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TOPOLOGY

The word topology is derived from two Greek words, topos meaning surface and logs meaning
discourse or study. Topology thus literally means the study of surfaces or the science of position.
The subject of topology can now be defined as the study of all topological properties of topological
spaces. A topological property is a property which if possessed by a topological space X, is also
possessed by every homeomorphic image of X. If very roughly, we think of a topological space as
a general type of geometric configuration, say, a diagram drawn on a sheet of rubber, then a
homemorphism may be thought of as any deformation of this diagram (by stretching bending etc.)
which does not tear the sheet. A circle can be deformed in this way into an ellipse, a triangle, or a
square but not into a figure eight, a horse shoe or a single point. Thus a topological property
would then be any property of the diagram which is invariant under (or unchanged by) such a
deformation. Distances, angles and the like are not topological properties because they can be
altered by suitable non-tearing deformations. Due to these reasons, topology is often described to
non-mathematicians as “rubber sheet geometry”.

Maurice Frechet (1878-1973) was the first to extend topological considerations beyond Euclidean
spaces. He introduced metric spaces in 1906 in a context that permitted one to consider abstract
objects and not just real numbers or n-tupls of real numbers. Topology emerged as a coherent
discipline in 1914 when Felix Hausdorff (1868-1942) published his classic treatise Grundzuge der
Mengenlehre. Hausdorff defined a topological space in terms of neighbourhoods of member sof a
set.
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1

TOPOLOGICAL SPACES

We begin with the study of topology with a brief motivational introduction to metric spaces. The
ideas of metric and metric spaces are abstractions of the concept of distance in Euclidean space.
These abstractions are fundamental and useful in all branches of mathematics.
Definition. A metric on a set X is a function d : XxX—R that satisfies the following conditions.
@ d(x,y)>0forall x,y eX
(b)d(x,y)=0ifandonly ifx =y
(©) d(x,y)=d (y, x) forall x,y € X.
(d) d(x, 2) <d(x,y) +d(y, z)forall x,y, z eX.
If d is a metric on a set X, ordered pair (X, d) is called a metric space and if x, ye X,
Then d(x, y) is the distance from x to y.

Metric Space
Note that a metric space is simply a set together with a distance function on the set.

The function d : RxR—R defined by d(x, y) = |x-y| satisfies the four conditions of the definition
and hence this function is a metric on R. It is called the usual metric on R. Also the function d : R?

x R?>R defined by d{(x1 X2), (Y1, y2)} = \/(xl —X,)2 +(y, —Y,)? is called the usual metric on R

Definition. A subset U of a metric space (X, D) is open if for each x e U, there is an open ball
Bq(X, €) such that By4(X, €) < U.

The open subsets of a metric space (X, d) have the following properties.

(@) X and ¢ are open sets

(b) The union of any collection of open sets is open.

(c) The intersection of any finite collection of open sets is open.

Metrizable

A metrizable space is a topological space X with the property that there exists at least one metric
on the set X whose class of generated open sets is precisely the given topology i.e. it is a
topological space whose topology is generated by some metric. But metric space is a set with a
metric on it. The following example shows that there are topological spaces that are not
metrizable.

Example. Let X be a set with at least two members and T be the trivial topology on X, then (X, T)
IS not metrizable.

Definition and examples of Topological spaces

Definition. A topological space is a pair (X, T) consisting of a set X and a family T of subsets of X
satisfying the following axioms :

(01) ¢, XeT

(0,) The intersection of any finite number of setsin T isin T.
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(03) Any union (countable or not) of setsin Tisin T.
The set X will be called a space, its elements points of the space and the subsets of X belonging to
the family T, sets open in the space. The collection T is called a topology for X.

Axioms (01)—(03) of the family of open sets can be formulated in the following manner
(01) The empty set and the whole space are open
(02) The intersection of two open sets is open
(03) The union of arbitrary many open sets is an open set.

Examples of Topological Spaces

1. Example. Let X {a, b, c, d, e}. Consider the following classes of subsets of X .
S1={d, X,{a}, {c,d}{a, c,d}, {bc,de}}
S2={¢, X, {a}, {c, d} {a c, d}, {b, c, d}}
Ss={¢, X, {a}, {c,d} {a,c,d}, {a, b, d, e}}

We observe that S, is a topology on X since it satisfies the three axioms.

But S; is not a topology on X since the union {a, c, d} U {b, c, d} = {a, b, ¢, d} of two members of
Sz isnotin S; and so S, does not satisfy the third axiom.

Similarly it can be seen that Ss is not a topology on X since the intersection
{a,c,d} ~{a, b, d, e} ={a, d}
of two sets in Sz does not belong to S; and so Sz does not satisfy the second axiom

2. Example. A metric space is a special kind of topological space. The open sets being defined as
usual the axioms (0;) — (03) hold since

(01) ¢ and X in a metric space (X, d) are open.

(0,) The intersection of any finite number of open sets in (X, d) is open.

(03) Any union (countable or not) of open sets in (X, d) is open.

This topology defined on metric space is called usual topology on a metric space.

3. Example. Let D denote the class of all subsets of X. Then D satisfies all axioms for a topology
on X. This topology is called the Discrete topology and (X, D) is called a Discrete topological
space or simply a Discrete Space.

4. Example. Let X be a nonempty set. The family |1 = {¢, X} consisting of ¢ and X is itself a
topology on X and is called the Indiscrete topology or simply an Indiscrete space. It is the
coarsest topology.

Remark. When X is a singleton, then the two topologies discrete and indiscrete coincide.

5. Example. Let X be any infinite set and T be the family consisting of ¢ and complements of
finite subsets of X. Show that T is a topology on X.

Analysis. Let X be an infinite set and T be the family consisting of ¢ and subsets of X whose
complements in X are finite.

To prove that T is a topology on X.
(1) T and since ¢ is finite = ¢° = XeT
(2) Let Gy, G, eT =6 NG, eT

|fGlﬂGzz¢ then GiNnGy, eT
If G1n Gy # ¢, then Gy = ¢, G2 # ¢
and Gy, GoeT = X-G; and X-G; are finite

= (X=G1) N (X=Gy) is finite



8 TOPOLOGICAL SPACES

= X —(G1 NGy) is finite
=G;NnGy eT
Thus in either case Gy, G, eT = G NG, T
(3 LetG, e T = X — G, is finite
= N (X-=Gy) is finite

=N G, is finite
= X-(n G.) eT
= U (GO eT
= LaJ Gy eT

Hence all the axioms for a topology are satisfied.
= T is atopology on X.

Remark. This topology is called cofinite topology.

6 Example. Let X be asetand T = {U € P(X), u = ¢ or X — U is countable}. Then T is a
topology on X and is called the countable complement topology on X.

Remark. If X is a finite set, then the finite complement topology, the countable complement
topology and the discrete topology are the same.

7. Example. Let T ={B < P(R); B is an interval of the form [a, b)}
Then T satisfies all the conditions for a topology.
This topology is called lower limit topology on R.

8. Example. Let T {B € P(R); B is an interval of the form (a, b]}

Then T satisfies all the conditions for a topology and this topology is called upper limit topology
onR.

9. Example. Let X be a linearly ordered set. Then order topology for X is obtained by choosing as
a subbase for all sets which are either of the form {x, x > a} or of the form {x; x < a} for some
aeX.

10. Example. Let X = {1,2,3} . List some of topologies on X. Are there any collection of subsets
of X that are not topologies on X.

Solution. Of course we have the trivial topology and the discrete topology. We list some other
topologies,

Ti={¢, X, {1}}

T2 = {¢1 X1 {11 2}}

Ts={¢, X, {1}, {2}, {1, 2}}

Ta={{1},{2, 3}, ¢, X}

TS = {¢1 X1 {2}1 {11 2}1 {2’ 3}}

To={0, X, {1},{1,2,}}

Tr={¢, X, {1}, {2}, {1, 2}, {2, 3}}
There are collections of subsets of X = {1, 2, 3} that are not topologies on X.
eg. {0, X {1,2} 42 3}}
and  {¢, X, {1}, {2}}.
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Theorem. 1. The intersection T; N T, of any two topologies T; and T, on X is also a topology on
X.

Proof. Since Ty and T are topologies on X, therefore ¢, X €T and ¢, Xe T,
= (I), XeTinT,
That is Ty n T, satisfies first axiom for a topology
Also if G,H € Ty n Ty, Then
G,HeT;andG,HeT;

Since Ty and T, are topologies
= GﬁHETlandGﬁHETZ
= GCNmnHeTINT,
i.e. T; N T, satisfies the second axiom for a topology.
Further, let G, € T1 N T, for every o € S, where S is an arbitrary set

Then G, € Ty and G, € T, for every aeS. but T; and T, are topologies
= UaGeeTiand U, G, e To =2 Uy Gy e Ty N To.

i.e. Ty T, satisfies third axiom for a topology.

Hence the result follows.

Remark. The union T; U T, of two topologies on a set X need not be a topology on X for
example, let X = {a, b, c}, then

T1={¢, X, {a}, {b} {a, b}}

T2={¢, X, {a}, {c}. {a, c}}
are two topologies on X but

T1u T2={¢, X, {a}, {b}, {c}. {a, b}, {a c}}

is not a topology on X since union of {b} and {c} isnotin T, U T,

Definition. Let (X, T1) and (X, T,) be topological spaces with the same set X. Then T is said to be
finer than T, if T; o T,. The topology T is then said to be coarser than T;.

Clearly the discrete topology is the finest topology and the indiscrete topology is the
coarset topology defined on a set.

Accumulation Points and Derived Sets.

Definition. Let (X, T) be a topological space and E — X. A point X is said to be a limit point or
accumulation point of the set E if for every open set G containing x, we have

ENG-{}=¢
The set of all limit points of a set E is called the derived set of E and is denoted by d(E).

Example 1. Let (X, T) be a discrete topological space. Then each point is an open set and
En{}-{x}=¢

and therefore the derived set of every set E is empty

Example 2. Let (X, T) be an indiscrete topological space then the only open set containing a point

x is X itself. Consider
EnX-{x}=E—-{x}

If E consists of two points, then E —{x} # ¢ and therefore the derived set of any set containing at

least two points is the entire space X. If E is empty, then the derived set of E is empty since
¢NX-{x}=¢

If E consists of exactly one point, then the derived set of E is the complement of that point.
Example 3. Let X ={a, b, c}and T = {¢, {a}, {b}, {a, b, X}
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Then we note that a is contained in {a}, {a, b} and X and
{a}n{a}-{a}=¢
{a}~n{a b} -{a}=9¢
{afnX-{a}=¢
This implies that a is not a limit point of {a} . Similarly b is not a limit point of {a}.
Since X is the only open set containing {c}
Hence {a}n X-{c}#¢
This implies that c is a limit point of {a}

Remark. The definition of a limit point is equivalent to “A point x is said to be a limit point of E if
every open set containing x contains a point of E different from x”.

Theorem 2. If A, B and E are subsets of the topological space (X, T), then the derived set has
following properties.

() d(9)=¢

(i) f Ac B, then d(A) < d(B)

(iii) If x € d(E), then x ed {E —{x}}

(iv) d(A U B) = d(A) U d(B)

Proof. (i) holds since $ "G — {x} = ¢ forany x eX and G €T.
(if) Since Ac B =>ANG-{x}cBnNG-{x}
= d(A) c d(B)
This proves (ii)
(iii) To prove (iii), we note that
[EOHNG-{3=[En{31nGn{g°
=ENnGAN[x}°
=EnG—{x}
Therefore if x € d(E), then
X ed[E-{x}]
(iv) SinceAcAuBand BcAuUB
= d(A) cd (A uB)and d(B) c d(A v B)
d(A) u d(B) c d(A U B)
Conversely suppose that x ¢ d(A) w d(B) and so x ¢ d(A) and x ¢ d(B). Therefore by definition,
there must exist Ga and Gg containing x such that
GanA-{x}=¢
GenB-{x}=¢
Let G = Ga n Bg. By axiom of topology, this is an open set since X € Ga, Gg
= X € G.
BuUGNA-{x}=GnB-{x}=¢
and so GCNn{AUB}-{x}=0¢
= x ¢ d(A U B)
= d(A uB) cd(A) ud(B)

Closed Sets and Closure

The concept of a topological space has been introduced in terms of the axioms for the open sets.
Similarly closed sets are used as the fundamental notion of topology.

Definition. Let (X, T) be a topological space. A set F < X is said to be closed if it contains all of
its limit points. Thus F is closed iff d(F) c F.
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Theorem 3. If x ¢ F, where F is a closed subset of a topological space (X, T), then there exists an
open set G such that x € G < F©

Proof. Suppose no such open set exists.
Then x € G € T would imply that G N F = ¢.

Sincex ¢ F, G nF—{x} # ¢.

This implies that x is a limit point of F that is x € d(F). F however is a closed set and so d(F) c F,
so that x must belong to F. but this is contradiction to X ¢ F. This contradiction shows that such an
open set must exist.

Cor. 1. If Fis a closed set, then F is open.

Proof. If x € FC, then x ¢ F where F is a closed set. By the above theorem, there exists an open
set Gy such that

X € Gy — F°. But then
FC=U{x;xeF}cU{Gy;x e F}
cF°
Thus FC=U{G,;x e F}
which is the union of open sets and hence an open set.

Cor. 2. If F¢ is an open set, then F is closed.

Proof. Suppose x is a limit point of F and let x ¢ F. Then x e F°, and

FAF —{x}=¢
which implies that x is not a limit point of F. Hence the assumption that x ¢ F is wrong.
Therefore, every limit point of F is in F and so F is closed.

Remark. 1. From Cor 1 and Cor 2, it follows that “A set is a closed subset of a topological space
if and only if its complement is an open subset of the plane.”

Remark. 2. From the De-Morgan’s Laws and from the three axioms of a topological space, the
following properties of the closed set follows

(c1) The empty set and the whole space are closed

(c2) The union of two closed sets is closed.

(c3) The intersection of arbitrary many closed sets is a closed set.

As an example, we give a proof for property (c,) and (c3).
(c,) Suppose F and G are two closed sets then F and G® are open since union of two open sets is
open
F© U G is open.

= (F n G)“ is open [by De-Morgan’s Law]

= F Gisclosed

= Intersection of two closed sets is closed.
(c3) Let a family {Fs}scs of closed sets be given. By definition the set Us = X — Fs is open for
everys € S.

Since N Fs= N (X=Ug) =X- U Us.

seS seS seS

Since the set U Ugis open, N Fsis a closed set.
seS seS

Theorem. 4. If d(F) ¢ A c Fand Fis a closed set, then A is closed.
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Proof. Since AcF = d(A) cd(F)

But F is closed, hence
d(A)cd(F) cAcFie dA)cA
which implies that A is closed.

Cor. The derived set of a closed set is closed.
Proof. Let F be a closed set we have to prove that d(F) is closed. Now as F is closed, d(F) < F
= d(d(F)) c d(F) c F. Thus by the above theorem, d(F) is closed.

Definition. Let (X, T) be a topological space and E < X. Then closure of E denoted by C(E) is
defined by C(E) = {n all closed sets containing E}

Since by (c1), the family of closed sets containing E is non-void and by (c3), the intersection of all
elements of this family is closed. Hence closure of a set is closed and it is the smallest closed set
containing E.

Theorem. 5. For any set E in a topological space,
C(E)=Euwd(E)

Proof. Suppose x ¢ E Wd(E), so that x ¢ E and x ¢ d(E), there exists an open set Gx containing X
suchthat E N Gx—{x} =¢

Since x ¢E, this actually means that E N Gy = ¢ s0 Gx = E®. Since Gy is open set disjoint from E,
no point of Gy can be a limit point of E, that is Gy < (d(E)),

Thus [E Ud(E)]°= U {Gy; x ¢ E Ud(E)}

which is an open set since arbitrary union of open sets is open. Therefore E U d(E) is closed,
which obviously contains E. Hence C(E) being the smallest closed set containing E, we have
C(E) cEud(E).

Conversely suppose that x € E U d(E) and suppose that F is any closed set containing E. If
x € d(E), then x e d(F) and so x € F [since d(E) < d(F) < F]. Butif x € E, then again we have x
e F since E c F, Thus x belongs to any closed set containing E and hence to the intersection of all
such sets, which is the closure of E. Thus

E U d(E) < C(E).

Hence C(E) = E U d(E)

Remark. For arbitrary subsets A and B of the space X if A — B, then C(A) — C(B). Indeed if

A c B, then the family of closed sets containing A is contained in the family of closed sets

containing B, then C(A) < C(B).

Theorem. 6. E is closed if and only of E = C(E)

Proof. We suppose first that E is closed

Then d(E) c E. Since C(E) = E U d(E), therefore it follows that if E is closed, then
C(E)=Eud(E)=E

Conversely if E = C(E), then C(E) being the intersection of all closed sets containing E is closed.

Hence E is closed

Kurtowski Closure Axioms

Definition. An operator C of p(X) into itself which satisfies the following four properties (known
as Kuratowski closure axioms) is called a closure operator on the set X.
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Theorem. 7. In the topological space (X, T), the closure operator has the following properties.
(K) C(d)=¢
(K2) Ec C(E)
(K3) C(C(E)) = C(E) and
(Ks) C(AuB)=C(A) U C(B)

Proof. (K1) Because the void set is closed and also we know that a set A is closed if and only if A
= C(A), therefore it follows that C(¢) = ¢.
(K2) It follows from the definition as C(E) is the smallest closed set containing E
(K3) Since C (E) is the smallest closed set containing E, we have C(C(E)) = C(E) by the
result that a set is closed if and only if it is equal to its closure
(Ky4) Since Ac Au B and B c A U B, therefore
C(A)cC(AuB)and C(B) c C(Au B)andso
C(A) uC(B) c C(AuB) 1)
By (Ky), we have
A c C(A) and B — C(B)
Therefore A U B < C(A) u C(B)

Since C(A) and C(B) are closed sets and so C(A) u C(B) is closed. By the definition of closure,
we have

C(AuB)c C[C(A) LU C(B)] @)
From (1) and (2), we have

C(Au B)=C(A) LU C(B).

Remark. C(A n B) may not be equal to C(A) n C(B). e.g. if A=(0, 1), B = (1, 2), then
C(A)=[0,1],C(B) =11, 2]

Therefore,
C(A) nC(B) ={1} where AnB=¢

But C(¢) = ¢. Therefore C(A n B) = ¢ and thus C(A n B) = C(A) n C(B)

Remark. The closure operator completely determines a topology for a set A is closed iff
A = C(A). In other words the closed sets are simply the sets which are fixed under the closure
operator. We shall prove it in the form of the following.

Defining Topology in Terms of Kuratowski Closure Operator

Theorem. 8. Let C* be a closure operator defined on a set X. Let F be the family of all subsets F
of X for which C*(F) = F and let T be a family of all complements of members of F. Then T isa
topology for X and if C is the closure operator defined by the topology T. Then C*(E) = C(E) for
all subsets E < X.

Proof. Suppose G, T for all 1. We must show that w G, € Ti.e. (U G))‘eF.
Thus we must show that

c* [(&J G.)] = (LXJ G)°
By (K2) (UG = CH(V Gy)]

so we need only to prove that
c* [(k{ Gx)c] c (kki Gx)c

By De-Morgan’s Law, this reduces to
[0 G < A (G)°
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Since (N (G))®) < (G;)°) for each particular 1.
C*[n (G,)°] < C*[(G,)¢] for each A and
S0 C*[?(GA)C] cn C*[(G1)°] 1)

But G.eT = (G))® e F, s0
C*[(G1)°] = (Go)°

Thus we have from (1)
C (G 0 (G

Hence if G, e T, then Lx) G,eT

To check that ¢, X € T, we observe that by Kuratowaksi closure axiom (K3)

X = C*(X) = X = C*(X) = X —XeF
Hence XC=¢eT.
Also by (Kurtowaski closure axiom Ky), we have C*(¢) = ¢=¢ € F
=X P°=XeT.

Finally suppose that G; G, € T. Then by hypothesis
C*(G1)® = G;© and C*(G,)© = G,°.
We may now calculate that
C* [(G1 N G,)¥] = C*[ G LU G,°]
= C(G:°) U C*(G,°)
= Glc |\ GZC = (Gl M Gz)c
= (GinGy) eF =G NGy eT.
Hence all the axioms for a topology are satisfied and hence T is a topology. We now prove that
C*=C.
We have shown above that T is a topology for X. Thus members of T are open sets therefore the
closed sets are just the members of the family F.

By (Ks), C*[C*(E)] = C*(E)
which implies that C*(E) € F. Now by (K;) E < C*(E). Thus C*(E) is a closed set containing E
and hence

C*(E) 2 C(E) @)
as C (E) is the smallest closed set containing E. On the other hand by (K.)

E < C(E) € Fso C*(E) < C*(C(E)) = C(E) (2
Thus by (1) and (2),

C*(E) = C(E)

for any subset E — X

Dense Subsets

Definition. Let A be a subset of the topological space (X, T). Then A is said to be dense in X if
A =X

Trivially the entire set X is always dense in itself. Q is dense in R since

Q=R

Let T be finite complement topology on R. Then every infinite subset is dense in R.

Theorem. 9. A subset A of topological space (X, T) is dense in X iff for every nonempty open
subset B of X, AN B # ¢.
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Proof. Suppose A is dense in X and B is a non empty open set in X. If A nB=¢, then Ac X -
B implies that A < X — B since X — B is closed. But then X — B < X contradicting that A =X
#*

[since AcX-B cX]
#

Conversely assume that A meets every non-empty open subset of X. Thus the only closed set
containing A is X and consequently A =X. Hence A is dense in X.

Theorem. 10. In a topological space (X, T)
(i) Any set C, containing a dense set D, is a dense set.
(ii) If A'is a dense set, and B is dense on A, then B is also a dense set.

Proof. (1) Since D = C — Dc C

But D=Xhence X< Calso Cc Xsothat C=X.
Thus Cis dense in (X, T)
(iii) Since A is dense, A =X

Also B is dense on A

=3 Ac B — Ac B= B (By closure property)
= AcB
= X=AcB

Thus B is dense in (X, T).

1.5. Neighbourhood

Definition. Let (X, T) be a topological space and let x be a point of X. Then a subset N of X is
said to be a T-nbd of x if there exists a T-open set G such that x € G < N. That is a nbd of a point
is any set which contains an open set containing the point.

Remark.(i) It is evident from the definition that a T-open set is a T-nbd of each of its points but a
T-nbd of a point need not be T-open. Also every open set containing X is a nbd of x we shall call
such a nbd an open nbd of x

(ii) Clearly E isa nbd of x if and only if x € i(E)

Example. 1. Let X = {1, 2, 3, 4, 5}

and T={¢, X {1}, {1, 2}, {1,2,3}{1, 2,4}, {1, 2,3,4}}
is a topology on X.

For such a topological space all subsets containing {1} will be nbds of 1.

Example. 2. Let (X, D) be a discrete topological space and x € X. In such a case all possible
subsets of X will be nbd of x because here each subset of X is open.

(3) If (X, 1) is an indiscrete topological space, then X is the nbd of each of its points.
Theorem 11. Let (X, T) be a topological space and A < X. Then A is open if and only if it
contains nbd of each of its points.

Proof. Let A be an open set and x € A be an arbitrary element. Since A is an open set such that x
€ A c A, therefore Ais anbd of x. Thus A contains a nbd (namely A) of each of its points.

Conversely, let A contains a nbd of each of its points. So there exists a nbd N, for each a € A such
that N, — A. Therefore by definition of nbd, there exists an open set S, such that

aeS,c N,
Define S=uU{S;;ae A}
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We shall show that S = A and then clearly A will be open. If x € A, then by the definition of Sy x
e Sy

and so x e U{S,;aeA}
= Acu{S;;ae A}
= AcS. (1)
Alsoify € S, theny € S, for some a € A.
But SacNac A
Therefore y € A which implies that
S=u{Sis;aeA}cA 2

(1)and (2) yield S= A
Thus A is open.

Properties of Neighbourhood
Theorem. 12. Prove that

(N) Every point of X is contained in at least one neighbourhood and is contained in each of its
nbds.

(N2) The intersection of any two nbds of a point is a nbd of that point.

(N3) Any set which contains a nbd of a point is itself a nbd of that point.

(Ng) If N is a nbd of a point x, then there exists a nbd N* of x such that N is a nbd of each
point of N*.

Proof. (N;) Since X is T-open, it is a T-nbd of every point. Hence there exists at least one T-nbd
(namely X) for each x € X.
(N2) Let N and M be two neighbourhoods of x € X. Then by definition, there exists open
set G; and G, in X such that
XeGicN, xeG,cM
which imply that
X € Gy N G, < N M, where G; N G is open
Hence N N M is a nbd of x.
(N3) Let N be any nbd of x in X and M be a set in X which contains N. By the definition of
nbd, there exists an open set G of x such that

xeGcN
But N < M, it follows that
XeGcNcM
= XeGc M.

Hence M is a nbd of x in X.

(N4) Since N is a nbd of x. Therefore there exists an open set N* such that x N* € N.
Since N* is open, it is a nbd of each of its points. But N* < N, thus by (N3) N is a nbd of each of
points of N*.

Alternating Method of defining a topology in terms of neighbourhood system

Theorem. 13. Let there be associated with each point x of a set X, a collection Ny* of subsets
called nbds subject to the above four properties. Let T be the family of all subsets of X which are
nbds of each of their pointsi.e. G € T iff x € G implies that G € Ny*. Then T is a topology for X
and if Ny is the collection of all nbds of x defined by the topology T, then Ny* = Ny for every
X e X.

Proof. First we prove that T is a topology for X
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(01) of course ¢ € T since it is a nbd of each of its points.

We also note that for any x € X, x is contained in at atleast one nbd by (N;) and this nbd is
contained in X, so X is a nbd of x by (N3). Thus X is a nbd of each of its pointsand so X € T.

(02) Suppose Gy and G, belongto T. If x € G; N Gy, then X € Gyand X € G,. By the definition of
T, G; and G, are both nbds of each of their points. So G; € Ny*, G, € Nx*. Now by the property
(N2) of nbd G; n G2 € Ny* so G; N G, is a nbd of each of its points.

(03) Suppose G, e Tforall A. Ifx e Y G,, then x € G;, for some A. Now by the definition of T,
G, is a nbd of each of its points, so G; € Ny*, By (N3) property of nbd, since G, Y G, we have
Y Gy € Ny*. Thus o G, is a nbd of each of its points and hence belongsto T.

Thus T is a topology.

IInd Part. To prove Ny* = Ny

If N € Ny, then 3 an open set G such that x € G < N, from the definition of T, X € G implies that
G e Ny*and so N € Ny* by (N3) property of nbd.

Thus Ny = Ny* 1)

Now suppose N € N,*. Let us define the set G to be all points which have N as a nbd. Clearly x
is one of these points and so x € G. While by property (N1) of nbd, every point with N as a nbd is
in N. So G = N. We shall show that G € T that is G is in Ny* for every y € G. Lety € G, so that
N e Ny*. By (Na), there exists a set N* s that N*e Ny* such and if z € N*, then N € N,* and the
definition of G shows that N € N,* implies that z € G, hence N* < G by (N3), G € Ny*

= GeT
= N isanbd of xi.e. N € Ny
= Ny* <= Ny 2

[since N € Ny*].

From (1) and (2)
NX = NX*

1.6. Interior, Exterior and Boundary Operators

Definition. The interior of a set E is the largest open set contained in E or equivalently the union
of all open sets contained in E called the interior of the set E. The interior of the set E is denoted
by i (E). The points of i(E) of E are known as interior points of E. A set E is open if and only if
E=i(E)

Theorem. 14. For any set E in a topological space (X, T),
i(E) = [CE°

Proof. Let x € i(E), then i(E) is itself an open set containing x which is disjoint from E and so
x ¢ d(E®). Butx e E®, x ¢d(E®). This implies that x ¢ E¢ U d(E®)

=  xeC(E°)

=  xe[CEN°

= i(E)c[CEN"

Conversely suppose that xe [C(E®)]®

=  x ¢C(E®)
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=  xe[E°UdE"]
—  x¢E%andx ¢ d(E®)

Thus x € E and x is not a limit point of E®.

Thus there exists an open set G containing x such that E© N G —{x} = ¢
Since x ¢ E®, we have E° NG = ¢ and so G c E.

Thus x € G c E for some open set G and so x belongs to the union of all open sets contained in E,
which is i(E). Thus
[CEDN° ci(E)
Hence it follows that
i(E) = [C(E)°
Definition. Interior operator is a mapping which maps p(X) into itself satisfying
(I) i(X) =X
() i(E) cE
(1) i(i (E)) = i(E)
(Is) i(A U B) 2 i(A) Li(B)
and i(AnB)=i(A)ni(B)

These properties are called interior Axioms we now prove these axioms.
Theorem. 15. Prove that (11), (1), (I3), (1) holds.

Proof. (I1) we know that
i(E) = [C(E")]°
Therefore, i(X) = [C(X)]° = [C(¢)]°
= (I)c =X
= i(X) = X.
(1) It is evident from the definition as i(E) is the largest open set contained in E.
(13) Since i(E) is open and we know that a set is open if and only if it is equal to its interior.
Therefore i(E) being open, we have
i[i(E)] =i(E)
(I4) SinceAcAuBandBcAuUB
Therefore, i(A) ci (AuB)and i(B) ci (AU B)
Which imply that
i(A)ui(B) ci(AuB)
To prove the second part, we note that
I(A N B) = [C(A N B)“]°
= [C(A® U BY°
= [C(A%) v C(BO)®
= [C(AY)]° N [C(B)
=i(A) N i(B).
Definition. The exterior of a set e is the set of all points interior to the complement of E and is
denoted by e(E)

Thus e(E) = i(E°) 1)
If we replace E by EC in (1), we get
e(E®) = i(E)
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Definition. Exterior operator C is a mapping which maps P(X) into itself satisfying the following
exterior axioms.

(E1) e(9) = X

(E2) e(E) cE°

(Es) e(E) = e[(e(E))]

(Es) e(A U B)=¢e(A) ne(B)
Theorem. 16. Prove that (1), (E1), (E2), (Es), (E4) holds.

Proof of the exterior axioms
(E1) since e(¢) = i(¢°)
= el =i(X)=X
= e (o) =X.
(E,) e(E) = i(E®) < E® by the definition of interior.
(E3) we note that
e[(e(E))] = e[(i (E%))]
=i[(i(E9))"T"
=i[i (E9)]
=i(E¥) = e(E)
(Es) e(A U B) =i[(A U B)“] = i[A® N B“]
i(A%) N i(B®)
= e(A) N e(B)
= e(AuB)=e(A) ne(B)

Definition. The boundary of a subset A of a topological space X is the set of all points interior to
neither A nor A® and is denoted by b(A). Thus from the definition,
b(A) = [i(A) U i(A%)]° 1)
Now, X e b(A) = X ¢ [i(A) Ui(A%)]
= X ¢ i(A) and x ¢ i(A°)
Replacing A by A% in (1), we get
b(A°) = [i(A%) Ui(A)° )
From (1) and (2), it follows that
b(A) = b(A°)
Using De-Morgan’s law (1) yields
b(A) = [i(A9)]° N [i(A)]°
= [(C(A)° N [(CAY)I°

Since i(A) = [C(A%)]®
= C(A) N C(A°)
Thus b(A) = C(A) N C(A%)
Thus boundary of a set A is defined as follows
b(A) = C(A) N C(A%)
Being the intersection of two closed sets, b(A) is closed.

Theorem 17. The boundary operator has the following properties
(1) i(A) =A-Db(A)
(2) C(A)=A UDb(A)
(3) b(A U B) < b(A) U b(B)
(4) b(A N B) < b(A) Ub(B)
(5) b(A) = b(A°)
(6) If A'is an open set, then b(A) = C(A) — A
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(7) b(A) = ¢ if and only if A is open and closed

Proof. (i) A—b(A) = A—[C(A) N C(A%)]
=[A-C(A)] U[A-C(A)]
= ¢ U [A — C(A%)] [since A = C(A)]
=A N [CAY]°
=ANi(A) [since i(A) = [C(A9]]
=i(A)since i(A) c A
Hence i(A) = A - Db(A)
(2) R.H.S. = AUDb(A) = AU [C(A) N C(A%)]
=[A U C(A)] N [A U CAY)]
=C(A) n[A U {A° U d(A%}]
since C(A®) = A U d(A®)
=C(A) N [A U A® U d(A%)]
=C(A)n X
=C(A)=L.H.S.
(3) b(AUB) = C(A U B) N C[(A U B)]
= [C(A) U C(B)] N [C(A® N BY)]
< [C(A) U C(B)] N [C(A®) N C(B)]

Since C (A N B) « C(A) n C(B)
=[C(A) N (A®) n C(BO)]
U [C(B) N C(A®) N C(B)]
= [b(A) N C(B)] v [b(B) N C(A%)]
< b(A) U b(B)
(4) b(A N B) = C(A N B)° n C(A N B)
= C(A® U B%) N C(A N B)
C [C(A%) U C(BY)] N [C(A) N C(B)]

=[C(A®) N C(A) N C(B)] U [C(B®) N C(A) N C(B)]
= [b(A) n C(B)] v [b(B) N C(A)]
= b(A) U b(B)

Hence b(A N B) < b(A) U b(B).

(5) b(A) = C(A) N C(A%)

= b(A) = C(A®) NnC(A) = C(A) n C (A°)

b(A) = b(A°)

(6) b(A) = C(A) N C(A%)
=C(A) N A® since A isopen = A% is closed = C(A®) = A®
=C(A)-A

Hence b(A) = C(A) — A

(7) b(A) = [C(A) N C(A)]

Since A is closed =CA)=A

A is also open — A%isclosed = C(A%)=A°.

