬂ%a[d%jf(x) y}dx. .(10)

The Euler’s equation of the above function V is (left as an exercise)

4 9] =
> (E | j f(x) = 0. .(11)

8.4. DEFLECTION OF AN ELASTIC MEMBRANE

Let the membrane, with fixed edges, occupy some region in the xy-plane. We
suppose that the membrane is stretched so that the tension T is uniform and
that T is so great that it is not appreciably changed when the membrane is
deflected by a distributed normal load of intensity f( X, y).

We first compute the strain energy U. The total stretch e of the

surface
z=u(xy), (1)
is
e= dec—dxdy:
R
- jj/u§+u§+1_1dxdy, 2)
R
where

do = Q/u§+u§+1§xdy (3)

is the element of area of the membrane in the deformed state.

As usual, it is assumed that the displacement u and its first derivatives are
small. Then, we can write (2) as

e= %fju-§+u§ dxdy. G
R
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Hence, the strain energy U is given by

c
1}

N|—| _|

jjui +uj dxdy. ...(5)
R

We know that the potential energy is given by the formula

V=U- If(x,y)udxdy. ...(6)
R

Equations (5) and (6) give the potential energy as
= [[La2z4uz dxd 7
= 5 x Tuy —f(x,y) udxdy. ...(7)
R

The equilibrium state is characterized by the condition

dV=0. ....(8)
This gives (left as an exercise)
T V2u+f(x,y)=0. ...(9)

8.5. TORSION OF CYLINDERS

We consider the Saint —Venant torsion problem for a cylinder of arbitrary
cross-section. We shall use the Principle of Minimum
Complementary Energy to deduce the appropriate Compatibility equation.

We know that the displacement components in the cross-section
are

uxy, z)=-azy, Vv(XY,2z)=azx, ..(D)
where o is the twist per unit length of the cylinder.

We assume with Saint-Venant principle that nonvanishing stresses are 1,4 and

sz.
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The formula for complementary energy is
V'=U- [Tu; do, (2
Zu
where the surface integral is evaluated over the ends of the cylinder, and strain

energy U is given by

U :IW dr, ..(3)
where
1
W = E Tij €ij
= (sz ezx+ sz eZy) y .. (4)

From shear strain relations, we have

Tix = 2 W€,

Ty =2 L€ . ....(5)

From equations (4) and (5), we find

1
= E (Tzzx + 'szy), .. (6)
and hence
U= i Irzzx +1%7y dr. (7

Now, we shall compute the surface integral in (2).

i). For the end z = 0, we have
u+v =0,

SO
ITi.ui do"= 0. (8
R

ii). Ontheend z = 7, we have

J.Ti.ui do=a J]tﬁyrzx +0X1,, Eﬂxdy. ....(9)
R R
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Thus, we find
Vo 21 J.J.tzzxﬂzzy dxdy—o/ J'J'xrzy _y1,, dxdy. ..(10)
M C L
R R

In this case, the admissible stresses satisfy the equilibrium equation (left as

an exercise)

0Ty +8rzy 0, inR (1)
oX oy
and the boundary condition
Tzx COS (X, V) + T4y COS (Y, V) =0, on C. ..(12)

Equilibrium equation (11) will clearly be satisfied identically if we

introduce the stress function.

Y= Y¥(XY)
such that
oV
Tzx = Qo E )
o
Tzy = —ua & . (13)

The boundary condition (12) then requires that

oV dy oY dx
__+__ = ,
Het oy ds ox ds
or
d¥v
_:0
ds
or

¥ = constant, on C. ...(14)
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On substituting expressions for stresses from (13) into equation

(10), we get

R

The corresponding Euler equation (exercise) is
VP¥=-2, inR, ...(16)
which is precisely the equation for the Prandtl stress function.

Remark: The formula (15) for V" can be written in a simple form which we
shall find useful in subsequent considerations.

We note that
”ka +y\¥, “dxdy = f O yg 0 ¥ | dxdy—2 ”‘dedy. .(17)
R B R ax ) ay R

But
”[— Y - +— y¥ }dxdy: IW xcos(X,v)+ycos(y,v) st. ...(18)
C

So that we obtain

2
V= [Ha 4] J‘J‘VLP —u¥ dxdy+2jTXCOS(X v) +ycos(y,v) dS (19)
where

(V)2 = (¥)° + (W)~ (20)

If the region R is simply connected, we can take

Y =0, onC, ..(21)

and for the determination of ¥, we have the functional

2 -
V*:(MO; E]J' vy ?_4w dxdy, (22)
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This functional (22) is to be minimized on the set of all functions of class
C? vanishing on the boundary C of the simply connected region R.

8.6. VARIATIONAL PROBLEM RELATED TO THE
BIHARMONIC EQUATION

Consider the variational problem

I (u) = ”[V%E—qu}dxdy:min, ~.(D)
R

where the admissible functions u( x, y) satisfy on the boundary C of the region
R the conditions

u=¢(s), ...(2)
ou
% = h(s), ...(3)

Suppose that the set { u( x, y)} of all admissible functions includes the
minimizing function u( X, y). We represent an arbitrary function t(x, y) of

this set in the form

UXy)=uXy+en(xy), ()

where < is a small real parameter.

We know that the necessary condition that u minimize the

integral (1) is

6I={ilu+enj =0. ...(5)
dE =0

Using (1), we write

I(u+en)= Ij[ v? u+en:2i—2f (u+en)} dx dy. ...(6)
R
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Therefore equations (5) and (6) give

123

”Vzuvzn—fn dxdy=0. )
R
We note that
o’n &
V2u V2, = (V) [grzug?]
0 0 0 0 o 0
— Vzu@ A VeIl N n—VZau |+—| n—V?u
OX oX | oy oy ox\ o y\ oy
e, - &
+ ~ VZU +—2 Vzu n
OX — oy
..(8)
Applying Gauss Diwergence & Stoke’s theorems we get
[( [v a”j (Vzuanj olxoly__[v2 uMgs, .(9)
el OX 0 oy oy
b o( 0oa ) o 0o .[ 0 o =
—|n— —|n= dxdy = |In— ds. ..(10
.R._ax[naxv ujJray(nayV uﬂ X dy Cnavv u ds (10)
For equations (7) to (10), we obtain
—_— a —_—
= | |¥*V?u—fnd jz@j—z =0 ..(11
Ij u—f ndxdy+ Vuavds navVugs 0 ..(12)
R C C
From equations (2) to (4), we have
n=0and 811 on C. ..(12)
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Using result (12), equation (11) gives
V*u=1(x,y) inthe regionR. ..(13)

This is the same differential equation which arises in the study of the transverse
deflection of thin elastic plates.

We have assumed in the foregoing that the admissible functions in the set
{u (X, y)} satisfy the boundary conditions (2) and (3).

If we consider a larger set S of all functions u belonging to class C*, then (11)
must hold for every u in this set. But the set S includes functions that satisfy
the boundary conditions (2) and (3), and thus we must have,

[[otu-f ‘ndxdy =0. ..(14)
R

Since n is arbitrary, it follows that the minimizing function u( x, y) again
satisfy (13) and we conclude from (11) that

IVZU@dS— J.ng V2 ds =0, ...(15)
C ov C ov B

for every n of class C*.

Now if we consider first all | such that

n=0 onCand Z—n 0 on C, ...(16)
A

it follows from (15) that
VZu=0, on C. ..(17)

On the other hand, if we consider only those 1 such that

n =0, 2—3 =0, on C, ...(18)

We get the condition

8—8\)(V2 u) = o, on C. ..(19)
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Hence if the functional in (1) is minimized on the set S of all u of class C*, the
minimizing function will be found among those functions of S which satisfy
the conditions (17) and (19) on the boundary of the region.

Remark:- For this variational problem (1), we shall obtain the same
differential equation (13) when the minimizing function u =u (X, y), instead of
the system given in (2) and (3), satisfies the following boundary condition.

VZu=0,

2!72u—=0, onC.
ov -

8.7. RITZMETHOD :- ONE DIMENSIONAL CASE

Consider the variational problem

X1 _
I (y) = J'Fx,y,y'rgx, ..(1)
X0

in which all admissible function y =y (x) are such that
y(x)=yn, Y (x1)=yu -(2)
We know that such a function y is a solution of the Euler’s equation

d
Fy- 4 FV =0 ..3)

A direct method to obtain the desired function was proposed by W. Ritz in
1911.

In this method, we construct a sequence of functions which converge to desired
solution of the Euler’s equation (3).

Outlines of the Ritz Method:

Lety =y (x) be the exact solution of the given variational problem. Let I(y") =
m be the minimum value of the functional in (1).

In this method, one tries to find a sequence {y,(x)} of admissible functions

such that

125



126 MECHANICS OF SOLIDS

lim 1(y,(9)=m, (4

so that
lim ¥,00=y" (9, (5

is the required function.

Ritz proposed to construct a function y (x) by choosing a family of functions

y(X)=d(X,a1, a......n...... , aK) ....(6)

depending on k real parameters a;, where ¢ is such that for all values of the a;,
the end conditions given in (2) are satisfied.

Then, on putting the value of y from (6) in (1), one obtains
| (3.1, dg, A3,..cvnnnnnn ,ak).

This functional can be minimized by determining the values of the parameters
a; from the following system of equations:

O1(@y, 8z ) _ 0 forr=1,2,....... k. (7
oa,
Let this system has solution a,,a,,....... , 8,. Then, the minimizing function,
say Y(x), is
YOX) = (X, 8,8, ,a,) . ...(8)

It is expected that y (x) will be a fair approximation to the minimizing function
y'(x) when the number of parameters in (3) is made sufficiently large.

Now, we construct a sequence {Y,, (x)} of functions Y, (x) such that
lim 1(y,)=m. ...(9)

Consider a sequence of families of functions of the type (6), namely,

Y. (X)=6,(x,a,)

Y, (X) =¢,(x,2;,a,)
, .(10)

Y3(X) = ds3(X,a5,a,,33)
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in which the family y, (X) = ¢k (X, az,........... ,a) includes in it all functions in
the families with subscript less than k.

The parameters a; in each function yy can be determined so as to minimize the
integral I (yx). We denote the values of the parameters thus obtained by a;, so
that the minimizing functions are

V()= dn (X, 8,850, a,), (12)

for n= 1, 2,.... Since each family yx(X) includes the families yx.1(x) for
special values of parameters a;, the successive minima I(y,) are non-
increasing, therefore,

AR CARI A, >1 8, >1(Y,)2 .(12)
Since the sequence {I(Y,)} of real numbers is bounded below by m and is
non-increasing (m being the exact minima), therefore, it is a

convergent sequence.

In order to ensure the convergence of this sequence to I(y’), one must impose
some conditions on the choice of functions ¢; in (10). We take the set of
functions in (10) to be relatively complete.

Then for each € — 0, there exists (by definition of relatively complete) in the
family (10), a function

Yn(X) =Y (X, 81,8 2. ... a’n)
such that

M —y*\ <€, .(13)
and

vy Tl<e .(14)

forall x € (Xo, X1). But, it is known that F (X, y, y’) is a continuous function of
its arguments, therefore,

| FOY YR -F YTy )< e, .(15)

for all x in (Xo, X1). Consequently

X1 .
Ly -1(y)= IF(x,y*n,yE')—F(x,y*.y*'),dx
X0

127
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X1
- ﬂF(X,y*n,y;')_F(x,y*,y*') ‘ dx

X0

< ', say.