Thusb(A)=ANA°=¢
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Base and Subbase for a Topology

A topology on a set can be complicated collection of subsets of a set and it can be difficult to
describe the entire collection. In most cases one describes a subcollection that generates the
topology. One such collection is called a basis and another is called a subbasis.

Definition. A sub family B of T is called a base for the topology T on X iff for each point x of the
space and each nbd U of x, There is a member V of B such thatx e Vc U

For example, in a metric space every open set can be expressed as a union of open balls and
consequently the family of all open balls is a base for the topology induced by the metric.

The following is a simple characterization of basis and is frequently used as a definition.
Definition. A subfamily B of a topology T is a base for T if and only if each member of T is the
union of members of B.

To prove that this second definition is equivalent to first one, suppose that B is a base for the
topology T and that U €T.

Let V be the union of all members of B which are subsets of U and suppose that xe U. Then there
is W in B such that x € W < U and consequently x € V and since V is surely a subset of U,
V = U. So the first definition = second.

Conversely let B be a subfamily of T and each member of T is the union of members of B. If
U e T, then U is the union of members of subfamily B and for each x in U, there is a V in B such
that x € V < U. Consequently B is a base for T.

Example. (1) The collection B of all open intervals is a basis for the usual topology on R.
(2) The collection B of all open disks is a basis for the usual topology on the plane
(3) If X is a set, then
B = {{x} [ x € X} is a basis for the discrete topology on X.
(4) Let (X, d) be a metric space, then the family
B={B (x, €);x e Xand € >0} is a basis for the topology generated by d.

Remark. The following example shows that there is a subset of p(X) that is not a basis for a
topology on X. For example let X = {1, 2, 3} and B = {1, 2}, {2, 3}, X}.
Then B is not a basis for a topology on X.

Analysis. Suppose B is a basis for a topology T on X. Then by definition of basis B — T. Hence
{1, 2}, {2,3} e Tand so {1, 2} n {2, 3} = {2} € T. But {2} # ¢ and there is no subcollection B’
of B such that {2} = U {B ; B € B'}. Hence B is not a basis for T.

Remark. The following example provides a necessary and sufficient condition for a subset of
P(X) to be a basis for a topology on X.

Theorem. 18. A family B of sets is a base for some topology for the set X = U{B ; B € B} if and
only if for every By, B, € B and x € By n By, there exists a B € B’ such that x € B < B1 n B,
that is the intersection of any two members of B is a union of members of B.

Proof. Suppose that B is a base for a topology T, B;, B, € B. Then by definition every member of
T is the union of members of B.

Since B is a subfamily of T, the members of base B are open sets and the intersection of two open
sets is an open set. Thus B; m B, is an open set and therefore is a member of T. Since every
member of T is a union of members of B, it follows that B; n B; is a union of members of B.



22 TOPOLOGICAL SPACES

Conversely, let B be a family of sets satisfying the condition of the theorem and let T be the family
of all union of members of B. We shall show that T is a topology for X with base B. We check
that all the axioms for a topology are satisfied.

(01) The whole set X was defined to be the union of all members of B and so is a member
of T. Also the empty set is the union of the empty collection of members of B implies that ¢ €T.

(0,) Since each member of T is a union of members of B, the union of any number of
members of T is a union of members of B and so belongs to T.

(03) Suppose that G;, G, €T. If x € G; N Gy, then xeG; and xeG; by the definition of T,
G and G, are union of members of B and so there exists sets B; and B, belonging to B such that x
eBicGiandx eB, = Gy

Now xeB; m B and so by hypothesis, there exists a BeB such that xeB < B; n Ba.
SinceBlgGl, Bngz :BlmBnglmGg

We have thus shown that every point of G; n G, is contained in a member of B which is itself
contained in G; N G,. Thus G; m G is the union of members of B and so belongs to T.

Hence T is a topology for the set X with base B.

Remark. Note that if X = {1, 2, 3} and B = {{2}, {1, 2}, {2, 3}}, then B satisfies the conditions
for a base. Therefore it is a base for the topology T = {¢, {2}, {1, 2}, {2, 3}, X} on X.

Remark. If B is a basis for a topology T on a set X, then T is the topology generated by B.
Definition. Let B; and B, be two basis for the topologies T; and T, on a set X. Then B; and B, are
equivalent provided that T; = To.

The collection of open disks and collection of open squares are equivalent bases for topologies in
the plane. In each case the topology generated by the base is the usual topology.

Remark. The following theorem gives a characterization for a topology T’ to be finer than a
topology T in terms of bases for T and T'.

Theorem.19. Let T and T' be topologies on a set X and let B and B’ be bases for T and T’
respectively. Then the following are equivalent.

(@) T'is finerthan T

(b) For each xeX and each B € B such that x €B, there is a member B’ of B’ such that
xeB’ and B’ < B.

Proof. (a) =(b) Suppose T’ is finer than T . Let xeX and let B €B such that xeB. Since BeT
and T’ is finer than T. BeT’'. Since T’ is generated by B’ there is a member B’ of B’ such that
xeB’'and B' < B.

(b) = (a). Let U €T and let xew. Since T is generated by B, there is a member B of B such that
xeB and B < U. By condition (b), there is a member B’ of B’ such that xeB’ and B’ <B. Since B’
c Band B c U, B' = U. Therefore U is the union of the members of a subcollection of B’ and
hence U €T'.

Theorem. 20. If S is any non-empty family of sets, the family of all finite intersections of
members of S is the base for a topology for the set
X =uU{S/SeS}.

Proof. If S is a family of sets and let B be the family of finite intersections of members of S.
Then the intersection of two members of B is again a member of B and then applying the result



TOPOLOGY 23

“A family B of sets is a base for some topology for the set X = U{B ; B €B} if and only for every
Bi1, B, € B and every x € B; n By, there exists a B €B such that xeB < B; n By, that is the
intersection of any two members of B is the union of members of B. hence B is a base for the
topology.

Definition. Let (X, T) be a topological space. A collection B. of open subsets of X is called a
subbase for a topology T if and only if finite intersections of members of B.. form a base for T.

Example 1. Let R be the set of real numbers and let T be the usual topology. If B. contains open
intervals of the form (—oo, b) or (a, ©) where a and b are either real or rationals, then B. is a
subbase for the topology since

(=00, @) N (b, ) = (a, b) i.e. an open interval and we know that the base of usual
topology is the collection of all open intervals.

Theorem. 21. Let X be a set and B be a collection of subsets of X such that X =U {S; S € B}.
Then there is a unique topology T on X such that B is a subbase for T.

Proof. Let B’ = {B ; p(X); B is the intersection of a finite number of members of B}

Let T = {U; p(X); U = ¢, or there is a subcollection B” of B’ such that U = U{B ;
B € B"}}

It is sufficient to prove that T is a topology on X.

(0,) By definition ¢ €T and since

X =uU{S; SeB}, XeT.
(02) Let UxeT for each o in the index set A. Then there is a subcollection By of B such that
Uy = U{B ; BeB}
Hence U{Uy; ae A} = U{ U B}

aen BeBy
and so U{U, ; a € A} €T.

(03) Suppose U;, U, eT and xeU; n U,.  Then there exists Bi, B, €B’ such that
xeB1 m By, B; < Uq, B> = Uy, Since each of By and B; is the intersection of a finite number of
members of B. Therefore, there is a subcollection B"" of B’ such that Uy n U, = U{B ; B € B"}
and hence

U; n U,eT. Therefore T is a topology and it is clear that T is the unique topology
that has B as a subbase.

Remark. (1) The topology generated above is called the topology generated by B. Thus one
advantage of the concept of subbasis is that we can define a topology on a set X by simply
choosing an arbitrary collection of subsets of X whose union is X.

Remark. (2) Let
X ={a, b, c, d} and
T={¢.{a}, {a c}, {a d} {a c, d}, X}
Then B. = {{a, c}, {a, d}} is a subbase for T since the family B of finite intersections of B. is
given by B = {{a}, {a, c}, {a, d}, X} which is a base for T.

Subspace Topology or Relative Topology
This topology was introduced by Hausdorff.

Definition. Let X~ be a subset of a topological space (X, T). Then subspace, induced or relative
topology for X is the collection T~ of all sets which are intersections of X~ with members of T.
(X", T") is called a subspace for (X, T) iff T  is the induced topology. The sets which are open
with respect to the subspace (X", T') will be called relatively open sets.
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We now show that T as defined above is a topology for X~
Theorem. 22. Prove that T  is a topology for X"

Proof. To prove T  is a topology for X~ we have to show that all the axioms for a topology are
satisfied.
(0,) since X = X"~ X where X €T

= XeT
Also ¢ = ¢ N X, where X €T
= ) eT

(0,) Let G,~ e T  for all A. Then there exist sets G, belonging to T such that
G, =X N G, for each A.
Since kkJ G;. belongs to T and

thGx*z liJ(X*mGk)zx*m(lkJ G))
we have UG, eT .
A

(03) Now suppose that G, and G, belong to T, there must exist set G; and G, belonging
to T such that
Gl* = X* N Gy and Gz* = X*ﬁ G..
Since G; N G; also belongs to T and
G NG, =X NnG) N (X NGy)
=X N (G1 N Gy)
It follows that G, NG, e T
Hence T  is a topology for X

Remark. (1) Open sets in X~ are those sets written in the form U n X" where U is open in X. In
the following fig, the shaded region represents an open set in X'.

X

Example. (1) Consider the real line R as a subset of the plane R?, by identifying a point xeR with
the point (x, 0) eR% Let T be the usual topology induced by the usual Euclidean metric on R?.
Then the topology induced by T on R is precisely the usual topology on R. Thus the subspace
topology on R (regarded as a subset of R?) is the usual topology on R.

(2) If T is the usual topology on R, then the subspace topology on the integers is the
discrete topology

° ° o—{—eo)—o—
(3) If T is the discrete topology on a set X and A < X, then Ta is the discrete topology
on A and the members of T are intersections of members of T with A .
(4) If T is the trivial topology on a set X and A < X, then T, is the trivial topology on A.
(5) If (X, T) is a topological space and A < B < X, then the subspace topology on A
determined by T is the same as the subspace topology on A Determined by Tg
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Theorem. 23. Let (X, T) be a topological space and A be a subset of X. Let B be a basis for T.
Then Ba={B " A ;B e B} is a basis for the subspace topology on A.

Proof. Let U € T and let x € U. Then since B is a base for T, by definition, there is a member
B € | such that xeB and B < U. Therefore xe B m A < U n A. Hence by the result “let (X, T)
be a topological space and suppose B is a subcollection of T such that for each xeX and each

member U of T such that xew, There is an element B of B such that xeB and B U. Then B is a
basis for T.” We get, Ba is the basis for the subspace topology on A.

Theorem. 24. Let (X, T) be a topological space and A be an open subset of X and Ta is the
induced or relative topology on A determined by T. If U €Ta, thenU €T.

Proof. Let UeTa, then there is an open subset V of X such that U = A n V. Since A and V are
openin X,s0isANV =U. HenceU e T.

Continuous Functions

Definition. A function f mapping a topological space (X, T) into a topological space (X", T') is
said to be continuous at a point x e X if and only if for every open set G* containing f(x), there is
an open set G containing x such that

f(G) = G
We say that f is continuous on a set E < X if and only if it is continuous at each point of E.
Example. (1) Let X ={1, 2, 3, 4} and

T={¢ (1), (2. (1 2), (23, 4), X}.

Define a mapping f : X—>X by

f(1) =2,f(2) = 4,1(3) =2 and f(4) = 3.

Show that (1) f is not continuous at 3 and f is continuous at 4 .

Analysis. The open sets containing f(3) = 2 are (2), (1, 2), (2, 3, 4) and X.
We see that
(2)=(1,3). (1,2 = (1,3),
f1(2,3,4)=(1,3,4,2)and
1(X) = (1, 2, 3, 4) = X itself.
But we see that (1, 3) is not open as it does not belong to T. Hence f is not continuous at 3

Now we check continuity at the point 4. The open sets containing f (4) = 3 are the sets (2, 3, 4)
and X. Now

f1(2,3,4)=(1,3,4,2)=Xand

1(X)=(1,2,3,4) =X
is open. Hence f is continuous at 4.

(2) Let (X, T) be a discrete topological space and (Y, U) be any topological space. Then
every function f : X—Y is necessarily continuous on X. For f*(G), where G is open in Y is a
subset of X and so open.

(3) Let X =(X,y,z)and T = {o, (X), (y), (X, y), X} so that (X, T) is a topological space.
Define f : X—>X by f(x) = x, f(y) = z and f(z) = y. Then by considering inverse images of the sets
of T, we find that f is not continuous at x.

(4) Let T denote the usual topology on R and define T : (R, T) = (R, T) by f(x) = x3. The
collection B of all open intervals is a basis for T. Let (a, b) be an open interval. Then f(a, b) =

(%/5,%/5) IS open so inverse image of every open set is open (equivalent condition for continuity of
f, proved below). Hence f is continuous.
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(5) Let (X, T) be a topological space and a singleton {a} be T-open. Suppose that (Y, T)
is another topological space. Then the function f : X—Y is continuous at ae X.

Remark. Composition of two continuous mappings is continuous.

Let the functions f and g be defined as follows

1ff: (X, T)> (Y, T)andg: (Y, T)>(Z T

If f and g are continuous, then gof is also continuous. We note that if G~ is open in Z, then

(gof) ™ [G71=(F"og™) (G7)
=f[g(G)]

Since g is continuous, g* (G) is open in Y, and then since f is continuous, f* [g™4(G )] is open
in X. Therefore gof is continuous on X.

Theorem. 25. Let (X, T) and (X', T") be topological spaces and f : X — X, then the following
conditions are each equivalent to the continuity of f on X.

(1) The inverse image of every open set in X" is an open set in X.

(2) The inverse image of every closed set in X" is a closed set in X.

(3) f (C(E)) = C'(f(E)) for every E c X.

Proof. (1) Suppose that f is continuous on X and G~ is an open set in X". If x is any point of
f1(G"), and f is continuous at x, so there must exist an open set G containing x such that f(G) = G".
Thus G < f(G") and hence f(G") is an open set in X.

Conversely if the inverse images of open sets are open, we may choose the set f *(G") as the open
set G required in the above definition.
(2) Suppose that f is continuous and G is closed in X". Then
fIX -G =X-f G
Since f is continuous and X — G is open, it follows that X — f(G") is open. Consequently f*(G")
is closed.

Conversely let G™ be an open subset of X, then
fUX -G 1=X-f 1G]

Since the left hand side is closed, it follows that X — f1(G™) is closed which implies that f 1(G™) is
open. Hence f is continuous.

(3) Suppose that f is continuous on X and E is a subset of X. Since E < f* [f(E)] for any
function, E < f [C"(f(E))]

But C'(f(E)) is closed and therefore f *[C"(f(E))] is closed. Moreover this contains E. Therefore,
C(E) = f ™ [C"(f(E))] and so
f(C(E)) < f[i_l(C*(f(E))]
c C[f(E)]
conversely suppose that
FICE)] < CIf(E)] X 1)
for all subsets E < X. let F be a closed set in X . Choose
E = f1(F"), we obtain
f(C(E)] = fIC(f _1(F*)2]
c C [f(f _1(F*))] [by (1)]
cC((F)=F
since F is closed.
= CE)cf(F)
=  CIfF)cf(F)
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=  f}F)isaclosed set.
and so the inverse image of every closed set is a closed set.

Theorem. 26. Let [T, ; A € A] be an arbitrary collection of topologies on X and let (Y, V) be a
topological space. If the mapping f : X—Y is T;—V continuous for all e, then f is continuous
with respect to the intersection topology

T=n{Ty; e}

Proof. Let G be an open set in Y. Since f is T)—V continuous, therefore f * (G) is open in X that is
f(G) eT, forall Len

=  fHG) e {Tr; )\ en}

= fYG)eT.

= f is continuous with respect to T.
Theorem. 27. If f is a continuous mapping of (X, T) into (X, T'), then f maps every connected
subset of X onto a connected subset of X

Proof. Let E be a connected subset of X and suppose that E = f(E) is not connected. Then there
must exist some separation E- = A"/B” where A” and B” are non-empty, disjoint, open subsets of
E". Then f being continuous, both f *(A") and f*(B") are open in X. Clearly A = f}(A") n E and B
=f1(B") n E are non-empty disjoint sets which are both open subsets of E. Thus E must have the
separation E = A/B and so is not connected. Hence we get a contradiction. Thus E is connected.

Remark. Any continuous image of a compact topological space is compact
Homemorphism
The first systematic treatment of continuity and homemorphism was given by Hausdorff.

Definition. Let X and Y be two topological spaces and f be a mapping from X into Y. Then
f: X—>Y is called an open mapping if and only if f(G) is open in Y whenever G is open in X.

Thus a mapping is open if and only if the image of every open set is an open set. Such mappings
are also called interior mappings.

Similarly a mapping is closed if and only if image of every closed set is a closed set.

Remark. (1) Since there is no general containing relation between f(E®) and [f(E)]°. We find that
an open (closed) mapping need not be closed (open), even if continuous. For example let (X, T) be
any topological space and let (X, T") be the space for which X" = [a, b, c] and

T =14, {a}, {a, c}, X'}. The transformation which takes each point of X
into the point a is continuous open map which is not closed. The transformation which takes each
point of X into b is a continuous closed map which is not open.

Remark. (2) As we know that continuity of a function does not really depend upon the topology
on the entire co-domain but rather on the relative topology on the range. This is no longer true for
openness of a function. Consider the function f : R—>R? defined by f(x) = (x, 0) for xeR. Then f is
not open with respect to the usual topologies on R and R%. The range of f is the x-axis of R%. If we
regard f as a function from R to the x-axis (with relative topology), then it is open. Similarly, a
restriction of an open function need not be open. These remarks also apply for closed functions.

Remark. (3) In order to show that a function is open, it is sufficient to show that it takes all
members of a base for the domain space to open subsets of the co-domain. Using this fact, it it
easy to show that projection functions from a product space to the co-ordinate spaces are open. It
appears that they are also closed. But this is not the case. Consider the projection m; : R> R,
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m(X, y) = X (X, yeR). Let H be the set {(x, y) € R% xy = 1}. Then H is a closed subset of R? as its
complement is open. However wt1(H) is the set of all non-zero real numbers and it is not a closed
subset of R.

Remark. (4) The following examples show that there is no direct relation between openness and
continuity of a function.

(i) Let T denote the discrete topology on R and let p denote the usual topology on R. Then
f: (R, T) > (R, p) defined by f(x) = x for each xR is continuous because if Uep, then f(U) eT.
However f is not open because {1} €T whereas {1} ¢ L.

(if) The function g : (R, u) —» (R, T) defined by g(x) = x for all xeR is open but not
continuous.

Theorem 28. A mapping f of X into X" is open if and only if f[i (E)] < i [f(E)] for every E c X.

Proof. Suppose f is open and E — X. Since i(E) is an open set and f is an open mapping, f(i(E)) is
an open set in X'. Since i(E) c E, (i(E)) < f(E). Thus f(i(E)) is an open set contained in f(E) and
hence

f(i(E)) < i" (F(E))

Conversely if G is an open set in X and f(i(E)) < i (f(E)) for all E < X,
then f(G) = f(i(G)) < i (f(G)) and so f(G) is an open set in X". Hence f is an open mapping.

Definition. Let X and Y be two topological spaces. Then a mapping f : XY is called a
homemorphism if and only if it is bijective, continuous and open. Equivalently f : X—>Y is a
homemorphism if and only if it is bijective and bi-continuous. (By bi-continuous we mean that
both f and f* are continuous)

Two topological spaces X and Y are said to be homeomorphic if there exists a homemorphism of
X onto Y and in this case Y is called a homemorphic image of X.

A property of sets which is preserved by homemorphisms is called a topological property. The
properties of a set being open, closed, connected, compact and dense in itself are topological
properties but distances and angles are not the topological properties because they can be altered
by suitable non-tearing deformations.

Remark. (1) If f : X—>Y is a homemorphism, then X and Y are equivalent (as sets) since f is
bijective. Also f and f preserve open sets we may regard X and Y as equivalent topological
spaces that is they may be thought of as indistinguishable from the topological point of view :

Remark. (2) Translations from f : R—R defined by f(x) = x + a are homemorphisms.
Completeness of metric spaces is not a topological property i.e. a complete metric space can be
homemorphic to an incomplete metric space.

Theorem. 29. Metrizabiliy is a topological property.

Proof. Let (X, d) be a metric space and (Y, V) be a topological space and suppose f : X—>Y is a
homemorphism. Define p : YxY — R by p((y1, y2)) = d(f *(y2) £ *(y2))

We see that p is a metric on Y. Also the topology induced by p is T. Thus the property of
metrizability is preserved under homemorphism.

Definition. A subset E of a topological space is called isolated if and only if no point of E is a limit
point of E that is if
E N d(E) = ¢.
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Theorem. 30. If f is a homemorphism of X onto X, then f maps every isolated subset of X onto an
isolated subset of X'.

Proof. Suppose E is an isolated subset of X and let x*e f(E), There must then exist a point xeE
such that f(x) = x". Since E is isolated, x ¢ d(E) and so there must exist an open set G containing x
such that E n G- {x} = ¢. But f is @ homemorphism and so f(G) is an open set in X~ which
contain f(x) = x . From the fact that f is one to one, it follows that

f(E NG —{x}) =f(E) " f(G) -(x'} = ¢
Thus x” ¢ d(f(E)) and so f(E) must be isolated.

Theorem. 31. Let (X, T) and (X, T") be two topological spaces. A one to one mapping f of X
onto X~ is homemorphism if
f(C(E)) = C(f(E)) for every E c X.

Proof. Suppose first that f is a homemorphism and let E < X and G = f(E). Then
1(G) = f }(f(E)) = E.
Since f is continuous
f(C(E)) = C(f(E)) 1)
Moreover, since f is continuous.
f* [C(G)] = CIFY(G)]
= 1 (C{(E)] < CIF'(fE))]
=  f1[C(f(E))] = C(E)
= C(f(E)) = f(C(E)) (2)
From (1 and (2), we have
f(C(E)) = C(f(E)) = f(C(E))
which proves the first part.

Conversely let us suppose that
f(C(E)) = C(f(E)). We shall show that f is homemorphism. Since f is
bijective, it is sufficient to show that f and f* are continuous. We are given that
f(C(E)) = C(f(E))
= f [C(E)] = CIf(E)]
= f is continuous.
Also C[f(E)] < f[C(E)]

Let G =f(E). Then
1(G) = f}(f(E)) = E.

Therefore,
CIf(f*(G))] = f[C(F(G))]
= f[F* (C(G)] = f [C(FH(G))]
= fH[CG) = C(™ (G)]

which proves that f is continuous.
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2

CONNECTEDNESS

Connectedness was defined for bounded, closed subsets of R" by Cantor in 1883, but this
definition is not suitable for general topological spaces. In 1892, Camille Jordan (1838-1922) gave
a different definition of connectedness for bounded closed subsets of R™ Then in 1911, N. J.
Lennes extended Jordan’s definition to abstract spaces Hausdorff’s Grundzuge der Mengenlehre
was the first systematic study of connectedness.

Connectedness represents an extension of the idea that an interval is in one piece. Thus from the
intuitive point of view, a connected space is a topological space which consists of a single piece.
This property is perhaps to the simplest which a topological space may have and yet it is one of the
most important applications of topology to analysis and geometry.

On the real line, for instance intervals are connected subspaces and as we shall see they are the
only connected subspaces. Connectedness is also a basic notion in complex analysis, for the
regions on which analytic functions are studied are generally taken to be connected open subspace
of the complex plane.

In the portion of topology which deals with continuous curves and their properties, connectedness
is of great significance, for whatever else a continuous curve may be, it is certainly a connected
topological space.

Spaces which are not connected are also interesting. One of the outstanding characteristics of the
cantor set is the extreme degree in which it fails to be connected. Much the same is true of the
subspace of the real line which consists of rational numbers. These spaces are badly
disconnected.

Our purpose in this chapter is to convert these rather vague notions into precise mathematical ideas
and also to establish the fundamental facts in the theory of connectedness which rests upon them.

Connected Spaces

Definition. A topological space is connected if it can not be expressed as the union of two non-
empty disjoint open sets.

An equivalent formulation of this definition is that a set is said to be connected if and only if it has
no separation.

Definition. Two subsets A and B form a separation or partition of a set E in a topological space
(X, T) ifand only if

()E=AUB

(if) A and B are non-empty

(i) AnB=1¢

(iv) Neither A contains a limit point of B nor B contains a limit of A.
If A and B form a separation of E, then we write E = A/B.
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Remark. The requirements that A and B are disjoint sets and neither contains a limit point of the
other may be combined in the formula

[ANC(B)w[BNCA)]=4¢
which is often called the Hausdorff-Lennes separation condition and such subsets are called
separated.

Thus a set is said to be connected if and only if whenever it is written as the union of two non-
empty disjoint sets, at least one of them must contain a limit point of the other. We now give
examples of some spaces that are connected.

Example (1) Empty set and every set consisting of one point is a connected set.

Example (2) In the case of discrete topological space, only ¢ and the singleton are connected sets.
Example (3) Let X be a non-empty set and T be the trivial topology on X. Then (X, T) is
connected.

Example (4) Every open interval is connected.

Example (5) Let T be the usual topology on R. Then (R, T) is connected.

Analysis. The proof is by contradiction. Suppose (R, T) is not connected. Then there exist disjoint
open sets U and V suchthat R=U u V. SinceU=R -V and V=R - U, Uand V are also
closed. Leta € Uand b €V. We may assume w. |. 0. g. thata<b. Let W =U n [a, b]. Since W
is bounded, it has a least upper bound c. Since W is closed. ¢ € W. Since WV = ¢, c #b. Also
c is the least upper bound of W, (c, b] = V. Therefore ¢ € V, but V is closed so ¢ €V. Therefore
c € U V. This is contradiction because

UnV=4.

Theorem. 32. A topological space (X, T) is connected if and only if it can not be expressed as the
union of two non-empty sets that are separated in X.

Proof. Suppose X is not connected. Then there are non-empty, disjoint open sets U and V such
that X=U u V. ThenUand V are closed sothat UnV=UnV=¢andUn V=UNV =¢.
Therefore U and V are separated in X.

Suppose now that there are non-empty subsets A and B such that X =A UBand AnB=A
N B=¢. SinceX=AuBand AnNB=¢

= A c Aso that A is closed. Similarly B is closed. Therefore A and B are also open
and hence X is not connected.

Remark. If A and B form a separation of the topological space (X, T), then A and B are both open
and closed.

Theorem. 33. A topological space (X, T) is connected if and only if no non-empty proper subset
of X is both open and closed.

Proof. Suppose X is not connected. Then there are non-empty disjoint open sets U and V such that
X =UuV. Thus U is a non-empty proper subset of X that is both open and closed.

Suppose X has a non-empty proper subset U that is both open and closed. Then U and X — U are
non-empty disjoint open sets whose union is X. Therefore X is not connected.

The following result provides useful ways of formulating the definition of connectedness for
subspaces of a topological space.

Theorem. 34. Let (X, T) be a topological space and let A < X. Then the following conditions are
equivalent.
(a) The subspace (A, Ta) is connected.
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(b) The set A can not be expressed as the union of two non-empty sets that are separated in
X.

(c) Theredonotexist U,V eTsuchthat U nA=dp, UNnVnA=¢pandAcUuU V.
Proof. First we prove (a) = b. In each case, we prove by contradiction.

(@) = (b). Suppose the subspace (A, Tx) is connected and U and V are non-empty sets such
that A=UuVand UnV=Un V=¢.

Then U and V are separated in A, so by Theorem. 32, A is not connected
(b) = (c). Suppose there exist U, V €T suchthat U nA=¢d, VN A=z, UNnV A=
and AcUuU V.

Then U n A and V n A are non-empty sets that are separated in Xand A= (U A) U (VN A)
(c) = (a). Suppose (A, Ta) is not connected.

Then there exist U’, V', € Tasuchthat U’ = ¢ =V and U' n V' = and A =U" U V'. Thus there
existU, VeT suchthatU' =AnUandV' = AN V.

ItisclearthatUnA=¢, VNnAz=zdp, UNnVnA=pandAcUUV.

Theorem. 35. A subspace of the real line R is connected if and only if it is an interval. In
particular, R is connected.

Proof. Let X be a subspace of R. We first prove that if X is connected, then it is an interval. We do
this by assuming that X is not an interval and by using this assumption to show that X is not
connected. To say that X is not an interval is to say that there exist real numbers X, y, z such that x
<y<z,xandzarein X, yisnotinR. Thus

X ={X N (-, y)} U{X N (y, + ©)} is a disconnection of X, so X is
disconnected.

Now we prove the second part. We show that if X is an interval, then it is necessarily connected.
We first assume that X is disconnected. Let X = A U B be a disconnection of X. Since A and B
are non-empty, we can choose a point x in A and a point z in B. A and B are disjoint, so X =z, w. .
0. g. we assume that x < z. Since X is an interval, [X, z] < X and each point in {Xx, z} is in either A
or B. We now define y by
y =sup ([x, zZ] N A).

It is clear that x <y <z,soyisin X. Since A is closed in X, the definition of y shows that y is in
A. From this we conclude that y < z. Again by the definition of y, y + € isin B for every € >0
such thaty + € <z, and since B is closed in X, y is in B. We have proved that y is in both A and B,
which contradicts our assumption that these sets are disjoint.

Theorem. 36. Any continuous image of connected space is connected.

Proof. Let f : X—Y be a continuous mapping of a connected space X into an arbitrary topological
space Y. We must show that f(X) is connected as a subspace of Y. Assume that f(X) is
disconnected. This means that there exist two open subsets G and H of Y whose union contains
f(X) and whose intersections with f(X) are disjoint and non-empty. This implies that
X = f7(G) U f*(H) is a disconnection of X, which contradicts the connectedness of X.

Remark. Thus from the above theorem, it follows that property of connectedness is preserved by
continuous mappings.

Theorem 37. If E is a subset of a subspace (X, T") of a topological space (X, T), then E is T
connected if and only if it is T-connected.
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Proof. In order to have a separation of E with respect to either topology, we must be able to write
E as the union of two non-empty disjoint sets. If A and B are two non-empty disjoint sets, whose
union is E, then
A BcX cX
Calculating with the Hausdorff — Lennes separation condition, we find that
[ANC(B)]U[C'(A) N B]
=[AN{X " CB)] U {X nCA)} N B]
=[ANX NCB)]U[X nCA)NB]
=[AnC(B)]v[BNCA)]
Thus if the condition is satisfied with respect to one topology, then it is satisfied with respect to the
other.

Remark. The above theorem leads us to say that connectedness is an absolute property of sets that
it does not depend on the space in which the set is contained except that the topology, of course
must be the relative topology.

Theorem. 38. If E is a connected subset of a topological space (X, T), which has a separation
X = A/B, then either Ec A or E = B.

Proof. Clearly E=En X=En (AU B)
=(EnA)uU(ENB)

Since X = A/B, we have
[(ENnA)UCENB)]U[C(ENA)N(ENnB)]
c[ANCB)VICA)NB]=¢
since A and B are separations.

Thus if we assume that both E ~ A and E n B are non-empty, we have a separation for
E = (E n A)/(E n B). Hence either E n A is empty so that E c B, or E n B is empty so that
EcA

Cor. 1. If Cis a connected set and C < E < C(C), then E is a connected set.

Proof. Suppose that E is not a connected set, then it must have a separation E = A/B. By the
above theorem, since C is a subset of E which has a separation, C must be contained in A or
contained in B. Without loss of generality, let us suppose that C < A. From this it follows that
C(C) < C(A) and hence

C(C)nB<c C(A) B =4¢.
On the other hand, B < E < C(C) and so C(C) n B = B, thus we must have B = ¢, which
contradicts our hypothesis that E = A/B. Hence E is connected.

Cor. 2. If every two points of a set E are contained in some connected subset C of E, then E is a
connected set.

Proof. If E is not connected, then it must have a separation E = A/B. Since A and B must be non-
empty, let us choose points acA and beB. From the hypothesis we know that a and b must be
contained in some connected subset C contained in E. Then by the above theorem, either C — A or
C < B. Since A and B are disjoint, this is a contradiction to the fact that C contains points of A as
well as of B. Hence E is connected.

Cor. 3. The union E of any family {C,} of connected sets having a non-empty intersection is a
connected set
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Proof. Suppose E is not connected, then it must have a separation E = A/B, By hypothesis, we
may choose a point xe QCx which implies that xeC, for each A. The point x must belong to

either A or B and w.l.0.g. let us suppose xeA. Then since xeC, for each A, we have C;, " A # ¢
for every A. Now by the above theorem, each C, must be either a subset of A or a subset of B.
Since A and B are disjoint and C;,, n A # ¢. We must have C;, < A for all A. And so E = k}g C.c

A. From this we obtain the contradiction that B = ¢. Hence E is connected.
Cor. 4. If A and B are connected sets, then A U B is connected.

Proof. Suppose A U B is not connected, then it must have a separation A u B = C/D.

Since A is a connected subset of A U B, either A — C or A < D. Similarly we have either B c C
orBcD.NowifAcC,AuBcC,AuBcD.ButCand D are disjoint.

Hence contradiction.

Thus A U B is connected.

Theorem. 39. If a connected set C has a non-empty intersection with both a set E and the
complement of E in a topological space (X, T), then C has a non-empty intersection with the
boundary of E.

Proof. We will show that if we assume that C is disjoint from b(E), we obtain the contradiction
that C is not connected i.e.
C=(CNE)(C NE®).
From C=CnX
=Cn(E UE®
=(CNE)uU(CNE")
we see that C is the union of two sets. These two sets are non-empty by hypothesis.

If we calculate (C N E) N C(C N E®)
c[CNCE)]NCE)
=C N [C(E) N C(EY)]
=Cnb(E)
we see that the assumption that C » b(E) = ¢ leads to the conclusion that
(CNE)n(CNE®=4¢.
In the same way, we may show that C[C N E] n [C n E®] = ¢ and we have a separation of C.

Theorem. 40. A topological space X is disconnected if and only if there exists a continuous
mapping of X onto the discrete two point space {0, 1}.

Proof. If X is disconnected and X = A U B is a disconnection, then we define a continuous
mapping f of X onto {0, 1} by the requirement that f(x) =0 if x € A and f(x) = 1 if x eB. Thisis
valid since A and B are disjoint and their union is X. Also A and B are non-empty and open, f is
clearly onto and continuous.

On the other hand, if there exists such a mapping, then X is disconnected for if X were connected,
then by the result that a continuous image of a connected space is connected, {0, 1} is connected
but we know that a subspace of the real line R is connected if and if it is an interval. Thus X is
connected would lead to a contradiction. Hence X is disconnected.

Theorem. 41. The product of any non-empty class of connected spaces is connected.
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Proof. Let {X;} be a non-empty class of connected spaces and form their product X = [T X; . We
i

assume that X is disconnected and we deduce a contradiction from this assumption. Now by the
above theorem there exists a continuous mapping f of X onto the discrete two point space {0, 1}.
Let a = {aj} be a fixed point in X and consider a particular index i;. We define a mapping
fil oinl into X by means of fil (xi1 ) ={Vi), where y; = & for i # i, and Yi, = Xi, - This is clearly

a continuous mapping, so ffil IS a continuous mapping of Xil into {0, 1}. Since Xil IS connected,
ff,

i is constant and

(ffi ) (X; ) =1(@)
for every point Xi, in Xil' This shows that f(x) = f(a) for all x’s in X which equal a in all co-
ordinate spaces except Xil' By repeating this process with another index, i,, etc, we see that

f(x) = f(a) for all x’s in X. which equal a in all but a finite number of co-ordinate space. The set of
all x’s of this kind is a dense subset of X, and so f is a constant mapping this contradicts the
assumption that f maps X onto {0, 1} and this completes the proof.

Components

Definition. Let (X, T) be a topological space and x be a point of a subset E contained in X, then
union of all connected sets containing x and contained in E, is called the component of E
corresponding to x and will be denoted by C (E, x). Since union of connected sets is connected,
C(E, x) is a connected set. Hence C(E, x) is the largest connected subset of E containing x. Thus a
connected space clearly has only one component, namely the space itself.

Components corresponding to different points of E are either equal or disjoint, so that we may
speak of the components of a set E without any reference to specific points. Every subset of a
topological space has now been partitioned with disjoint subsets, its components.

Example. (1) Let (X, T) be a discrete space and xe X be arbitrary. Then {x} is a connected subset
of X and also {x} is not a proper subset of any connected subset of X. Hence by definition, {x} is a
component of X. Thus each point of a discrete space (X, T) is a component of X.
(2) If X is connected, then X has only one component, X itself.
(3) Every indiscrete space has only one component, namely the space itself.
(4) Let X ={a, b, c, d, e} consider the following topology on X.
T={X, ¢,{a}, {c,d}, {a, c,d} {b,c,d,e}}

The components of X are {a} and {b, c, d, e}. Any other connected subset of X, such as {b, d, e}
is a subset of the one of the components.

Theorem. 42. The components of a topological space (X, T) are closed subsets of X.

Proof. Let C be the component of X. Since C is connected, its closure C(C) is also connected. Let
a be a point of C and b be a point of C(C). Then the connected set C(C) contains both a and b.
But by definition, C is the largest connected set containing a and so beC. Hence C(C) < C and
thus C is closed.

Theorem. 43. Let X be an arbitrary topological space, then we have the following
(1) Each point in X is contained in exactly one component of X.
(2) Each connected subspace of X is contained in a component of X.
(3) A connected subspace of X which is both open and closed is a component of X.



36 TOPOLOGICAL SPACES

Proof. (1) Let x be a point in X. Consider the class {C;} of all connected subspaces of X which
contain Xx. This class is non-empty, since {x} itself is connected. Since union of connected sets
having a non-empty intersection is connected, C = U; C; is a connected subspace of X which
contains x. C is clearly maximal and therefore a component of X, because any connected, subspace
of X which contains C is one of the Ci’s and is thus contained in C. Finally, C is the only
component of X which contains x. For if C”, is another, it is clearly among the Ci’s, and is
therefore contained in C and since C” is maximal as a connected subspace of X, we must have
C =C.

(2) This is a direct consequence of the construction above and from this it follows that, a
connected subspace of X is contained in the component which contains any one of its points.

(3) To prove (3), let A be a connected subspace of X which is both open and closed. By (2)
above, A is contained in some component C. If A is a proper subset of C, then

C=(CnAUCNA)

is a disconnection of C. This contradicts the fact that C, being a component is connected and we
conclude that A = C. Thus a connected subspace of X which is both open and closed is a
component of X.

Locally Connected

Definition. A topological space (X, T) is said to be locally connected if and only if for every point

xeX and every open set G containing X, there exists a connected open set G containing x and
contained in G

Thus a space is locally connected if and only if the family of all open connected sets is a base for
the topology for the space. We know that local compactness is implied by compactness local
connectedness, however neither implies, nor is implied by connected as shown below.

Remark. (1) A locally connected set need not be connected. For example, a set consisting of two
disjoint open intervals is locally connected but not connected

(2) A connected subset of the plane which is not locally connected.
For each positive integer n, let us denote by Ep, the line segment connecting the origin to the point

< 1, =>. Each of these line segments is connected and all contain the origin, so their union is
n

connected (since the intersection is the origin being a common point). If we let X be the point <1,
0> and Y be the point <%, 0>, then X and Y are both limit points of the set consisting of all the
En’s

Then E = {X} u{Y} U (U, Ep}

is a connected set. This set is not locally connected, however since an open set containing X if
sufficiently small will not contain a connected open set containing X.

Example. (1) Let (X, D) be a discrete topological space. We know that for every xeX, the
singleton {x} is connected and is such that {x} contains x and is contained in an open connected
set {x}. Hence a discrete topological space is locally connected.

(2) Every Banach space is locally connected

(3) The union of two disjoint open intervals on the real line is a simple example of a space
which is locally connected but not connected.

Remark. Removal of a point from a connected set leaves a set which is not connected.
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Theorem. 44. A space X is locally connected if and only if for every open set U of X, each
component of U is open in X.

Proof. Suppose that X is locally connected and let U be an open set in X and further let C be a
component of U. If x is a point of C, we can choose a connected open neighbourhood V of x such
that V < U. Since V is connected, it must be entirely in the component C of U. Therefore C is
open in X.

Conversely, suppose that components of open sets in X are open. Given a point x of X and a
neighbourhood U of x, let C be the component of U containing x. Since C is a connected subset of
U. Thus for every open set U containing X, there is a connected open set C containing x such that
C < U. Hence X is locally connected.
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COMPACTNESS AND CONTINUOUS FUNCTIONS

Like many other notions in topology, the concept of compactness for a topological space is an
abstraction of an important property possessed by certain sets of real numbers. The property

we have in mind is expressed by Heine-Borel theorem, which asserts the following.

“If X is a closed and bounded subset of the real line R, then any class of open subsets of R
whose union contains X has a finite subclass whose union also contains X.” If we regard X as a
topological space, as a subspace of R, this theorem can be thought of saying that any class of

open subsets of X whose union is X has a finite subclass whose union is also X.

The Heine-Borel theorem has a number of profound and far reaching applications in analysis.
Many of these guarantee that continuous functions defined on closed and bounded sets of real
numbers are well behaved. For instance, any such function is automatically bounded and

uniformly continuous. In contrast to this, we note that the function f defined on the open unit

interval (0, 1) by f(x) = iis neither bounded nor uniformly continuous.
X

Thus although the motivation for this concept is the Heine-Borel theorem, but the motivating
theorem does not hold at all in general topological space. First of all the entire concept of

boundedness is missing since we have no notion of distance. Secondly a compact subset need
not be closed as the example of any proper subset of an indiscrete space shows. Despite these

problems, the concept of compactness is of fundamental importance in topology.
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Compact Sequentially compact

Countably Compact

/

Bolzano-Weiersteass Property.

Compact Topological Spaces

Definition. A collection {A;} of sets is said to be a covering of a set E if

Eg UA)L.
A

If all the sets of a covering are open, then it is called an open covering.
If some finite subcollection of a covering of a set E is also a covering of E, then we say that the
covering is reducible to a finite sub-covering. A subcollection of an covering which is itself a

covering is called a subcovering.

Definition. Let (X, T) be a topological space. A collection {G;} of open subsets of X is said to

be an open covering of X if

X= k_JGi
i
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A subset E of a topological space (X, T) is said to be compact if and only if every open
covering of E is reducible to a finite subcovering of E i.e. every open covering of E has a finite
subcovering.
Example. (1) If X is a finite set and T is a topology on X, then (X, T) is compact.
(2) If T is the finite complement topology on any set X, then (X, T) is compact.
Now we give some examples of spaces which are not compact.

(1) If X'is an infinite set and T is the discrete topology on X, then (X, T) is not compact.

(2) The open interval (0, 1) is not compact because {(i ,1J;n € N} is an open cover that does
n

not have a finite sub-cover.

(3) The real line is not compact because {(—n, n); neN}is an open cover that does not have a

finite subcover.
(4) The real line with the lower limit topology is not compact since {[n, n+1) ; n € Z} is an

open cover that does not have a finite subcover.

Definition. A topological property is said to be weakly hereditary if whenever a space has it,

so does every closed subspace of it.

Theorem. 1. If E is a subset of a subspace (X", T") of a topological space (X, T), then Eis T

compact if and only if it is T-compact.

Proof. Suppose E is T -compact and {G;} is some T-open covering of E. We shall show that
{G;} has a finite subcovering. The family of sets {X" n G} clearly forms a T"—open covering

of E since

E:x*mE:x*m(Lk)Gk)
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=\ X" N Gy)
Since E is T —compact, there is a finite subcovering of E such that
n - n
Ec _ul[X NGl Y Gi
i= i=

Thus we have shown that every open covering of E has a finite subcovering and hence E is T-

compact.

Conversely suppose that E is T-compact and {G;} is some T —open covering of E. From the

definition of induced topology, each G,” = X" N G;, for some T—open set G;..

The family {G,} is clearly a T—open covering of E and so there must be some finite subcover
n

of E such that E < o Gi
1=

But then we have,

E=X"NE

n
gX*m(_ulGi)
1=

n n
=u (X'nG)= UG
i=1 i=1

which is a finite subcovering of E from {G, '}

Hence E is T'—compact.
Remark. The property of compactness is not Heriditary. It is weakly Heriditary. We do

however the following result.

Theorem 2. Every closed subset of a compact space is compact.
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Proof. Let G be an open covering of a closed subset E of a compact space (X, T), then

G =GuUE°

is an open covering of X. Since (X, T) is compact, every open covering of X has a finite
subcovering. If we remove E© from the finite subcovering of X, we will have a finite

subcovering of E chosen from G. Hence E is compact.

Example. The cantor set C is the intersection of closed subsets of R. Therefore C is closed
subset of R and hence of | = [0, 1]. Since | is compact by the above theorem, thus C is

compact being the closed subset of a compact space.

Remark. The following example shows that a compact subset of a topological space is not

necessarily closed.

For example let T be the finite complement topology on R and let A = {x R, x is rational}

Then A is compact but not closed.
But if the space is Hausdorff, then every compact subset is closed.
First of all we give some definitions.

Definition. A topological space (X, T) is a T;—space provided that for each pair x, y of distinct

points of X, there exist open sets U and V such thatx €U, y ¢U,y eV and x ¢V.

Definition. A topological space (X, T) is a Hausdorff space provided that if x and y are distinct

members of X then there exist disjoint open sets U and V such that xeU and yeV.
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Theorem. 3. Let (X, T) be a Hausdorff space, let A be a compact subset of X andp € X — A.

Then there exist disjoint open sets U and V such that A c U and peV.

Proof. Since X is Hausdorff and A is a subset of X, for each xeA, there are disjoint open sets
Uy and Vi such that xeUy and peVy. Then pu={Uy ; xeA} is an open cover of A. Since A is

compact subset of X, there is a finite subcollection le U U,,, of u that cover A. For

X 1%t

n
eachi=1,2,...,n, U, and the corresponding V,. are disjoint. Therefore U = Y U,, and vV
I=

n
=N V,; are disjoint open sets such that A c U and peV.
1=

Cor.1. Every compact subset of a Hausdorff space is closed.

Proof. Let A be a compact subset of a Hausdorff space (X, T) and let p € X —A. Then by
Theorem 3, there is a neighbourhood U of p such that U < X —A. Therefore X-A is open and

so A is closed. Hence every compact subset of Hausdorff space is closed.

Thus we have proved that a subset A of a compact Hausdorff space is compact if and only if it

is closed.

Theorem. 4. Any continuous image of a compact set is compact.
Proof. Let f : X—Y be a continuous mapping of a compact set X into an arbitrary topological

space Y mapping a compact set E into f(E). We must show that f(E) is compact in Y.
Suppose that {G,, } is an open covering of f(E).
Since Ecf!(f(E)

cf [LG]
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c [Lx) G ]

Since f* (G,.) is open in X. It follows that f *(G,.") is an open covering of E. Since E is

compact, there must be some finite subcovering of E i.e.

n
Ec Y f1(G.)
i=
n *,
But then f(E) gf(_k_J1 fHG))

= U A(F4(GY)

IN
.C
®

and so we have a finite subcover for f(E).
Hence f(E) is compact.

Theorem 5. A topological space is compact if and only if every class of closed sets with empty

intersection has a finite subclass with empty intersection.

Proof. First assume that topological space (X, T) is compact, then a class of open sets is an

open covering = X = UG;
= X°=nG°
= NG =9
Since G;i’s are open = Gic’s are closed.

Thus the class of closed sets has empty intersection.

Since this open covering is reducible to a finite subcovering
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Thus every class of closed sets with empty intersection has a finite subclass with empty

intersection.

Similarly the other part follows.

Theorem. 6. Let (X, T) be a topological space and let B be a basis for T. Then (X, T) is

compact if and only if every cover of X by members of B has a finite subcover.

Proof. Let (X, T) be a compact space and let u be a cover of X by members of B. Then p is an

open cover of X and hence it has a finite subcover since X is compact.

On the other hand suppose every open cover of X by members of B has a finite subcover. We
shall show that X is compact. Let p be an open cover of X. For each uey, there is a
subcollection B, of B such that U = U{B ; B € B.}. Since every member of U is union of

members of subcollection of B. B.

Now, {B ; BeB. for some U € u} is an open cover of X by members of B and hence it has a
finite subcover p”. For each Bep’, choose a member Ug of p such that B = Ug. Then {Ug;

Ben'} is a finite subcollection of p that covers X. Hence X is compact.

Theorem. 7. Every continuous real valued function on a compact space is bounded and attains

its extrema.

Proof. Let X be a compact space and suppose f : X—R is continuous. First we show f is

bounded. For each xeX, let J, be the open interval (f(x)—1, f(x) +1) and let V, = f(J,).
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By continuity of f, V is an open set containing x. Note that f is bounded on each V. Now the
family {Vy ; xeX} is an open cover of X and by compactness of X, admits a finite subcover
say {VX1 Vg e VXn }

Let M = max {f(x1), f(x2),..., f(x,)} + 1 and

let m = min {f(xy), f(X2),..., f(x))} — 1

Now for any xeX, there is some i such that xe V,.. Then f(x;) -1 <f(x) <f(x; + 1 and so

m < f(x) < M showing that f is bounded. It remains to show that f attains its bounds.

Let L, M be respectively the supremum and infimum of f over X. If there is no point x in X for

which f(x) = L, then we define a new function g : X—R by g(x) = ﬁ forall xeX. Then
X

g is continuous since f is so. However g is unbounded, for given any R > 0, there exists x such

that f(x) > L —% and hence g(x) > R. But this contradicts the above part of the theorem and

hence f attains the value L. Similarly f attains the infimum M.

Theorem. 8. Let (X, T) be a compact locally connected space. Then (X, T) has a finite number

of components.

Proof. Suppose (X, T) has infinite number of components. Then since each component of X is
open. Thus the collection of components of X is an open cover of X that does not have a finite
subcover. Since X is compact, this is a contradiction. Hence a compact locally connected

space has a finite number of components.

Remark. The following is the classical theorem of Heine-Borel Lebesgue.
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Theorem. 9. A subset of the Euclidean n-space is E, compact if and only if it is closed and

bounded.

Proof. Let A be a compact subset of E,. Since E, is Hausdorff and A is a compact subset of
Hausdorff space Ep, A is closed. Because of compactness. A can be covered by a finite family
of open spheres of radius one and because each of these is bounded, A is bounded. Thus every

compact subset of Ej, is closed and bounded.

To prove the converse suppose that A is closed and bounded subset of E,,. Let B; be the image
of A under the projection into the ith co-ordinate space and note that each B; is bounded

because the projection decreases distances.

Then AcI1{B;,1i=0, 1,..., n—1} and this set is a subset of a product of closed bounded
intervals of real numbers. Since A is a closed subset of the product and the product of compact
spaces is compact, the proof reduces to showing that a closed interval [a, b] is compact relative
to the usual topology. Let u be an open cover of [a, b] and let C be the supremum of all
members x of [a, b] such that some finite subfamily of u covers [a, X]. Choose U in p such that
CeU and choose a member d of the open interval (a, ¢) such that [d, c] = U. There is a finite
subfamily of p which covers [a, b] and this family with U adjoined covers [a, c] . Unlessc =D
the same finite subfamily covers [a,d] an interval to the right of ¢, which contradicts the choice

of ¢ . Hence the result.

Finite Intersection Property
Definition. A family of sets will be said to have the finite intersection property if and only if

every finite subfamily of the family has a non-empty intersection.
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Theorem. 10. A topological space (X, T) is compact if and only if any family of closed sets

having the finite intersection property has a non-empty intersection.

Proof. Suppose that (X, T) is compact and {F, } is a family of closed sets whose intersection is

empty that is f; Fr=0

=N (TFX)C:q)C:X

and therefore, Y F,C is a covering of X, but (X, T) is given to be compact, therefore there

exists finite subcovering of X i.e.

n
X= UFi
i=1

n n
But then ¢ = X© = (_ulFiC)C =0F
i= i=
so that the family {F; } can not have the finite intersection property. Thus we arrive at a
contradiction.
Hence A Fr#d

Conversely suppose that (X, T) is not compact. This means that there exists an open covering
{G,} of X which has no finite subcovering. To say that there is no finite subcovering means

that complement of the union of any finite number of members of the cover is non-empty,

n
ie. (L_JlGa)C;t(I)
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= éGac # ¢ by De-Morgan’s Law thus {G;} is then a family of closed sets with
finite intersection property. Since {G,} is a covering of X, we have
¢=X= (L}:)Gx)c = QGAC
Thus this family of closed sets with the finite intersection property has an empty intersection

which contradicts our hypothesis.

Hence (X, T) is compact.
Countably Compact and Sequentially Compact
Definition. A topological space (X, T) has the Bolzano-Weieistrrass property provided that

every infinite subset of X has a limit point.

Definition. A topological space (X, T) is countably compact provided every countable open

cover of X has a finite subcover.

Theorem. 11. A topological space (X, T) is countably compact if and only if every countable

family of closed subsets of X with the finite intersection property has a non-empty intersection.

Proof. Suppose (X, T) is countably compact. Let A = {A,; o €A} b a countable family of

closed subsets of X with the finite intersection property. Suppose N A, = ¢. Let

u={X-Ay; 0en}

Since UX-A)=X-NnA,=X-p=X.

[PISTAN [PISVAN

If uis an open cover of X. Since X is countably compact, there exists a finite number oy,

oa,..., o, oOf members of A such that

{X-Ay;1=1,2,...,n} covers X.
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n n
Thus X= _ul(X—Aa) =X —_mlAa and hence
I= 1=

n
_mlAa = ¢. This is a contradiction.
1=

Hence N Ag # 0.

[VASVAN

Suppose every countable family of closed subsets of X with the finite intersection property has

a non-empty intersection. Let

u={U,; a en } be a countable open cover of X.
Suppose p does not have a finite subcover.
Let A={X-U,;a en}. Then Ais a countable family of closed subsets of X. LetT

be a finite subset of A. Since u does not have a finite subcover,

N (X—Ua):X—urUa;tcl).

ael’

Therefore A has the finite intersection property.

Hence n (X-U,) # ¢ since we have assumed that every countable family of closed subsets of

[0ISTAN

X with the finite intersection property has a non-empty intersection. But this is contradiction

since

A (X-Up)=X-U Uy=X-X=¢

[VISAN oen

Therefore (X, T) is countably compact.

Theorem. 12. Every countably compact topological space has the Bolzano-Weierstrass

property.
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Proof. Let (X, T) be a countably compact space and A be an infinite subset of X. Since A is
infinite. A contains a countably infinite set B = {x;, ieN}. We may assume that if i # J, then

Xi # Xj. The proof is by contradiction.

Suppose B has no limit point. Then for each n eN,

Cnh={xjeB;i>n}isaclosed set.
Further, {C, ; n eN} has the finite intersection property. Therefore by the result “A topological

space (X, T) is countably compact if and only if every countable family of closed subsets of X
with the finite intersection property has a non-empty intersection”, ) Cnh#¢. Butif xceB,
n=.

then Xk & Ck+1, and hence
X & N Cp. Therefore N Ch=¢
n=1 n=1

and we have a contradiction. Thus B has a limit point and B — A, A has a limit point, thus
every infinite subset of X has a limit point and hence (X, T) has the Bolzano-Wierstrass

property.

Remark. The converse of the above theorem is not true in a general topological space. It

holds for T, space.

Definition. A topological space (X, T) is a T;—space provided that for each pair X, y of distinct

points of X, there exist open sets U and V such that xeU, y ¢U and yeV, xgV.

Theorem. 13. Let (X, T) be a T;—space. Then X is countably compact if and only if it has the

Bolzano-Weiersttrass property.



52 TOPOLOGICAL SPACES
Proof. Suppose (X, T) has the Bolzano-Weierstrass property. The proof that X is countably
compact is by contradiction. Suppose {U, ; n eN} is a countable open cover of X that has no

finite subcover. Then for each neN,
n -
Ch=X- _ului is a non-empty closed set.
1=

For each neN, let p,eC, and let

A = {pn; neN} If Ais finite, there exists peA such that p, = p for an

infinite number of neN. Thus for each neN, peC,.

This is a contradiction since {U, ; n eN} covers X. Suppose that A is infinite. Then by

hypothesis, there is a point pe X that is a limit point of A.

Since X is a Ty—space and p is a limit point of A, then every neighbourhood of p contains an
infinite number of members of A. Therefore for each neN, p is a limit point of A, = {p; €A; i
>n}. ForeachneN, A, c C,. Since for each neN, C, is closed, peC,. Once again this is a
contradiction, since {U, ; neN} covers X. Therefore X is countably compact.

The other part is already proved in the above theorem.

Theorem. 14. A compact topological space is countably compact.

Proof. We assume that the topological space X is compact and show that every infinite subset

of X has a limit point in X i.e. it is countably compact.

Let E be an infinite subset of X with no limit point in X. So there must exist an open set Gy

containing x such that

EnGi—{x}=¢
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Clearly E n G contains at the most one point x itself. Since the family {Gx}xx forms an open

covering of the compact space X, therefore there must be some finite subcovering i.e.
n
X=uU GXi
i=1

From this, it follows that

n
E=EnX Em(_ul Gxi)
i=

n
Y (E n Gx)
i=

Since E m Gx; contains at the most one point, Therefore E being the finite union of such sets
contains at most n elements and so is finite. This leads to the contradiction. Hence every

infinite subset of X must have at least one limit point.

Definition. A topological space (X, T) is sequentially compact provided every sequence in X

has a subsequence that converges.

There is no direct relationship between compactness and sequential compactness. We give two

examples.

Example of a compact space that is not sequentially compact

For each a.eR, let X, =l and X = n Xq. Then (X, T) is compact but not sequentially

compact.

Example of a sequentially compact space that is not compact.
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Let (2, <) be an uncountable well ordered set with a maximal element W, having the
property that if x eQ and x=W1, then {y €Q ; y < x} is countable. Let T be the order topology

on Q and let Qo = Q —{W}. Then

(QO,TQO ) is sequentially compact but not compact.

Theorem. 15. Every sequentially compact space is countably compact.

Proof. Suppose (X, T) is a topological space that is not countably compact. Let p be a

countable open cover that does not have a finite subcover. Choose x;eX. For each j > 1, let U;

-1
e p that contains a point x; that is notin U U;. We claim, the sequence <x,> does not have a
i=1

subsequence that converges. Let xeX. Then there exists K such that xeUk. Then x; ¢ Uk for
any j > K. Thus no subsequence of <x,> converges to X. Since X is an arbitrary point, no

subsequence of <x,> converges. Therefore (X, T) is not sequentially compact. Hence the

result.

Locally Compact
Paul Alexandroff and Heinrich Tietze independently introduced the concept of local

compactness.

Definition. A topological space (X, T) is said to be locally compact if and only if every point
of X has at least one neighbourhood whose closure is compact that is if for each xe X, there is

an open set O containing x such that C(0) is compact.

i.e. A topological space (X, T) is said to be locally compact if and only if each element xe X

has a compact nbd.
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Remark. Every compact space is locally compact. In fact nbd of each point is the whose space
X and C(X) = X which is given to be compact. But converse need not be true i.e. every locally

compact space need not be compact.

Example. (1) Consider a Discrete topological space (X, D) where X is an infinite set. Then X
IS not compact since the collection of all singleton sets is an infinite open cover of X which is
not reducible to a finite subcovering. On the other hand if x is an arbitrary element of X. Since
every subset of X is open and therefore the neighbourhood {x} of x is open. Evidently {x} is a
compact subset of x since {x} has a finite subcovering. Then x has a compact nbd and so X is

locally compact.

Example. 2. Consider the real line R with usual topology. Observe that each point p eR is
interior to a closed interval e.g. [p -5, p +3] and that the closed interval is compact by the
Heine-Borel theorem. Hence R is locally compact. On the other hand R is not compact for

example the class
A={..(-3,-1),(-2,0), (-1, 1),(0,2), (1, 3),...}

is an open cover of R but contains no finite subcover.
Theorem. 16. Every closed subset of a locally compact topological space is locally compact.

Proof. Let y be an arbitrary point of the closed subset Y of (X, T). Since X is locally compact
at'y, there must exist a nbd N of y such that C(N) is compact. Now C(N) o N. Therefore C(N)

IS T-closed compact nbd of y. Let
M=C(N)nY

Since C(N) and y are T-closed, it follows that M is T-closed. Also M is closed in C(N) and Y
hence M is compact in C(N) being a closed subset of a compact set C(N). It follows that M is

compact in X and consequently in Y. Therefore Y is locally compact.
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Remark. The next example shows that the continuous image of a locally compact space need

not be locally compact.

Example. Let A = {l; neN} and let B = {B €P(R) ; B is an open interval that does not
n

contain O or there is a positive number x such that B = (—x, X) — A}. Then B is a basis for the

topology T on R and the topological space (R, T) is a Hausdorff space. Also A = {l; neN}is
n

a closed subset of R and 0 A.

We know that (R, T) is not locally compact. Let u be the discrete topology on R. Then
(R, ) is locally compact. The function f: (R, u) — (R, T) defined by f(x) = x for each xeR is

continuous. Thus the continuous image of a locally compact space need not be locally

compact. But we have the following more general result.

Theorem. 17. Let (X, T) be a locally compact space and (Y, n) be a topological space and let

f: X—Y be an open continuous function from X onto Y. Then (Y, w) is locally compact.

Proof. Let yeY and xef *(y). But X is locally compact. There is an open set V and a compact
set C such that xeV and V < C. Let U = f(int(C)) and K = f(C). Since xeV < C and V is open,

xeint(C).

Since fis open, U is open and xeInt (C), yeU. Also f is continuous and C is compact, and we
know that continuous image of a compact space is compact, f(C) = K is compact. But U c K.
Thus (Y, p) is locally compact at y. But y is an arbitrary point of y. Thus (Y, p) is locally

compact.

One Point Compactification
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The one point compactification of a topological space X is the set X = X U{c}, where oo is

any object not belonging to X with the topology T~ whose members are of the following type
(i) U where U is an open subset of X.

(ii) X'=C, where C is a closed compact subset of X.

We now check that the collection is infact a topology on X"

The empty set is a set of type (i) and the space X is a set of type (ii). To check that

intersection of two open sets is open, there are three cases.
U; N Uy is of type (i)
(X" = C1) N (X =Cy) = X" —(Cy U Cy) is of type (ii)

Ui N (X =Cy) = Uy N (X =C4) is of type (i) because C; is closed in X.

Similarly the union of any collection of open sets is open

U U, = U is of type (i)

U(X —Cp) =X — (N Cp) = X —C is of type (ii)

(UUq) U (U(X" —Cp)) = Uu(X™ —C)

=X —(C-V)

which is of type (ii) because C-U is a closed subset of C and is therefore compact.
We now show that X" is compact. Let  be the collection of open sets in X covering X. This
collection must contain an open set of the type X —C, since none of the open sets of X contain

the point co. Take all the members of & different from X —C and intersect them with X, they

form a collection of open sets in X covering C. Because C is compact, finitely many of them

cover C. Let
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n
Cc _ul(X NG;), then the class
1=

{X* —C, XN Gy, X NGy,..., X N Gp} covers all of X" and since the

covering is finite, X" is compact.
Finally we show that X is a subspace of X~ and C(X) = X". Given any open set of X, its
intersection with X is open in X since U nX = U and (X'—C) N X = X—C both of which are
open in X. Conversely any set open in X is a set of type (i) and therefore open in X". This
proves our first part. Now we show that C(X) = X" since X is not compact, each open set X —C
containing the point « intersects X. Therefore o is a limit point of X, so that

C(X)=X".
Theorem. 18. The one point compactification X of a topological space X is a Hausdorff space

if and only if X is a locally compact Hausdorff space.

Proof. Suppose X is a locally compact Hausdorff space and x, y are distinct points of X". If
neither x nor y is equal to the ideal point o, then they both belong to X and there must be
disjoint sets containing them which are open in X and so open in X" as desired. We must then
consider the case where one of the points, say y is co while other is in X. By local compactness
of X, there must be some open set G containing x such that C(G) is compact and hence also
closed since every compact subset of hausdorff space is closed. Thus X — C(G) is an open set
in X whose complement is closed and compact in X. By the definition of one point

compactification
{0} L (X-C(G))

is an open set in X~ containing oo which is disjoint from G, an open set in X containing x.
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Conversely suppose that X is a Hausdorff space since X is a subspace of X', and the property
of Hausdorffness is Hereditary, X is a Hausdorff space. Let x be a fixed point of X. Since x
and oo are distinct points of the hausdorff space X', there must exist disjoint open sets G, and

G.," in X" such that

xeGy, and w0eG,,"
However an open set containing oo must be of the form G., = {oo} UG where G is an open set
in X whose complement (in X) is compact. Since oG, , G is an open set in X containing x

whose closure is contained in X—G and hence is compact. Thus X is locally compact.
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SEPARATION AXIOMS(1) AND COUNTABILITY AXIOMS

A topological space may be very sparsely endowed with open sets as we know some spaces
have only two, the empty set and the full space. In a discrete space, on the other hand, every set
is open. Most of the familiar spaces of geometry and analysis fall somewhere in between these
two artificial extremes. The so called separation properties enables us to state with precision
that a given topological space has a rich supply of open sets to serve whatever purpose we have

in mind.

The separation properties are important because the supply of open sets possessed by a
topological space is intimately linked to its supply of continuous functions and since
continuous functions are of central importance in topology, we naturally wish to guarantee that
enough of them are present to make our discussions fruitful. If for instance, the only open sets
in a topological space are the empty set and the full space, then the only continuous function
present are constants and very little of interest can be aid about these. In general, more open
sets there are, the more continuous function, a space have. Discrete spaces have continuous
functions in the greatest possible abundance, for all functions are continuous. The separation

properties make it possible for us to be sure that our spaces have enough continuous functions.

The separation axioms are of various degrees of strengths and they are called To, Ty, T, Tz and Ty
axioms in ascending order of strength, T, being the weakest separation axiom. Tg-property was
introduced by A. N. Kolmogorov and Ti—property was introduced by Frechet in 1907. Hausdorff
introduced the T,—property in 1923. The separation properties were also known as
Trennungsaxiomen.
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Basic Properties of Separation Axioms (T, Ty, T>,)

Definition. A topological space X is called a Ty space if and only if it satisfies the following axiom
of Kolmogorov.

[To] If x and y are distinct points of X, then there exists an open set which contains one of them but
not the other.

It is easy to see why the To—axiom is the weakest separation axiom. For if a space X is not Ty,
then there would exist two distinct points X, y in X such that e every open set in X either contains
both x and y or else contains neither of them. In such a case, x and y may as well be regarded as
topological identical and any topological statement about one of them will imply a corresponding
statement about the other and vice-versa. For example a sequence in X will converge to x if and
only if it converges to y. Thus T, condition is the minimum requirement if we want to distinguish
between x and y topologically.

Examples. (1) Every metric space is Ty

(2) A topological space consisting of two point a, b with the topology T = {¢, X, {a}} is a
To—space. This space is also known as connected double space.