This gives

Ly ) <l(y)+e. ...(16)
As y', is a function of the set (10) and | (Y,) is a minimum of I (y) on the
family vy, therefore,
Ly = 1(Y,). ..(17)
Asy is the exact solution of the problem and Y, is an approximation of the

same, therefore,

L) < (Y,). ..(18)

Combining the in equalities (16) to (18), we find

1Y) < 1Y) <1 (T) < 1Y) + &, -.(19)

but €’ can be made as small as we wish, therefore, we get
Lt I(y,)= Lt 1y =1(y). ..(20)
This completes the proof.

Definition. Let y (x) be an admissible function satisfying the end conditions

Yy (Xo) = Yo, Y (X1) = Y1.

If , for each € > 0, their exists in the family (6) a function

*

V(X)) = Yn (X, 21,82 8 3.....8 1)
such that

Y-y <e and |y, -y '|<e
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for all x in (Xo, X1), then the family of functions in (6) is said to be relatively
complete.

Remark:— Among useful, relatively complete sets of functions in the interval
O, ¢) are

L . . 0, knx
(i) trigonometrically polynomials : Zak Sln(Tj,
k=
(ii) algebraic polynomials : Zak x* !’—X:.
k=1

Question:— Show that the system of equations

%I (Yn) =0 (forj=1,2,3,....... ,n)

]

for the coefficients in the approximate solution
Yo (X) = Zakd)k(x)
k=1
of the variational problem
I , _
I(y) = [py +qy- +2f y} dx = min,

y(0)=y()=0,
by the Ritz method is

[pyln¢lj+q Yoo +f; dx=0,j=1,2,........ .

Solution:— We have

| (yn) = ﬂpyn'2+qyﬁ +2fyn] dx . (1)

Therefore, we find
0

oa,

,4 8 5 5
1(y,)= jo 2py, -g-(yn )+20qY, a7-yn +2f87yn dx
i j j

= 2[ dy, 0+ ay.0;+ fo; dx Q)
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Hence, the system of equations

0

a?j I (yn) =0 ...(3)
becomes, using (2),
deyn'¢'j+qyn¢j+f¢j dx=0 |, ..(4)

forj=1,2,........ .

This completes the solution.

8.8. RITZMETHOD :— TWO-DIMENSIONAL CASE

Consider the functional in the form
I (u) = ”F(x,y,u,ux,uy)dx dy . (D)
R

We suppose that the admissible functions in the variational problem,
I (U) = minimum, ...(2)
satisfy the condition
u=o(s)
on the boundary C of the region R.

Let u” (x, y) be an exact solution of the variational problem (obtained by
solving the corresponding Euler’s equation) and let

lu)=m, ..(3)
be the minimum value of the functional (1).
We now introduce a sequence {un (X, y)} of families of admissible functions
Un (X, ¥) =dn (X, Y, a1, @, ....... ,an), ..(4)

with parameters a;, and suppose that each family u; (x, y) includes in it families
with subscripts less than i.

We further assume that the set (4) is relatively complete.
Then, for each € > 0, there exists a function
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Un(4Y) =dn (X, Y, 81,8 200eeeennnns ,an)

belonging to the set (4) such that

‘ U*n—U*‘<€,

€, ..(5)

for all (x, y) € R. With the help of (4), we form | (u,) and determine the
parameters a; so that I (u,) is @ minimum.

Let & be the values of the a; obtained by solving the system of equations
(known as Ritz’s equations)

w,) _ o
oa,

J

..(6)

forj=1,2,.....,n. We write
U, 0GY) =0n (X, Y, 8,8, e a,). ..(7

The sequence {I (T, )} of real numbers then converges to | (u*) = m, where u”
(X, y) is the function that minimizes (1).

The remaining proof is similar to the proof for one dimensional case.

Illustration. Find an approximate solution to the problem of extremising the

functional

| (z) = -”2)2( +25 —2z dxdy, (D
D

where the region R is a sequence, -a < x <a,-a<y<a and z =0 on the
boundary of the sequence D.

Solution: We shall seek an approximate solution in the form
z1= 2= ou( x> - a) (Y* - a%), .2
in which oy is a constant to be determined.

It is clear that this function z; satisfies the boundary condition. Putting the
value of z from (2) into (1), we find

| (z1) = ”[4an2 ¢y’ —a’ E +4aly® &% —a? E — 20, %* —a? :yz —a? ] dx dy
D

= 40(12
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szdx jyz —a? Edy+40c12 jyzdy. Ikz ~a°
—a —a —a —a
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a a
de—Zocl jkz —a’ dx Jyz ~a’ dy
-a -a

3BT 5 a
o] X y 2a3y3 4
= dop| -3 fay
3 |al -a
31 [.5 3 a
+4oc12 Y X 292X 3%
3 5 3
—a -a
3 Tr s i
X 2 y 2
—20,| —-a X —-ay
3 3
—1-a —a
1 a> 2a’ a’
=8u/- € +a’| ———+a° |[()-20, —-a° |4
3 5 3 3
32 8a° 2a° ’ 3248 32
2~3 2 X 2,8 6
= —qra’| — -8 = ——wa’. ..(3
3 (15] al[ 3 ] 3x15 1% T g™ ®)
For an extremum value, we have
dl e,
5 = (%)
Oy
This gives
5
= . ..(5
T ®)

Thus, an approximate solution is
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_ 5

Y (x% - a%) (y* - a%). ...(6)

z

Question. Show that the system of equations %I u)=0,G=1,2, ....

J
for the determination of coefficients in the minimizing function

Un = Zn:aid)i(x,Y)

for the problem
| (u) = ”u§+u§+2fu dx dy = min, u=0 onC
R

is

ob - .

J‘ aun ¢j +aun ad)l +f¢] dXdy:O, j:1’2, 3, ....... ,n-
) ox ox oy oy

Solution:— The minimizing function is

Un = 2 ai O

......... (1
We form

I (un) = ﬂ Jix +u? +2fu, dxdy. (2)

R

Therefore, we find

0

— I(up

a0
J'J'Zu a. +2u a! 12fau dx d 3)
2 n,x aaj n'x __ X,y aaj ny ! aaj n y
We have

n,  Ob;

nx= a ] cee 4

Un, Zl e (4)
and

0 8¢j

—(Un,x) = —. ...(5

aaj( ) Fw (%)
Similarly,

d 0

—(Un,y) = —, ...(6)

oa; oy
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0

—Un = ¢ . (7
za, " j (7)
Using (5) to (7) in relation (3), we write
O ; O ;
iI(un) :ZI AUy ¢J+au” ¢J+f¢j dx dy. ...(8)
a4 ) X oXx oy oy
Therefore, the system of equations
0
—1 =0, ...(9
ca, (Um) )
becomes
ou, odp; ou, od;
”{ n 90, Mo 9 +f¢j}dxdy20, .(10)
g OX ox oy oy
forj=1,2,.....n.
. : ol(u,) .
Question:— Show that the system of equations aT:O, G=12,....... ),

i
for determining the coefficients in the approximate solution

n
Ux = Zaiq)i
i-1
for the problem

| (u) = ”[ Vzuf —fu} dx dy = min,
R
ou

on

n .
J‘JZ: ai Vzd)ivzd)j —fd)J .dX dy: 0
R i=l

for j=1,2,.....n.

u=0, =0 on C, (C being the boundary of R) ,

Solution:— We form | (u,). We obtain

| (uy) = ”[ v, —2fun} dx dy. (1)

R

We find
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0
—I Uy =2 v? up, —f—u dx d
(tn) = -‘{ oa, } Y

=2 Vu Vd)J fo; dxdy

=2 Z V2,20, —fo;, dxdy.  .(2)

Therefore, the system of equations

0

— 1 (uy) =0, ..(3

W) ©
becomes

n .

”E V29;V29; —fp; dxdy=0, .(4)

R i=1
forj=1,2,........ ,n. This completes the solution.

8.9. GALERKIN METHOD

In 1915, Galerkin proposed a method of finding an approximate solution
of the boundary value problems in mathematical physics. This method
shall have wider scope than the method of Ritz.

Method : Let it be required to solve a linear differential equation

Lu=0 inR, ()

subject to some homogeneous boundary conditions, L being a linear
differential operator.

It is assumed, for simplicity that the domain R is two-dimensional.
We seek an approximate solution of the problem of the type

Un (%, ) = D aid; (x, Y) )
i=1

where the ¢; are suitable coordinate functions and a; are constant.
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We suppose that the functions ¢; satisfy the same boundary conditions as the
exact solution u(x, y). We further suppose that the set {¢;) is complete in the
sense that every piecewise continues function f(x, y), say, can be approximated

n
in R by the sum " c;¢; in such a way that
i=1

ON = ”(f—ZN:ciq)i] dx dy ..(3)

can be made as small as we wish.

Ordinarily, u, given in (2) will not satisfy (1). Let

L (un) = en (X, ), where ex(X,y) 20, inR. ..(4)

If maximum of <, (X, y) is small, we can consider u, (X, y) given is (2) as a
satisfactory approximation to the exact solution u(X, y).

Thus, to get a good approximation, we have to choose the constants a; so as to
minimize the error function (X, y).

A reasonable minimization technique is suggested by the following:

If one represents u(x, y) by the serious u(x, y) = Zaid)i, with suitable
i=1

n

properties and consider Un = Zciq)i as the nth partial sum, then, the
i=1

orthogality condition,

”L (Un) & (X, y) dx dy =0, (5

R

as n — oo is equivalent to the statement
L (u)=0, ...(6)
by virtue of (1).

This led Galerkin to impose on the error function <, a set of orthogality
conditions (now called Galerkin conditions)

”L (Un) & (X, y) dx dy = 0, (D)

R
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fori=1,2,.......... ,n. This yields the set of equations
n
LY ajp; | dxdy=0, .(8)
R =
fori=1,2,......... .

This set of n equations determine the constants a; in the approximate
solution (2).

Remark 1. When the differential equation and the boundary conditions are
self-adjoint and the corresponding functional I (u) in the problem

| (u) =min, .9

is positive definite, then the system of Galerkin equation in (8) is equivalent to

the Ritz system
9
oa.

]

I (un) =0. ..(10)

Remark 2. It is important to the note that in Galerkin’s formulation, there is no
reference to any connection of equation (1) with a variational problem.
Indeeds, the Galerkin method can be applied to a wider class of problems
phrased in terms of integrals and other types of functional equations.

Question. Solve the variational problem

1
I[y'z —y? —2xy} dx = min,
0
y(0)=y(@1)=0, -.-(1)
by the Galerkin method.

Solution:— Here

F=y'—y?—2xy ,
and Euler’s equation is
y'+y—-x=0, in0<x<1,

L[y] d’y X=0 2)
= —~ +y—Xx=0.
Y dx? y
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We consider an approximate solution of the problem of the form
Vo= (L=X)[arX+aXe+..c...... +an X"1, ...(3)

which satisfy the boundary conditions.

The first approximation is

yi1=ai X(1-x)
=a; (x - X9). (4
Here,
b =xX—X°. ..(5)
We find

LIy = a1 (-2) + a1 (x = X%) + (-X) =g (X = X* = 2) =X, ...(6)

and the coefficient a; is determined from the Galerkin’s equation

1
IL (Uy) ¢ dx = 0. (7
0
This yields
1 —_ .
jal €-x° -2 —x .(x-x}) dx=0
0
l —_ —_ —_
Ial X-x*-2 x-x* —&*-x* dx=0
0
1 — —
Ial¢2x+3x2—2x3+x4: £ -x* dx=0.
0
This gives
5
ap = —. (8
1% 73 (8)

Thus, an approximate solution of the given variational problem,

using Galerkin method, is

yzyl(x>=1—85 (x—x?) .
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8.10 APPLICATION OF GALERKIN METHOD TO THE
PROBLEM OF TORSION OF BEAMS

Consider a cylindrical bar subjected to no body forces and free external forces
on its lateral surface. One end of the bar is fixed in the plane z= 0 while the
other end is in the plane z = ¢ (say). The bar is twisted by a couple of
magnitude M whose moment is directed along the axis of the bar (i.e., z-axis).
Prandtl introduced a function W (x, y), known as Prandtl stress function,
such that

o¥ oY .

Tx =L E’ rzy=—ua& , ...(D)

and stress function W is determined from the system
V¥ =-2 inR, .2
Y =0 on C, ee..(3)

where R is the region of the cross-section of the bar and C its boundary.
Let R be the rectangle |x| < A, |y| < B.

y

B .
Cross-section

Now we have to solve the system consisting of equations (2) and (3) by

using the Galerkin method. We write (2) as

L (%) =0, ceer(d)

where
L= V2 +2. ...(5)
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We take an approximate solution in the form

o, Y)=(C-A) (Y -B) (@ t+a X’ +agy+........ an XX y?). ...(6)

This approximate solution satisfies the boundary conditions in (3). Here a;,
ay,.....,an are constants to be determined by using Galerkin method.

The first approximation is

Y= =a (X - A (Y - BY), -(7)
with

¢1= ("~ AY) (Y - BY). (8)
The coefficient a; is determined from the Galerkin equation

B A

I IL @, ¢, dxdy=0. .(9)
-B -A
This implies

B A -
[ [ V2w +2 ¢ dxdy=0
-B -A

B A

| Mal(y ~B?)+2a,(x* ~A%)+2 £2—A? ¢? B’ dxdy=0
-A
A

-B

2a, sz _A? de.y2 B? “dy-+2a, sz A% dx jyz B? “dy
A _ B
+2J.k2—Azng.y2—BZEdy:0

Integration yields

Hence

5 1
a1 = —[mj . (10)
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Therefore, an approximate solution, by Galerkin method, to the

given boundary value problem is
5 1 2 2 2 2
Y= | ——— -A - BY). (11
1 4[A2+sz(x ) 6P - B) (1)

Note:— Approximate values of the torsinal rigidity D and maximum shear
stress Tmax can also be computed with the help of (7). We recall that

D=2u ”\dedy, .(12)

R
and the maximum shear stress tmax 0ccurs at the mid points of the longer sides
of the bar.
If B> A, then

—-ua @ . ..(13)
X=A

Inserting the values of W = ¥, given in (7) into relations (12) and (13), we find
that

5 ,| kla’
D, = — b ———— , ..(14
ST L+ b/af} (4
5 #/a’ )
TmaX_ 4Ha 1+ b/ai y s

with a=2A, b=2B.
8.11. METHOD OF KANTOROVICH

In 1932, Kantorvich proposed a generalization of the Ritz method. In the
present method, the integration of partial differential equation (Euler’s
equation) reduces to the integration of a system of ordinary differential
equations.
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In the application of the Ritz method to the problem

| (u) = ﬂF(x,y,u,ux,uy)dxdyzmin, (1)
R

we consider approximate solutions in the form

n
U= adi (xy) l2)
k=1

where the functions ok(x, y) satisfy the same boundary conditions as those
imposed on the exact solution u (x, y) and ax are constants. We then
determined the coefficients ax so as to minimize | (uy).

In the method of Kantorvich, the ax in (2) are no longer constants but are
unknown functions of x such that the product

ak (X) d)k (X, y)

satisfies the same boundary conditions as u( x, y).

This led to minimize

| (up) = | (Zn:ak x@k(x,y)] . ..(3)

Since the functions ¢« (x, y) are known functions, we can perform integration
w. r.t. y in (1) and then obtain a functional of the type

X1
I (up) = If a, (x), 'y (X),x dx. .4
X0

Kantorvich proposed to determine the function ax (x) so that they minimize the
functional (4). It is clear that ax (x) can be determined by solving the second
order ordinary differential equations (Euler’s equations)

d
o~ 5 T

Once ax (x) are determined from (5), an approximate solution is known.

a) = 0, fork=1.2,....... . ...(5

8.12. APPLICATION OF KANTORVICH METHOD TO THE
TORSINAL PROBLEM
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The torsion boundary value problem is

V3¢=-2 inR
" } (D)

Y =0 onC,

C being the boundary of R, where R is the rectangle |x| <A, |y| < B.
The variational problem associated with this boundary value problem is (a

well known result)

| (W) = ”LPXZJAPyZ_mP dx dy = min. Q)
R

An approximate to its solution is

Y1 =au(x) (- BY) | NE)
with

d1(x, y) = y*- B% .(4)
Here ¢1(x, y) vanishes on the part y = £B of the boundary C. In order that

a1 (X) (y’-B)=0 onC, ...(5)
we shall determine a; (x) such that

ai (A) = (—A) =0. (6)

Inserting the value of ¥ from (3) in (2), we get

| (a1) = ”[ a,'(x) ° §? —B? E +4y% a; x “—4a, x §? B’ ]dxdy

A B
= j{ a,'(x) * Iy“ +B* -2B%y? dy+4a, x
B

—A

B B
x Iyzdy—4a1 xjjyz —B? gy] dx
B

-B
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+4a; X 2{ } —4a, X {%—BZ} ]dx
A 5 RS 5 3
ﬂzal'f[%ﬁ——zB—] 4a1(2%] 8a1[ Bﬂdx
Al

3 A

= [2%] ﬂg B? &1'3 +4a? +8a1}dx : .(7)
-A
Here
8 12

f(agai’, x) = gB Q' +4al +8a, . ..(8)
fal =8a; + 8,

16
fo = % —B%. ...(9)

Euler’s equation becomes

(8a; + 8) — (f—x [1: Bzal'j 0
a;" (x) 282 —a,(X)—— ...(10)

Its solution is

=C h —kX + C, sinh —kX 1 11
a1(x) = C4 cosh. 2 Sin -1, ..(11)
with
= E
k= > ..(12)

The function a;(x) must be an even function, therefore C, = 0.

Putting a1(A) =0, we get,
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1

= - (1
> C1 cosh(kx/B) (13)
Thus, we find
¥, = (V — B? M_l , (14
1= ) {coshkA/B (14)

as an approximate solution obtained by Kantorvich method.

Chapter-9
Waves in Elastic Solids

9.1. WAVES IN AN ISOTROPIC ELASTIC SOLID

In the absence of body force , equations of motion
are

Tijj = p U (1)

fori,j=1,2,3. Here, dotsignifies the differentiation with respect to time t
and p is the density of the solid. j; is the stress tensor , u; is the displacement
vector.

The left of (1) is a force in the x;-direction due to stresses and the right of (1) is
the inertia term — mass x acceleration.

We know that the generalized Hooke’s law for an isotropic homogeneous
elastic medium is

Tij = A Ojj Uik + 1 (Uij + Uji) 2)

Here , homogeneity implies that p , A and p are constants throughout the
medium , A and p being Lame’ constants.

We put

0=ug=divu , (3)
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Q=curl u. (4)
0 is the cubical dilatation and Q is the rotation vector.

Putting (2) into (1) and using (3) , we obtain the following Navier’s equation of
motion (exercise)

(A+w)gradd +u V2 u=pl , (5)
in which Vs the Laplacian.

Taking divergence of both sides of (5) and using (3) , we obtain

(A + ) div(grad 6) + u V2(0) =p &

or A+ V2O+uVveie=pé
2
or vig= L 20 (6)
(4
where
4

K+—u
o= [AFeH - 80 7)
p p

It shows that the changes in the cubical dilation © propagates through the
elastic isotropic solid with speed « .

Here , k is the modulus of compressibility.

Taking curl of (5) both sides , we write
_ o2 _
(A + ) curl (grad &) + uV* (curl u) = p y(curlu) (8)

From , vector calculus , we have the identity
curlgrad ¢ =0. 9
Using (4) and (9) , equation (8) gives

1 8°Q
g

ViQ-= , (10)

where
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B:\/Z : (11)
yo,

Equation (10) shows that changes in rotation  propagates with speed B.

Remark 1: The speed of both the waves depend upon the elastic parameters A ,
1 and the density p of the medium. Since A > 0 & u > 0, it can be seen that

o> .
That is , the dilatational waves propagate faster than the shear waves.

Therefore , dilatational waves arrive first while rotational waves arrive after
that on a seismogram. For this reason , dilatational waves are also called
primary waves and rotational waves are called secondary waves.

Remark 2: For a Poisson’s solid (A = ) , we have
a=/3 B.

For most solids , particularly rocks in Earth , there is a small difference
between A & p. So, we may take A = p and solid is then called a Poisson’s
solid.

Remark 3: In seismology , the dilatational waves are called P-waves and
rotational waves are denoted by S — waves.

Remark 4: If u =0, then B = 0. That is, there is no S — wave in a medium
with zero rigidity.

That is, in liquids , S — waves cann’t exist. However , P — waves exists in a
liquid medium.

Remark 5: Since
div Q =div(curl u)=0,
it follows that a rotational wave is free of expansion/compression of volume.

For this reason , the rotational wave Q is also called
equivoluminal/dilatationless.

Remark 6: The dilatational wave (6 = 0) causes a change in volume of the
material elements in the body. Rotational wave (when Q = 0) produces a
change in shape of the material element without changes in the volume of
material elements.
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Rotational waves are also referred as shear waves or a wave of distortion.

Remark 7: For a typical metal like copper , the speeds of primary and
secondary and waves are estimated as

o = 4.36km/sec and = 2.13km/sec,
respectively.

Remark 8: At points far away from initially disturbed region , the waves are
plane waves.

This suits seismology because the recording station of a disturbance during an
earthquake is placed at a great distance in comparison to the dimensions of
initial source.

Remark 9: We note that equations (6) and (10) both are forms of wave
equations. Equation (6) shows that a disturbance 6 , called dilatation
wave/compressive wave propagates through the elastic medium with velocity
o. Similarly , equation (10) shows that a disturbance Q , called a rotational
wave , propagates through the elastic medium with velocity 3.

Thus, we conclude that any disturbance in an infinite homogeneous isotropic
elastic medium can be propagated in the form of two types of these waves.

The speed o depends upon rigidity p and modulus of compressibility k. On the
other hand , B depends upon rigidity p only.

Helmholtz’s Theorem (P and S wave of Seismology)

Any vector point function F which is finite, uniform and continuous and which
vanishes at infinity, may be expressed as the sum of a gradient of a scalar
function ¢ and curl of a zero divergence vector .

The function ¢ is called the scalar potential of Fand v is called the vector
potential of F.