(3)Let T be the topology on R whose members are ¢, R and all sets of the form (a, «) for a
e R. In this space for x, yeR with x <y, there exists an open set containing y but not x for
example the open interval (x, «) although there exists no open set which contains x but not vy.
Hence (R, T) is a To—space.

(4) A topological space with discrete topology is a To—space. Since if x, yeX, then {x}
contains x and is an open set but it does not contain y.

(5) A topological space with indiscrete topology is not To. Infact there is only one open set
X which contains all the points.

(6) Let X be the set of real number x where 0 < x <1 and T be the lower limit topology that
is the open sets in X are null set and the sets 0 < x <k, where 0 <k < 1. Then (X, T) is To.

Remark. Let T and T  be two topologies defined on X and let (X, T) be To—space. If T< T, then
(X, T") is also To—space.

Theorem. 19. The property of a space being a To-space is preserved under one to one, onto, open
mapping and hence is a topological property.

Proof. Let (X, T1) be a To-space and f be one to one open continuous mapping of (X, Ty) into
another topological space (Y, T,). We must show that (Y, T,) is also a To-space.

Let y; and y, be distinct elements of Y. Since f is one-one, onto mapping, there exist xi, X,eX
such that f(x;) = y1 and f(x2) = y.. Again since (X, Tj) is a To-space, there exists an open set G
containing one of x; and X, but not the other. w.l.0.g. suppose that x;G and x,¢G. Since f is
open, the set f(G) is open in T,. However f(G) is such that

f(x1) € f(G) = y1 € f(G)
and f(x2) ¢ f(G) = vy, ¢ f(G)
as desired.
Theorem. 20. Every subspace of a Ty-space is a To-space. (Heriditary property).
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Proof. Let (X, T) be a To-space and (Y1, T*) be a subspace of (X, T). Lety; and y, be two distinct
points of (Y, T"). Since Y < X, yi and y» are also distinct points of X. But X is a To-space, there
must exist a T-open set G such that yeG and y,2G. Then GNY is an open set in Y which contains
y1 but not y,. (Y, T") is a To-space.

Theorem. 21. A topological space (X, T) is a To-space if and only if for every distinct arbitrary
points X, ye X, the closures of {x} and {y} are distinct.

Proof. Suppose that x =y implies that C({x}) = C({y}) and that x and y are distinct points of X.
Since the sets C({x}) and C({y}) are not equal, there must exist some point z of X which is
contained in one of them but not the other. w.l.0.g let us suppose that z eC({x}) and z¢C({y}). If
we had x € C({y}), then we would have xeC[C({y})] = C({y}) and so zeC({x}) < C({y}), which
is a contradiction.

Hence xzC({y}) and so [C({y})]® is an open set containing x but not y showing that X is a T-
space.

Conversely let us suppose that X is a To-space and that x and y are two distinct points of X. Hence
there exists an open set G containing x but not y. Clearly G® is a closed set containing y but not x.
From the definition of C({y}), as the intersection of all closed sets containing {y}, we have
yeC{y}), but xeC({y}), because of G.

Hence CH{x}) = C{y})

Definition. A topological space X is a Ti-space if and only if it satisfies the following separation
axiom of Frechet.

[T1] If x and y are two distinct points of X, then there exist two open sets, one containing x but not
y and the other containing y but not x.

Remark. Clearly T;-space is always a To-space but the converse need not be true. For example,
let N be the set of natural numbers and let

T = {¢, N, all the subsets of N of the form {1, 2,..., N}} be topology on X,
then the subsets are of the type {1, 2}, {1, 3}. This space is clearly T, but not T; as we see from
{1, 2}, {1, 3}, 1 is contained in both the sets.

Similarly in the case of connected double space (X, T), where X = {a, b} and T = {¢, X, {a}}, we
see that it is T but not T; as there exist two open sets {a, b and {a}, which both have a .

(2) (R, T), where T is usual topology is a T1-space.
(3) Let T be the finite complement topology on R. Then (R, T) is a T;-Space

Theorem. 22. A topological space is a T;-space if and only if every degenerate (consisting of
single element) set is closed.

Proof. If x and y are distinct points of a space X in which subsets consisting of exactly one point
are closed, then {x}° is an open set containing y but not x, while {y}° is an open set containing y
but not x, while {y}° is an open set containing x but not y. Thus X is a T;-space.

Conversely let us suppose that X is a Ti-space and that x is a point of X. By Frechet axiom if
y # X, then there exists an open set Gy containing y but not x that is ye Gy ¢ {x}°. Butthen

{3 =U{y;y=x}
c U{Gy;y=x}

c {x}°
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and so {x}° is the union of open sets and hence is itself open. Thus {x} is closed set for every
xeX.

Theorem. 23. Let (X, T) be a Ty-space and f be a 1-1 open mapping of (X, T) onto another
topological space (Y, V). Then (Y, V) is also a T;-space.

Proof. Suppose y; and y, are two distinct points of Y. Since f is bijective, there exists x; and X in
X such that f (X1) = yi, f (X2) = V2.

Since (X, T) is a Ty1-space, there exists open sets G and H such that x;€G, x,¢G, XoeH but x;¢H.
Since f is open, f(G) and f(H) are also open in Y and further

y1 = f(x1) € f(G) but y, = f(x2) ¢ f(G)
and

yo = f(X2) € f(H) but y; = f(X1) ¢ f(H)
which proves that (Y, V) is a T;-space.

Remark. The above theorem proves that the property of a space being a T;-space is a topological
property.
Theorem. 24. Every subspace of a T;-space is a T1-space (Hereditary Property).

Proof. Let (X, T) be a T;-space and (X', T) be a subspace of (X, T). Let x" and y" be two distinct
points of X. Since (X, T) is Ti-space, there exists open sets G and H in X such that x G but
y'¢ G and y eH but x'¢H. But then T -open set X "G contains X but not y" and X" n H
contains y* but not x . Hence (X, T") is also a T;-space.

Theorem. 25. Prove that every finite Ti-space is discrete.

Proof. Let (X, T) be a finite T;-space. Then every degenerate set is closed. Then since finite union
of closed sets being closed. We see that T contains all the subsets of X. Hence (X, T) is discrete.

Theorem. 26. Prove that in a T;-space X, a point x is a limit point of a set E if and only if every
open set containing x contains an infinite number of distinct point of E.

Proof. The sufficiency of the condition is obvious. To prove the necessity, suppose that there is an
open set G containing x for which G m E was finite. If we let

G nE {x} = i_&l{xi}, then each set {xj} would be closed since in a
Ti-space, every degenerate set is closed and the finite union i_&l{xi} would also be a closed set.
But then (i_“ni{xi})c NG
would be an open set containing x with

[(UAX})° 6] NE 3}

= (DO A (L) =0

= x would not be a limit point of E.
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Remark. It follows from the above theorem that a finite set in a Ti-space can not have a limit
point.

We can also prove it as follows.

A finite set is a union of finite number of degenerate sets each of which has the null set as their
derived set. So the derived set of a finite set in a T;-space is a null set.

Theorem. 27. A Ti-space X is countably compact if and only if every countable open covering of
Xis reducible to a finite subcover.

Proof. Let a T;-space X be countably compact and suppose (Gn}nen IS @ countable open covering
n

of the countable compact space X which has no finite subcover. This means that Y Gi does not
=

contain X for any neN. If we let

n
Fo = (_ulGi)C, Then each F, is a non-empty closed set contained in the
1=
preceding one. From each F,, let us choose a point x, and let E = - {xn}. The set E can not be
ne

finite because there would then be some point in an infinite number and hence all of the sets F, and
this would contradict the fact that the family {G,}ncn IS a covering of X which has no finite
subcover. Since E must be infinite, we may use the countable compactness of X to obtain a limit
point x of E. But by the result “In a T;-Space X, a point x is a limit point of a set E if and only if
every open set containing x contains an infinite number of distinct points of E”, every open set
containing x contains an infinite number of points of E and so x must be a limit point of each of
the sets E, = U {x;}. For each n, however E, is contained in the closed set F, and so x must belong
I>n

to F, for every neN. This again contradicts the fact that the family {G,}nen IS @ covering of X.
Hence the condition is necessary.

Conversely let us suppose that a T;-space X is not countably compact that is E is an infinite subset

of X such that E has no limit point. Since E is infinite, we may choose an infinite sequence of

distinct points x, from E. The set A = - {xn} has no limit point since it is a subset of E and so in
ne

particular, each point x, is not a limit point of A. This means that for every neN, there exists an
open set G, containing X, such that

An{Gn}-{X}=1¢
From the definition of A, we see that A N G, = {x,} for every neN. Since A has no limit point, it
is a closed set and hence A is open. Then the collection A® U {G,}ncn is countable open covering

of X which has no finite subcover since the set G, is needed to cover the point x, for every neN as
XneX and X,’s are infinite in number. Thus the condition is sufficient.

Theorem. 28. If f is a continuous mapping of the T;-space X into the topologica*l space X, then f
maps every countably compact subset of X onto a countably compact subset of X'.

Proof. Suppose E is countably compact subset of X and {G, } is countable open covering of f(E)
we need only show that there is a finite subcovering of f(E) since we note from the theorem, that
the condition of this theorem is always sufficient, as f is continuous, {f *(G,)} is a countable open
covering of E. In the induced topology, {E ~n (G, )} is a countable open covering of the
countably compact T;-space E. By the above theorem, there exists some finite subcovering

{E N1 (G}, and clearly the family {G";}, is the desired finite subcovering of f(E).
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Definition. A topological space X is said to be a T,-space or hausdorff space if and only if for
every pair of distinct points x, y of X, there exist two disjoint open sets one containing x and the
other containing y.

Examples. (1) Every discrete topological space is Hausdorff. Also no indiscrete space containing
at least two points is Hausdorff.

(2) Usual topological space (R, U) is an Hausdorff space.
(3) and T1={¢, {a}, {b}, {c}, {a b}, {b, c}, {c, a}, X}
T2={¢, {a}, {b, c}, X}
Clearly T, is an Hausdorff topology but the topology T is hot Hausdorff.
(4) All metric spaces are Hausdorff.

Remark. Every T-space is Ty, but the converse need not be true. An infinite set with cofinite
topology is T; but not T,. In fact, no two open sets in are disjoint unless one of them is empty.

Theorem. 29. Every singleton of a Hausdorff space is closed.

Proof. Let (X, T) be a Hausdorff topological space and xeX. Let y be an arbitrary point of X
distinct from x. Since X is Hausdorff, there exists an open set Gy containing y such that xgG,. It
follows that y is not a limit point of {x}. Consequently
d({x}) = ¢.
COx}={Fud{x}={}uo={x}
= {x} is closed.

Theorem. Let T and*T* be two topologies on a set X such that T is finer than T. If (X, T) is
Hausdorff, then (X, T") is also Hausdorff.

Proof. Let x and y be two arbitrary points of X, since (X, T) is Hausdorff, there exist disjoint
T-open sets G and H such that xeG and yeH. Since T = T, the sets G and H are also T -open
such that xeG and yeH and G n H = ¢. Hence it is a T,-space.

Theorem. 30. The property of being a T,-space is Cogradient or Heriditary property.

Proof. Let (X, T) be a T, space and suppose that (X", T") is a subspace of X. Let X, y be two
distinct points in X. Since x and y are also points of X which is given to be a T»-space, there
exists two disjoint open sets G and H such that G contains x and H contains y. Then the sets G
n X" and H n X are disjoint open sets in X" containing x and y respectively. Hence X is a
Hausdorff space.

Theorem. 31. Every compact subset E of a Hausdorff space X is closed.

Proof. We shall prove that E is closed by showing that E is open. Let x be a fixed point of E. By
Hausdorff property for each point yeE, there exist two disjoint open sets Gx and Gy such that
xeGy and yeGy. The family of sets {Gy; yeE} is an open covering of E. Since E is compact,

there must be some finite subcovering {Gyi}i”:l. Let {GXi}i”:l be the corresponding open sets

n
containing x and let G = _mlexi. Then G is an open set containing x since it is the intersection of a
1=

finite number of open sets containing x. Further we see that
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n n Io n c c
G=NG,c N(Gy,) :(tiGyij c E.

Thus each point in E® is contained in an open set which is itself contained in EC. Hence EC is an
open set and so E must be closed.

Theorem. 32. If f is one to one continuous mapping of the compact topological space X onto the
T,-space X, then f is open and so f is a homeomorphism.

Proof. Let G be an open set in X so that X—G or X/G is closed. But every closed subset of a
compact space is compact. Therefore X/G is compact. Also we know that if f is a continuous
mapping of (X, T) into (X", T'), then f maps every compact subset of X onto a compact subset of
X". Thus f(X/G) is compact in the Hausdorff space X". Also by the result “Every compact subset
of a Hausdorff space is closed”, we have f(X/G) is closed. Thus X /f(X/G) is open. Since f is one to
one and onto,

X' If(XIG) = f(G) which is open.

Definition. Let (X, T) be a topological space and xeX. Let <x,> be a sequence of points in X,
then the sequence has limit x or converges to x written as lim x, = x or x,—X if and only if for
every open set G containing X there exists an integer N(G) such that x,eG whenever n >N(G).

A sequence will be called convergent if and only if there is at least one point to which it converges.
Every subsequence of a convergent sequence is also convergent and has the same limits. The
convergence of a sequence and its limits are not affected by a finite number of alternations in the
sequence, including the adding or removing of a finite number of terms of the sequence.

It is the failure of limits of sequences to be unique that makes this concept unsatisfactory in
general topological spaces for example let T be the trivial topology on a set X and let <x,> be a
sequence in X and x be any member of X, then <x,>—X.

However in a Hausdorff space, a convergent sequence has a unique limit as the following theorem
shows.

Theorem. 33. In a Hausdorff space, a convergent sequence has a unique limit.

Proof. Suppose a sequence <x,> converges to two distinct points x and x " in a Hausdorff space X.
By the Hausdorff property, there exists two disjoint open sets G and G™ such that xeG and X €G".
Since x,—>X, there exists an integer N such that x,eG whenever n>N. Also x,—>X, there exists an
integer N” such that x,eG" whenever n>N". If m is any integer greater than both N and N”, then xp
must be in both G and G~ which contradicts that G and G are disjoint.

Remark. The converge of this theorem is not true.

Theorem. 34. If <x,> is a sequence of distinct points of a subset E of a topological space X which
converges to a point xe X then x is a limit point of the set E.

Proof. If x belongs to the open set G, then there exists an integer N(G) such that , x,eG for all
n > N(G). Since the points x,'s are distinct, at most one of them equals x and so E n G —{x} # ¢,
this implies that x is a limit point of E.

Remark. The converse of this theorem is not true, even in a Hausdorff space.

Theorem. 35. If f is a continuous mapping of the topological space X in to the topological space
X", and <x,> is a sequence of points of X which converges to the point xeX, then the sequence <
f(xn)> converges to the point f(x) eX'.
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Proof. If f(x) belongs to the open set G” in X, then f(G") is an open set in X containing x, since f
is continuous and we know that if f is continuous, then inverse image of every open set is open,
then there must exist an integer N such that x, f*(G"), whenever n>N. Thus we have f(x,)eG"
when n > N and so f(x,)—f(x). Hence <f(x,)> converges to the point f(x) eX".

Remark. The converse of this theorem is also not true even in a Hausdorff space, that is the
mapping f for which x,—x implies f(x,)—f(x), may not be continuous. For example, let X be the
Hausdorff space of ordinals less than or equal to the first uncountable ordinal r with order
topology. The real valued function f, defined by setting f(a) = 0 if o < r and f(r) = 1 is not
continuous at r, even though it does preserve convergent sequences.

Theorem. 36. An infinite Hausdorff space X contains an infinite sequence of non-empty disjoint
open sets.

Proof. If X has no limit point, then X must have the discrete topology since singletons are closed
in a Hausdorff space. Thus any infinite sequence of distinct points of X would serve as desired
sequence.

Suppose, then that x is a limit point of X. Choose x; to be any point of X different from x. Since X
is Hausdorff, there exists two disjoint open sets G; and V; such that x;€G; and xe V3. Since x is a
limit point of X belonging to the open set Vi, there exists some point x,e X N Vi —{x}. Again
since X is Hausdorff, there exist two disjoint open sets G, and V, such that x,eG, and xeV, .
If we let

G, = Gz* NVq and Vs = sz* N Vi,
then G, and V; are disjoint open sets contained in V; and hence disjoint from G; containing x, and
X respectively.
We will now proceed by using an inductive argument. Since we have already defined the points
{xx} and the open sets {Gk} and {V} with the properties that xx e Gk < Vk-1, XeVk < Vk-1 and

Gk N Vi = ¢ for all K <n. Now x is a limit point of X belonging to the open set V, and so there
exists some point Xp+1e X N Vo—{x}. Since X is Hausdorff, there exist two disjoint open sets

G,,, and V. such that Xpe G ,and xe V,,,. Ifwe let Gpuy =G ;n Vaand Vo = Vo, N Vi,

n+l*

Then Gp+1 and Vy41 are two disjoint open sets contained in V, (and hence disjoint from G,)
containing X,+1 and x respectively. Since the sets {V} are monotonic decreasing, we see that Gp+1
is not only disjoint from G, but is also disjoint from Gk for k < n. Since x, €G,, the infinite
sequence <G> defined by induction is the desired sequence of non-empty, disjoint open sets.

First and second countable spaces

The first axiom of countability, the second axiom of countability and seperability are countability
axioms.

First axiom of countability

The first axiom of countability was introduced by Hausdorff. A topological space X is a first
axiom space or first countable space if it satisfies the following first axiom of countability.

[C1] For every point xe X, there exists a countable family {B,(x)} of open sets containing x such
that whenever x belongs to an open set G,

Bn(x) < G for some n
The family {B,(x)} is called a countable open base at x.
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Examples. (1) Let T be the lower limit topology on R. Then (R, T) is first countable.
(2) If T is the usual topology on R. Then

{(—lljn e N} is a local basis at O.
nn

(3) Every metric space is first countable.
Remark. Let T be the finite complement topology on R. Then (R, T) is not first countable.
Theorem. 37. The property of being a first axiom space is hereditary.

Proof. Let peY. Since Y < X, peX. But (X, T) is first countable, so there exists a countable T-
local base.

Bp={Bn; neN} at p. Set

Bp* ={Y N B, ; neN}isa T -local base at p. By is clearly countable. Hence
the result.

Theorem. 38. Let (X, T) be a first axiom space. Then there exists a monotone decreasing local
base at every point of X.

Proof. Let {B, (X)} be a local base at x.
We set B1 (X) = B1(x)
B2'(X) = B1(X) M Ba(X)
B3 () = B1(X) N Ba(X) N B3(X)

Bn (X) = " {B«(X) ; k<n}
Then clearly {B,"(x)} is a monotone decreasing countable open base at x.

Theorem. 39. Let X be an uncountable set and oo be a fixed point of X. Let be the family of
subsets G such that either (1) o ¢G or (ii) G and G is finite. Then (X, T) is compact, non-first
axiom, Hausdorff topological space (This space is known as Fort’s space.)

Proof. First of all we show that (X, T) is a topological space.

Theorem. 40. A topological space X satisfying the first axiom of countability is a Hausdorff
space if and only if every convergent sequence has a unique limit.

Proof. We know that in a Hausdorff space, a convergent sequence has a unique limit. Therefore
the necessary part of the theorem is proved.

Now suppose that X is not a Hausdorff space. Therefore there must exist two points x and y such
that every open set containing x has a non-empty intersection with every open set containing .
Therefore if {B, (x)} and {Bn(y)} are monotone decreasing countable open bases at x and y
respectively. We must have Bn(X) N Bp(y) # ¢ for every n and so we may choose a point X,
belonging to this intersection for each n. If Gy and Gy are arbitrary open sets containing X and y
respectively there must exist some integer N such that Bn(x) = Gx and By(y) < Gy for all n > N by
definition of a monotone decreasing base. Hence x,—x and x,—Y so that we have a convergent
sequence without a unique limit.
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Theorem. 41. If x is a point and E is a subset of a T;-space X satisfying the first axiom of
countability, then x is a limit point of E if and only if there exists a sequence of distinct points in E
converging to x.

Proof. We know that if <x,> is a sequence of distinct points of a subset E of a topological space X
which converges to a point xeX, then x is a limit point of the set E. Therefore the sufficiency of
the theorem is proved. Now suppose that xed(E) and let {Bn(x)} = {Bn} be a monotone decreasing
countable open base at x. Since x belongs to the open set B, the set B, n E —{x} must be infinite
since we know that “In a T1-space X, a point X is a limit point of a set E if and only if every open
set containing X contains an infinite number of distinct points of E”. By induction we may choose
a point X, in this set different from each previously chosen xx with k < n. Clearly x,—X since the
sets {B,} form a monotone decreasing base at x.

Theorem. 42. Let f be a mapping of the first axiom space x into the topological space X". Then f
is continuous at xe X if and only if for every sequence <x,> of points in x converging to x we have
the sequence <f(x,)> converging to the point f(x) X

Proof. Suppose first that f is continuous and that <x,> is a sequence of points of X which
converges to the point xeX. Then it is already known that the sequence <f(x,)> converges to the
point f(x) eX". Hence the condition is necessary.

Conversely suppose that f is not continuous at x so there must exist an open set G™ containing f(x)
such that f(G) N (G")© # ¢ for any open set G containing x. Let {B,} be a monotone decreasing
countable open base at x. Then f(B,) n (G')© # ¢ for each n and we may pick x, e f(By) N (G")°.
Since x, e f(By), we may choose a point x, € By, such that f(x,) = X, . We now have x,—>X since
the sets {B,} form a monotone decreasing base at x. The sequence <f(x,)> = <x, > can not
converge to f(x), however since x, (G")° for all n. Hence we arrive at a contradiction.

Second axiom of Countability
This axiom was introduced by Hausdorff.

Definition. A topological space (X, T) is a second axiom space or second countable if and only if
it satisfies the following second axiom of countability.

[C.] there exists a countable base for the topology T.

The real number system with usual topology is an example of a second axiom space since we may
choose the family of all open intervals with rational end points as our countable base while R with
lower limit topology is not second countable.

Theorem. Every second axiom or second countable space is first countable.

Proof. Let (X, T) be a second axiom space and let B be a countable base for T. Let p be an
arbitrary point of X. If B, consists of all those members of B which contain p, then it is clear that
By is a local countable at p.

Remark. But the converse is not true i.e. every first countable space need not be second countable.

For example the discrete topology on any countable set has no countable base since each set
consisting of exactly one point must belong to any base, even though there is a countable open
base at each point x obtained by letting Bn(x) = {x}.

Theorem. 43. The property of being a second axiom space is Hereditary.
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Proof. Let (X, T) be a second countable space and let B = {B,, ; neN} be a countable base for T.
Let (Y, T') be a subspace of (X, T). Clearly the collection B = {Y n B, ; x €N} is a base for T~
which is clearly countable.

Theorem. 44. The property of being a second axiom space is a topological property.

Proof. Let (X, T) be a second countable space and let (Y, V) be its homeomorphic image under the
homeomorphism f : X—Y. Let B = {B,, ; neN} be a countable base for T. we shall show that the
collection {f(B,) ; neN} is a countable base for V.

Clearly, this collection is countable. Further, since f is open, each f(B,) is V-open. Let G be the
V-open subset of Y. Then f1(G) is a T-open set since f is continuous. Therefore f*(G) is a union
of B, ; L eawhere A < N. Therefore

G =f[U{B:; A A}]
= U [f(By) ; hen]
Thus any V-open set G can be expressed as the union of members of {f(B,); neN}. Hence {f(B,) ;
neN} is a countable base for (Y, V).

Definition. We shall call a point x, a condensation point of a set E in a topological space if and
only if every open set containing x contains an uncountable number of points of E.

Theorem. 45. Let (X, T) be a second countable space and let A be an uncountable subset of X.
Then some point of A is a condensation point of A.

Proof. Let B = {B, ; neN}

be a countable base for T and suppose that no point of A is a condensation point of A then for each
point xeA, there exists can open set G containing x such that G n A is countable. Since B is a
base, we may choose B,

€Bq [nx € N] suchthatx e B, < Gandso B, ~ Aiscountable. But we may write
A=U{x;xeA)c U{B, nA;x e A}

and there can be at most a countable number of different indices since for each xe A, we must get a
different B, suchthat B, ~ Aiscountable. AlsoXx =y < {X} = {y}

SAN B, AN Bny < B, # Bny. Therefore there exists one-one correspondence

between the elements of A and the members of subcollection B. Hence A is at most countable
union of countable sets and so countable. This contradicts the hypothesis. Hence every
uncountable subset of a second axiom space contains a condensation point.

Theorem. 46. In a second axiom space, every collection of non-empty disjoint open sets is
countable.

Proof. Let (X, T) be a second axiom space. Suppose {Bn} is a countable base for T. Also let G be
a collection of non-empty open disjoint sets of X. Since the sets {B,} form a base, for each set G
in the collection G, there must exist at least one integer n such that B, < G. Since the members of
the collection G are disjoint, different integers will be associated with different members. If we
order the collection G according to the order of the associated integer for each member, we obtain
a (possibly finite) sequence which contains all the members of G. Therefore G is countable.

2.8 Lindelof Theorems.
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Lindelof spaces were first studied by Ernst Lindelof. He proved in 1903 that every second axiom
space is Lindelof.

Definition. A topological space (X, T) is said to be Lindelof space if and only if every open
covering of the space is reducible to a countable subcovering.

Every compact space is Lindeloff space but the converse need not be true for example let X be
countable and (X, T) be discrete topological space. It is Lindeloff but not compact.

Theorem. 47. (Lindelof’s Theorem). In a second axiom space, every open covering of a subset is
reducible to a countable subcovering that is every second axiom space is Lindeloff.

Proof. Let (X, T) be a second countable or second axiom space and let {B,} be a countable base
for T. Also let E be a subset of X which has G as an open covering. We wish to show that G is
reducible to a countable subcovering.

Let N(g) be the countable collection of integer n such that B, < G for some GeG. with each
integer neN(g), we may then associate a set G,eG such that B, < G, the family {G, ; neN(g)} is
clearly a countable subcollection of G and we assert that it is a covering of E. Let xeE, since G is
a covering of E, xeG for some Ge G. From the definition of base, we have xeB,, < G for some
integer n. This means however that neN(g) and so xeB, < G, which proves that

E < U{Gy; neN(g9)}
This implies that E has a countable subcovering.

Remark. The converse of the above theorem is not true that is every Lindelof space need not be
second axiom.

Analysis. Let X be any uncountable set and let T = {¢, complements of finite sets}. We show first
that the space (X, T) is Lindelof. Let ¢ be any open cover of X and let G be any member of .
Now G is the complement of a finite set say A = (ai, ay,...,an). TO cover these n points, we need at
most members of C. This shows that (X, T) is Lindelof.

We shall now show that (X, T) is not second axiom or second countable. If possible let there exists
countable base B for T. Let xe X, then we claim that

N{G ; Gisopen;xeG}={x}

because the complement of every other point is an open set containing X. Now let H = X—{y}.
Then H is an open set containing x and so the above intersection can not be {y} but {x}.

Now for each open set G containing X, we find out Be B such that xeB < G. As G runs through
all open sets containing x, B runs through those members of B which contain X. Hence the
intersection of all those members of B which contains x is {x}.

Let D be the collection of all those members of B which contain x that is
N {D ; DeD} = {x}.

Taking complements of this countable intersection, we obtain the union of countable number of
finite sets.

w{D®, D eD} = {x}
The R. H. S. is uncountable but the left hand side is countable which is a contradiction.
Hence (X, T) is not second axiom space.
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Theorem. 48. A continuous and onto image of a Lindelof space is a Lindelof space.

Proof. Let (X, T) be a Lindelof space and let f be a mapping f : (X, T) = (X, T') which is
continuous and onto. Let

—={A, ; Len} be a T -open cover of Y
so that Y = U{As; Len}
Hence Y] = f L [U{A. ; Lend]
= U[f 1 (A)); Aen]

Since f is continuous, each f* [A;] is a T-open subset of X. Since (X, T) is Lindeloff, this cover is
reducible to a countable subcover, say [f(Ax)]ien SO that

X = U{f[Ax] ; ieN}
Hence f(X) = flU€f ™ (An)3ien]

= U[F{f "(An)}]

since f is onto, f(X) = Y and f [f "(An)]= Axi
and therefore Y = U { Ax;; ieN}
which proves that (Y, T') is Lindelof.

Theorem. 49. Every closed subspace Y of a Lindeloff space (X,T) is Lindeloff.

Proof. Let (X, T) be a Lindelof space and YcX
Let C={G, :reN}
Be a T -open cover of Y so that
Y = U{G; ; Len}
=U{G,. nY ; Len}
since G, = G, N Y for all e and where G;_is T-open
=U[Gy; AenA]l nY
Therefore Y c U{G; ; Len}
Also X —Y is T-open, then the collection
{G,.; er} UU{X -Y}
is a T-open cover of X since Y is closed. But by hypothesis (X, T) is Lindeloff. This open cover
has a countable subcover. Now two cases arise.

Case |. When this subcover contains X —Y as one of its member. In such a case dropping this out
from the subcover gives us a countable family of T-open sets, say G;, Go....,G, that cover Y so
that

Y = U{G,; neN}

Case Il. If this subcover does not contain X-Y, in that case let this subcover be denoted by {Gu;;
ieN}. Then {Gri 0 Y; ieN} is a countable subcover of C that covers Y.

2.9. Separable Space
Definition. A subset E of a topological space X will be called dense in X if and only if
C(E) =X.

Definition. A topological space (X, T) is said to be separable if and only if there exists a countable
dense subset of X.

For example the space (R, U) is separable since the set Q of rational numbers is a countable dense
subset of R that if C(Q) =R



TOPOLOGY 73

On the other hand, let X be uncountable and (X, T) be discrete. Then (X, T) is not separable since
X is the only set whose closure is X itself.

Definition. A space (X, T) is said to be Hereditary separable if and only if each subspace of the
space is separable.

Theorem. 50. Every second axiom space is Hereditary separable.

Proof. Since every subspace of a second axiom space is second axiom, it is sufficient to prove that
every second axiom space is separable.

Let (X, T) be a second axiom space. Let B ={B,; neN} be a countable base for it. For each neN,
are choose a point b, €B, and thus obtain a set B = {b, ; neN}. Clearly B is countable. We shall
show that B is dense in X.

Let x be an arbitrary point of X and let G be an open set containing x. Since B is a base for T, there
exists at least one Bnoe B such that xeBn,cG.

By the definition of B, bn,eB is such that bn, €Bn, —G. Thus G contains a point of B. So every
open set containing x contains a point of B and so xeC(B). Thus we have shown that
xeX =xeC(B) = X<C(B)
Also CB)c X
Therefore X =C(B)
Hence X is separable.

Remark. The converse of this theorem is not true i.e. every separable space need not be second
axiom. For example, let X be uncountable and T = {¢, all subsets A of X such that A cor. X-A is
finite. We can check that (X, T) is not second axiom space. Let A be any infinite countable subset
of X. Then C(A) = X which implies that X is separable.

Theorem. 51. A continuous onto image f of a separable space X is separable.

Proof. Let A be a countable dense subset of X. Then clearly f(A) is also countable. We wish to
show that f(A) is dense in Y where f : X—>Y.

Let y be an arbitrary point of Y. Since Y is onto image of X, there exists some xeX such that f(x)
=vy. let G be a T -open set in Y containing y so that y = f(x)eG. But f(x) eG = xef (G) since f is
continuous. f*(G) is T-open neighbourhood of x. Now A is dense in X implies that C(A) = X

= FUG)NA =
and therefore f[FY(G) N A] = ¢
or f(F1(G)) N f(A) = ¢
= Gnf(A)=o
This shows that every neighbourhood of y intersects f(A) that is y eC[f(A)]. Thus we have shown
yeY = yeC[f(A)]
= Y < C[f(A)]
Also C[f(A)lcY
Hence Y = C[f(A)]

Which proves that Y is separable.
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5

SEPARATION AXIOMS (PART II)

Regular Spaces

Regular spaces were first studied by Victoris in 1921.

Definition. A topological space X is regular if and only if it satisfies the following axiom of
Vietoris

(R) If Fis a closed subset of X and x is a point of X not in F, then there exist two disjoint open
sets, one containing F and the other containing x.

Definition. A Ts-space is a regular space which is also a T;-space.

Remark. Although every Ts-space is obviously a T,-space, a regular space need not be a
T,-space and a T,-space need not be a regular T3-space.

Example. Let X={a, b, c}

and T={¢, (b, c), (a), X}

Then X, (a), (b, ¢) and ¢ are closed (being the complements of open sets) It can be seen that
(X, T) is regular but not Tz-space (In fact it is not T; and T, also) (v of (b, €))

Example. Let A= {1, n € N} and B = {B € P(R), B is an open interval that does not contain 0
n

or there is a positive number x such that B = {(—x, X) —A}. Then B is a basis for a topology T on R

and the space (R,T) is a Hausdorff space. Also A = {1, n e N }is a closed subset of R and
n

0 ¢ A. However, if U and V are open sets such that Ac Uand 0 € V, then U NV # ¢. Hence
(R, T) is not regular.

Theorem. 1. A topological space X is regular if and only if for every point xeX and open set G
containing x there exists an open set G* such that xeG* and C(G*) c G.

Proof. Suppose X is regular and the point x belongs to the open set G. Then F = X — G is a closed
set which does not contain x. Since (X, T) is regular, there exist two open sets Gr and G, such
that F — Gr, xe G™,and Ge n G~ = ¢. Since G* =G¢, and therefore
C(G") = C(GF)
= G¢ (~~ G is closed)
cF°=G
Conversely suppose that the condition holds and x is a point not in the closed set F. Then x belongs

to the open set F© and by hypothesis there must exist an open set G* such that xeG* and C(G*) =
F©. Clearly G* and [C(G™*)]* are disjoint open sets containing x and F respectively.
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= (C(GM) 2(F)°=F.