The equation of motion for an elastic isotropic solid with density p (for zero
body force) is

— — 2_
L +20) V(V. U)-nV xV x U= %#.(n

We write the decomposition for the displacement vector u in the form

U=Vo+Vx y, 2)
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with
div w=0 3)

The scalar point function ¢ and vector point function  are called Lame’
potentials.

We know the following vector identities.

VxVp=0 , (4)
V.(Vx y)=0. (5)
Now V.u=V.(Vo+Vx vy
=V.V
= V% (6)

and
Vx u=Vx(Vo+Vx vy
=VxVxy
=grad (div y) - V* v
=—V? y. 7)

Using (6) and (7) in (1) , we write

2

(A + 20) VLV 0} + 1 V <{V? Tu}:p%(v ¢)+p%

or

2 2— _
oo o g ] e 365

which is satisfied if we take ¢ and ¥ to be solutions of wave equations

2
R ©)

v W:iﬂ (10)
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where

o= A+2u 1 (1)
\ p

B:\/Z. 12)
D

Wave equation (9) is a Scalar wave equation and equation (10) is a vector
wave equation.

Waves represented by (9) are P-waves while waves represented by (10) are S-
waves.

d and 1 are now called the scalar and vector potentials associated with P-
and S-waves , respectively.

Note : We can write the displacement vector u as

U= Up+ Us, 1)
where

wp=Vod , (2)

us=curl . (3)

Hence up is the displacement due to P-wave alone and us is the displacement
due to S-wave alone.

One — Dimensional Waves

(a) P-waves : Consider the solution where = 0. Then the one-dimensional
P-wave satisfies the equation

o 1 & A+2
R N e
o 2
whose solution is
b=¢(xtat) , 2)

representing a wave in x —direction. The corresponding displacement vector is

ap:V(I)
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0P\ A
= | —=1le . 3
( axj ) 3)
That is , the displacement vector up is in the direction of propagation of P-
wave. Therefore , P-waves are longitudinal waves.
Since

curl up = curl(grad ¢)

=0 |, (4)

So , P-waves are irrotational/rotationless. P-waves do not cause any rotation
of the material particles of the medium.

Since
div up = div(grad ¢)
=V2 ¢4
0 (5)
therefore, P-waves are dilatational/compressional.

In this case , wavefronts are planes,
X = constant .
The particle motion , for P-waves , is perpendicular to the wave fronts(figure).

Wave front <
iﬁ’f Wave direction
If we look for oscillation of angular velocity

® , then we take

o(x, ) = e $(x) , (6)
where
2
37‘1’ +h?¢=0. ©)

Here, h=2 , (8)
(04
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is the wave number.
(b) S-waves : The one-dimensional wave equation for S-wave is
0%y o4y

t2

_ 1oy
o T F o (“

B=\/Z- )
yo,

The corresponding displacement vector is

where

us=curl . (3)
Solution of (1) is of the type
W (X, 1) = ya(X - Bt) & + ya(X - Bt &, + yia(x - B) &, : 4

From (3) and (4) , we find

- A 5} .
us:-% 8, + 8";2 é,. (5)

This shows that the displacement vector us lies in a plane parallel to yz-plane,
which is perpendicular to the x-direction , representing the direction of S-wave
propagation.

The wavefronts are planes having x-axis their normals.
Thus, particle motion due to a S-wave is parallel to the wavefronts.

So, S-wave are transverse waves (figure).

e
Us
a e
/\ Wave
Since
div us = div(curl )
=0 (6)

so, S-waves are dilationless/equivoluminal.
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Since

curl us = curl curl s

=V y
0 (7
S0, S-waves are not irrotational , they are rotational.
As strains are not zero , S-waves are shear/distortional waves.
Each component v; satisfy the scalar wave equation for S-waves.
9.2. SV- AND SH-WAVES

We shall now consider the study of waves as related to Earth , for example
, waves generated by earthquakes. We consider the surface of the earth
(taken as plane , approximately) as horizontal. Let z-axis be taken
vertically downwards and xy-plane as horizontal.

To determine x- and y-directions in the horizontal plane, we proceed as
below.

Let p be the direction of propagation of a S-wave. Let the plane made by the
vector p and the z-axis be the xz-plane. Then x-axis lies in the horizontal plane
(z = 0) bounding the earth and the propagation vector p lies in the vertical xz-
plane (figure).

z=0 : X

(A S-wave)

We choose y-axis as the direction perpendicular to the xz-plane so that x- ,
y- and z-axis form a right handed system.

The displacement vector us corresponding to a S-wave propagating in the p-
direction , is perpendicular to p-direction.
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We resolve us into two components — the first component usv lying in the
vertical xz-plane and the second component usy parallel to y-axis(i.e. 1 to xz-
plane).

A S-wave representing the motion corresponding to the first component of the
displacement vector is known as a SV-wave.

For a SV-wave , the particle motion is perpendicular to the direction p of
propagation of wave and lies in the vertical xz-plane which is normal to the
horizontal bounding surface. Let usy denote the corresponding displacement
vector. Then , we write

usv=(u,0,w),

contains both horizontal component u in the x-direction and vertical
component w in the z-direction. A SV-wave is a vertically polarized shear
wave. SV stands for vertical shear.

A S-wave representing the second displacement component , parallel to the
y-axis , lying in the horizontal plane , is known as SH-wave. Let usy denote
the corresponding displacement. Then

usy=(0,v,0),

is parallel to y-axis. The motion due to a SH-wave is perpendicular to
p-direction (i.e., in a transverse direction) and along a horizontal direction. A
SH-wave is a horizontally polarized shear wave. SH stands for horizontal
shear.

When a P-wave propagates in the p-direction , then the corresponding
displacement , denoted by up, is given by

up=(u,0,w).

The displacement up contains both horizontal component in the x-direction
and vertical component in the z-direction(figure)

0O X
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(A P-wave)

9.3. WAVE PROPAGATION IN TWO -
DIMENSIONS

We assume that waves are propagating in planes parallel to the vertical xz-
plane containing the wave propagation vector

p=16& +ng,
with
I>+n?=1.
Then the wave motion will be the same in all planes parallel to xz-plane

(figure) and independent of y so that % =0.

z=0 O X

z

Under this assumption , the Navier equation of motion for isotropic elastic
materials

(L+p)graddiv u+p V2 u=p i (1)

gives

0+ )—[& ‘;‘fj WVuspi, ()

o+ )—[g—‘;+‘;—vxvj+uv2w bW (3)

nviv=p v , 4)
where the displacement vector u = (u, v, w) is independent of y ,

cubical dilatation = = a—a)‘: ey (5)

oz

and Laplacian is given by
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Vz—a_2+ 82

= - 6
ox®  oz? ©)

Let z = 0 be the boundary surface. The components of the stress acting on the
surface z = 0 are given by

ou  ow
Tzx — Zuezx = M(E + &j s (7)
= h0+2nen=+2n) XM (g
oz OX
ov
rzy=2uezy:u§ . 9)

From above equations , we conclude that the general two — dimensional
problem of propagation of plane elastic waves , parallel to the xz-plane, splits
into two independent problems stated below —

Problem I — Consisting of equations (4) and (9).

Problem Il — Consisting of equations (2) , (3) (7) and (8).

Problem | (SH-problem) : In this problem the displacement components are
u=w=0, ,v=v(x,z,t) (10)

and
oV
Tox — Tzz — O y sz = sz(X , Z, t) = ME . (11)

In this problem , the displacement component v(x , z, t) satisfies the scalar
wave equation

A (12)

This differential equation is independent of modulus of compressibility k. So
the motion due to such waves is equivoluminal.  Since the displacement
component v is horizontal and is perpendicular to the direction p of

propagation ( p lies in xz-plane) , the waves represented by v are horizontally
polarized waves or SH —waves.

Problem 11 (P-SV problem) : In this problem
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v=0,u=u(x,z,t),w=w(x, z,t), (23)
ou  ow oW ou
szEO,TZX:M(Eﬁ-&j,'CZZ:O\,‘FZM)E"'}\,&,
ou  ow ou
=AM —+— | +2u — . 14
o [8x+azj Max (14)

In this problem , the in-plane displacement components u and w satisfying the
two simultaneous partial differential equations (2) and (3) , and the in-plane
stress components Ty , T and 1, also contain these two displacement
components. The displacement component v plays no role in the solution of
this problem and hence taken as identically zero.

The displacement components u and w can be expressed in terms of two scalar
potentials

d=0¢(x,z,t)and y = (X, z, 1)

through the relations

u= % + 5_l// , (15)
OX oz

w= 20 _ oy , (16)
oz OX

with help of Helmholtz’s theorem (on taking = —y 6, ).

Using (15) and (16) in the equations of motion (2) and (3) , we obtain

0 22 52¢ + 0 2 2 521// —

< _ll 1y £ ¥\ =0, 17
ox _05 % at2:| o B Viy o (17)
g _azv2¢_i _ i ,32V2 _82_‘// =0 (18)
o | oz | ox e | T

These equations are identically satisfied when the scalar potentials ¢ and v are
solutions of following scalar wave equations

1 02

Vzd): ?—j), (19)
1 &

Viy= 2 (20)



158 MECHANICS OF SOLIDS

where o= (A+24) , B:\/Z. (21)
P p

The plane wave solutions of (19) represents P-waves and those of (20)
represent S-waves.

The potentials ¢ and \y are called displacement potentials.

In the displacements (15) and (16) , the contribution from ¢ is due to P-waves
and that from v is due S waves.

P-SV wave is a combination of P-wave and the SV-wave. The displacement
vector (u , 0, w) lies in a vertical plane and S-waves represented by the
potential \ are also propagated in a vertical plane , so these S-waves are
vertically polarized shear waves or simple SV-waves.

The stress 1.« and t; in terms of potentials ¢ and v are

= @Jra_wj
2= M o T ax

_ o¢g v Ty 29
“(axafazz axzj’ #2)

zz:xdiv a+2u @
o4

_7LV2¢+2 a¢ a‘//
or? oXoz

ol %
AV? +2 - . 23
( Tl jcb M (23)

Since

_ A+2u—2u _ /1+2,u_2 _ a’

A
4 2 2. (24
H H H B (24

therefore , we write

_ & , 52¢ 821//
’sz—ll|:£ﬂ 2]v¢ 25 28)(82] (25)
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Note 1: In the SH-problem , other stresses are

Txx:Tyy:O, Txyzugﬂx. (26)

Note 2: In the P-SV problem , other stresses are (in terms of ¢ an )

T = AV & + 21 exx

o’ &%y
=AVIp+2n | — +— |, 27
¢ u[ 7+ (27)

Ty = A V2§ + 21 ey
=AVi (28)
Tyy = 2L ey = 0. (29)

Note 3: In the case of two — dimensional wave propagation , the SH motion is
decoupled from the P-SV motion. The displacement vector due to P-SV type
motion is

u=Vo+Vx(yé)
=(u,0,w).
9.4. PLANE WAVES

A geometric surface of all points in space over which the phase of a wave is
constant is called a wavefronts.

Wavefronts can have many shapes. For example , wavefronts can be
planes or spheres or cylinders.

A line normal to the wave fronts , indicating the direction of motion of wave, is
called a ray.

If the waves are propagated in a single direction , the waves are called plane
waves, and the wavefronts for plane waves are parallel planes with normal
along the direction of propagation of the wave.