Theorem 2. A Ti-space (X, T) is regular if and only if for each p € X and each closed set C such
that p ¢ C, there exist open sets U and V such that

CcUpeVand Un V=¢.

Proof. Suppose (X, T) is a regular space. Letp € X and C be a closed set such that p ¢ C. Then
X—C is a neighbourhood of p and hence by Theorem 1, there is a neighbourhood W of p such that
W < X-C. Again by Theorem 1, there is a neighbourhood V of p such that V < W. Let
U=X- W,since WcX-C,CcX-WcU.

Further
VA UcWnX-W)=6.
Therefore U and V are desired open sets.

Remark. Since in a Hausdorff, every singleton set is closed for each p € X . It follows that a
compact Hausdorff space is regular.

Remark. Regular space satisfies Hereditary and topological property.
Theorem. 3. Regularity is a topological property.

Proof. Let (X, T) be a regular space and let (Y, T*) be homemorphic image of (X, T) under a map
f. Let F be a T*-closed set and y is a point of Y which is not in F. Since f is one to one onto
function, there exists xe X such that f(x) = y. Now f being continuous, f*(F) is closed in X. Since
y ¢F, we have fi(y) ¢ f(F) = xef*(F) (since x = f(x)). Thus xeX, such that x¢f*(F) which
is T-closed. Now regularity of (X, T) implies that the exist two disjoint open sets G and H such
that xeG and f'(F) = H, GNH = ¢ = f(x)ef(G) and f(f*(F)) = f(H) and f(GH) = f(¢) =
yef(G) and F < f(H) and f(G) » f(H) = ¢ Since f is open, we have f(G) and f(H) are open sets of
Y whenever, G and h are open in X. Hence there exists two disjoint open sets f(G) and f(H) in
(Y, T*) such that yef(G) and F < f(H). Hence (Y, T*) is regular.

Theorem 4. Regularity is a Hereditary property.

Proof. Let (X, T) be a regular space and (X*, T*) be a subspace of it. Suppose that F* is closed set
in X* and x*eX* such that x* is not in F*. Then C(F*) = C(F) n X* where F is closed in X. Since
F* is closed, therefore F* = C(F*) = C(F) n X*. Then x*¢F* = x*¢C(F) n X* = x*¢ C(F) or
x*gX* = x*¢ C(F) for x*eX*. But C(F) is closed set, since the closure of any set is closed and
(X, T) is regular, x*e X and x*¢C(F), 3 two disjoint open sets G and H such that x*G and C(F)
c H. Then C(F) n X* < H n X* and x* € G n X* and moreover (HNX*) N (GNX*) =
(GAH)N(XNX*) = ¢ nX* = ¢. Thus it follows that to each point x*eX* and a closed set F*, 3
disjoint open sets GNX* and HNX* such that x*eGnX* and F* = C(F) n X* < HnX* Hence
(X*, T*) is regular.

Normal Spaces
Normal spaces were introduced by Victoris in 1921 and by Tietz in 1923.

Definition. A topological space X is said to be normal if and only if it satisfies the following
axiom of Urysohn:

[N] If F; and F, are two disjoint closed subsets of X, then there exist two disjoint open sets, one
containing F; and the other containing F.
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Definition. A T4-space is a normal space which is also a T;-space.
Example. Let X={a, b, c}
and T={¢, X, (b, ¢), (a)}

Clearly (X, T) is a normal space as {a} and {b, c} are closed as well as open disjoint sets such that
{a} < {a} and {b, c} < {b, c}. As already proved it is not T;. Therefore (X, T) is not T4-space.

Theorem. 5. A topological space (X, T) is normal if and only if for any closed set F and open set
G containing F, there exists an open set G* such that F — G* and C(G*) < G.

Proof. Suppose (X, T) is normal and the closed set F is contained in the open set G. Then
K = X-G is a closed set which is disjoint from F. Since the space is normal, there exist two open
sets G~ and Gk such that F = G™ and K = Gk and G™ NGy = ¢. Since G~ = X -Gy = G, we
have

C(G") = C(X - Gy

=X-Gk [ X-Gk is closed]
c X-K=G.[» Kc Gk =K 26«Y]

Conversely, suppose that the condition holds and let F; and F;, be two disjoint closed subsets of X.
Then F; is contained in the open set X — F;, and by hypothesis, there exists an open set G* such
that F1 < G* and C(G*) < X-F,. Clearly G* and X-C(G*) are the desired disjoint open sets
containing F1 and F; respectively.

Remark. Although the property of normality is topological but it is not hereditary, which follows
from the following theorem.

Theorem. 6. Normality is a topological property.

Proof. Let (Y, T*) be an homemorphic image of a normal space (X, T) under the homemorphism
f. Let G* and H* be two disjoint T* closed sets in Y. Since f is continuous, f }(G*) and f (H*)
are T-closed sets in (X, T) satisfying f (G*) n f (H*) = f {(G*H*) = f "(¢) = ¢. The space
(X, T) being normal, there exist two disjoint open sets G and H such that f*(G*) c G and f*(H*)
c H. Then f [f 1(G*)] < f(G) and f [f (H*)] < f(H), that is G* < f(G) and H*f(H). Since f is
an open mapping, f(G) and f(H) are open sets in Y. Moreover f(G) n f(H) = f(G n H) = f(¢) = ¢.
Thus we have shown that if G* and H* are two disjoint closed subsets of Y, then there exists two
disjoint open sets f(G) and f(H) such that G* < f(G) and H*cf(H). Hence (Y, T*) is normal.

Theorem. 7. (Urysohn’s Lemma.) A topological space X is normal iff for every two disjoint
closed subsets F; and F, of X and closed interval [a, b] of reals, there exists a continuous mapping
f: X—[a, b] such that f[F1] = {a} and f[F;] = {b}.

Proof. Since the mapping h defined by h(x) = (b—a) x +a is a continuous mapping of [0, 1] onto
[a, b], it suffices to prove the result for the closed interval [0, 1].

Suppose first that F; and F, are closed subsets of X such that F; N F, = ¢ and g a
continuous mapping from X to [0, 1] satisfying the conditions g(Fi1) = {0} and g(F,) = {1}. We
want to prove that (X, T) is normal. To prove it, let

orfet) e

we shall show that G and H are disjoint open subsets of X such that F; c Gand F,  H.
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Since {O, %J and G 1} are open subsets of [0, 1]. (In fact they are open sets of the lower limit

topology) and f is a continuous map, it follows that G and H are subsets of X.

Further f(F1) = {0} = F; < F1({0}) (1)
and {0} < {o, %j — 0} f{o, %}

=X {0} =G 2
From (1) and (2), we have F; c G.
Similarly f(F2) = {1} = F, < ({1} (3)
and {ﬂc(%{wzﬂqnyﬁlﬂ%J% (4)

From (3) and (4), it follows that F, < H.

e

=f0)=¢
= (X, T) is normal space.

Conversely suppose that (X, T) is a normal space. We need only construct a continuous mapping g
X—[0, 1] such that for every pair, F;, F, of disjoint closed subsets of X, we have g(F;) = {0} and
g(F2) = {1}. Then f =hog will be the required mapping.

We will first define a collection {G; ; r rational} of open sets such that C(G;) < Gs, r < s, in the
following way.
Let Gr=¢forallr<0

r=Xforallr>1.

Next, we define G; = X — F, which is an open set containing F; with the desired property. By the
characterization of normality, G; contains an open set G containing F; such that C(Go) < Ga.

Now let {r,}nen be a set of all rationals in [0, 1] with r; =0 and r, = 1. For each n > 3, we will
inductively define the open set G, by taking the largest r; and the smallest rj such that i, j <n and

ri <, <rjand then using the characterization of normality to obtain the open set G, with the
property that
C(Gr) < G, and C(G, ) <G

In fact let us suppose, we started with the standard way of arranging the elements of {r.} in
an infinite sequence :

11213123 }

f = 011!_!_!_!_!_!_1_1 """"
(o} { 2'3'3'4’4’5'5'5

After defining Gy and G;, we would define Gy,. So we set ry, :%. Then the largest r; and

the smallest r; such that i, j <nand r; <r, <rjare 0 and 1 respectively. Thus we have
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C(Go) < Gypp and C(Gyp) < G
Then we would fit G1/3 between Gy and Gy, and Gy/3 between Gy, and G; and so on.
We now define the desired mapping g by setting

g(x) = Inf{r; xeG}

If xeF, then xeG;, for every r > 0. Therefore

F,

Gy

g(x) = inf {all non negative rational numbers}
=0

which implies that g(F;) = {0}
If xeF,, then xeG, for no r < 1. Therefore

g(x) = Inf {all rationals greater than one}

=1
which yields g(F,) = {1}
We now show that g is continuous. For this purpose, we first prove
(i) x € C(Gp) = g(x) <p
(i) xeGp =9 =p.

To prove first, note that if xeC(G,), then xeGs for every s . p. Therefore the set {r ; xeG}
contains all rationals greater than p. We thus have

g(x) =Inf{r; xeG} <p
To prove (ii), note that if xgGp, then X is not in G for any s < p. Therefore the set {r ; xeGs}
contains no rational less than p and thus

g(x) = Inf{r; xeG}>p
Now we come to the continuity of g. Given a point Xo of X and an open interval (c, d) in R
containing the point g(xo), we wish to find a nbd G of x, such that g(G) < (c, d). Choose rational
number r and s such that

c<r<g(xp) <s<d
we assert that the open set

G =Gs;—-C(Gy)
is the desired nbd of x.
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Gs

First we show that xoeG. Necessarily xoeGs because xo2G, = by (ii) that g(xo) > s. Also
Xo¢ C(Gy) because xoeC(G;) = by (i) that g(xo) <r. But g (Xo)<Ss. Hence x,€G.

Secondly we show that g(G) < (c, d). Let xeG. Then xeGs < C(Gs) so that g(x) < s by (i). And
xzC(Gy), so that xg¢ G, and g(x) > r by (ii) Thus g(x)<[r, s] < (c, d) as desired.

Theorem 8. If the open set G has a non-empty intersection with a connected set C in a T4-space X,

Then either C consists of only one point or the set C n G has cardinality greater than or equal to
cordiality of reals.

Proof. Let us choose a point xe CNG. Now if CnG = {x}, then C = {x} U (C—{x}) would be a
separation of C in the T;-space X unless C consists of only one point.

Now if yeC(G—{x}), The sets {x} and F = {y} U G would be disjoint, closed subsets of the
normal space X. By Urysohn’s lemma, there exists a continuous mapping
f: X—>][0,1]
such that f{x} = [0} and f[F] = {1}
Since f is continuous, f[C] is a connected subset of [0, 1].

Since fx)=0,f(y)=1
f [C] must be all of [0, 1] and so have cardinality C.
Now CNG°cF
S0 f(CNG®) = {1} has finite cardinality.
However f[C] = f(CnX) = F(CN(GUG®))
= f[(CNG) U (CNG®)]
=f(C N G) Uf(C NG

Thus f(CNG) must have cardinality C and so CnG must have cardinality greater than or equal to
C.

Theorem 9. (Tietze Extension Theorem)

A topological space X is normal if and only if for every real-valued continuous function f of a
closed subset F of X into a closed interval [a, b], there exists a real valued continuous mapping f*
of X into [a, b] such that f*/F =f.

Proof. Suppose that for every real-valued continuous mapping f of a closed subset F of X into
[a, b], there exists a continuous extension of f over X. We shall show that (X, T) is normal. To
prove it, let F; and F, be two closed subsets of X such that F; n F, = ¢ and let [a, b] any closed
interval. We define a mapping

f:FiUF,—>[a, b]

f(x) =aif xeF;

f(x) =b if xeF;

This mapping is certainly continuous over the subspace F; U F,. Because if H be any closed subset
of [a, b], then
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FifaeHand bg H
F,ifbeHand ag H
FRuUF, ifaeHand beg H
oifaghandbgH
Since F; and F; are disjoint, we have

FruR)nF=Fand (FLUF) nF,=F,

so that F; and F; are closed in F; U F,. Of course F; U F; and ¢ are closed in F; U F,. Hence fis a
continuous map over the subspace F; U F,. Hence by hypothesis, f can be extended to a continuous
map g over X. This means that there exists a continuous map

fi(H) =

g: X—[a, b]
such that g(x) =aif xeF;
and g(x) =bif xeF;

The mapping g now satisfies the condition stated in Urysohn’s lemma and hence (X, T) is normal.

Conversely let (X, T) be a normal space and let f be a real valued continuous map of the closed
subset F into the closed interval [a, b] which for numerical convenience we take [-1, 1]. To show
that there exist a continuous extension of f over X we begin by defining a map

fo: F>[-1, 1]
by setting

fo(x) = f(X) vV xeF 1)

o e

Since {—1, —%} and E 1} are closed in [-1, 1] and fj is continuous, it follows that Gy and Hg

are closed in F and so also closed in X. Furthermore

e [ e ]
ol 3l ]

=fo(¢) = ¢
Thus Gy, Ho are disjoint closed subsets of X. Since X is normal, from Urysohn’s lemma, we have a
continuous map
11
Xo|-=, =
Jo [ 3 3}

such that
olGo] = {—%} and go(Ho) ={§}

we next define a map

by setting
f1(x) = fo(x) — go(x)
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Since fp and go are continuous, f; is also a continuous map. Further, the range of f; is contained in

{_21 1} as shown below:
3 3

If xeGo, then
1 1
-1 <fo(X) <—=and go(X) = —=
o(X) 3 do(X) 3
so that
OZfo(X)—go(X)Z—l—[—%j
i 2
1e. 0 > fo(X) — go(X) > 3

Similarly, if xeHy, then
+E < fo(x) <1 and go(x) L
3 3
so that

0< fo(X) — go(X) < 1—%

iLe. 0 < fo(x) — go(X) < %

Finally if, xgGo U Ho, then —% < fo(X) <% and —% < go(X) <% , SO that

that is -

wlinN Wik

< 13(%) — GolX) <§

ol 5-33)
v ((355)

Now let

-3 <h00 - 9o < - (—

Dealing with G; and H;o0s we did with Go and Hy, we can show that G; and H; are disjoint closed

subsets of X. By Urysohn’s lemma, there exists a continuous map

such that

we next define a map

e 6

f2(x) = f1(X) — 91(x)

by setting
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= fo(X) — go(X) — g1(X) V xeF.
As before, f, is a continuous map whose range is contained in the closed interval

6l
3)'\3

We continue the construction by induction. Suppose that for n = 0, 1, 2,...m-1, there
exists a continuous map

oo 335
e 3]

m-1
fm = fo(X) — ZO gn(X) V xeF
n=

(2™ 1(2)"
Gm=fnt||-|=|  -2|=
n (sj 3@ D

1]]11(2

(4
m m m m
Since —(3) _E(Ej and l(gj (gj
3 313 3\3 3

are disjoint closed subsets of [-1, 1] and f,, is continuous map. It follows that G,,, Hn, are disjoint

and closed in F as so also closed in X. Since G, and Hy, are disjoint closed subsets of normal
space X, by Urysohn’s lemma, there exists a continuous map,

s 335

we define a map

by setting

Now let

such that

el

we define a mapping

by setting
m
fne1 = fn(X) — gm(X) = fo(x) — ZO Gn(X) V xeF
n=
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As in the case of f; , It can be shown that fn,.1 IS a continuous map whose range in contained in

2 m+1 2 m+1
{_(EJ [5] }.Thustheinduction is complete.

We now set
g(x) = io gn(X) V¥ xeX
n=

and show that g is continuous extension of f over X. We observe that
) ) o 1(2 n
o115 a0l 5 ool £ 3(5]
n=0 n=0 n=0 3
_ 3
1-2/3

So by Weierstrass’s M—Test, the series f gn(X) converges uniformly and absolutely over X and
0

since gn(x) is continuous, it follows that g is a continuous mapping of X into [-1, 1]. Finally, we
see that

m
1,00 s(g] 50 as M-,

-1
Since () =fo(X) = 3 gn(X) WxeF
n=0
we have
. . m-1
lim f,(X) = fo(X) — lim Y gn(X)
m—o0 m—o n-0
Hence
0 =fo(X) —g(x) V xeF.
that is, g(x) = fo(x) = f(X) V xeF by (1)
It follows that g is a continuous extension of f over X.
Theorem 10. Every compact Hausdorff space is normal (T4).

Proof. Let F and F* be two disjoint closed subsets of the compact Hausdorff space X. Since F and
F* are closed subsets of a compact space, they are also compact. Since the space is hausdorff, for
each point <x, x*> of points with xeF and x*eF*, there exist disjoint open sets G(x, x*) and
G*(x, x*) containing x and x* respectively. For each fixed point xeF, the collection

{G*(x, x*) : x*eF*}
forms an open covering of the compact set F*. Hence there must be a finite subcovering which we
denote by

{G*(x, xi*);i=1,2,...,n}
Now let

G*) = U G*(X, xi*)

i=1

and G(x) = ﬁ G(X, Xi*)
i=1

Then G(x) and G*(x) are open disjoint sets containing x and F* respectively. Now the collection
{G(x) ; xeF}
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forms an open covering of the compact set F. There must be a finite subcovering, which we denote
by
{G(x);i=1,2,...m}
If we let G :Lnj G(xi) and the finite intersection. G* :F] G*(xj), then G and G* are two disjoint
i=1 i=1
open sets containing F and F* respectively.

Theorem. 11. Every regular Lindeloff space is normal.

Proof. Let F and F* be two disjoint closed subsets of the regular Lindeloff space X. Since F and
F* are closed subsets of a Lindeloff space they themselves are Lindeloff. Then for each xeF, there
exists an open set G(x) such that xe G(x) < C(G(x)) < X—F* [-- X—F* is open containing F] .

The collection {G(x); xeF} forms an open covering of the Lindeloff set F. There must be a
countable subcovering which we denote by {Gi}icn. Similarly, for each point xeF*, there must
exist an open set G*(x) such that xeG*(x) < C(G*(x)) < X —F . The collection {G*(x), xeF*}
forms an open covering of the Lindeloff set F*. There must be a countable subcovering, which we
denote by {Gi*}ien NOw the sets

G=UIG,-U CGM)]
neN i<n
and
G*=U [G,-U C(@Gi]
neN i<n
are disjoint open sets containing F and F* respectively. To show it, let
Vi=Gh-U C(Gi*)

i<n

and
Wp = Gp* __U C(Gy)
Now Vo C(Gi*) = dpwheni<n.
and wi < Gi* < C(G*)
Hence Vowi=¢owheni<n

Similarly w; n V= ¢ when n <
Hence Vimnwg=¢ Vm,KeN
Now Vn=Gp— U{C(G{*), i <n}
=Gp N [X=-U {C(Gi*;i<n)}]
It follows that V,, is an open set, being the intersection of two open sets.

Theorem 12. The property of a space being T, is Hereditary.

Proof. Let (X, T) be a T4-space so that it is T, as well as a normal space. Let (Y, T*) be a
subspace of (X, T). We shall show that (Y, T*) is also a T4-space. Since the property of a space
being T is hereditary, it follows that (Y, T*) is a T1-space. We now show that (Y, T*) is a normal
space. Let L* and M* be two disjoint T* closed subsets of Y. If x is an arbitrary point of L* and y
that of M*, then x = y. Now {x} # {y}. being degenerate (singleton) sets in T, are disjoint
T-closed subsets of X. Hence by normality of X, there exist T-open subsets Gy and Hy of X such
that

{x} <Gy {y} < H,
and GxNHy=¢
These relations imply

L* < U(Gy; xeL*}, M* c U{Hy, yeM}
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and [U{Gx; xeL*}] n [U{Hy; yeM*}] = ¢
set G = U{Gx; xeL*}, H=U {Hy, yeM*}
then G and H are T-open subsets of X such that

L* G, M*c Hand GnH = ¢
Since L* c Y and M* c Y, these relations imply

L* C GNY, M*cHNY
and (GAY)N(HNY)=¢
IfwesetGNY=G*HNY=H*
Then G*, H* are T*-open subsets of Y such that

L*<G*, M*c H*and G* nH*=¢
which proves that (Y, T*) is normal also.
Theorem 13. Closed subspace of a normal space is normal. (Weakly- Hereditary)

Proof. Let (X, T) be a normal space and let (Y, T*) be a closed subspace of X. Let L*, M* be
disjoint T* closed subsets of Y. Then there exist T-closed subsets L, M of X such that L* = LY
and M* = MY

Since Y is T-closed, it follows that L*, M* are disjoint T-closed subsets of X. Then by normality
of X, there exist T-open subsets G, H of X such that L* < G, M*cH and GnH = ¢ since L*cY
and M* c Y, we have

L* < GNY, M*c HNY
and GNY)Nn(HAY)=¢
Setting GNY = G*, HNY = H*

We see that G* and H* are T*-open subsets of Y such that L* — G*, M* — H* and G* n H* = ¢.
Hence (Y, T*) is normal.

Completely Normal Spaces
Completely normal spaces were introduced by Tietz in 1923.

Definition. A topological space (X, T) is said to be completely normal if and only if it satisfies the
following axiom of Tietz : “If A and B are two separated subsets of X, then there exist two disjoint
open sets G and H such that A — G and B — H.

Definition. A completely normal space which is also T; is called a Ts-space.
Theorem 14. Every completely normal space is normal and hence every Ts-space is a T4-space.

Proof. Let (X, T) be a completely normal space. Let A and B two closed subsets of X such that A
N B =¢. Since A and B are closed, we have C(A) = A, C(B) =B, and
o) C(A)nB=¢, AnC(B)=¢

Thus A and B are separated subsets of X. By complete normality, there exist open sets G and H
such that A — G, BcH and GNH = ¢. It follows therefore that (X, T) is normal. Also definition, Ts
is T;-space also. Therefore Ts is normal as well as T;-space also. Hence Ts is T4-space also.

Theorem. 15. Complete normality is a topological property

Proof. Let (X, T) be a completely normal space and let (Y, T*) be its homemorphic image under a
homemorphism f. We shall show that (Y, T*) is completely normal. Let A and B be any two
separated subsets of Y such that

ANC(B) = ¢, BNC(A) = ¢.
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Since f is continuous mapping, we have
C[fY(A)] = FY[C(A)] and C[f*(B)] = f[C(B)]

Hence f2(A) N C[f1(B)] = fH(A) N f[C(B)]
=f'[ANC(B)] = f(¢) = ¢
and C[F{(A)] N F1(B) = FC(A)] n F(B)

=f1[CA) NBI=f(®) =¢

Thus f(A) and f*(B) are two separated subsets of X. Since (X, T) is completely normal, there
exist T-open sets G and H such that

f1(A) =G, f}(B) cHand GNH = ¢
These relations imply that

A = f[f }(A)] < f(G)

B = f[f }(B)] < f(H) (- of onto)
and f(G) n f(H) = f(GNH) = f(¢) = ¢ [-fis 1-1]
Also since f is an open map, f(G) and f(H) are T*-open sets. Thus we have shown that for any two
separated subsets A, B of Y, there exist T* open subsets

G; =f(G) and Hy = f(H)
suchthat Ac G, BcHiandGinHy=¢
which completes the proof of the theorem.

Corollary. The property of a space being Ts-space is a topological property.

Proof. Since the property of a space being a T;-space and of being a completely normal space both
are topological, it follows that the property of a space being a Ts-space is also topological.

Theorem 16. Complete normality is a Hereditary property.

Proof. Let (X, T) be a completely normal space and (Y, T*) be any subspace of (X, T). We shall
show that (Y, T*) is also completely normal. Let A, B be T*-separated subsets of (Y, T*), we
have

A N C*B)=¢and BNC*(A) = ¢

Also C*(A) =C(A) n Y and C*(B) = C(B) nY
Hence é=A N C*B)=AN[C(B)NY] = (A~C(B)nY

= AnC(B) (1)
Similarly ¢ =B N C*(A) = BN[C(A)NY] = (BNC(A)NY

=BNC(A) (i)

So A and B are T-separated. Hence by completely normality of X, there exist T-open sets G and H
such that
AcG,BcHand GNH =¢
Since A and B are subsets of Y,
AcGNY, Bc HNY
and
(GNY) N (HNY) =(GnH) Y =onY = ¢
It follows therefore that (Y, T*) is completely normal.

Cor. The property of a space being Ts-space is a Hereditary property.

Proof. The property of a space being T; as well as the property of a space being completely
normal is hereditary. Therefore, it follows that the property of a space being Ts is hereditary.

Theorem. 17. A topological space X is completely normal if and only if every subspace of X is
normal.
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Proof. Let (X, T) be a completely normal space and (Y, T*) be any subspace of (X, T). We shall
prove that (Y, T*) is normal. Let F; and F, be any pair of T* closed subsets of Y such that
Fi. n F, = ¢. We shall denote the T* closure of F; and F, by C*(F;) and C*(F;) and their
T-closure by C(F1) and C(F,) respectively.
Since F; and F, are T*-closed,
C*(Fl) =K and C*(Fz) =k

Also C*(F1) = YNC(F1), C*(F,) = YNC(F,)
Hence F1 n C(F2) = C*(F1) N C(F)

= (YNC(F1)) N C(F)

= (YNC(F1)) N (YNC(F))

= C*(Fy) N C*(Fy)

= F]_ M F2 = ¢
Similarly F, " C(F1) = ¢

It follows that F; and F, are two separated subsets of X. By complete normality there exist T-open
sets G and H such that F; — G. F,  H and GnH = ¢. Then the sets G; = YNG.
and H; = YnH are T* open sets such that
FicG, FbcH; and
GiNH = (Y nG) N (YNH)
=YN(GNH)=Ynd=¢
= (Y, T*) is normal.

Conversely suppose that (Y, T*) is normal. Let A and B by two separated subsets of X.

Let Y = X—(C(A) n C(B)).
Then Y is T-open subset of X. The sets
Y NC(A) and YNC(B)

are T*—closed such that

(YNC(A)) N (YNC(B)) = Y n(C(A) n C(B))

= [X=(C(A)NC(B)] N [C(A) N C(B)]

Hence by the normality of Y, there exist T*-open subsets G, H of Y such that

YNC(A) c G, YNC(B)cH 1)
and GNH=1¢
Again, since G and H are T*-open sets, there exist T-open sets G; and Hj such that

G= Y('\G]_, H= YﬂHl
and since Y is T-open, it follows that G and H are also T-open sets. Further, since

Y = X-[C(A)NC(B)]
and A and B are separated sets of X since

Y =X -[C(A) nC(B)]

= [X-C(A)] v [X-C(B)]
But X—-C(A) o B and X-C(B) oA
= BcYandAcCY.

Hence it follows from (1) that Ac G, BcHand G nH = ¢ (2
Also A and B are separated since B c X — C(A)

Thus we have shown that for any pair A, B of separated subsets of X, there exist T-open subsets G
and H satisfying (2). Hence (X, T) is completely normal.
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Remark. Every completely normal space is normal but there are normal spaces which are not
completely normal e.g. consider
X={a b,c,d}
T={¢, (@), (ac), (ab,c), X}
Here ¢ and X are the only disjoint closed subsets of X.
Then (X, T) is normal. But the subspace
Y ={a, b, c}
of X is not normal as can be seen below If T* is a relative topology in Y which is given by
T*={¢, (@), (& b), (arc), Y}
Here (b) and (c) are disjoint T* closed subsets of Y but there are no disjoint open sets G and H
such that (b) < G and (c) c H.

Hence the subspace (Y, T*) is not normal. It follows that the space (X, T) is not completely
normal. This ex shows that normality is not hereditary.

Completely Regular Space and T31 Space
2

Completely regular spaces were introduced by Paul Urysohn in a paper that appeared in 1925.
Their importance was established by Tychonoff in 1930.

Definition. A topological space (X, T) is completely regular if and only if it satisfies the following
axiom.

“If F is a closed subset of X and x is a point of X not in F, then there exists a continuous mapping f
: X—[0, 1] such that f(x) = 0 and f(x) = 1

Definition. A Tichonov space or (Tsl space] is completely regular space which is also a
2
T;-space.

Theorem. 18. Every completely regular space is regular and hence every Tichonov space is a
Ts-space.

Proof. Let (X, T) be completely regular space. Let F be a closed subset of X and let x be a point
of X not in F i.e. xeX—F. By complete regularity there exists a continuous map f : X—[0, 1] such
that such that f(x) = 0 and f(F) = {1}. Also [0, 1] with relativised usual topology is a Hausdorff
space. Hence there exist open sets G and H of [0, 1] such that

OecGandleHand GNH = ¢
Since f is continuous, f*(G) and f*(H) are T-open subsets of X such that

f(G) N f(H) = [GNH] = F[¢] = ¢
Further

f(x) = 0eG = xef }(G)
and f(F) = {1} eH = F c f }(H)
Thus there exist disjoint T-open sets f*(G) and f*(H) containing x and F respectively. It follows

that (X, T) is regular. Also since every Tychonov space is a completely regular and T;-space, if
follows that every Tychonov space is a T3-space.

Theorem. 19. Every T,-space is a Tychonov space. T, = T31 .
2

Proof. Let (X, T) be a T4-space. Then by definition, it is normal and T;-space. Hence it sufficies to
show that (X, T) is completely regular. Let F be a T-closed subset of X and bet x be a point of X
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such that xgF. Since the space is Ty, {X} is a closed subset of X. Thus {x} and F are closed
subsets of X. Again since the space is normal, by Urysohn’s lemma, there exists a continuous
mapping f : X—[0, 1] such that
fI0)1 = {0} and f(F) = {1}
i.e. f(x) =0 and f(F) = 1.
Cor. Every compact Hausdorff space is a Tychonov space.
Proof. Since every compact Hausdorff space is normal, it is also Tychonov space.
Theorem 20. Complete regularity is a topological property.

Proof. Let (X, T) be a completely regular space and let (Y, V) be a homemorphic image of (X, T)
under a homemorphism f. To show that (Y, V) is completely regular. Let F be a V-closed subset
of Y and let y be a point of Y such that ygF. Since f in one-one onto, there exists a point xeX such
that f(x) =y < x = f*(y). Again since f is a continuous map, f*(F) is a T-closed subset of X.
Further ygF = f(y) ¢ f(F) = xef (F). Thus f*(F) is a T-closed subset of X and x = f*(y) is a
point of X such that xg f'(F). Hence by complete regularity of X there exists a continuous
mapping g of X into [0, 1] such that
ol '(y)1 = g(x) = 0 and g[f*(F)] = {1}
ie. (gof™) ()) = 0 and (gof *) (F) = {1}

Since f is homemorphism, ™ is a continuous mapping of Y onto X. Also g is a continuous map of
X into [0, 1]. It follows that gof* is a continuous map of Y into [0, 1]. Thus we have shown that
for each V-closed subset F of Y and each point y e€Y-F, there exists a continuous map
h = gof* of Y into [0, 1] such that h(y) = 0 and h(F) = {1}. Hence (Y, V) is completely regular.

Remark. The property of a space being Tychonov space is a topological property.
Theorem. 21. Complete regularity is Hereditary property.

Proof. Let (X, T) be a complete regular space and let (Y, T*) be a subspace of X. Let F* be a
closed subset of Y and y be a point of Y such that ygF*. Since F* is T* closed, there exists a
T-closed subset F of X such that F* = YNF. Also
yeF* = yeYnF
=yeF [~ yeY]
and yeY = yeX.

This F is a T-closed subset of X and y is a point of X such that ygF. Hence by complete
regularity of X, there exists a continuous map f of X into [0, 1] such that
fly) =0and f(F) = [1}

let g denote the restriction of f to Y. Then g is continuous mapping of Y into [0, 1]. Now by
definition of g,
g(x) =f(x) V xeY.
Hence
fly)=0 =9(y)=0
and since f(x) =1V x eF and F*cF, we have
g(x) =f(x) =1V xeF*
so that g(F*) = {1}

Thus we have shown that for each T*-closed subset F* of Y and each point yeY — F*, there exists
a continuous map g of Y into [0, 1] such that g(y) = 0 and g(F*) = {1}.



90 TOPOLOGICAL SPACES

Remark. The property of a space being Tychonov is hereditary.
Theorem 22. A normal space is completely regular if and only if it is regular.

Proof. Since every completely regular space is regular, we only need to prove that any normal,
regular space is completely regular. Let F be a closed subset of X not containing the point x so that
x belongs to the open set X—F. Since the space X is regular, there exists an open set G such that
xeG and C(G) < X—F so that

FNC(G)=¢

Thus C(G) and F are disjoint closed subsets of a normal space X. Hence by Urysohn’s lemma,
there exists a continuous mapping f : X — [0, 1] such that

f(F) = {1} and f[C(G)] = {0}
Also xeG and f[C(G)] = {0} implies that f(x) = 0. Hence (X, T) is completely regular.

Example. Let (X, T) be a completely regular space. Prove that if F is a T-closed subset of X and
pgF, then there exists a continuous mapping f of X into [0, 1] such that f(p) = 1 and f(F) = {0}.

Analysis. Since (X, T) is completely regular, there exists a continuous map g of X into [0, 1] such

that
g(p) = 0and g(F) = {1}
Now consider the mapping f : X — [0, 1] defined by setting f(x) = 1-g(x) V xeX.
Since constant functions are continuous, it follows that f is continuous.
Further f(p) =1-g(p)=1-0=1
f(x) =1-g(x) = 1-1V xeF
=0
so that f(F) = {0}.
Example. Consider the topology T on R defined as follows T-consists of ¢, R and all open says of
the form [—«, a) aeR
Show that
() (R, T) is normal.
(i) Not regular
(iii) Not T,
(iv) Is (R, T) complete regular.
Analysis. (i) Here the only disjoint closed subsets of R are of the form ¢ and [a, «) and for each

such pair, there exist disjoint open sets ¢ and R such that ¢ < ¢ and [a, ) < R. It follows that
(R, T) is normal.