Thus, a plane wave is a solution of the wave equation in which the
disturbance/displacement varies only in the direction of wave propagation and
is constant in all the directions orthogonal to propagation direction.

The rays for plane waves are parallel straight lines.
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For spherical waves , the disturbance is propagated out in all directions from a
point source of waves. The wavefronts are concentric spheres and the rays are
radial lines leaving the point source in all directions.

Since seismic energy is usually radiated from localized sources , seismic
wavefronts are always curved to some extent. However , at sufficiently large
distances from the source , the wavefronts become flat enough that a plane
wave approximation become locally valid.

Illustration (1) : For one —dimensional wave equation

79 - =2 L (1)

a progressive wave travelling with speed ¢ in the positive x-direction is
represented by

o(x, t) = A e = A gl )
where

k = wave number ,

o = ¢ k = angular frequency ,

A = wavelength = 27/k,

A = amplitude of the wave.
Let

X=X & , k=ké, . (3)
Then k is called the propagation vector and (2) can be written in the form
d(x, ) = Aellk xe0 4)
In this type of waves , wavefronts are planes
X = constant ®)
which are parallel to yz — plane.

Illustration 2: A two — dimensional wave equation with speed c is

74.5-12¢ @
oy’ ot?
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If we take
u=lx+my-ct, 2
vaIx+my+ct, 3)

where |, m are constants , then equation (1) is reduced to (exercise)

2
§;=o, ()
u
provided
I+ m?=1. (5)

Integrating (4) , we get

¢ = f(u) + g(v)

=f(Ix + my —ct) + g(Ix + my +ct) , (6)

where f and g are arbitrary functions.
Let

V=16 +mé, . (7
Then V is a unit vector perpendicular to the system of straight lines

IX + my = constant , (8)
in two-dimensional xy-plane.

y

<>

X+mv = constant

X

At any instant , say t = tp , the disturbance ¢ is constant for all points (X, y)
lying on the line (8). Therefore , ¢ represents a plane propagating with speed ¢
in the direction V. The wavefronts are straight lines given by equation (8).

Illustration 3: Three-dimensional wave equation is
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= YW (l)

which propagates with speed c.
As discussed earlier , solution of (1) is
d(x, Yy, z, t) = f(Ix + my + nz — ct) + g(Ix + my +nz + ct) 2
where the constants |, m , n satisfy the relation
P+m?+n®=1. (3)
Let
V=1 +mé, +né,. (4)
Then V is a unit vector which is normal to the system of parallel planes
IX + my + nz = constant. 5)

The wavefronts are parallel planes given by equation (5) , which travel with
speed c in the direction V. So, the wave (2) is a three-dimensional
progressive plane wave.

Question : Determine the wavelength and velocity of a system of plane waves
given by

d=asin(Ax+By+Cz-Dt),
wherea, A, B, C, D are constants.

Solution : Let < |, m, n> be the direction cosines of the direction of wave
propagation with speed c. Then

I>+m?+n®=1 (1)

Equation of a wave front is

IX+my+nz=p 2

where p is the length of perpendicular from the origin to the wave front.

.
[
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<l,m,n>

The plane wave ¢, therefore , must be of the type

p=asink(Ix+my+nz-ct), (3

where k = wave number and ,
¢ = wave velocity.
Comparing (3) with the given form

d=asin(Ax+By+Cz-Dt), ()]
we find
| = A = B = ¢
JA +B2+C? ] JA B2 +C? ] JA +B2+C? ]
®)
and
k=+VA?+B?+C? | (6)
c= D . @)
JA +B? +C2
Therefore , wave length = 2z _ 27 : (8)
JA + B2 +C?
and
wave velocity = D . 9).
JA? 1 B2 4+ C2

Chapter-10

Surface Waves

10.1. INTRODUCTION

In an elastic body, it is possible to have another type of waves (other than body
waves) which are propagated over the surface and penetrate only a little into

the interior of the body.

Such waves are similar to waves produced on a smooth surface of water

when a stone is thrown into it.

These type of waves are called SURFACE WAVES.

Surface waves are “tied” to the surface and diminish exponentially as they

get farther from the surface.
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The criterion for surface waves is that the amplitude of the displacement in the
medium dies exponentially with the increasing distance from the surface.

In seismology , the interfaces are , in the ideal case , horizontal and so the
plane of incidence is vertical. Activity of surface waves is restricted to the
neighbourhood of the interface(s) or surface of the medium.

Under certain conditions , such waves can propagated independently along the
surface/interface. For surface waves , the disturbance is confined to a depth
equal to a few wavelengths.

Let us take xz — plane as the plane of incidence with z — axis vertically
downwards. Let z = 0 be the surface of a semi-infinite elastic medium (Figure)

z=0 X

z

For a surface wave , its amplitude will be a function of z (rather than an
exponential function) which tends to zero as z — . For such surface — waves ,

the motion will be two — dimensional , parallel to xz — plane , so that % =0.

The existence of surface waves raises the question of whether they might
(under certain conditions) be able to travel freely along the plane (horizontal)
as a guided wave.

10.2. RAYLEIGH WAVES

Rayleigh (1885) discussed the existence of a simplest surface wave
propagating on the free — surface of a homogeneous isotropic elastic half —
space.

Let the half — space occupies the region z > 0 with z — axis taken as vertically
downwards. Let p be the density and A , u be the Lame’ elastic moduli and z =
0 be the stress — free boundary of the half — space (figure).

z=0 X

Ao p
a, B.
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z

Suppose that a train of plane waves is propagating in the media in the positive
X — direction such that

(i) the plane of incidence is the vertical plane (xz — plane) so that the motion ,

i.e., disturbance is independent of y and hence % =0.

(ii) the amplitude of the surface wave decreases exponentially as we move
away from the surface in the z — direction.

This problem is a plane strain problem and the displacement vector u is of
the type

u=(u,0,w), u=ux,zt, w=wkx,z,t). @1

The displacement components u and w are given in term of potential ¢ and v
through the relations

u:%+a_l//, (2)
OX oz

W:%_é_‘//, ©)
oz X

where potentials ¢ and y satisfy the scalar wave equations

ol ol 1 ¢
vor bt @

2 2 2
oy oy _ Loy (5)

2 R —
VRS Y TR

and wave velocities o and 3 are given by

a=(A+2u4)] p , (6)
B=ulp . (M

This wave motion is of a P-SV type wave travelling along the stress — free
surface of the half space and such a motion takes place in the xz — plane.

Now , we seek solutions of wave equations (4) and (5) of the form

b(x , 2, t) = f(z) X , (8)
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w(x,z,1) =g(z) " , (9)
where k is the wave number , c is the speed of surface wave travelling in the
+ve x-direction and o = ck is the angular frequency.

The substitution of (8) and (9) into wave equations (4) and (5) leads to two
ordinary differential equations (exercise)

d2f

7 ~K*a’f=0 |, (10)
and

d’g 2.2

— -K’b?g=0 11

o g (11)
with

a=+1-c’/a? >0 12)
and b=1-c?/p? >0 . (13)

From equations (8) to (11) ; we find (exercise)
O(x,z,0)=(Ae?+A e | (14)
w(X,z,t)=(B e +B, e =2 (15)
where A, A; B and B; are constants.

Since the disturbance due to surface waves must die rapidly as z — o, we
must have

Aj_:Bl:O. (16)

Thus , for Rayleigh waves , we get

d(x,z,t) = Ag el (17)
and

(X, z,t)=Be etk (18)
with

c<B<a. (19)

The equation (19) gives the condition for the existence of surface waves on the
surface of a semi — infinite isotropic elastic media with velocity ¢ in the
positive x — direction.
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To find frequency equation for the velocity c and ratio of A and B ; we use the

stress — free boundary conditions. This conditions are

Tzx = Tzy = Tzz = 0

From relation in (2) and (3) , we find

The stresses in terms of potentials ¢ and v are given by

_ [au
Tzx — U

divu= M+ W
oz

OoX

_
S

:VZ(I)-

_+_

oz

oW

atz=0.

2
L O

oz?

oW
OX

J

, 00
+ —_
% T a2 o

oy 82\1/}

t=divu+p W
oz

-]

2 2

ﬁZ j aXZ

ov ow
’Czy: v 54‘@

0.

2
e,

oy

IBZ azz

2 O

oXoz

|

The boundary condition 1, =0 at z = 0 in (20), gives (exercise)

or

or

or

2A(-ik) (-ak) — B(-ik)* + B(-bk)> = 0

2iak’A+BlL+b) k=0

2iaA=-B(1+b?

A

B

i(1+b?)

2a

(20)

(21)

(22)

(23)

(24)

(25)

167



168 MECHANICS OF SOLIDS

The boundary condition T, =0atz=0, gives (exercise)

(;—2_2j AL (K + Z—i A . (o k?) — 2B (-ik) (-bk) = 0

aZ a2a2
or A|:—F+2+ '32 :|k2 -2|ka2:0
aZ aZaZ
or A(Z_F—i_?j =2ibB
A 2ib
or o (26)
B o oa'a

Eliminating A/B from equations (25) and (26) and substituting the value of a
and b from equation (12) and (13) , we obtain

(1+b2) (2_06_;‘_0(232
B B

or 2 ¢’ 2_0(_2+0c_2 1_i
[ _’sz Bz B2 OLZ
a B
or (Z—C—zj {2—a—2+a—i—c—2} :4\/1—C—22 \/1—C—22
B B B B a B

or KZ—C—ZJ -4( —C—zzjz (1—(:—22]2 =0. (27)
B a B

This equation contains only one unknown c.

=4ab

This equation determines the speed c¢ for Rayleigh surface waves in an
uniform half — space.

Equation (27) is called the RAYLEIGH EQUATION for Rayleigh waves. It
is also called the Rayleigh frequency equation. It is also called the Rayleigh
wave — velocity equation.
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This equation is the period equation for Rayleigh waves.

In order to prove that Rayleigh waves really exists , we must show that
frequency equation (27) has at least one real root for c. To show this , we

proceed as follows :

From equation (27) , we write

gl
B a B

2

or 16—32%+24

— -

16 CZ BZ CZ C4 BZ:|
=16\ l- -t
a” B° B a

or
2 4 6 2 2 2

2+24 % 8% +C 1167 v16-16 S P =0,

B o B a

Put

s =c?/p?,

then equation (28) gives

f(s) =s> - 85" + (24_16£§j3 - 16(1_£zj =0.

o (24

It is polynomial equation of degree 3 in s with real coefficients.

(28)

(29)

(30)

Hence the frequency equation (30) has at least one real root since complex

roots occur in conjugate pairs.

Moreover

(0) :—16(1_£§j <0,
(24

(31)
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and
16 B

2
f1)=1-8+24- 208", 10/
o o

=1>0, (32)

since § < .

Hence , by the intermediate theorem of calculus , the frequency equation (30)
has at least one root in the range (0, 1).

That is , there exists s € (0, 1) which is a root of the Rayleigh frequency
equation.

Further, 0 <s <1 implies

2
0< S <1

2

or 0<c<B. (33)

This establishes that Rayleigh surface waves propagating with speed ¢ = cr ,
where

0<cr< B <o,
always exists.
This proves the existence of Rayleigh surface waves.

Special Case (Poisson’s solid) : When the semi-infinite elastic medium is a
Poisson’s solid ,

thenA=pandc = % and

a” _ A+2u
B 7

For this type of elastic medium , frequency equation (30) becomes

=3, (34)

35— 245> +565-32=0
or (s—4)(3s°—125+8)=0

giving

&l
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c? 2 2
or —=4,2+—=,2- —.
NE J3

182
But ¢ must satisfy the inequality 0 < ¢ < 3 , therefore , the only possible value
forc = cris

(35)

c 2
L:Z__,
p V3
or
= [2--2 | . 3=09195p (36)
R \/é P =V ’

giving the speed of propagation of Rayleigh surface waves along the stress free
boundary of the Poissonian half-space in the x-direction.

Thus , the order of arrival of P, SV-and Rayleigh waves is

W ——

Rayleigh
From equations (12) and (13) ; we write
2
2 _ CR
as=1- =R
aZ
1 S p
=1- F 5
1
=56+ 2./3),
or
:% 34243 =0.8475~0.848, (37)
and
2
=1 ;LZ
1
=5[2¥3 -3,
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or b =0.3933 ~0.393. (38)
Further , from equations (25) , (37) and (38) , we find

EA =1.468i0 . (39)

Remark 1: Displacements due to Rayleigh waves (Particle motion)

From equations (2), (3), (17), (18) and (26) ; we find
u(x , z , ) = [A(-ik) € + B(-bk) e?] g+

= k[—l A e—akz _A 2 —C2 /,sz e—bkz] ei(oat—kx)
2i
C2

=—ikA[E™ - |1-—5
2p

j e—ka] ei((nt— kx) ] (40)

Similarly , we shall find

W(X y 2, t) = [(_ak) A e—akZ _ (—Ik)B e—bkz] ei(oat—kx)

=k[-aAe ™+ —i(zbk_z((;zliz?; ] elet-d
=kA[-ae ™+ (ﬁj e ke etk (41)
Let = ot—kx (42)
U(z) = e - (1 - Zc—;zj R (43)
W) =-ae™ + (ﬁje—b“ . (44)

Then , taking the real parts of equations (40) and (41) and using equation (42)
to (44) ; we find

uix,z,t)=AkU(z)sino (45)

w(x,z,t)=AkW(z)cos6 |, (46)
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we remember that A is the potential amplitude. Eliminating 6 from equations
(45) and (46) , we obtain

2 2

u W

L S=1 (47)
[AKU(2)]"° [AkW(z)]

which is an equation of an ellipse in the vertical xz-plane.

Equation (47) shows that particles , during the propagation of Rayleigh
Surface Waves, describe ellipses.

Remark 2: Particle Motion at the surface (z = 0)

On the surface z=0,we find,atz=0,

2

c
c? 28
u(0) = : W0)=a| —F—— 48
© 2p° © 1-c*/2p° )
Since0<c<p,so
u(@)>0 : W(0)>0. (49)
Let a=AkW(0), b; = Ak U(0). (50)
Then a>0 ,b;>0 , (51)
and equation (47) reduces to
2
CHUy (52)
b a
Remark 3: Particular case (Poisson’s Solid) :
In this case , we find,at z=0,
a4 WO _ 3,215 | (53)

b U(0)
using (37). So

a;> by . (54)
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Thus , the surface particle motion (on z = 0) is an ellipse with a vertical
major axis.

The horizontal and vertical displacement components are out of phase by %

The resulting surface particle motion is Retrograde (opposite to that of wave
propagation).

Remark 4: The dependencies of the displacement components u and w on
depth(z) are given by equation (43) to (46) .

There is a value of z for which u = 0 (For Poisson’s solid , at z=+ 0.194 , A =

2 .
o u=0), whereas w is never zero.

At the depth , where u is zero , its amplitude changes sign.
For greater depths , the particle motion is Prograde.

With increasing depth , the amplitudes of u and w decrease exponentially ,
with w always larger  thanu.

Thus , the elliptic motion changes from retrograde at the surface to prograde at
depth , passing through a node at which there is no horizontal motion.

So , for the propagation of Rayleigh surface waves , a surface particle
describes an ellipse , about its mean position , in the retrograde sense.

O
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U
!
/
¢

el R
e s s e oo (D
S e o o D
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o — e e o—OCD
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Particle motion for the fundamental Rayleigh mode in a uniform half-space |,
propagating from left to right. One horizontal wavelength (1) is shown ; the
dots are plotted at a fixed time point. Motion is counter clockwise (retrograde)
at the surface , changing to purely vertical motion at a depth of about /5, and
becoming clockwise (prograde) at greater depths. Note that the time behavior
at a fixed distance is given by looking from right to left in this plot.

Remark 5: We see that frequency equation (27) for Rayleigh surface waves is
independent of w. Therefore , the velocity cg of Rayleigh surface waves is
constant and fixed.

This phenomenon is called nondispessive.
That is , Rayleigh waves are undispresed.

Remark 6: Maximum displacement parallel to the direction of Rayleigh waves

= (UWmax.
= bl

2 . .
=— , for a Poisson solid.

3
two-third of the maximum displacement in the
vertical direction

fora Poisson solid.

Note (1) : Rayleigh waves are important because the largest disturbances
caused by an earthquake recorded on a distant seismogram are usually those of
Rayleigh waves.

GROUND ROLL is the term commonly used for Rayleigh waves.

Note (2) : Although a “a free surface” means contact with a vacuum , the
elastic constants and density of air are so lows in comparison with values for
rocks that the surface of the earth is approximately a free surface.

Note (3) : The boundary conditions t,x = t,; = 0 at z = 0 require that these two
conditions must be satisfied , and so we require two parameters than can be
adjusted. Therefore , we assume that both P-and SV-components exist
and adjust their amplitude to satisfy the boundary conditions.

Exercise : Show that the displacement components at the surface of an elastic
Poisson solid due to Rayleigh waves are

u(x, t) = -0.423 kA sin k(x — cgt)

w(x, t) =0.620 kA cos k(x —crt), v=0,
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with usual notation.
10.3. SURFACE WAVES OF SH-TYPE IN A HALF-SPACE

We consider first the possibility of the propagation of SH type surface waves
(called Love waves) in a homogeneous semi-infinite isotropic elastic medium
occupying the half-space z > 0. The horizontal boundary z = 0 of the medium
Is assumed to be stress free. Let p be the density of the medium and A , p
Lame’ constants(figure) .

z=0 0O X

AW, p, B

z
(Elastic isotropic half-space)

Let the two — dimensional SH-wave motion takes place in the xz-plane. The
basic equations for SH- wave motion are

u=w=0, v=v(x,z,t), @

o’v  d°v 1 d%v o

S — ,

ox? ozt pPoot?

pP= £ 3)
Yo

We try a plane wave solution of wave equation (2) of the form

V(x, z, ) =B . e e 4
where o is the angular frequency of wave , k = wave number and ¢ = w/k is the
speed with which surface waves are travelling in the x-direction on the surface

z=0;b>0and B is an arbitrary constant.

The amplitude of surface wave is B e®? which die exponentially as z
increases.

Substituting the value of v(X, z, t) from equation (4) into equation (2) , we find
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b?=1- % . ®)
Since b>0,s0
C<P. (6)
Using the stress-displacement relations , we find
Ta1 = 133=0,
ov

=pu— =-ubk.B. e M (7)
oz

Hence , the stress-free condition of the boundary z = 0 implies that , using (7) ,
nbkBe©=0g
or
B=0 , (8)
asu=0,b=0,k=0.

This implies that in the case of a homogeneous isotropic elastic half —
space, Love waves do not exist at all.

10.4. PROPAGATION OF LOVE WAVES

Surface waves of the SH-type are observed to occur on the earth’s surface.
Love (1911) showed that if the earth is modelled as an isotropic elastic
layer of finite thickness lying over a homogeneous elastic isotropic half-
space (rather than considering earth as a purely uniform half-space) then
SH type waves occur in the stress-free surface of a layered half-space.

Now , we consider the possibility of propagation of surface waves of SH-type
(Love waves) in a semi-infinite elastic isotropic medium consisting of a
horizontal elastic layer of uniform thickness H lying over a half-space.

It is assumed that two elastic isotropic media are welded together and the
horizontal boundary z = 0 of the semi-infinite medium is stress — free (see ,
figure).

At,l,B1,p1 v

A2,12,B2,p2
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B1<cL<f
z

Let the layer and the half-space have different densities p;, p, and different
shear moduli p , o respectively. Let two-dimensional SH-motion takes place
parallel to xz-plane. The basic equation for SH-wave motion are

Uup=w; =0, vi=vi(x,z1t) , @
o%v, %V Y
el @
OX oz B ot
B’ = £ )
£
inthe layer 0 <z <H, and
Uz=wW2=0, vo=Vvy(X,2,1), 4
o°v, 0V, 1 0%V,
2 T 2 T L2 2 ! ()
OX oz B, ot
Bzz ) , (6)

P2
in the half-space (z > H).

Suitable plane wave solutions of wave equations (2) and (5) are (exercise) , as
discussed in detail already ,

Vi(X,Z,t) = (A e + By k) gllet=k) )
in the layer 0 <z <H, and
Vo (x,2, 0= Ag e g0 ®)

in the half-space (z > H). o is the angular wave frequency and k is the wave
number , and ¢ = w/k is the speed of propagation of surface wave (if it exists)
in the positive x-direction. A;, B; are constants, b, and b, are real numbers with
b, >0. However, b; is unrestricted because z is finite in the layer.

Substituting for v, from (8) into (5) yields the relation
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by’ = [1—"—22] | ©)

and , therefore ,

c<PBa2, (10)
otherwise

Vo —> 00aSZ —> o0,
From equations (7) and (2), we find

bi? = (1_;1—22] : (11)
The stress-displacement relations imply

T31=T33=0 (12)
in the layer as well as in the half space. Also

Tgo = Wy K(-by A; € + b By @) !tk (13)

inthe layer0 <z <H, and

T30 = K g Ay (-hy) ek gl (14)
in the half space z > H.
The stress-free boundary z = 0 implies that

32=0, (15)
at z = 0. This gives

B =A;. (16)
Since , there is a welded contact between the layer and the half-space at the
interface z = H , so the displacement and the tractions must be continuous
across the interface z = H.
Thus , the boundary conditions at z = H are

Vi=Vy, (17)

T32|Iayer = T32|half-space . (18)
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180
From equations (13) , (14), (17) and (18) , we find
A1 e fH 4 B1 ekt = A, g ko ) (29)
and
u1 K by[-Aq e Pk 4+ B1 ghikH ]=-u2b2k g Pk (20)

Equation (16) , (19) and (20) are three homogeneous in A, , A;, By and A,.
We shall now eliminate them. From equations (19) & (20) , we write (after
putting B; = Ay)

Al[e—kblH + ekblH] _ 1
Aitulb.l. (eiblkH — e K bk

el gk

or
g KBH _ gkbH b,

or tan h(by k H) + M (21)
200

Equation (21) is known as period equation/frequency equation/Dispersion
equation for surface Love waves.

Equation (21) can also be written as

C
o 1‘;
tanh kh. [1-— |=-£2 172
1 H l—i
B
CZ
1-
oH c? 2
or tanh| — [1-— | = £ P (2
C Bl ‘ul 1 CZ
T2

Equation (22) is a transcendental equation.
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For given ®, we can find the speed c for surface Love waves. We note the
value of ¢ depends upon o . This means that waves of different frequencies
will, in general , propagate with different phase velocity.