(i1) Consider the closed set F = [1, =) and the point 0. Here OgF. But the only open set
containing F is R which must intersect every open set containing zero. Hence there exists no open
sets G and H such that

0€G, Fc Hand GH = ¢.
= The space (R, T) is not regular.

(iii) The space (R, T) is not T, since no singleton subset of R is T-closed. It follows that the
space is not Ty.

(iv) Since the space (R, T) is normal and not regular, it follows from the theorem that a
normal space is completely regular iff it is regular. Hence this space is not completely regular.

Remark. Let B be the class of open closed intervals in the real line R :
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B={(a,b];a beR,a<b}

Clearly R is the union of members of B since every real number belongs to some open-closed
intervals. In addition. the intersection (a, b] m (c, d] of any two open closed intervals is either
empty or another open closed interval. e.g. ifa<c <b, <d, then

(@ bl m(c,d] =(c, b]
as indicated in the diagram.

a c b d

Thus the class T consisting of unions of open-closed intervals is a topology on R i.e. b is a base for
the topology T on R. This topology T is called the upper limit topology on R. Similarly the class
of closed-open intervals.

B*={[a,b);a b eR,a<b}
is a base for a topology T* on R called the lower limit topology on R.

Example. If x and y are two distinct points of a Tychonoff space (X, T), then there exists a real
valued continuous mapping f of X such that f(x) = f(y)

Analysis. Since (X, T) is a T;-space, the singleton subset {y} is T-closed and since x and y are
distinct point x¢{y}. By complete regularity of X, there exists a real valued continuous mapping f

of X such that
f(x) = 0 and f[{y}] = {1}
= f(x)=0and f(y) =1
But0=1 = f(x) = f(y).
Remark: We have the following Hierarchy :

Metrizable = completely normal = normal
= completely regular = regular = Hausdorff = T; = Ty .
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0

EMBEDDING AND METRIZATION

Given a topological space (X, T), it is natural to ask whether there is a metric for X such that T is
the metric topology. Such a metric metrizes the topological space and the space is said to be
metrizable. Thus a metrizable space is a topological space whose topology is generated by some
metric. There are topological spaces that are not metrizable for example let X be a set with atleast
two members and let T be the trivial topology, then (X, T) is not metrizable.

Embedding

Definition. Let (X, T) and (Y, U) be topological spaces. An embedding or (sometimes called
imbedding) of X into Y is a function e : X—Y which is a homemorphism when regarded as a
function from (X, T) onto (e(X), U/e(X)) that is X is embedded in Y by f if and only if f is a
homemorphism between X and some subspace of Y. Intuitively, to embed a space X into a space
Y should mean that we can identify X with a subspace of Y, where identification is upto a
homemorphism.

E;ample. The function f : R—>R? defined by f(x) = (x, 0) for each xeR is an embedding of R in
R”.

Analysis. It is clear that f is one to one. Let T denote the usual topology on R? and let A
={(x,y) eR? y=0}. Thenfmaps R onto A. Since every metric space is first countable. In order
to show that f is continuous, it is sufficient by the result that “Let f be a mapping of the first axiom
space X into the topological space X*. Then f is continuous at xeX if and only if for every
sequence <x,> of points in X converging to x, we have the sequence <f(x,) converging to the point
f(x) eX* ” Now to show that if <x,> is a sequence in R that converges to x in R. Then <f(x,)>
converges to f(x) in A, is obvious. Thus f is continuous. So if U denotes the usual topology on
R, thenf: (R, w) — (A, Ta) is a homemorphism

Remark. 1. If X is a subspace of a space Y, then the inclusion map i : X—Y defined by i(x) = x
for every xeX is an embedding. Thus inclusion maps are the most immediate examples of
embeddings and as the definition implies, these are the only examples upto homemorphisms. An
important problem in topology is to decide when a space X can be embedded in another space Y
that is when there exists an embedding from X into Y. This is called the embedding problem.
Theorems asserting the embeddability of a space into some other space which is more manageable
than the original space are known as embedding theorems.

Theorem 1. Since a continuous bijection from a compact space onto a Hausdorff space is a
homemorphism, every continuous, one to one function from a compact space into a Hausdorff
space is an embedding.

Theorem 2. A function e : X—Y is an embedding if and only if it is continuous and one to one
and for every open set V in X, there exists an open subset W of Y such that e(V) = WNY.

Proof. The result follows directly from definitions of homemorphism and relative topology.
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Definition. Let {Y; ;iel} be an indexed family of sets. Suppose X is a set and let for each i<l,
fi : X—>Y be a function. Then the function e : X— T[] Y, defined by e(x) (i) = fi(x) for iel, xeX is
iel

called the evaluation function of the indexed family {f; ; iel} of functions.

In other words, for each xeX, the i-th co-ordinate of e(x) is obtained by evaluating the i-th
function of f; at x. This justifies the term evaluation function. Intuitively evaluation function is
obtained by listing together the information given by various fi’s. To illustrate this, suppose X is
the set of all students in a class and fi, f;, fs,..., etc. are functions specifying respectively say, the
age, the sex, the height etc of members of X. Then the evaluation function is like a catalogue
which lists against each student all the information available about the student. For example, a
typical entry in this catalogue might be

e(Mr. X. Y. Z)=(21, Male, 5 feet 6 inches,....)
The following Theorem Characterizes evaluation functions.

Theorem 3. Let {Y;; icl} be a family of sets, X, a set and for each iel, f; : X—Yj, a function then
the evaluation function is the only function from X into IT Y; whose composition with the
projection m; : IT Y;—Y; equals f; for all il.

Proof. Let e : X—>ITY; be the evaluation function of the family {f; ; iel}. Then for any il by very
definition of e m;(e(x)) = e(x) (i) = fi(x) and so =; oe = f; .

Conversely, suppose e’ : X—ITY; satisfies that rj 0 ¢’ =fj for all iel. Let xeX. Then forany iel,
e'(x) (i) = mi (e'(x)) = fi(x") = e(x) (i)

and so e(x) = e’(x). Butsince xeX was arbitrary, this means that e’ = e. Thus e is the only function

from X into ITY; having the given property.

Theorem 4. The evaluation function defined above is continuous if and only if each f; is
continuous.

Proof. By the above prop, we have
nioe=fiforalliel.

Now by the result “Let (X, T) be the topological product of an indexed family of topological
spaces {(Xi, T) ; iel} and let Y be any topological space. Then a function f : Y—X is continuous
with respect the product topology on X if and only if for each i<l, the composition wiof : y—X; is
continuous, where m; : X—X; is the projection function”. The evaluation map is continuous if and
only if each fj is continuous since projection mapping is always continuous.

Definition. An indexed family of functions {f; : X—>Y; ; iel} where X, Y; are topological spaces,
is said to distinguish points from closed sets in X if for any xeX and any closed subset C of X not
containing X, there exists jel such that fj (x) ¢ f;(C) in Y;.

This definition reminds us of complete regularity because there too, a point was separated from a
closed set by means of a real valued map as the next theorem shows.

Theorem 5. A topological space is completely regular iff the family of all continuous real valued
functions on it distinguishes points from closed sets.

Proof. Let X be a topological space and let F be the family of all continuous real valued functions
on X. Suppose first that X is completely regular. Let a point xeX and a closed subsets C of X, not
containing x be given. Then there exists a continuous function f : X—[0, 1] such that f(x) = 0 and
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f(C) < {1}. Then we can regard f as a function from X to R. Then f eF and evidently f(x) ¢ f (C)
since {1} is a closed subset of R. So F distinguishes points from closed sets in X.

Conversely suppose that F distinguishes points from closed sets. Let xe X and C be a closed subset
of X not containing x. Then there exists a map f : X—R such that f(x) ¢ f(C). Now {f(x)} and

{f(c)} are disjoint closed subsets of R which is normal space. So there exists a continuous
function g : R—[0, 1] which takes the values, 0 and 1 respectively on them. Let h : X—[0, 1] be

the composite gof. Then clearly h(x) = 0 and h(y) = 1 for all yeC. Thus X is a completely regular
space.

Theorem. (Embedding Lemma) Let {fi ; X—Y; ; iel} be a family of continuous functions which

distinguishes points and also distinguishes points from closed sets. Then the corresponding

evaluation map is an embedding of X into the product space [] Y; . To prove this result, first we
iel

need to prove some Lemmas.

Lemma 1. The evaluation function of a family of functions is one-to-one if and only if that family

distinguishes points.

Proof. For iel, let f; : X—Y,; be a function, and let e : X—IT Y, be the evaluation function. Let X,
y be distinct points of X. Then e(x) = e(y) if and only if there exists jel such that e(x)

() = e(y)(). Bute(x) (j) = fj(x) by definition of e. Similarly e(y)(j) = fi(y).
So the condition that e(x) = e(y) is equivalent to saying that there exists jel (which may depend

upon both x and y) such that fj(x) = fj(y). Since x, y are arbitrary. Thus The evaluation function of
a family of functions is one to one if and only if that family distinguishes points.

Lemma 2. Let {f; ; X—>Y,j, iel} be a family of functions which distinguishes points from closed
sets in X. Then the corresponding evaluation function e : X—TT Y; is open. When regarded as a
iel

function from X onto e(X).

Proof. Let V be an open subset of X. We have to show that e(V) is an open subset of e(X). A
typical point of e(V) is of the form e(x) for some xeV. Now X-V is a closed subset of X not
containing x. So by the hypothesis, there exists jel such that fi(x)¢ f;(X-V). Let
G =Y;j—f;(X-V). Then G is an open subset of Y; and so njfl (G) is an open subset of T Y; we

iel

claim that
;1 (G) M e(X) Ce(V)

For suppose ye nj_l (G) me(X). Then y = e(z) for some zeX. Also mj(y)eG and so mj(e(z))eG
whence fj(z) €G since mjoe = fj. From this it follows that zeV, since otherwise fj(z)efj(X-V)
c f;(X=V)=Yj—-G. Thus y = e(z)ee(V) as was to be shown. Now the set nj‘l (G) ne(X) is open
in the relative topology on e(X) and clearly it contains e(x), showing that e(V) is a neighbourhood
of e(x) in e(X). But e(x) was a typical point of e(\V). Then e(V) is a neighbourhood of each of its

points in the relative topology on e(X). So e(V) is an open subset of e(X). Since this holds for all
open sets V in X , we see that e, regarded as a function from X onto e(X) is open.
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Remark. The converse of this lemma is false. Let X = R* and f;, f, be the two projections on R.
Then the evaluation function is simply the identity map which is open. But the family {f, f.} does
not distinguish points from closed sets in X.

Lemma 3. The evaluation function e : X—[T Y; is continuous if and only if each f; : X-Yi is
iel

continuous.

Proof. Already proved.

Proof of the theorem. Let e : X—ITY; be the Lemma 3 evaluation function. Now continuity of the
evaluation function e is continuous, follows from Lemma 3. That it is one to one follows from
lemma 1 while lemma 2 shows that e is an open map when regarded as a function from X to e(X).
Thus e is one to one, continuous and open from x to e(X). Hence e is an embedding.

Definition. The Cartesian product of closed unit intervals with the product topology is called a
cube A cube is then the set | of all functions on a set A to the closed unit interval | with the
topology of pointwise or co-ordinatewise, convergence. The cube is used as a standard sort of
space and we want to describe those topological spaces which are homemorphic to subspaces of
cubes.

L 1 i
Definition. The set I of all real sequences (a;, az,...) such that 0 < a, <—for every neN is called
n

Hilbert cube. Also | is a closed and bounded subset of R*
Tychonoff Embedding Theorem.
Theorem 7. A topological space is a Tychonoff space if and only if it is embeddable into a cube.

Proof. Let the topological space (X, T) be embedded into a cube. We shall prove that X is a
Tychonoff space. Since we know that a Tychonoff space is T; and completely regular and we
know that every cube is a Tychonoff space. The Tychonoff property is Hereditary. So every
subspace of a cube is Tychonoff. Also Tychonoff property is topological property, it is preserved
under homemorphism. Thus every space homemorphic to a subspace of a cube is a Tychonoff
space.

Conversely suppose X is a Tychonoff space. Let F be the family of all continuous functions from
X into [0, 1]. Then since X is completely regular F distinguishes points from closed sets in X. But
since X is also T; all singletons are closed since we know that in a Ti-space each singleton is
closed. Thus it follows that F distinguishes points as well. But by the embedding lemma “Let {f; ;
X—=Yi; iel} be a family of continuous functions which distinguishes points and also distinguishes
points from closed sets. Then the corresponding evaluation map is an embedding of X into the
product space []Y; ”. We have, the evaluation map e : X—[0, 1]7 is an embedding of X into the

iel

cube [0, 1]%.

Metrizability

Definition :- A topological space (X, T) is metrizable if there is a metric d on X such that the
topology induced by dis T .

Note the distinction between a metric space and metrizable space. A metrizable space is a
topological space whose topology is generated by some metric and a metric space is a set with a
metric on it. Of course the metric on a set X generates a topology on X and thus a metric space (X,
d) determines a topological space (X, T). Given a metrizable space (X, T), there is a metric d on X
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such that the topology induced by d is T. As the metric d is not unique, there are many metrics
that generate T.

Remark :- The following example shows that there are topological spaces that are not metrizable.

Example. Let X be a set with at least two members and let T be the trivial topology on X. Then
(X, T) is not metrizable.

Analysis. Letd be a metric on X and let u be the topology generated by d. We show that (X, T) is
not metrizable by showing that uw = T . Let a and b denote distinct members of X. By the
definition of a metric, there is a positive number r such that d(a, b) = r. Therefore a € B(a, r) butb
¢ B(a, r). Hence B(a, r) € b, B(a, r) # X and B(a, r) # ¢ . But the only members of T are ¢ and X
. Thus p=T.

Urysohn’s Metrization Theorem
Theorem 8. Every second axiom Ts-space X is metrizable.

Proof. We shall show that any second axiom T3-space X is homemorphic to a subset of the Hilbert
cube. Since Hilbert cube is metrizable. This will prove that X is metrizable.

Let {Gn}nen be the non-empty sets in some denumerable base for X, made infinite by repetition if
necessary. Now for each integer j, there is some point XxeG; and by regularity an open set G such
that xeG < C(G) < G;. Since the collection {G,} forms a base, there must be some integer i such
that xeG; < G. Thus for every integer j, there is an integer i such that C(G;) c G;. The collection
of all such pairs of elements from the base is denumerable and suppose <G;, G;> is the nth pair in
some fixed ordering. The sets C(G;) and X/G; are then disjoint closed subsets of X. Since the
regular second axiom space X is completely normal and hence normal. Thus by Urysohn’s
Lemma, there exists some continuous mapping f, : X—[0, 1] such that
fn (C(Gi)) = {0} and f,(X/G;j) = {1} .

We may define a mapping f of X into the Hilbert cube by setting
f(x) = <27" f,(X)>nen for every x eX.

Since 0 < f(x) < 1 for all xeX and integers n, f(x) is clearly a uniquely determined element of the
Hilbert cube for each xeX. We shall now show that f is a homemorphism of X onto f(X).

Let x and y be two distinct points of X. Since X is a T;-space, there exists some integer j such that
xeG;j but yeX/G;. As above there exists some integer i such that xeG; and C(G;) < G;. Suppose
<Gij, G;> is the nth pair in this ordering. The nth-coordinate of f(x) is 27"f,(x) = 0. Since xeC(Gj)
while the nth-coordinate of f(y) is 27" f,(y) = 27" = 0 since ye X/G;. Thus f(x) = f(y) and f is one to
one.

Also let x* be a fixed point of X and € be arbitrary positive number. Let us choose first an
index N = N(e) such that
S 27<e2.
n=N+1
For each n, such that 1 < n < N, the mapping f, is continuous and so there exists a basic open set
S

J2N

whenever xeG,, .

Gy, containing x* such that [f,(x*) — fa(X)| <



TOPOLOGY 97

N
Let G = N G, , which is then an open set containing x*. If xeG, then xeG, foreachn=1, 2, ...
n=1

N and so.

(e, 1000 = |5 1, 060-27 1, ]

= \/% 2 £, (0 —F, 00 + X 272 | £, (x%)— £, ()
n=l1

n=N+1

N * 2 < H-2n
< 21 | f, ()= f, ()" + X 2

n=N+1

< \/N-(E/M)2+62/2:e

Thus f is continuous.

Finally suppose G is an open subset of X and y is an arbitrary point of f(G). Thus y = f(x)
for some point xeG. As above for some integer n, the nth pair <G;. G;> is such that

XxeGj c C(Gj) < Gj < G. Hence

fa(x) = 0 and f(X/G) = {1}. Thus for any

t eX/G, dy(f(x), f(t)) > 2™ because of the difference in their nth
co-ordinates that is

fXIG) N B(f(x),2" = ¢

Hence yeB (y, 27" n f(X) < f(G) and so f(G) is an open subset of f(X)
= f is an open mapping.

Hence f is a homemorphism from X into the Hilbert cube and since Hilbert cube is metrizable.
Thus X is metrizable. Hence every second axiom Ts-space is metrizable.

Remark. Since we know that every metrizable space whether second axiom or not is T3. Thus we
have proved that “A second axiom space is metrizable if and only if it is T3.”
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PRODUCT TOPOLOGICAL SPACES

Definition. Let {X; ; Aea} be an arbitrary collection of sets indexed by A. Then the cartesian
product of this collection is the set of all mappings f of A into U X, such that f(L) e X, for every

AEA
Len. We shall denote an individual mapping in this collection by <x;>, .. where X, is a point of
X, such that f(L) = x.
Projection Mappings and Product Topology

Definition. For each e, the mapping g : 1;[ X—Xgp assigning to each element <x;> of EI X, its

th co-ordinate,
g(<Xx>) = Xp

is called the projection mapping associated with the index p.
Consider the set g_l(GB)Where Gg is an open subset of Xg. It consists of all points

p={a,; A en}in 1;[ X;. such that
n(p) € Gg. In other words
p

-1
=I1Y

7[} (Gﬁ) LA
where Yg = Gg and Y, = X, whenever A # f3 that is

TC[;l(GB) = X]_ X X2 X ...X XB—l X GB X XB"']-X""

Definition. For each A in an arbitrary index set A, let (X;, T,) be a topological space and let
X :TAEXL. Then the topology T for X which has a subbase the collection

B. = {ngl(Gk) ;henand Gy, €Ty}

is called the product topology or Tichonov topology for X and (X, T) is called the product space of
the given spaces.

The collection B. is called the defining subbase for T. The collection B of all finite
intersections of elements of B. would then form the base for T.

Remark. The projection mappings are continuous for Gg is Tg-open in Xg :>n[§l (Gg) € B. which

is a subbase for T and Therefore n[;l (Gp)is T-open in
X= 1;[ X;L.
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Theorem 1. Let A be a member of the defining base for a product space X :1;1 Xy. Then the

projection of A into any co-ordinate space is open.
Proof. Since A belongs to the defining base for X.
A= 1;I{Xk ; A # o, 0g,...,0m} x G, x..x G, where G is an open

subset of X,,.. So for any projection mg : X—Xs,
(A) = Xg if B={oy, oy, ...,0,}
s} - .
GB if Be{oy, ay, ...}
In either case mg(A) is an open set.

Theorem 2. Every projection ng : X—Xg on a product space X :1;1 X, is open.

Let G be an open subset of X. For every point peG, there is a member A of the defining base of
the product topology such that peAc G. Thus for any projection mg : X—>Xg, peG =

np(p) € ng(A) < mg(G)
But mg(A) is an open set. Therefore every point ng(p) in mg(G) belongs to an open set mg(A) which
is contained in mg(G). Hence ng(G) is an open set.

Remark. As each projection is continuous and open, but projections are not closed maps e.g
consider the space RxR with product topology.

Let H={(x,y) ;X yeR and xy = 2}
Here H is closed in RxR but
m(H) =R~ (0)

is not closed with respect to the usual topology for R where w; is the projection in the first
co-ordinate space R.

Tychonov Product Topology in Terms of Standard Subbases

Example. Consider the topology

T={¢, X, (a), (b,c)}on X=(a b, c)
and the topology T* = {¢, Y, (u)} on Y = (u, v) Determine the defining subbase B. of the product
topology on X x Y.

Solution.
XxY ={(a, u), (a, v) (b, u), (b, v), (c, u), (c, v)}

is the product set on which the product topology is defined. The defining subbase B. is the class of
inverse sets n;l(G) and n§1(H)Where G is an open subset of X and H is an open subset of Y.
Computing, we have

T (X) (V)= X x Y,

o (0) = 7yt () = ¢

(@) ={(@a u), @ v)}

- (b,¢)={(b, u), (b, V), (c, u), (c, )}

myH(u)={(a, u), (b, u), (c, u)}
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Hence the defining subbase B. consists of the subsets of X x Y above. The defining base B
consists of finite intersections of members of the defining subbase that is

B={¢, XxY,(a u),{(b,u),(c,u)}
{(a,u), (@ )} {(b, u), (b, v), (c, u), (c, )}
{(a, u), (b, u), (c, u)}}

Theorem 3. Let (X;, T,) be an arbitrary collection of topological spaces and let X :1;1 Xy LetT

be a topology for X. If T is the product topology for X, then T is the smallest topology for X for
which projections are continuous and conversely also

Proof. Let w; be the A-th projection map and let G; be any T,-open subset of X,. Then since T is
the product topology for X, m;*(G, ) is a member of the subbase for T and hence =;*(G, ) must be
T-open. It follows that m, is T-T, continuous. Now let V be any topology on X such that m;, is
V-T;, continuous for each Lea. Then =;*(G, ) is VV-open for every G, eT;. Since V is a topology
for X, V contains all the unions of finite intersections of members of the collection

{m;(G,); renand G,eT;}

= V contains T that is T is coarser than V thus T is the smallest topology for X such that m;, is
T-T, continuous for each LeA.

Conversely. Let B, be the collection of all sets of the form 7, (G, ) where G, is an open subset of
X, for Le. Then by definition, a topology V for X will make all the projections m, continuous if
and only if B. V. Thus the smallest topology for X which makes all the projections continuous,
is the topology determined by B. as a subbase.

Theorem 4. A function f : Y—X from a topological space Y into a product space X :FXIXX is

continuous if and only if for every projection mg : X—Xg, the composition mapping mgof : Y—Xg
IS continuous.

Proof. By the definition of product space, all projections are continuous. So if f is continuous,
then mgof being the composition of two continuous functions, is also continuous.

On the other hand, suppose every composition function mgof : Y—Xg is continuous. Let G be an
open subset of Xg. Then by the continuity of ngof,

(mgof) (G) = [m;*(G)]

is an open set in Y. But the class of sets of the form ngl (G) where G is an open subset of Xg is the

defining subbase for the product topology on X. Since their inverses under f are open subsets of Y,
f is a continuous function.

Remark. The projections m, and m, of the product of two sets X and Y are the mappings of XxY
onto X and Y respectively defined by setting

mix (<X, y>) = x and my(<x, y>) =y
Theorem 5. If X and Y are topological spaces, the family of all sets of the form VxW with V open
in X and W open in Y is a base for a topology for XxY.

Proof. Since the set XxY is itself of the required form, XxY is the union of all the members of the
family. Now let <x, y>e (V1 x W1) n (V2 x W,) with V1 and V; open in X and W; and W, open
inY. Then
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<X, y>e (V1N Vy) x (W1 x W) = (V1 x Wy) N (V2 x Wo)
with V1 n V, open in X and W1 n W, open in Y. Then the family is a base for topology for XxY.

Theorem 6. Let C; be a closed subset of a space X; for iel. Then H| C, is a closed subset of
_]‘[I X; w.r.t the product topology. i

le

Proof. Let X = HI X;and C = H| C, . We claim X — C is an open set in the product topology on X

le le
let xeX—C. Then C = ﬂl n;*(C;)and so x¢C implies that there exists jel such that mij(x) ¢ C;. Let
le
Vj=Xj—-Cjand letV = n}l(vj). Then Vj is an open subset of X; and so V is an open subset (in

fact a member of the standard subbase) in the product topology on X. Evidently m;(x) € V; and so
xeV. Moreover CnV = ¢ since m;(C) N mj(V) = ¢. So V < X — C. Thus X—C is a neighbourhood
of each of it point. So X—C is open and C closed in X.

Separation Axioms and Product Spaces

In this section, we shall be concerned with finding out whether a certain topological property
carries over from co-ordinate spaces to their topological products. In other words, suppose X is the
topological product of an indexed family {(X, T;), iel} of topological spaces. If each X; has a
topological property can we say that X also has it? This will depend upon the property itself and
also upon how large the index set I is depending on it.

Theorem 7. Let X be topological product of an indexed family of spaces {(Xi, Ti); i € I}. If the
product is non-empty, then each co-ordinate space is embeddable in it.

Proof. Let X be the topological product of an indexed family of spaces {(Xi, T;) ; iel}. Since X is
non-empty, so in each X; for iel. Now fix jel. We want to show that X; can be embedded into X.
For each j =i in I, fix some y;e Xi. Now define e : X;—>X by

cfori=jel
-

In other words, e(x) is that element of [] X; whose jth co-ordinate is x and all other co-ordinates
iel
are equal to the respective chosen y;’s. Evidently e is one to one since e(x) = e(x’) would in
particular imply
e(x) (j) =e(x’) (j) whence x = x'.

Also the composite map mjoe is the identity map on X; while for any i # j, m; oe is the constant map
taking all point of X to y;. In either case the composite mjoe is continuous for all i€l. So by the

result “A function f : Y—X from a topological space Y into a product space X = [] X;is
i
continuous if and only if for every projection mg : X—Xg, mpof : Y—=Xp is continuous”, e is
continuous. To show that e is an embedding, it only remains to show that e is open when regarded
as a function from X; onto e (Xj). Note that e(X;) is the box [A box in the product space X
=I1 X;is a subset B of X of the form [] B; such that B = X;, iel, For Jel, B; is called the j-th

j iel
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side of the box B] [T Y; where Y; = X and Y; = {yi} for i # jel. Now let V be an open subset of
iel

Xj. Itis then easy to show that

e(V) = nj‘l(V) M e (X;) as each side equals the box [] Z; where
iel
Z;=V and Z; = {y;} for i # j €l. Now the set njfl (V) is open in X and so e(V) is an open in e(X;)
in the relative topology. Thus e is an embedding.
Theorem 8. A topological product is To, T1, T, or regular if and only if each co-ordinate space has
the corresponding property.

Proof. Since all the properties Ty, Ty, T, or regular are hereditary, now if X = [] X; , then each
iel

co-ordinate space X;j is homeomorphic to a subspace of X by the last theorem. (i.e. by Theorem 7).

So whenever X is Ty, Ty, T, or regular, so will be each X; .

Conversely, we first show that T,-property is productive (i.e. A topological property is said to be
productive if whenever {(Xi, T;); i € I} is an indexed family of spaces having that property. The
topological product [T X; also has it). Suppose X; is a T, space for each i € I, and let X = TT X;
iel

Let x, y be distinct points of X. Note that x,y are both functions on the indexed set | and so to say
that they are distinct means that they assume distinct values at some index.  So there exists j € |
such that x(j) = y(j) i.e. mj(x) = mj(y) in X; (where i 0 X = Xj)jer . Since X is a Hausdorff
space, tlhere exists disjoint open sets U and V in X such that x € U,y € V. Now let G = n{l(U) :
H=m (V).

Then G, H are open subsets of X. Also x € G,y € Hand G n H = ¢ showing that X is a

Hausdorff space. Similar argument applies to show that T, and T, are productive properties. Now

we prove the converse part for regularity i.e. we will prove that if indexed family {(Xi, Ti)ic| } of

spaces is regular, then the topological product X = [T X; is regular. Suppose each X; is regular and

iel

x € X and C be a closed subset of X not containing X. Then X—C is an open set containing X . So

there exists a member V of the standard base for the product topology such that x € Vand V < X

—C. LetV =[] V, where each V;is open in X; and V; = X; for all i e I except possibly for i =iy,

iel

i2,..., 1n (say). Let x; = m; (x)forr= 1,2,...,n. So be regularity of each co-ordinate space, there

exists an open set U; in X; such that x; e U; and UirC Vi, . Fori=iy, ip,..., in, let Ui = Xj and

consider the box U = [T U; . Clearly U is an open setin X and x € U. Also U is contained in the

icl

box [T U, which itself is contained in V. But the set [T U; is closed in X and hence contains
iel iel

U. Thusx e Uand U c X — C. Therefore U and X— U are mutually disjoint open subsets
containing x and C respectively. This show that X is regular.

Remark. Normality is not a productive property; It is not even finitely productive (i.e. whenever
Xi’s are normal, the topological product [] X; is not normal (I finite). However, complete
iel

regularity is productive property as shown below.
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Theorem 9. Let S be a subbase for a topological space X . Then X is completely regular if and
only if for each V € S, and for each x € V, there exists a continuous function f : X — [0, 1] such
that f(x) =0 and f(y) = 1 forally ¢ V.

Proof. If X is completely regular, then certainly the condition holds for all open sets, and so in
particular members of S. Conversely suppose each V e S, satisfies the given condition. Let G be
an open set in X and let x € G. By definition of a subbase, there exist V1, Va,..., V € S such that

n

x e NV;c G. Foreachi=1,2,..., n, we have a map fj : X — [0, 1] which vanishes at x and
i=1

takes the value 1 outside V;. Define

f: X = [0, 1] by f(y) = 1-(1-f1(y)) (1-fo(y)) ... (1-fu(y))

Clearly f is continuous and f(x) = 0 and f takes the value 1 outside rn]vi and hence outside G.
i=1

This proves that X is completely regular.

Theorem 10. A product of topological spaces is completely regular if and only if each co-ordinate

space is so.

Proof. From Theorem 7, since each co-ordinate space is embeddable in the topological product,
and the fact that complete regularity is a hereditary property, i.e. if the space is completely regular,
then every subspace is also completely regular. Thus if the topological product X = [T X; is
iel

completely regular, then each space X; is completely regular.

Conversely suppose X = [] X; where each X; is completely regular. Let S = {n{l(vj); IR Y

iel

open in X;} be the standard subbase for the product topology and suppose X € TCj_l(Vj). Then mj(x)
€ Vjand so by the complete regularity of X;, there exists a map f : X; —[0, 1] such that f(r;(x)) = 0
and f takes value 1 on X;—V;. Then the composite for; : X — [0,1] vanishes at x and takes value 1
on " (X;-V;)) i.e. on X—m; (V). Hence the condition of last theorem (i.e. Theorem 9) is satisfied
by every member of the subbase S. So X is completely regular.

Theorem 11. A topological product of spaces is Tychonoff if and only if each co-ordinate space is
SO.

Proof. Since by definition Tychonoff property means the combination of complete regularity with
T1, the result follows by merely putting together Theorem 8 and Theorem 10.

Theorem 12. [T X, is Hausdorff if and only if each space X;, is Hausdorff.
A

Proof. Suppose each space X, is Hausdorff and let X = <x;>,c. and Y = <y,>, . be two distinct
points of [T X, . Since X and Y are distinct, there must exist some index B such that Xg # Y.
A

Since Xg is a Hausdorff space, there must exist disjoint open subsets Gy and Gy containing Xg and
yp respectively. Clearly the sets ngl(GX) and ngl(Gy)are disjoint open sets in the product space

containing X and Y respectively since the projection mapping ng : [ X; —>Xg is continuous.

iel

Hence if G, and Gy are two disjoint open sets in the Hausdorff space X containing xg and yg, Then
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ngl(GX) and ngl(Gy) are disjoint open sets in the product space containing X and Y respectively.
This proves that [T X, is Hausdorff.
A

Conversely suppose that [] X, is Hausdorff. We want to prove that each X, is Hausdorff. Since
A

the property of a space being Hausdorff is Hereditary, we shall show that each X; is
homeomorphic to a certain subset of the product space. This will prove that each X, is hausdorff.
To do so, let <z,> be a fixed point in the product space. For each B, consider the subset Eg of the
product space consisting of all points <x;> such that x; = z, if A # B, while xg may be any point of
Xg. Now let f be a mg restricted to Eg. f is clearly one-to-one continuous mapping of Eg onto Xg
(since the projections are continuous) we want to show that f is open.

Now a base for the open sets in the subspace Eg is the family of intersection of Eg with the basis
elements for the product topology. But EgN[] Y, is either empty or consists of points of Eg for
A

which xg € Yp. The image under f is then either empty or Yy and so open in either case. Thus f is
homeomorphism.

Connectedness
Theorem 13. XxY is connected if and only if X and Y are connected.

Proof. Suppose first that XxY is connected. Since mx : XxY — X is continuous and XxY is
connected. The projection mapping mx maps the connected space into connected space. Hence X is
connected. Similarly the continuous image Y of XxY which is connected, is connected. Hence if
XxY is connected, then X and Y are also connected.

Conversely suppose that X and Y are connected. We shall prove that XxY is connected. Let <x, y>
and <x*, y*> be any two points of XxY. Consider the mappings

fi{x} xY>Y

g: Xx(y*} > X
defined by

f(<x, y>) = y and g(<x*, y*>) = x*.
It can be shown that f and g are homeomorphisms. Since projections are continuous and open. It
follows therefore that {x}xY and Xx{y*} are connected. They intersect in the point <x, y*>.
Hence by the result “The union E of any family {C,} of connected sets having a non-empty
intersection is a connected set”. Their union is a connected set which contains the two points
<X, y> and <x*, y*>. Thus XxY is connected.

Theorem 14. [T X, is connected if and only if each X; is connected.
A

Proof. Suppose first that [] X, is connected. Define mg : [] X, —Xg. Since the projection
A A

mapping is continuous and the continuous image of a connected set is connected. It follows that
each X, is connected.