This phenomenon is known as dispersion.

It is caused by the inhomogeneity of the medium (layered medium) due to
some abrupt discontinuities within the medium (or due to continuous change of
the elastic parameters which is not the present case).

Thus, Love waves are dispressed.

We consider now the following two possibilities between ¢ and p; .

(i) Either c<B1, (i) orc>p;. (23)

When ¢ < 31 : In this case b; is real (see , equation (11)) and left side of (22)
becomes real and positive and right side of (22) is real and negative. Therefore

, equation (22) can not possess any real solution for c.

Therefore , in this case , Love waves do not exist.
So , for the existence of surface Love waves , we must have

c>P1 . (24)

In this case (24), by is purely imaginary and we may write

by = = 1—"—22 :i( 0—2—1]. (25)

1. C
c2 _?
tan | kH |—5-1|=£2| L2 (26)
B H 072 1
i
From equations (10) and (24) ; we find
Bi<c<B. (27)

Equation (26) is a transcendental equation that yields infinitely many roots for
C.
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Thus, the possible speeds of the Love waves are precisely the roots of
equations (26) that lie in the interval (B1, B2).

This indicates that the shear velocity in the layer must be less than the shear
velocity in the half-space for the possible existence of Love waves.

This gives the upper and lower bounds for the speed of Love waves.

Remark 1: If the layer and the half — space are such that 3; < 3 , then
existence of Love waves are not possible

Remark 2: In the limiting case when the layer is absent , we have

w=pandp=p;

and therefore

B=P1
Equation (22) leads to the impossible condition
0=-1.

Hence , in this case , the wave considered can not exist.
Remark 3: When k or o — 0, we get ¢ — f;.
The dispersion curve is given in the following figure.

c

B1

- Dispersion curve
B

Here , if we assume
ui/p=1.8, B = 3.6km/sec, B; = 4.6km/sec
then

cL = speed of Love waves = 4.0km/sec.
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10

SURFACE WAVES

10.1. INTRODUCTION

In an elastic body, it is possible to have another type of waves (other than body
waves) which are propagated over the surface and penetrate only a little into
the interior of the body.

Such waves are similar to waves produced on a smooth surface of water
when a stone is thrown into it.

These type of waves are called SURFACE WAVES.

Surface waves are “tied” to the surface and diminish exponentially as they
get farther from the surface.

The criterion for surface waves is that the amplitude of the displacement in the
medium dies exponentially with the increasing distance from the surface.

In seismology , the interfaces are , in the ideal case , horizontal and so the
plane of incidence is vertical. Activity of surface waves is restricted to the
neighbourhood of the interface(s) or surface of the medium.

Under certain conditions , such waves can propagated independently along the
surface/interface. For surface waves , the disturbance is confined to a depth
equal to a few wavelengths.

Let us take xz — plane as the plane of incidence with z — axis vertically
downwards. Let z = 0 be the surface of a semi-infinite elastic medium (Figure)

z=0 X
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For a surface wave , its amplitude will be a function of z (rather than an
exponential function) which tends to zero as z — . For such surface — waves ,

the motion will be two — dimensional , parallel to xz — plane , so that ai =0.
y

The existence of surface waves raises the question of whether they might
(under certain conditions) be able to travel freely along the plane (horizontal)
as a guided wave.

10.2. RAYLEIGH WAVES

Rayleigh (1885) discussed the existence of a simplest surface wave
propagating on the free — surface of a homogeneous isotropic elastic half —
space.

Let the half — space occupies the region z > 0 with z — axis taken as vertically
downwards. Let p be the density and A , p be the Lame’ elastic moduli and z =
0 be the stress — free boundary of the half — space (figure).

z=0 X

AW, P
a, B.

Zz

Suppose that a train of plane waves is propagating in the media in the positive
X — direction such that

(i) the plane of incidence is the vertical plane (xz — plane) so that the motion ,

i.e., disturbance is independent of y and hence % =0.

(it) the amplitude of the surface wave decreases exponentially as we move
away from the surface in the z — direction.

This problem is a plane strain problem and the displacement vector u is of
the type

u=(u,0,w), u=ux,zt, w=wkx,z,t). @1

The displacement components u and w are given in term of potential ¢ and
through the relations
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u:%+a_l//, (2)
OX oz

W:%_a_‘//1 3)
oz OX

where potentials ¢ and y satisfy the scalar wave equations

¢ 0% 1 &%
2 =—X + = == -2 4
Ve ox? oz® o ot @
2 2 2
vy= Y+ S - Loy ©

T g

and wave velocities oc and 3 are given by
a=J(A+20)1p 6
B=ulp . (7)

This wave motion is of a P-SV type wave travelling along the stress — free
surface of the half space and such a motion takes place in the xz — plane.

Now , we seek solutions of wave equations (4) and (5) of the form

o(x .z, t) =f(z) "€ , (8)

w(x,z, 1) =g(z) e , 9)
where k is the wave number , c is the speed of surface wave travelling in the
+ve x-direction and o = ck is the angular frequency.

The substitution of (8) and (9) into wave equations (4) and (5) leads to two
ordinary differential equations (exercise)

d*f

7 ~K*a’f=0 |, (10)
and

%-kzbzg=0 : (11)
with

a=+1-c’/a? >0 (12)
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and b=1-c?/p?> >0 . (13)
From equations (8) to (11) ; we find (exercise)
O(x,z,0)=(Ae™+A e ) | (14)
w(X,z,t)=(B e +B, ekt (15)
where A, A; B and B; are constants.

Since the disturbance due to surface waves must die rapidly asz — « , we
must have

Aj_:Bl:O. (16)

Thus , for Rayleigh waves , we get

O(x,z,t) = Ageellt-k (17)
and

w(X,z,t)=B e elCt-k) (18)
with

c<B<a. (19)

The equation (19) gives the condition for the existence of surface waves on the
surface of a semi — infinite isotropic elastic media with velocity c in the
positive x — direction.

To find frequency equation for the velocity ¢ and ratio of A and B ; we use the
stress — free boundary conditions. This conditions are

Toix = Toy = T2 =0 atz=0. (20)
From relation in (2) and (3) , we find

diviu= U+ W
oX 0t

_ 0 0
=27 477
ox? ozt

= V2§ (21)

The stresses in terms of potentials ¢ and v are given by
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_ cu  ow
Tzx = U E-ﬁ-&

2 2
:L{zad) 8\11_8\11] (22)

+
oxoz oz°> ox?

te=hdiv u+y N
oz

=u K“—Z-z]i‘h +“—252—‘f—252‘”] (23)
B X p° oz oX 0z

(av 8W]
Ty =W | —+—

oz oy
=0. (24)
The boundary condition 1, = 0 at z = 0 in (20), gives (exercise)

2A(-ik) (-ak) — B(-ik)® + B(-bk)> = 0

or 2iak’A+BlL+b) k=0
or 2iaA=-B(l+b?%
H 2
or A:M (25)
B 2a

The boundary condition t1,, =0 atz =0, gives (exercise)

(;—i - 2] ALK+ ;—i A . (o k%) — 2B (-ik) (-bk) =

a2 a2a2
or A{——+2+ V; }kz-ZikaZ:O

or A(2—0{—+0{a
B
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or

or

or

or
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= ﬁ : (26)

Eliminating A/B from equations (25) and (26)
and substituting the value of a and b from
equation (12) and (13) , we obtain

2 0{23-2

1+b%) [ 2-%
1+ >( .

(z_ij g Oy o
ﬁZ BZ BZ 0(2

=4ab

oSS (5] 20 e
B o B

This equation contains only one unknown c.

This equation determines the speed c for Rayleigh surface waves in an
uniform half — space.

Equation (27) is called the RAYLEIGH EQUATION for Rayleigh waves. It
is also called the Rayleigh frequency equation. It is also called the Rayleigh
wave — velocity equation.

This equation is the period equation for Rayleigh waves.

In order to prove that Rayleigh waves really exists , we must show that

frequency equation (27) has at least one real root for c. To show this , we
proceed as follows :

From equation (27) , we write
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or 16— 32ﬂ—+24% 8%+C—8
2 2 4
_16|:1 Cz Cz 22:|
B ap

a’ p?
or
—32+24;—22—8;—[t1 ;—6+16£2 +16 — 16;—22§—2=0.
Put
s =c?/p?,

then equation (28) gives

f(s) =s> - 85" + (24_16£§j3 - 16(1_£zj =0.

o (24

It is polynomial equation of degree 3 in s with real coefficients.

(28)

(29)

(30)

Hence the frequency equation (30) has at least one real root since complex

roots occur in conjugate pairs.

Moreover

(0) =—16(1_£§j <0,
o

and

2 2
f1)=1-8+24- 0/ , 108
o o

since < a.

(31)

(32)
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Hence , by the intermediate theorem of calculus , the frequency equation (30)
has at least one root in the range (0, 1).

That is , there exists s € (0, 1) which is a root of the Rayleigh frequency
equation.

Further, 0 <s <1 implies

2
0<* <1

2

or 0<c<p. (33)

This establishes that Rayleigh surface waves propagating with speed ¢ = cr ,
where

O<cr<B<a,
always exists.
This proves the existence of Rayleigh surface waves.

Special Case (Poisson’s solid) : When the semi-infinite elastic medium is a
Poisson’s solid ,

thenA=pandc = % and

a” _ A+2u
B 7

For this type of elastic medium , frequency equation (30) becomes

=3, (34)

35 245> +565-32=0

or (s—4)(3s°~125+8)=0
giving
2 2
s=4,2+-~ 2- =
V3 V3

or — =4,2+ (35)
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But ¢ must satisfy the inequality 0 < ¢ < 3, therefore , the only possible value
forc = cris

Co’ 2
L:Z__,
p? V3
or
= [2-2 | . 3=09195p (36)
R \/§ P =V ’

giving the speed of propagation of Rayleigh surface waves along the stress free
boundary of the Poissonian half-space in the x-direction.

Thus , the order of arrival of P, SV-and Rayleigh waves is

e

Rayleigh

From equations (12) and (13) ; we write

or

w|

(37)
and

191
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or b =0.3933 ~0.393. (38)
Further , from equations (25) , (37) and (38) , we find

EA =1.468i . (39)

Remark 1: Displacements due to Rayleigh waves (Particle motion)

From equations (2), (3), (17), (18) and (26) ; we find
u(x , z , ) = [A(-ik) € + B(-bk) e?] g+

= k[—l A e—akz _A 2 —C2 /,sz e—bkz] ei(oat—kx)
2i
C2

=—ikA[E™ - |1-—5
2p

j e—ka] ei((nt— kx) ] (40)

Similarly , we shall find

W(X y 2, t) = [(_ak) A e—akZ _ (—Ik)B e—bkz] ei(oat—kx)

=k[-aAe® + —i(zbk_z((;zlil'g?; ] elet-d
=kA[-ae ™+ (—1- c2a/2,[;’2 J e e (1)
Let = ot—kx (42)
U(z) = e - (1 - Zc—ﬁ:j e b (43)
W(2) = -a e + (—1_ 02a/2,b’2 je‘bkz : (44)

Then , taking the real parts of equations (40) and (41) and using equation (42)
to (44) ; we find

uix,z,t)=AkU(z)sino (45)

w(x,z,t)=AkW(z)cos6 |, (46)
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we remember that A is the potential amplitude. Eliminating 6 from equations
(45) and (46) , we obtain

2 2

u W

L S=1 (47)
[AKU(2)]"° [AkW(z)]

which is an equation of an ellipse in the vertical xz-plane.

Equation (47) shows that particles , during the propagation of Rayleigh
Surface Waves, describe ellipses.

Remark 2: Particle Motion at the surface (z = 0)

On the surface z=0,we find,atz=0,

2

c
c? 28
U(0) = : W0)=a| —5— 48
© 2p° © 1-c*/2p° )
Since0<c<p,so
u@)>0 : W(0)>0. (49)
Let a=AkW(Q), b; = Ak U(0). (50)
Then a>0 ,b;>0 , (51)
and equation (47) reduces to
2
“—erﬁ2 =1, (52)
b a
Remark 3: Particular case (Poisson’s Solid) :
In this case , we find,atz=0,
a WO _ zy-15 | (53)

b U(0)
using (37). So

a;> by . (54)
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Thus , the surface particle motion (on z = 0) is an ellipse with a vertical
major axis.
The horizontal and vertical displacement components are out of phase by %

The resulting surface particle motion is Retrograde (opposite to that of wave
propagation).

Remark 4: The dependencies of the displacement components u and w on
depth(z) are given by equation (43) to (46) .

There is a value of z for which u = 0 (For Poisson’s solid , at z=+ 0.194 , A =

2 .
o u=0), whereas w is never zero.

At the depth , where u is zero , its amplitude changes sign.
For greater depths , the particle motion is Prograde.

With increasing depth , the amplitudes of u and w decrease exponentially ,
with w always larger  thanu.

Thus , the elliptic motion changes from retrograde at the surface to prograde at
depth , passing through a node at which there is no horizontal motion.

So , for the propagation of Rayleigh surface waves , a surface particle
describes an ellipse , about its mean position , in the retrograde sense.
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Particle motion for the fundamental Rayleigh mode in a uniform half-space ,
propagating from left to right. One horizontal wavelength (1) is shown ; the
dots are plotted at a fixed time point. Motion is counter clockwise (retrograde)
at the surface , changing to purely vertical motion at a depth of about /5, and
becoming clockwise (prograde) at greater depths. Note that the time behavior
at a fixed distance is given by looking from right to left in this plot.

Remark 5: We see that frequency equation (27) for Rayleigh surface waves is
independent of ®. Therefore , the velocity cg of Rayleigh surface waves is
constant and fixed.

This phenomenon is called nondispessive.

That is , Rayleigh waves are undispresed.

Remark 6: Maximum displacement parallel to the direction of Rayleigh waves
= (U)max
=b,

= % a , for a Poisson solid.

= two-third of the maximum displacement in the
vertical direction
fora Poisson solid.

Note (1) : Rayleigh waves are important because the largest disturbances
caused by an earthquake recorded on a distant seismogram are usually those of
Rayleigh waves.

GROUND ROLL is the term commonly used for Rayleigh waves.

Note (2) : Although a “a free surface” means contact with a vacuum , the
elastic constants and density of air are so lows in comparison with values for
rocks that the surface of the earth is approximately a free surface.

Note (3) : The boundary conditions t,x = t,; = 0 at z = 0 require that these two
conditions must be satisfied , and so we require two parameters than can be
adjusted. Therefore , we assume that both P-and SV-components exist
and adjust their amplitude to satisfy the boundary conditions.
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Exercise : Show that the displacement components at the surface of an elastic
Poisson solid due to Rayleigh waves are

u(x, t) =-0.423 kA sin k(x — cgt)
w(X, t) =0.620 KA cos k(x —cgt), v=0,

with usual notation.
10.3. SURFACE WAVES OF SH-TYPE IN A HALF-SPACE

We consider first the possibility of the propagation of SH type surface waves
(called Love waves) in a homogeneous semi-infinite isotropic elastic medium
occupying the half-space z > 0. The horizontal boundary z = 0 of the medium
is assumed to be stress free. Let p be the density of the medium and A , n
Lame’ constants(figure) .

z=0 @) X

(Elastic isotropic half-space)

Let the two — dimensional SH-wave motion takes place in the xz-plane. The
basic equations for SH- wave motion are

u=w=0, v=v(x,z,t), @
o°v. o°v 1 8%V 2
- - =
2 822 BZ atz !
pP= £ 3)
Yo

We try a plane wave solution of wave equation (2) of the form

V(X, Z, t) =B. e—ka . ei(mt—kx) , (4)
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where o is the angular frequency of wave , k = wave number and ¢ = w/k is the
speed with which surface waves are travelling in the x-direction on the surface
z=0;b>0and B is an arbitrary constant.

The amplitude of surface wave is B e which die exponentially as z
increases.

Substituting the value of v(x, z, t) from equation (4) into equation (2) , we find
b’=1- = . (5)

Sinceb >0 ,s0

c<B. (6)
Using the stress-displacement relations , we find

T31=T133=0,

ov :
T32:H§ :—ubk.B.el(mtka).e_bkz @)

Hence , the stress-free condition of the boundary z = 0 implies that , using (7) ,
nbkBe®@ =0
or
B=0 , (8)
asu=0,b=0,k=0.
This implies that in the case of a homogeneous isotropic elastic half —
space, Love waves do not exist at all.

10.4. PROPAGATION OF LOVE WAVES

Surface waves of the SH-type are observed to occur on the earth’s surface.
Love (1911) showed that if the earth is modelled as an isotropic elastic
layer of finite thickness lying over a homogeneous elastic isotropic half-
space (rather than considering earth as a purely uniform half-space) then
SH type waves occur in the stress-free surface of a layered half-space.

Now , we consider the possibility of propagation of surface waves of SH-type
(Love waves) in a semi-infinite elastic isotropic medium consisting of a
horizontal elastic layer of uniform thickness H lying over a half-space.
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It is assumed that two elastic isotropic media are welded together and the
horizontal boundary z = 0 of the semi-infinite medium is stress — free (see ,
figure).

0 —>C
/\ X
‘H
A1,l1,B1,p1 v
A2,12,B2,p2
B1<cL<PB2
V4

Let the layer and the half-space have different densities p1, p, and different
shear moduli p; , po respectively. Let two-dimensional SH-motion takes place
parallel to xz-plane. The basic equation for SH-wave motion are

up=wi;=0, vi=vi(X,z1t) , Q)

0°v, . o°'vy _ 1 9%y

- 2 2
ox? oz B ot? @
Bl = L, (3)

1

in the layer 0 <z <H, and
Uz=wW2=0, vo=Vvy(X,2,1), 4
o°v, 9°v, 1 0°V, -
ox2 oz Bt oat? ]

BZZ = , (6)

P2

in the half-space (z > H).

Suitable plane wave solutions of wave equations (2) and (5) are (exercise) , as
discussed in detail already ,

Vl(X H z ) t) = (Al eiblkz + Bl eblkz) ei(mtka) , (7)
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inthe layer 0 <z <H, and
Vo (X, 2, 1) = Ay e kegiet-kd , (8)

in the half-space (z > H). o is the angular wave frequency and k is the wave
number , and ¢ = w/k is the speed of propagation of surface wave (if it exists)
in the positive x-direction. A;, B, are constants, b; and b, are real numbers with
b, >0. However, b; is unrestricted because z is finite in the layer.

Substituting for v, from (8) into (5) yields the relation
C2
by’ = (1_—J , (9)
B

and , therefore ,

c <2, (10)
otherwise

Vy —>008SZ —> .
From equations (7) and (2), we find
b, = (1_6—22] . (11)
1
The stress-displacement relations imply
T31=133=0 (12)
in the layer as well as in the half space. Also
T30 = W K(-by A; € + b By ) gtk (13)
inthe layer0 <z <H, and
T30 = K o A, (-by) e %22 gl (14)
in the half space z > H.
The stress-free boundary z = 0 implies that
132=0 , (15)

atz = 0. This gives
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Bi=A;. (16)
Since , there is a welded contact between the layer and the half-space at the
interface z = H , so the displacement and the tractions must be continuous
across the interface z = H.

Thus , the boundary conditions at z = H are

Vi=Vy, 17)

Tao)iayer = Taz|nait.space (18)
From equations (13) , (14), (17) and (18) , we find

AL e + By e = A, e (19)
and

L1 k bl[-A]_ eiblkH + B, eblkH] =- U2 b2 k eszkH . (20)

Equation (16) , (19) and (20) are three homogeneous in A, , A;, By and A,.

We shall now eliminate them. From equations (19) & (20) , we write (after
putting B; = Ay)

Al[efkblH + ekblH] _ 1
Aitulbl (eiblkH — g hL M0,k

N e bkH _ gbikH b,
o \BH | okbH 110,
.Uzbz _
or tan h(b; K H) + &= =0. (21)
b

Equation (21) is known as period equation/frequency equation/Dispersion
equation for surface Love waves.

Equation (21) can also be written as
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1 C
¢’ I B
tanh| kh. [1-— =_f£2 1/
1 Hy c?
1-—>
B

(@}

2
1- >~
H c? VBl
or tanh| 22 1- = :_&,—'BZ. (22)
BZ
1

¢ = 1_072

2
Py
Equation (22) is a transcendental equation.

For given o, we can find the speed c for surface Love waves. We note the
value of ¢ depends upon o . This means that waves of different frequencies
will, in general , propagate with different phase velocity.

This phenomenon is known as dispersion.

It is caused by the inhomogeneity of the medium (layered medium) due to
some abrupt discontinuities within the medium (or due to continuous change of
the elastic parameters which is not the present case).

Thus, Love waves are dispressed.
We consider now the following two possibilities between ¢ and p; .
(i) Either C<B1, (i) orc>p:. (23)

When ¢ < B; : In this case b; is real (see , equation (11)) and left side of (22)
becomes real and positive and right side of (22) is real and negative. Therefore
, equation (22) can not possess any real solution for c.

Therefore , in this case , Love waves do not exist.
So , for the existence of surface Love waves , we must have

c>Py . (24)

In this case (24), b; is purely imaginary and we may write

by = = 1—ﬁ—12 :i[ %1—1]. (25)
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Then equation (22) becomes
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From equations (10) and (24) ; we find
Br<c<P2. (27)

Equation (26) is a transcendental equation that yields infinitely many roots for
C.

Thus, the possible speeds of the Love waves are precisely the roots of
equations (26) that lie in the interval (B1, B2).

This indicates that the shear velocity in the layer must be less than the shear
velocity in the half-space for the possible existence of Love waves.

This gives the upper and lower bounds for the speed of Love waves.

Remark 1: If the layer and the half — space are such that 3; <3, then
existence of Love waves are not possible

Remark 2: In the limiting case when the layer is absent , we have

w=pandp=p;
and therefore

B=P1
Equation (22) leads to the impossible condition
0=-1.
Hence , in this case , the wave considered can not exist.
Remark 3: When k or o — 0, we get ¢ — .

The dispersion curve is given in the following figure.
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Here , if we assume

u/p=1.8, B = 3.6km/sec, B = 4.6km/sec
then

cL = speed of Love waves = 4.0km/sec.