Conversely suppose that each X, is connected. To prove that [] X, is connected, let C be a
A

component of the product space and let <z, ; A eA> be a fixed point in the product space which
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belongs to C. Suppose further that <x, ; AeA> be an arbitrary point of [] X, and [] Y, is an
A A

arbitrary open set containing <x, ; AeA> such that Y is open in x; and
Y;L = Xx if A= Bly Bz,..., Bn

Then the set
EleEBzx...xEBn

consisting of all point <t; ; AeA> such that
t, =2z I A = By, B2o-.., Pn
t =X 1T A =By, B2,..., Pn
is homeomorphic to
XleXBZx...xXBn

which being the Cartesian product of finite number of connected sets is connected. Therefore
Eg, xEg, x...xEg_1is connected. But we know that the component C of X is largest connected set

in X. Thus EB1 ><E[52 x...xEBnc C. However the point <t; ; Aea> lies in] Y, which was an
A

arbitrary open set containing <x; ; AeA>. Thus <x; ; Aea> is in the closure of C. Since the

component is closed, therefore closure of C is equal to C itself. Therefore <x; ; AeA> belongs to

C. But <x; ; Aea> was an arbitrary point of [T X, . Therefore [T X, < C. But C c [] X, .
A A A

Hence [T X, isequal to C which is connected. Hence [] X, is connected.
A A

Locally Connected

Theorem 15. [] X, is locally connected if and only if each space X;, is locally connected and all
A

but a finite number are connected.
Proof. Suppose [] X, is locally connected, and let xg € Xg be contained in some open set Yg .
A

Choose some point z = <z,> with zz = X and we have z belonging to the open set ngl(YB). By
local connectedness, there must exist a connected open set G containing z and contained in
n[gl(YB). By local connectedness, there must exist a connected open set G containing z and
contained in ngl(YB). Taking the B-th projection, we see that zg = Xg is contained in the connected
open set ng(G) which is itself contained in Y and so Xg is locally connected.

Further, if z is any point of the product space, it must be contained in some connected open set G.
By definition ze [ Y, < G where Y, is open in X, for all A and Y; = X, for all but a certain finite
A
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number of values of A. But then the projections of G are connected and are equal to X, except for
that finite number of values of A.

Now suppose that X, is locally connected for old A and connected for A # B1, Bo,..., Bn . Let
X = <x3>, be an arbitrary point of [] Y, where Y, is open in X, for all A and Y, = X, for
A

A # Br*, B2¥,....Bk*. Since x; €Y, for all A and Y, is locally connected, there is a connected open
set G, in X, such that x, €G;, < Y;. Consider the subset [T Z, where Z;, = Gy if A = B1, B2,.-., B,
A

B1*,....0k* and Z, = X, otherwise. But by the result “[] X, is connected if and only if each X, is
A

connected”. This set is connected. Hence we have formed a connected open set containing X and
contained in [T, .
A

Product Space as First Axiom Space

Theorem 16. Product space [] X, is first axiom if and only if each space X, is first axiom and all
A

but a countable number are indiscrete.

Proof. Suppose [] X, is first axiom. Since each space Xy is homeomorphic to set Eg where each
A

<X, >such that x, =z,if L=
Ep =1X; is any point of X, and
<z, >isa fixed point of X=]] X,
A

and the first axiom of countability is both hereditary and topological, each space is first axiom.

Now if the space X, is not indiscrete, we may choose a point X, € X; which is contained in an open

set G, = X,. If X;, is indiscrete, we choose any point x; € X;,. Let X = <x;> and suppose {Bn}nen IS

a countable open base at X. For each integer n, the set B, must contain a member of the Tichonov

base of the form [] Y, where Y is open in X, for all A and Y, = X, for all but a finite number of
A

values of & ; A7, A%,..., x’;(n . The collection of all the expected values of & ; {A{;i=1,2,..., k, and

neN} is countable. For any other value of A, we choose x; eG; # X, if X; was not discrete, but
H;l(Gk) would then be an open set containing X which would not contain any B,. Hence for all
other values of A, X; must be indiscrete.

Now suppose that X; is first axiom for all A and indiscrete for A ¢{Ai}ien. Let X = <x;>; be an
arbitrary point in[] X, , and let {B,,,} be a countable open base at x,. We note that By, = x; for
A

all nif A¢{Ai}. The family {n;il(Bn, Ai), 1, neN} is a countable collection of open sets in the

product space. The set of all finite intersections of members of this collection is also countable and
it is already an open base at X, as desired.

Product Space as Compact Space

Theorem 17. XxY is compact if and only if X and Y are compact.
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Proof. Since the projection mappings are continuous and onto if X xY is compact, then so are X
and Y.

Conversely suppose that X and Y are compact. If G is any open covering of XxY, then each
member of G is a union of basis elements of the form VxW with V open in X and W open in Y.
We may restrict our attention to the covering {V,XW, }.c. of XxY by these basis elements where
each V,xW,_ is contained in some member of G, since any finite subcovering of this basic open
cover will lead immediately to a finite sub-covering chosen from the original cover G. For each
xeX, let Yy = {x} x Y which is homeomorphic to Y and hence compact. Since {V, x W,} also

covers Yy, there must exist a finite subcovering {V,.,. x W, ,. }; of Yx by sets which have a non-
empty intersection with Y. Let

n(x)
X = ﬂ Xv)‘i
i=1

The Gy is an open set containing x and the above finite subcover actually covers GyxY. Now
{Gx; xeX} covers X and so there is a finite subcover {G, ;}i.;. But then

n
n(xj)
{{\/xj,xi X \/ij',ki}i:1 ! }

=1
covers XxY. Hence XxY is compact.

Definition. Let X be any non-empty set. A filter H in the set X is a family of subsets of X
satisfying the following axioms :

(1) deH

2 IfFeH, GeH, thenFNG e H.

3) IfFe Hand H > F, then H o H.

Definition. An ultrafilter in a set X is a filter in X which is maximal in the collection of all filters
partially ordered by inclusion, that is a filter which is not properly contained in any other filter.
The topic will be discussed in detail in Chapter 8.

Theorem 18 (Tichonoff Product Theorem). T, X, is compact if and only each space X, is
compact.

Proof. Since the projections are continuous, so if [T X, is compact, then each X; is compact.
A

Now suppose each X; is compact and let H be a family of closed subsets of [T X, with the finite
A

intersection property. The family H generates a filter which is contained in some ultrafilter F.
Now consider the family

{C(nF ;FeF}
of closed subsets of X; . This family has the finite intersection property because

ACr,F) 2 NC,F) o 11 (NF)
i=1 i=1 A i=1
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which is nonempty because F has the finite intersection property. Now since X, is compact, there
exists some point x; which belongs to C(Q F)forevery F € F. Let X = <X, >; and show that X

belongs to every setin F .
Now let S= [T Y; with Y = Gg an open set in Xg and Y; = X, if L # B be an arbitrary member of
A
the subbase for the product topology which contain X. But then Gg is an open set containing the
point xg which is in the closure of ©F for every F € F. Hence Gg must contain a point of = (F)
B B

for every F € F. Then S must contains a point of F for every F € F and by the lemma, this
impliesthat S € F.

Finally let x be contained in an arbitrary open set G. By definition, x € S; n ... 0 S, < G for
some finite number of sets S; in the subbase. We have just shown that each S; € F and so
S1nS; NS, € Fand hence G € F. Going back to our original family H of closed sets with the
finite intersection property, we note that each member of H is also a member of FandsoH N G €
F foreveryH e Hand thenH " G = ¢ foreveryH e H. Thusx € C(H) = H foreveryH € H

= (1 H=¢. Sowe have proved that every family of closed sets in the product topology which
HeH

has finite intersection property has a nonempty intersection. Thus [ X, is compact.

AEA



TOPOLOGY109

NETS AND FILTERS

Inadequacy of sequences : We are familiar with the fact that a function f: R—R is continuous at
Xo In R if whenever <x,> is a sequence converging to Xo in R, then the sequence <f(x,)> converges
to f(xo). We introduced topologies for the purpose of providing a general setting for the study of
continuous functions. Two questions arise.

(a) Can we define sequential convergence in a general topological space ?

(b) If so, does the resulting notion describe the topology and hence the continuous
functions? The answer to the first question is yes and the definition is as follows :

Definition. A sequence <x,> in a topological space X is said to converge to xeX written
lim x, = X or X,—X iff for each neighbourhood U of X, there is some positive integer no such that

nN—oo

XneU whenever n > nq. In this case we say that <x,> is eventually in U. A sequence is called
convergent if and only if there is at least one point to which it converges.

The answer to the second question (b) is only for a limited class of spaces. In fact, we have
Theorem. 1. If <x,> is a sequences of distinct points of a subset E of a top space X which
converges to a point X € X then x is a limit point of the set E.

Proof. Proved earlier.

Remark. The converse of this is not true even in a Hausdorff space.

Theorem. 2. If f is a continuous mapping of the topology space X into a topology space X* and
<Xp> is a sequence of points of X which converges to the point x € X, then the sequence <f(x,)>
converges to the point f(x) € X*.

Proof. Proved earlier.

Remark : The converse of this th is also not true even in a Hausdorff space. i.e. a mapping f for
which x,—x implies f(x,)—f(x) may not be cont. However, the converse of the above theorems
hold in the case of first axiom space and first countable space.

Theorem. 3. If X is first countable pace and E = X, Then x e E iff there is a sequence <x,>
contained in E which converges to x.

Proof. Proved in Chapter IV.

Theorem 4. Let f be a mapping of the first axiom space X into topological space X*, then f is
continuous at xe X iff for every sequence <x,> of pts in X converging to x we have the sequence
<f(x,)> converging to the point f(x) € X*.

Proof. Proved in the Chapter IV.
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Remark. The failure of the converses of the theorems 1 and 2 show that the notion of limit for
sequence of points is not completely satisfactory, even in the case of Hausdorff spaces. But these
converses, as shown above in Theorem 3 and 4, may be proved if we take the first axiom space.
Another way to obtain these results is to generalize the notion of sequence. This leads to the idea
of Moore—smith sequence, Moore — Smith family, generalized sequence or a net. Still another
approach is to consider the notion of a filter which we shall discuss later on.

Nets

Definition. A set A is a directed set iff there is a relation < on A satisfying
(@) A < foreach Lea
(b) M <hand Ay <Az = A <As.
(c) If A1, A2 € A, then there is some A3 e with A; < Az and A, < As.
The relation < is sometimes referred to as a direction on A or is said to direct A .

Remark. The first two properties (a) and (b) are well known requirement for an order relation.
But the lack of antisymmetry shows that direction need not be a partial order. The concept of a
net, which generalizes the notion of a sequence can now be introduced, using an arbitrary directed
set to replace the integers.

Definition. A net in a set X is a function P : A—X. where A is some directed set. The point P(A)
is usually denoted by x, and we often speak of the net <x;>; ., or the net (x,) if this can cause no
confusion.

Example. 1. Every sequence is a net because (N, <) where < is the usual ordering on N is a
directed set.

Example. 2. The neighbourhood system Ay of a point x in a topological Space X is a directed set.
Here for U, Ve Ay, we define U <V to mean U o V. (Note that this is in sharp contrast with our
intuition that “U is smaller than V”* should mean that U is contained in V). Conditions (a) and (b)
hold trivally while (c) follows from the fact that the intersection of two neighbourhoods is again a
neighbourhood. We define a net P : Ax—X now and denote P(U) by Xy and thus <xy>ycx is a net.

Example. 3. We give an example which is of historical significance in the definition of Riemann
integrals. A partition of the unit interval [0, 1] is a finite sequence P = {ay, ai,..., an} such that
0=a;<a <..<ap=1. Theinterval [ai_1, ai],1=1, 2,..., n is called the ith subinterval of P. Such
a partition is said to be refinement of another partition Q = [bg, bs,..., by] if each subinterval of P is
contained in some subinterval of Q. Let us write P < Q to mean that P is a refinement of Q. Then
we see that < directs the set of all partitions of [0, 1]. Conditions (a) and (b) of the definition are
immediate. For (c) note that if P and Q are partitions, then the partition obtained by superimposing
them together is a common refinement of P and Q. Let us define the Riemann net corresponding
to a bounded — real valued function f on the unit interval [0, 1]. Let D be the set of all pairs (P, &)
where & is a partition of [0, 1] say P = {ao, ai,..., a,} and & = {&1, &, ..., &} IS a finite sequence
such that &; e [ai_1, a] fori=1, 2,...,n. Given two elements (P, &) and (Q, n) of D, let us say (P,
€) < (Q, n) iff P is a refinement of Q and for each j, n; = & where i is so defined that the j—th
subinterval of Q contained in the i-th subinterval of Q contained in the i-th subinterval of the
partition P. It can be shown that < directs D. Now define the net P : D — R by

P(P, &) = 21 (&) (@ — i)



TOPOLOGY111

This is of course, nothing but what is called in the integral calculus as the Riemann sum of the
function f for the partition P and the choice of points &; in the ith subinterval of P and the Riemann
integral as we know, is defined as the limit of such Riemann sums as the partitions gets more and
more refined.

Example. 4. Let (M, p) be a metric space with xo,eM. Then M — {Xo} becomes a directed set
when ordered by the relation x <y iff p(y, Xo) < p (X, Xg). Hence if f: M — N, where N is a metric
space, the restriction of f to M —{x} defines a net in N.

Definition. A net P : A—X is eventually in X iff there is an element m of A such that if n €A and
n < m then P(n) € X. This net is frequently in X iff for each m in A, there is n in A such that
n<mand P(n) eX.

Definition. Let (A, <) be a directed set. A subset M of A is said to be Cofinal subset of A if every
o € A, there exists ¢ €M such that a < . Clearly every eventual subset is a cofinal set but
converse is not true.

For example, in N any infinite subset is cofinal but not necessarily eventual.

Topology and Convergence and Nets

Definition. A net P : A—X is said to be eventually in a subset A of X iff the set P"}(A) is an
eventual subset of A.

Definition. A net P : A—X is said to be frequently in a subset A of X if P*(A) is a cofinal subset
of A.

Definition. Let A and M be two directed sets. Then ¢ : M—A is said to be an increasing cofinal
function if

(@) ¢ (1) < d(u2) whenever py < pp (¢ is increasing)
(b) For each & ex, there is some m €M such that
A < o(m) (¢ is cofinal in A)

Definition. A subnet of a net P : A—X is the composition Pyp where ¢ : M— A is an increasing
cofinal function from a directed set M to A.

For neM, the point Pod(p) is often written as x»,, and we usually speak of the subnet (xx,) of (x,).
Definition. If (x,) is a net in X, a set of the form {x; ; A > Ao} for Ao € A, is called a tail of (x;)

Definition. Let (x,) be a net in the space X. Then (x,) is said to converge to xeX, (written as
x,—X) if for every neighbourhood U of x, there exists Aoe such that A > A, implies x; eU.

Thus x; —x if and only if each neighbourhood of x contains a tail of (x;)

Sometime we say (x;) converges to x provided it is residually or eventually) in every
neighbourhood of x.

Definition. A point xeX is said to be a cluster point of the net (x,) if for every neighbourhood U
of x and for each Ag e, there exists some A > A such that x;, e U.

This is sometimes said (x;) has x as a cluster point if and only if (x;) is cofinally or frequently in
each neighbourhood of x.
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Example. (1) We have seen in Ex 2 for the nets that we can define a net P : Ax—>X on the
neighbourhood system Ay of a point xeX. We denote this net by (Xu)uen. We observe that
Xu—X. Infact, given any neighbourhood V of x, we have Uy >V for some Uy eAx. Then U > Uy >
V implies U < Ug so that Xg € Up < V.

(2) We know that every sequence is a net. The two definitions of convergence of (xp)
coincide.

(3) We have seen in example 3 that
PP.E)= X (&) (@~ i)

is a net. This sum is nothing but Riemann sum for the function f for the partition P and the choice
of points &; in the ith subinterval of the partition P. The Riemann integral is defined as the limit of
this net (Riemann sum) as the partitions get more and more refined.

(4) We had seen in example 4, that the restriction of f : M—N to M — {x}, xeM was a net
in N. This net converge to zo in N iff lim f(x) = z in the elementary calculus sense.

X—>X
X

Remark. The definition of the cluster point of a net is a generalization of the notion of a limit
point of a sequence. It is obvious that if a net (x;) converges to X, then x is a cluster point of (xy).
Actually a stronger result holds.

Theorem 6. A net (x;) has the point x as a cluster point if and only if it has a subnet which
converges to X.

Proof. Let x be a cluster point of (x;). Let M = {(A, U); Lea; U is a neighbourhood of x
containing x; } Define order < in M as follows:
(k1, Ul) < (kz, Uz) iff .y <A,and U, = Uy
we notice that
(i) since A1 <A1 (A being directed and U; < U;, we have
(A1, Ug) < (A1, Uy)
(II) If (7\,1, Ul) < (7»2, U2) and (7»2, U2) < (}ug, U3) then M < Ao and U,cU, and A < }ug and
U3 c Uz
= A1 <Az and Uz < U; and thus we have
(k1, Ul) < (kg, U3)
(i) If (X1, Uy) and (X2, Uy) € M, then since A is a directed set, there is a Aze such that A,
<Az, A2 < As.
Moreover, U; n U, < U; as well as in U,. Then the pair (A3, Uy n Uy) is the pair such that
M <Azand Uy nU; < Uy,

i.e. (7\,1, Ul) < (7\,3, Uin U2)

and also M<izand Ui nUs c Uy

i.e. (7»2, U2) < (7»3, Ui A Uz)

Thus <'is a direction on M. Define ¢ : M—A by ¢(x, U) = A we have
O(r1, Ur) =M

and d)(?uz, U2) =N

Therefore A1 <Ay = ¢(A1, Up) < d(h2, Uz) which shows that ¢ is increasing.
Moreover if L € A, then there is some (p, U) € M such that A < ¢(p, U) =
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which shows that ¢ is cofinal in A. Therefore T = P 0¢ is a subnet of (x;) we will now show that T
converges to X eX. Let Uy be a neighbourhood of x in X. Since x is a cluster point of (x;), the net
(x2) s frequently in Uo. In particular fix any Ao € A such that X, e Uo. Then (o, Ug) eM. Now

forany (A, U) eM, (A, U) > (Lo, Up) implies that U < Uy, so that
T(A, U) =Podp(r, U) =P(A) = x,,eUcUo.
Thus we have shown that for each neighbourhood U, of xe X, there exists (Ao, Ug)eM such that
(A, U)>(Ro, Ug) =T, U)c Uy
Hence the subnet T = Po¢ of P is convergent to the limit xeX.

Conversely suppose T = Po¢, where ¢ : M—A is a subset of P = (x;) converging to x in X. Let U
be any nbd of x in X and let Ao be given. Since T converges to X, there exists py in M such that
forall peM, p > py implies T(p) €U, i.e. P(¢(w)) = Xy eU.

Since ¢(M) is cofinal in A, there is some upeM such that Ao < ¢(ug). Choose u*eM such that u* >
Ho and pu* = py. Then ¢(p*) = A* > Ao. Since ¢(u*) = ¢(Uo) = Ao and X, = Xax€U since p* > po.
Thus for any neighbourhood U of x and any AoeA, there is some A* > Ao with x;~eU. It follows
that x is a cluster point of (x,).

Cor. If a subnet of (x;) has x as a cluster point, so does (x;).

Proof. A subnet of a subnet of (x;,) is a subnet of (x,).

We turn now to the problem of showing that nets do indeed represent the correct way of
approaching convergence question in topological spaces.

Theorem 6. If EcX, then xe E (closure of E) if and only if there is a net (x,) of points of E with
Xy —>X.

Proof. If xe E, then each neighbourhood U of x, meets E in at least one point xy. We take the
index set as the collection of all neighbourhoods of x ordered by reverse inclusion. Then

(Xu)ueu, is a net contained in E which converges to x. To show the convergence, let V be any

neighbourhood of x. We have UycV for some UgeUy (since Uy represents the base of
neighbourhoods). Then for all U > Uy > V we have

Xu € Ug < V. Hence Xy—X.

Conversely if (x;) is a net contained in E and x;—X. Then every neighbourhood of x contains a tail
of (x,). Thus every neighbourhood of x meets E and hence xe E.

Theorem 7. Let f : X — Y. Then f is continuous if and only if whenever x;—Xp in X, then
f(x)—>f(Xo) IN'Y.

Proof. Suppose f is continuous at Xo. Therefore given a neighbourhood V of f(xo), f(V) is a
neighbourhood of X,. Now let x,—>Xo, therefore 3 A, such that & > Ao implies x,.e f (V). Thus A >
Ao implies f(x;)eV. This shows that f(x;)—f(Xo).

On the other hand, if f is a not continuous at Xo, then for some neighbourhood V of f(x), f(U) ¢ V
for any neighbourhood U of x,. Thus for each neighbourhood U of Xx,, we can pick xyeU such
that f(xo) ¢ V. But then (xy) is a net in X and xy—>Xo, While f(xy) - f(Xo).
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Theorem 8. A net <x;> in a product X = [] X, converges to x if and only if for each aeA,

aEN

Ta(X3) = e (X) in X,

Proof. Let x,—»>Xx in [T X, Since projection mapping m, is cont. by the above theorem, n,(x;) —

[VESAN

To(X) in X,
Suppose on the other hand, that rt,, (X;) — m,(X) for each ae A (index set). Let
n;t ,(Uaw) N oo o + (Ugr)

be a basic neighbourhood of x in the product space. Then for eachi=1, 2,..., n, there is a A; such
that whenever A > %, we have m, (X.) € Uq. Thus if Ao is picked greater than all of 14, 2,..., An

we have I, (X)) € Uay, i =1, 2, ...,n for all AL > Ag. It follows that for A > A, Xy € n;il(Uai) and
hence x,—X in the product.

Hausdorffness and Nets
Theorem 9. A topological space is Hausdorff if and only if limits of all nets in it are unique.

Proof. Suppose X is a Hausdorff space and P : A—»>X isanetin X. Let P converges to x and y in
X. We have to show that x = y. If this is not so, then there exists open sets U and V such that
x €U, yeV and UnV = ¢. Since P converges to X, there exists A; e such that for all LeA,
A1 > A, implies P(L)eU. Again since P converges to vy, there exists A,e such that for all e, A >
Ao implies P(A)eV. Now because A is a directed set, there exists Aea such that A > A, and
A > Ap. But that P(L)eU, P(L) €V i.e. P(L) € UnV, a contradiction since UnV = ¢, S0 X =Y,
establishing the necessity of the condition.

Conversely suppose that the limits of all nets in a space X are unique. If X is not Hausdorff, then
there exist two distinct points x, y in X which do not have mutually disjoint neighbourhood in X.
Let ux and py be the neighbourhood systems in X at x and y respectively. Let A = py x py and for
(U1, V1), (U, V2) en, define (Ug, V1) > (U, V) if and only if U; < Uz and V3 < V,. This makes
A a directed set and we define a net P : A—X as follows :

For any Uepy and Vepy we know that U n'V = ¢. Define P(U, V) to be any point in U n V. We
assert that the net P so defined converges to x. In fact, let G be any neighbourhood of x. Then (G,
X)en. Now if (U, V) > (G X) in Athen U c G and so P(U, V) e UV c U c G. This proves
that P converges to x. Similarly we can show that P converges to y also contradicting the
hypothesis. Hence X is a T,-space.

Remark. The proof of the converse illustrates the advantage nets have over sequences. In a
sequence, the domain is always the set of positive integers, while in defining nets, we have
considerable freedom in the choice of the directed set.

Compactness of Nets

Definition. A family F of subsets of a set X is said to have the finite intersection property if for
any neN and F; F,..., FreF, the intersection rn] Fi is non-empty. In particular every member of a
family having finite intersection property is no;{-lempty.
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Prop. A topological space is compact if and only if every family of closed subsets of it, which has
the finite intersection property, has a non-empty intersection. Now we can prove the following

Theorem 10. For a topological space X, the following statements are equivalent

(i) Xis compact

(it) Every net in X has a cluster point in X.

(iii) Every net in X has a convergent subnet in X (i.e. a subnet which converges to at least
one point in X).

Proof. We have proved the equivalence of (i) and (ii) alreadby (by Theorem 5). Therefore, we
only prove the equivalence of (i) and (ii). So we suppose that X is compact and let P : A—>X be a
net in X. Suppose X has no cluster point in X. Then for each xe X, there exists a neighbourhood
Ny of x and an element mye A such that for all nea, n > my implies P(n) e X—Ny cover X by such
neighbourhoods (or more precisely, by their interiors). By compactness of X, there exist X3, Xo,...,

K
Xk eX suchthat X = | N, . Let the corresponding elements in A be my, my,..., my. Since A is a
i=1

K
directed set, there exists nea such thatn > mj fori=1, 2,..., k. Butthen P(n) e U (X-N,.) =X
i=1
K - -
—U Ny, = ¢, acontradiction.
i=1

Hence P has at least one cluster point in X. Thus (ii) holds.

Conversely suppose that (ii) holds. Let C be a family of closed sets of X having the finite
intersection property. Let D be the family of all finite intersections of members of C. D itself is
closed under finite intersections and that C — D. For D, E € D, we define D > E to mean D c E.
This makes D, a directed set because whenever D, EeD,D "nE eDand D nE>D,D nE > E.
Note that each member of D is non-empty because C is given to have the finite intersection
property. So we can define a net P ; D—X by P(D) = any point in D. By (ii), this net has a cluster
point say x in X. We claim x € (1] C. For if not, there exists C e C such that x¢C. Then X - C

ceC

is a neighbourhood of x (since members of C are closed). Also CeD. So by the definition of a
cluster point, there exists DeD such that D > C and P(D) € X — C. But then Dc C, and so
X-C < X — D contradicting that P(D)eD. So x € [| C. We have thus shown that every family of

ceC

closed subsets of X having finite intersection property has non-empty intersection. But this
implies that X is compact.

Definition. A net <x;> in a set X is an ultranet (universal net) if and only if each subset E of
X, (x,) is either residually in E or residually in X-E.

It follows from this definition that if an ultranet is frequently in E, then it is residually in E. In
particular, an ultranet in a topological space must converge to each of its cluster points.

For any directed set A, the map P : A~—>X defined by P(L) = x for all Le A, gives an ultranet on X,
called the trivial ultranet. Non-trivial ultranets can be proved to exist (relying on the axiom of
choice) but none has ever been explicitly constructed. Most facts about ultranets are best
developed using filters at ultrafilters.

Theorem 11. If <x,> is an ultranet in X and f : X—Y, then (f(x,)) is an ultranet in Y.
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Proof. If A c Y, then f1(A) = X — f1(Y — A) therefore by the definition of ultranet, <x,> is
eventually in either f *(A) or f "}(Y — A) from which it follows that (<f(x,(>)) is eventually in
either A or Y—A. Thus (f(x,)) is an ultranet.

Theorem 12. For a top. Space X, the following are equivalent.
(a) X is compact.
(b) Every net in X has a cluster point in X.
(c) Every netin X has a convergent subnet in X.
(d) Each ultranet in x converges.

Proof. We have already proved the equivalence of (a), (b) and (c). Moreover each ultranet is a net
and by (b) it has a cluster point and hence converges to that point. Thus (b) =(d). Similarly we
can prove that (d) = (b) thus these four statements will be equivalent.

Filters and Their Convergence

We now introduce a second way of describing convergence in a topological space. The result is the
theory of filter convergence.

Definition. A filter H on a set S is a non-empty collection of subsets of S such that.
(@ ¢ ¢H
(b) If F;, F, e H, then F; " F, e H
(c)ifF e Hand F o F, then F'eH.

In view of the result “If a family B of subsets of a set X is closed under finite intersection, then B
has finite intersection property”. It follows that the conditions (a) and (b) imply that a filter has the
finite intersection property. Condition (c) says that a filter is closed under the operation of taking
supersets of its members. It implies in particular that the set S always belongs to every filter on it.

Definition. Let H be a filter on a set S. Then a subfamily B of H is said to be filter base for H if
for any FeH, there exists GeB such that GcF. Thus if B is a base for a filter H, then every
members of H is a superset of some members of B.

On the other hand if BeB, then BeH and so nay subset of B is in H by condition (c) of the
definition of a filter. Thus if B is a base for a filter H, then H consists precisely of all supersets of
members of B, i.e.

H={FcS;F>B,B eB}
Definition. If H; and H; are filters on the same set x, we say H, is finer than H, (or H; is coarser
than H,) if and only if H; > H..

Definition. Two filters H; and H; are said to be comparable if and only if H; is finer than H, or H,
is finer than H.

Definition. A filter H on a set X is said to be fixed if and only if " H = ¢, and fine if " H = ¢.

Remark. The set of all filters on X is directed by the relation < defined by setting H; < H; iff H, is
finer than H;.

Examples. (1) If X is any non-empty set, then the singleton family {X} is a filter on X. Moreover
{X} is the coarset filter on X. In other words {X} is the smallest element of the ordered set of all
filters on X. But there is no largest filter on X if X consists of more of more than one element as
we will see later on. In fact among the families satisfying axioms (b) and (c), the power set P(X)
is largest and it is excluded by axiom (a)
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(2) Let X be any non-empty set and xoe X. Then the family
H={F; X, eF}
is a filter on X. To show it, we observe that H is non-empty since {Xo} € H. Moreover
(i) Since xoeF for all FeH, it follows that no member of H is empty and so ¢ ¢ H.
(i) LetFeHHe H, thenxy e Fand xo e H. Thusxo e FNH=FAH € H.

(ifi) LetFeHand H o F. Thenxp e F = xo eH = HeH.
Hence H is a filter.

(3) Let Fo be a non-empty subset of a set X. Then the collection
H={Fc X, F>Fe}

of all supersets of Fo (in X) is a filter on X. Such a filter is known as Atomic filter. The set Fy
being called Atom of the filter. In this case, Fy is the intersection of all members of the filter. The
filter base for this filter H is the collection consisting of the single set F.

(4) Let X be any infinite set. Then the collection
H = {F ; X—F is finite}.

of all cofinite subsets of X is a filter on X (Note that this filter is not atomic). Such a filter is called
the cofinite filter. We prove it as follows

Since X — X = ¢, is finite. XeH and hence H is non-empty. Further

(1) Since X is infinite and X-F is finite, it follows that F is an infinite set and hence no
member of H is empty. Thus ¢zH.

(ii) If F, H eH, then X—F and X—H are both finite. Now
X = (FnH) = (X-F) U (X-H) (Demorgan’s Law)
Since (X-F) and (X—H) are finite, it follows that X—(F~H) is finite = FnHeH.

(iii) Let FeH, and H o F. Since X-F is finite = X —H is finite. Hence HeH. Thus H is a
filter.

(5) Suppose (X, T) is a topological space. Then for any x e X, the neighbourhood system Uy
at x is a filter. It is called the T-neighbourhood filter at x. Any neighbourhood base at x is a
filter base for T-neighbourhood filter.

(6) Let N be the set of non-negative integers. Then the collection
H={F; N - Fis finite}
Is a filter on N. This is known as Frechet Filter.
(7) Let P = A—>X be a net. For each Apen, let
By, ={P(A) s Aen; k= ho}
let H={Fc X; F>B,,for some & en}.
In other words, H is the collection of all supersets of the sets of the form B, ; Acen. Using the

fact that A is a directed set, it can be shown that H is a filter on X. Obviously it depends on the net
and is called the filter associated with the net P.

Theorem 13. Let {H;} be any non-empty family of filters o a non-empty set X (which must
therefore be non-empty). Then the set
H= f\Hk
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is also a filter on X.

Proof. We have
(i) Since g H, for any Aen, if follows that ¢ H.

(if) Let F, HeH. Then FeH,, HeHj, for all Aea. Since each H; is a filter it follows that F
N H e H, forall A ea. Hence
FNHeH.

(iii) Let FeH, H o F, then F €H, for all Ae. Since each H; is a filter and FeH,, it
follows that HeH; for all A.eA. Hence HeH. Thus the theorem is proved.

The filter H = nH;, constructed above is called the intersection of the family of filters H, and is
obviously the greatest lower bound of the set of the H; in the ordered set of all filters on X.

Theorem 14. Let A be any non-void family of subsets of a set X. Then there exists a filter on X
containing A if and only if A has finite intersection property.

Proof. Suppose first that A has finite intersection property. We have to show that there exists a
filter on X containing A. Let B = {B ; B is the intersection of a finite subfamily of A} .

Since A has finite intersection property (f. i. p) no member of B is empty. Hence ¢#B. Now set
H = {F ; F contains a member of B}
Evidently H o> A. We claim that H is a filter on X. In this direction, we have

(1) Since ¢¢B and every member of H is a superset of some members of B, it follows that
deH.

(2) Let FeH and H > F. Since F contains a member of B, H must also contain that
member. Hence HeH.

(3) Let F, HeH. Then F oB, H o C, where B and C are members of B. Since B and C are
finite intersections of members of A. B n C must also be a finite intersection of members of A.
Hence BN C eB. AlsoF>B,H>C= F n H > B n C. Thus FnH contains a member of B and
soFNH eH.

Thus we have shown that if A has f. i. p, then 3 a filter H containing A.

Conversely suppose that H is a filter on X containing A. Then H also contains the collection B of
finite intersection of members of A. hence a necessary condition for the existence of such a filter
H is that ¢ ¢ B, i.e. A must have f. i. p.

Cor. The filter H obtained above is the coarset filter which contains A i.e. the smallest element of
the ordered family of all filters on X containing A.

In fact, if H' is any filter containing A, then H" must contain all finite intersections of members of
A and their supersets and hence H' oH.

Definition. The filter H defined in the above theorem is said to be generated by A and A is said to
be a subbase of H.

Observe that for A to be a subbase, it is necessary and sufficient that f has f. i. p.
Remark. The above theorem suggests the following method of constructing a filter.
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Take any family A of subsets of X with f. i. p. Then obtain the family B of all finite intersections
of A. The family H of all those subsets of X which contain a member of B is a filter on X e.g.
X ={a, b, c,d} and let A = {{a, b}, {b, c}}, then A hasf.i. p. Here

B = {{b}, {a, b}, {b, ¢}, X}

Note that X is a member of B since it is the intersection of the void subfamily of A. We now form
the family H by taking all the superset of member of B. Thus

H = {{b}, {a, b}, {b, c}, {b, d}, {a, b, c}, {b, c, d}, {a, b, d}, X}

which is a filter on X.

Theorem 15. Let B be a family of non-empty subsets of a set X. Then there exists a filter on X
having B as a base iff B has the property that for any By, B, € B, there exists Bz € B such that B,
M Bz > Bg.

Proof. Suppose there exists a filter H on X having B as a base. Then B — H and ¢¢H ; hence
¢¢B, Also let By, B, € B. Then By, B, eH (since B < H) and so B; n B, €H as H is closed
under finite intersections. So by the definition of a base, there exists B3eB such that B; » B, > Bs.
This proves the necessity of the condition.

Conversely suppose B satisfies the given condition. We then construct a filter from B as follows:
Let H be the family of all supersets of members of B. Then condition (C) in the definition of a
filter automatically holds for H. The empty set can not be a superset of any set. Hence it follows
that pzH as ¢B. It only remains to show that H is closed under finite intersections. For this it
suffices to show that the intersection of any two members of H is again in H for then one can
apply induction. So suppose A1, A, € H. Then there exists By, B, €B such that B; — A; and B, <
A,. We are given that there exists B3eB such that B; = B; m B,. But then A; n Ay is a superset of
Bs;eB and so A; N A, eH. Thus H is a filter on X and B is a base for it by its very construction.

Cor. Any family which does not contain the empty set and which is closed under finite
intersections is a base for a unique filter.

Proof. The condition in the above theorem is trivially satisfied for such a family.

It is natural to enquire if there is a corresponding notion of subbases for filters. The answer is in
the affirmative.

Definition. Let H be a filter on a set X. Then a subfamily & of H is said to be a subbase for H if
the family of all intersections of members of & is a base for H. We also say 6 generates H.

Obviously every base is a subbase. It is easy to characterize those families that can generate filters.

Theorem 16. Let 6 be a family of subsets of a set X. Then 3 a filter on x having S as a subbase if
and only if S has the finite intersection property.

Proof. If there exists a filter H on X containing S, then H has f. i. p. and so does every subfamily
of H. Thus the condition is necessary.

Conversely suppose S has a finite intersection property. Let B be the family of all finite
intersections of members of S. Then ®¢B and B is closed under finite intersections. So by the Cor.
above, B is a base for the filter H on X and thus S is a subbase for H.

So far the treatment was purely set theoretic, without mention of any topology on the set X in
question. Suppose now that a topology T on X be given. We then define convergence and cluster
points of filters with respect to T as follows.
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Definition. A filter H on a topological space X is said to converge to x (written H—X) iff every
neighbourhood of x belongs to H iff ux — H i.e. iff H is finer than the neighbourhood filter at x).
Also we say that x is a cluster point of H cor H clusters at x) iff every neighbourhood of x
intersects every member of H i.e. iff

xe n{ F; FeH}

Remark. It is clear that if H—X, then H clusters at x because given U € py, FeH, both U and F
areinHandso U N F = ¢.

Remark. It will be convenient to have the notions of convergence and clustering variable for filter
bases, they generalize easily and obviously.

A filter base B converges to x iff each U ey contains some BeB (if and only if the filter generated
by B converges to x). Similarly B clusters at x iff each Ueuy meets each BeB (iff the filter
generated by B clusters at x)

Example. (1) Trivial examples of convergent filters are the neighbourhood filters.

(2) If Hy and H;, are filters on X with H; < H; then whenever H; converges to some point
in X, so does Ho. It is probably for this reason that in such a case H is said to be a subfilter of H;
even though as subset of P(X), H; is a super set (and not a subset) of H;.

(3) The Frechet filter on R has no cluster points.

Theorem 17. H has x as a cluster point iff there is a filter G finer than H which converges to A
filter H has x as a cluster point iff some subfilter of H converges to x.

Proof. Suppose H has x as a cluster point. Therefore every neighbourhood of x intersects every
member of H i.e. F n U = ¢ for every FeH and every Uepy. Thus the family

C={FnU;FeHand Ueu}
generates and is a base for a filter defined by

G={G;GoFnU;FeH, Ueu}
In fact (i) ¢¢ G because the empty set can not be a superset of any set.
(ii) Suppose G;, G, G. Therefore 3 Fy, F, € H and Uy, U, ey such that
Glelmuland G,oF, U,
which implies
Gl M Gz ) (Fl M Ul) M (F2 M Uz)
= (Fl M F2) M (U1 M Uz)

Since F; n F, € H (property of a filter) and U; N U, € py (property of neighbourhood system) it
follows that Gy "G, € G .

(iii) If G e G and G, oGy, then we have G; oFNU, F1eH and Uepy. i.e. G, © G o FC,
FeH and U ey

Thus G is a filter and C is a base for it from its very construction. Since X is a neighbourhood of x;
therefore Xepux and we have G oXnF = F, FeH for all F. Thus G is finer than H. Since H
converges to x, every neighbourhood of x belongs to H and therefore to G. Thus G converges to x.

Conversely suppose that H — G—X, then each neighbourhood of x belongs to G. Also each FeH
= FeG. Thus each neighbourhood of x intersect every member of H. Hence x is a cluster point of
H.
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Now we shall show that filter convergence is adequate to the task of describing topological
concepts.

Theorem 18. If E c X, then xe E if and only if there is a filter H such that EcH and H—x.

Proof. Let xe E, then every neighbourhood U of x has a non-empty intersection with E. Then the
collection

C={UnE;Ueu}
is a filter base for the filter
H={G;GoUnNE;Uepu}

Clearly E€H because E > U n E. This filter H converges to x because each
neighbourhood U of x belongs to H.

Conversely, if EcH—>x, then x is a cluster point of H and hence xe E.

Theorem 19. Let X, Y be sets, f : X—Y a function and H, a filter on X. Then the family

C={f(A) ; AecH}
is a base for afilteron Y.
Proof. Since by Theorem 15, “let B be a family of non-empty subsets of a set X. Then there exists
a filter on X having B as a base iff B has the property that for any B;, B,€B, there exists B;eB
such that By n B, ©B3”. Therefore we show that C satisfies then condition of the above stated
Theorem. Evidently ¢&C. Also let By, B,eC, Then 3 A;, A,eH such that f(A;) = By and f(Ay) =
B,. Then A; N AyeH (property of a filter) and B, m B, contains f(A; n Az) which is a member of
C. Therefore by the above Theorem C is a base for a filteron Y.

Definition. Let H be a filter on X and f : X—>Y be a function. Then the filter, denoted by f(H) on
Y having

C = {f(A) ; AcH}

as its base is called the image filter of H under f. We are now in a position to characterize
continuity in terms of convergence of filters.

Theorem 20. Let X, Y be top. Spaces, xeX and f : X—Y a function. Then f is continuous at x iff
whenever a filter H converges to x in X, the image filter f(H) converges to f(x) in Y.

Proof. Assume first that f is continuous at x and H is a filter which converges to x in X. We have
to show that f(H) converges to f(x) in Y. Let V be a given neighbourhood of f(x) in Y. Since fis
cont. at x, f*(V) is a neighbourhood of x in X. But H converges to x in X. Therefore every
neighbourhood and in particular f*(V)eH. So f(f*(V)) e f(H). But V contains f(f(V)) and so
(being a superset of member of f(H)), V ef(H). Thus each neighbourhood V of f(x) belongs to f(H).
Hence the filter f(H) converges to f(x).

Conversely suppose that H—x in X implies f(H)—f(x) in Y. Let H be the filter of all
neighbourhoods of x in X. Then each neighbourhood V of f(x) belongs to f(H). Therefore for
some neighbourhood U of x, we have f(U) < V. Then for each neighbourhood V of f(x), there is a
neighbourhood U of x such that f(U) < V. Hence f is continuous.

Theorem 21. Let X = [[X, be the topological product of an indexed family of spaces
A

{X, ; Aen}. Let H be a filter on X and let xeX. Then H converges to x in X if and only if for
each A, the filter &, (H) converges to m(x) in X,.
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Proof. Suppose first that H—>x in X. Since[] is continuous, it follows that m,(H)— m(X) .
A

Conversely suppose that m, (H)— m(x) in X;. We have to show that H converges to x in X. Let U
be a neighbourhood of x in X. Then U contains a basic open set V containing x. Let V =[] V,,
A

where each V, is an open set in X, and V; = X, for all Aea except for A = A4, A,..., A, (SaY). Now
m,, (H) converges to =, (x) forallk=1,2,...n. So V, e m, (H) and hence there exists

FkeH such that V,, o, (Fi) fork=1,2,....n. Note that 7, (V; )> m;,. (m,, (F))> Fxfork=1,

n n 0
2,...,n. So UV = Kﬂl . (V)2 Kﬂl F.. But intersection Krll Feis in H since H is closed under

n

finite intersections and therefore U being a superset of (| Fy is also in H. Thus each
K=1

neighbourhood of x belongs to H and therefore H—x.

Second proof for the converse. Suppose that n,(H)— m,(x) for each a. Let ﬁ H;t (Ug) be a
K=1

basic neighbourhood of x in T X,. Then Uk is a neighbourhood of =, (x)for each k. Since

o

m,, (H)— =, (X) each neighbourhood of =, (x) belongs to =, (H). Thus Uxe I1,, (H) for each
k. Hence there is some FreH (by the definition of the base of the filter =, (H)) such that =, (Fi)

> Ux. Then (n] Fx eH and (n] Fk o (n] H;i (Uy) and so (by the property of the filter H) being a
K=1

K=1 K=1
superset of the members of H

n 1
N my, (Ug) eH.
K=1

Thus we have shown that each neighbourhood of x belongs to H. Hence H—x.

Ultrafilters and Compactness

Definition. A filter H on a set X is said to be ultrafilter if it is a maximal element in the collection
of all filters on X, partially ordered by inclusion. Thus H is an ultrafilter iff it is not property
contained in any filter on X(i.e. if there is no filter strictly finer than H). For example, all atomic
filters whose atoms are singleton sets are maximal.

Theorem 22. Every filter is contained in an ultrafilter.

Proof. Let H be a filter on a set X and G be the collection of all filters on X containing H. Then
HeG and so G is non-empty. Partially order G by inclusion. Let {G; ; iel} be a non-empty
linearly ordered set (chain) in G.

Let S=U Gi

i=1

We claim that S is a filter on X. Clearly ¢S because ¢¢G; for all icl. Moreover let A, B,eS,
then there exist i, jel such that AeG; and BeG;. Since the collection {G;} is a chain under
inclusion, it follows that either G; < G; or G; < Gi. In the first case A, BeG;j, and so AnBeG;. In
either case AnBeS. Finally suppose that CeS and D o> C. We have to show that DeS. Now CeG;
for some iel. So DeG; as G; is a filter. But then DeS. Thus we have shown that S is a filter.
Obviously S contains H as each G; does. So SeG and by its construction, it is an upper bound for
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the chain {G; ; iel}. We have thus shown that every chain in G has an upper bound in G. So by
Zorn’s Lemma, G contains a maximal element |I. We claim that | is an ultrafilter i.e. | is also
maximal in the set of all filters on X. In fact, suppose K is a filter on X such that IcK. Then HcK
(since H c 1) and so KeG. But | is maximal in G. So H =K. Thus I is an ultrafilter containing
H.

Theorem 23. For a filter H on a set X, the following statements are equivalent.
(1) H is an ultrafilter
(2) For any AcX, either AeH or X—-AeH.
(3) Forany A, B < X, An B eH iff either AcH or BeH.

Proof. First we show that (1) < (2). Assume H is an ultrafilter on X and A is a subset of X. If
AgH, then A contains no member of H or equivalently every member of H intersects X—A. Thus
the family H U{X—A} has the finite intersection property and so generates a filter G containing H.
Since H is maximal, no filter on X properly contain H. hence G = H = X—-AeH and so (2) holds.

Conversely suppose (2) holds. If H is not an ultrafilter, then 3 a filter G which properly contains
H. Then 3 A € G — H. Since AgH, X—-AeH by (2). Hence Ae G—H. Since A¢H, X-AecH by
(2). Hence X-Ae G. So G contains A as well as X-A which implies A n (X-A) € G
(by definition of a filter) i.e. € G which is not in a filter. Thus we have a contradiction to the
intersection property of a filter. Thus H is an ultrafilter. (2) < (3). In view of the fact that every
filter contains the set X, (2) follows from (3) by taking B = X—A.

Conversely assume (2) holds. Let A, BcX. Since A U B is a superset of A as well as B,
Therefore AeH or BeH implies AuBeH from the very definition of a filter. On the other
suppose AuUBeH but neither A nor BeH. Then by (2), X-AeH and X-BeH and so
(X=A) N (X-B) eH. But (X-A) N (X-B) = X — (A UB). Thus we have shown that if neither A
nor B belongs to H, then both AUB and its complement belong to H which is a contradiction to
the intersection property of a filter. Hence A, B < X, A U B eH iff AeH or BeH. So (3) holds.
Thus (2) < (3).

Theorem 24. An ultrafilter converges to a point if and only if that point is a cluster point of it.

Proof. The direct implication is true for any filter because if a filter H converges to x Then X is
also a cluster point of H.

Conversely suppose X is a space and xe X is a cluster point of an ultrafilter H on X. If H does not
converge to X, then there exists a neighbourhood N of x such that N¢H. By the characterization of
an ultrafilter (H is an ultrafilter if for any A < x either AeH or X-AeH), we have then that
X—NeH. Butsince x is a cluster point of H, every neighbourhood of x intersects every member of
H, whereas N n(X—N) = ¢. This contradiction proves that H converges to x in X.

Theorem 25. If f maps X onto Y and H is an ultrafilter on X, then f(H) is an ultrafilteron'Y.

Proof. We know that f(H) is a filter on Y having the sets f(F); FeH as a base. We want to show
that f(H) is an ultrafilter on Y whenever H is a filter on X. To this end, let G be any subset of .
Since H is a filter on X we have XeH. Also

X = f{G) U fi(Y-G)
Thus H is an ultrafilter and f *(G) U f (X-G) eH.
[f(X) =Y, X =F1(Y)]
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Therefore by characterization of an ultrafilter either f(G)eH or f (Y —-G)eH. If f}(G)eH, then
Gef(H) or f1(Y-G)eH, then Y-Gef(H). Thus we have shown that for any G Y either Gef(H)
or Y-Gef(H). Hence again by a characterization of ultrafilter, f(H) is an ultrafilter.

Theorem 26. If H is an ultrafilter on a set X, than H is an ultrafilter base on every superset Y of
X.

Proof. Let B be the class of all subsets G of Y such that G contains a member of H. Then B is a
filter. Now let H be any subset of Y. Then either XnH or Xn(Y—H) is in H. If XnH is in H, then

H is in B. If Xn(Y-H)eH, then Y-HeB. Hence B is an ultrafilter. Thus H is an ultrafilter. Thus
H is an ultrafilter base on Y.

Canonical way of converging nets to filters and vice-versa

Example 7. . As we have seen that any net P : A—X determines a filter having the family of sets
of the form {P(L) ; e, A > Ao for Apen} as a base. This filter is known as filter associated with
the net P (or filter generated by P(1)) It may of course happen that two distinct nets determine the
same filter.

Conversely given a filter H on X, There is a net associated with it as follows : Let
A ={(x, F) € XxH; x eF} for (x, F), (y, G) € A. Define (x, F) > (y, G) if F c G.

It is easily seen that > directs A because H is closed under finite intersection. Now define P
: A= X by P(x, F) = x. Then P is a net in X. It is called the net associated with the filter H (or the
net based on H)

Limits and cluster points are preserved in switching over from nets to filters and vice-versa. To
show it we have the following two theorems.

Theorem 27 . Let P : A—»X be a net and H the filter associated with it. Let xeX. Then P
converges to x as a net iff H converges to x as a filter. Also x is a cluster point of the net P iff x is a
cluster point of the filter H.

Proof. Suppose P converges to x. Let U be a neighbourhood of x in X. Then 3 AgeA such that
By, = {P(A); Len; & = ho}. But this means UeH by the definition of H. So every neighbourhood

of x belongs to H. Hence H converges to x.

Conversely suppose that H converges to x. Let U be as open neighbourhood of x. Then UeH.
Recalling how H was generated, there exists AoeA such that B, ,cU where B, is defined as

above. This means that P(L)eU for all e ; L > Ao. Thus P converges to x in X.

Suppose now that the net P clusters at x. Therefore for each neighbourhood U of x and for each
Mo€A, there is some A > Ao such that P(A)eU. But the sets {P(X) ; Lea ; L > Ao} form a base for H.
Let FeH. Then

Fo {P(L); Aen; X > Ao}
ie. P(L)eF. Thus P(A)eFNU.

Hence every neighbourhood of x intersects every member of H. Hence x is a cluster point of H.

Conversely suppose that x is a cluster point of H i.e. every neighbourhood U of x intersects every
member F of H. Thus F n U = ¢. But F o{P(A); A €A ; L > Ao} for some Ao Being a superset of
{P(L); L en; A >Ao} let belongs to H. Therefore P(L)e U for A > A.
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Theorem 28. Let H be a filter on a space X and P be the associated net in X. Let xeX. Then H
converges to x as a filter iff P converges to x as a net. Moreover X is a cluster point of the filter H
iff it is a cluster point of the net P.

Proof. Suppose H—x. If U is a neighbourhood of x, then UeH. Pick peU. Then (p, U) € A4 and
if (g, F) > (p, U) ; Then geFc U. Thus for each neighbourhood U of x, there exists (p, U)e An
such that (g, F) > (p, U) implies P(q, F) = qeU. Hence the net P converges to X.

Conversely, suppose that the net based on H converges to x. Let U be a neighbourhood of x. Then
for some (po, Fo) € An We have (p, F) > (po, Fo) implies P(p, F) = p €U. But then Fy < U,
Otherwise there is some qeFo— U and then (g, Fo) > (po, Fo) but g ¢U. Hence being a super set of
the members (Fo) of H, belongs to H. Hence every neighbourhood U of x belongs to H. Hence
H-X.

Now we come to the result concerning cluster points.

Suppose first H has x as a cluster point. Recall that the associated net P : A—X is defined by
taking A = {(y, F) ; FeH, y eF} and putting P(y, F) =y. Let an open neighbourhood U of x and
an element (y, F) of A be given. Then F n U = ¢ by definition of the cluster point of a filter. Let z
e FNU.Then (z,F)en, (z, F) > (y, F) and (P(z, F) = zeU.

Thus to each neighbourhood U of x and (y, F) en, there is (z, F)ea such that (z, F) > (y, F)
implies P(z, F) eU. Hence x is a cluster point of P.

Conversely suppose that x is a cluster point of P. Let U be any open neighbourhood of x and let
FeH. We have to show that FnU = ¢ Let z be any point of F. Then (z, F) ea. Since X is a clustr
point of P, there exists (y, G) e such that (y, G) > (z, F) and P(y, G) €U. But then yeG, GcF

and yeU (- P(y, G) =y) showing that yeFnU and so FnU=¢. Hence every neighbourhood of x
intersects every member of H i.e. x is a cluster point of H.

Theorem 29. A top. Space is Hausdorff iff no filter can converge to more than one point in it.

Proof. Suppose X is a Hausdorff space and a filter H converges to x as well as y. This means px c
H and py < H. Now if x # y, then there exist Uepy and Vepy such that UnV = ¢ which
contradicts the fact that H has the finite intersection property. So x = y. Thus limits of convergent
filters in X are unique.

Conversely, suppose that no filter in X has more than one limit in X. If X is not Hausdorff, there
exists X, ye X, x # y such that every neighbourhood of x intersect every neighbourhood of y. From
this it follows that the family px N py has finite intersection property. Therefore 3 a filter H on X

containing py N py. Evidently H converges both to x and y contradicting the hypothesis. So X is
Hausdorff.

Theorem 30. For a topological space X, the following statements are equivalent.
(1) X is compact
(2) Every filter on X has a cluster point in X.
(3) Every filter on x has a convergent subfilter.

Proof. (ii) < (iii) has been shown in the defn of subfilter.

Moreover, if a filter H has a cluster point x in X, Then the net based on H has also cluster point x
in X. Therefore (i) < (ii) follows from a result already proved for nets.

Theorem 31. A. top. space is compact iff every ultrafilter in it is convergent.
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Proof. If a space is compact. Then every filter in it has a cluster point. In particular every
ultrafilter has a cluster point and hence is convergent by a result (proved already) i.e. An ultrafilter
converges to a point iff that point is a cluster point of it.

Conversely suppose X is a space with the property that every ultrafilter on it is convergent. It is
sufficient to show that every filter on X has a cluster point because then the result will follow from
above Theorem. Suppose H is a filter on X. Therefore 3 an ultrafilter G containing H. By
hypothesis, y converges to a point, say x on X. Then x is a cluster point of G. So every
neighbourhood of x meets every member of G and in particular every member of H since
H < G. So x is also a cluster point of H. Thus every filter on X has a cluster point in X. Hence X
IS compact.

Now we are in a position to prove the following theorem concerning the characterization of
compact sets.

Theorem 32. For a top. space X, the following are equivalent

(a) X is compact

(b) Each family C of closed sets in X with the finite intersection property has non-empty
intersection.

(c) Each filter in X has a cluster point.

(d) Each net in X has a cluster point.

(e) Each ultranet in X converges.

(f) Each ultrafilter in X converges.

Proof. (a) = (b) let X be compact. Suppose on the contrary that {F;} is a family of closed sets in
X having empty intersection i.e.

NFE=¢
A
c
R
A
= UFf:X
Py

Thus {F,“} is a converging of X. Then by compactness of X, there must be a finite subcovering of
Xi.e.

But then ¢ = X = @1 Ficj =N F

i=1
so that the family can not have the finite intersection property. This contradiction proves that (b)
holds.

(b) = (c). If H is a filter on X, Then { F ; FeH} is a family of closed sets with the finite
intersection property, so (b) implies that there is a point x in n { F ; FeH} i.e. each
neighbourhood of x intersects every members of H. Hence x is a cluster point of the filter H.

(c) = (d). Suppose that the filter H has x as a cluster point. We know that net P : A~—X based on
H is defined by taking
A={(y, F); FeH ; yeF} and putting
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P(y, F) =y. Let an open neighbourhood U of x and an element (y, F) of A be
given. Then FnU = ¢ because x is a cluster point iff every neighbourhood U of x meets every
member F of H.

Let zeFNU. Then (z, F) en;

(z,F)>(y,F)and P(z, F) =z €U.

Thus to each neighbourhood U of x and (y, F) en there is (z, F) € A such that (z, F) > (y, F)
implies P(z, F) eU. Hence x is a cluster point of the net P.

(d) = (c). If an ultranet has a cluster point then it converges to that point.

(e) = (f). Let H be an ultrafilter on X. Then the neighbourhood on H is an ultranet which
converges by (e). But the limits are preserved in satiating over form ultranets to ultrafilters. Hence
H is convergent.

(f) = (a) Suppose u is an open cover of X with no finite subcover. Then X — (U; U U,..., U U,) #
¢ for each finite collection {U,,..., Up} from p the sets of the form X—(U; U U, U...U U,) Then
form a filter base (since the intersection of two such sets has again the same form) generating a
filter H. Now since each filter is contained in an ultrafilter. It follows that H is contained in some
ultrafilter H*. But H* converges to x by (f). Now x €U for some Uep. Since U is a
neighbourhood of x, by the defn of convergence ultrafilter, we have UeH*. By the construction,
X —UeH < H*. Since it is impossible for both U and X—U to belong to an ultrafilter, we have a
contradiction. Thus u must have a finite subcover and hence X is compact.

The Stone-Cech Compactification

Definition. Let (X, T) be a topological space. A compact space X* is said to be a
compactification of X if X is homeomorphic to a dense subset of X*.

One important application of the Tychonoff product theorem is the construction of a Hausdorff
compactification of any Tichnov space.

Theorem 33. (Stone-Cech Compactification Theorem)

Every Tichonov space X is homeomorphic to a dense subset X of a compact Hausdorff space X
which has the property that for every bounded, continuous, real valued mapping f defined on X .
There is a continuous extension to BX, that is a continuous mapping f* of BX into R such that
/X =t

Proof. Let {f;} be the collection of all real-valued bounded continuous functions defined on X .
Since these functions are bounded, we may let I, be a closed interval of real number containing the
range of f,. Then by Tychonoff Product Theorem IT, I, is compact and also it is Hausdorff since
the product space, each of whose coordinate space is Hausdroff is Hausdorff. Define a mapping h
of X into IT, I, by setting

h(x) =< f, () >
for every x e X . We will denote by h(X), which is the range of X, by X and its closure C(h(X))
in T, 1, by BX. Since BX is a closed subset of a compact Hausdorff space, we have immediately
that X is a dense subset of the compact Hausdorff space BX. We assert that h is a
homeomorphism between X and X .

The mapping h is clearly continuous m,0h = f; which is continuous. If x and y are two distinct
points of X, then there must exist some index A such that f;(x) = 0= 1 = f,(y) sine X is a Tichonov
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space. From this it follows that h(x) = h(y) since their A-th coordinates differ. Finally, let us

suppose that G is an open subset of X and we will show that h(a) is open in X . Fix any point x e
G, and since X is a Tichonov space, there must be an index A such that f,(x) = 0 and f,(X-G) =

{1}. Clearly X nm, ((—o, 1)) is an open subset of X containing h(x).

Furthermore, if X € X N m.* (=0, 1)), then h™(X) = G, so that X € h(G). Thus X m . * ((~oo,
1)) < h(G), so that h(G) is open in X .

Lastly, suppose f is a bounded, continuous, real valued mapping defined on X . We must have
foh = f, for some index Ao . Let f* be the mapping of BX into l,,, defined by setting P <x,>)=

TE}LO(<X7">): TCXO.

Since the projections are continuous, f° is certainly continuous. Now X = < f,(x) >, then
 (X) =, 00, [ (X) = P(< () >) =7, (F.00 =T, (]

while f(x) = (< f,(x) >) = f(h(x)) = (foh) (x) = f,_ (x),

sothat f*/X = f.
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9

THE FUNDAMENTAL GROUP AND COVERING SPACES

The basic strategy of the entire subject of algebraic topology is to find methods of reducing
topological problems to questions of pure algebra.

We will define a group called the fundamental group of X for any topological space X by a very
simple and intuitive procedure involving the use of closed paths in X. From the definition, it will
be clear that the group is a topology invariant of X i.e. if two spaces are homeomorphic, their
fundamental groups are isomorphic. This gives us the possibility of proving that two spaces are
not homeomorphic by proving that their fundamental groups are non-isomorphic. For example,
this method is sufficient to distinguish between the various compact surfaces and in many other
cases.

Not only does the fundamental group give information about spaces, but it is also useful in
studying continuous maps, As we shall see, any continuous map from a space X into a space Y
induces a homeomorphism of the fundamental group of X into that of Y. Certain topological
properties of the continuous map will be reflected in the properties of this induced homomorphism.
Thus we can prove facts about certain continuous map by studying the induced homomorphism of
fundamental groups.

Thus by using the fundamental group, topological problems about space and continuous maps can
sometimes be reduced to purely algebraic problems about group and homomorphisms.

Definition. A path or arc in a topological space X is a continuous map f of some closed interval
into X. we generally take the closed interval [0, 1]. The images f(0) and f(1) of the endpoints of the
interval [0, 1] are called the end points of the path or arc and the path is said to join its end points.
One of the end points is called the initial point and the other is called the terminating point or the
final point.

Two paths f; and f, are by definition different unless
f1(x) = fo(x) for every x € (0, 1).
Definition. The set of points in X on which (0, 1) is mapped by f is the track and is denoted by [f].

Definition. A space X is called arc wise connected or path wise connected if any two points of X
can be joined by an arc. An arcwise connected space is connected, but the converse statement is
not true.

Definition. If the initial point of the path f is the final path f;, then f; + f; is the path f, where
fo(x) = f1(2x) for 0 <x s%

= fy(2x-1) for %g x <1
Definition. A path whose end points coincide is called a loop. Thus a path f is a loop if f(0) = f(1)
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Homotopy of Paths

Definition. Let f and g be two paths on a topological space E. Then fand g are said to be
homotopic if there exists a continuous mapping F : 1°>—E called homotopy between f and g such
that

F(x, 0) = f(x) for xel
F(x, 1) = g(x)

(x,1)

Ix1

(x,0)

f

We now generalize the above definition simply by replacing the first factor in the product 1> = IxI
by any topological space A.

Definition. Let A and E be any two topological spaces and let f g be two continuous mappings of
A into E. Then f and g will be said to be homotopic if there is a continuous mapping F of Axl into
E such that

F(x, 0) = f(x)

F(x, 1) =g(x) V xeA
Clearly this definition reduces to the former definition if A is replaced by I.
Definition. Let f and g be two paths on a topological space E joining the points x and y i.e. fand g
are continuous mapping of I into E such that f(0) = g(0) = x and f(1) = g(1) =y ( or we can say that

f and g have the same initial and terminal point) Then f and g are said to be homotopic with the
fixed end points x and y if there is a continuous mapping F : I>>E such that

F(a,0)= f (a)
F(al) =9(a)

F(0,b) =x e
Fab)zyJVb !

}Vael

The special case of the deformation of a closed loop is covered by taking x =y explicitly.

Definition. Let f and g be two closed paths on a topological space E both beginning and ending at
a point x of E. The f and g are said to be homotopic with respect to the fixed base point x if there
is a continuous mapping F : 1> — E such that

F(a,0)= f(a)
F(a1)=g(a)

and F(0, b) = F(, b) = x V bel

}Vael
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Definition. A closed path f on a topological space E beginning and ending at x will be said to be
shrinkable to x or to be homotopic to a constant w.r.t to the base point x if f is homotopic to the
mapping e : I>E defined by e(a) = x for all acl with respect to the base point x.

Thus shrinking a path f to be point x amounts to constructing a continuous mapping F of 1% into E
whose restriction to the lower side (b= 0) gives the path f, while the other three sides are carried
into Xx.

Definition. A topological space E will be said to be simply connected w.r. to the base point x if
every closed path in E beginning and ending at x is shrinkable to x.

Theorem 1. The relation of homotopy w.r.t to x of paths based on x is an equivalence relation on
the set of all paths in E based on x.

Proof. We must show that
Q) f ~ f for every path f based on x (reflexivity)
(i)  f~fimplies g ~ f for every pair of paths based on x (symmetry)
(iii)  Iff, g, h are paths based on x such that f ~ g and g ~ h, then f ~ h (transitivity).
(i) To prove that f ~ f, define the mapping F : I>—E by setting
F(s, t) = f(s).
Then F is clearly a continuous mapping of I into E. Setting t = 0 and t = 1, we obtain
F(s, 0) =1(s)
F(s, 1) = f(s)
and setting s =0 and s = 1, we obtain
F(0, t) = f(0) = x (initial point)
F(1, t) = f(1) = x (Final point)
Hence f ~ f.
(ii) Let f and g be given such that f ~ g. Then there is a continuous mapping F : I>-E such that
F(s, 0) =f(s), F(s, 1) = 9(s)
FO,t)=F(1,t)=x.
We define the mapping
F*: P>E
by setting F*(s, t) = F(s, 1-t)

F*(s, 0) = F(s, 1) = 9(s)

F*(s, 1) = F(s, 0) = f(s)

F*(0, t) = F(0, 1-t) = x

F*(1,t) = F(1, 1-t) = x
which proves that g ~ f .

(iii) Let f, g, h be given such that f ~ g and g ~ h. Therefore there exists continuous mapping F’ and
F" of I into E satisfying the followi

F'(s, 0) =1(s) 1)
F'(s, 1) = g(s) forsel 2
F"(s, 0) = g(s) ®)
F(s, 1) = h(s) (4)
F(O,t)=F(@{1,t)=F"0,t)=F"'(1,t) =x for tel (5)

Define F : I>-E such that
F(s,t) = F'(s, 2t) if 0 <t g%
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F(s, t) = F"(s, 2t-1) if % <t<1
The first thing to check is that F is infact properly defined as mapping, for both parts of its
definition apply when t = % and they might contradict one another. Such a contradiction does not
however arise for by (2) and (3),
F'(s, 1) = F'(s, 0) = g(s) and so F(s, %]: g(s) by both parts of the
definition
The next thing to verify is that F is continuous. It is clear that if t ¢%, F is continuous

which follows directly from the continuity of F' or F”" according as t <% ort >%. Suppose now

that U is a nbd in E of F(s, %) for some sel. Then the continuity of F' implies that there is a

number &' such that if |s; — s| < & and |2t; — | < 2&', F'(s1, 2t;) will lie in the nbd U of F'(s, 1) =
F(s, %) Similarly the continuity of F"" implies that there is a number & such that if |s; —s| < "

and |(2t;—1) 0] < 2&'" then F"(sy, 2t;—1) will lie in the nbd U of F''(s, 0) = F(s, %) The

inequalities imposed on s; and t; in the last two statements are all satisfied if |s;—s| < & and

1
<g, where & = min (&', £”). Thus these two statements combine to show that if |s;—s|<& and

t L <g, then F(sy, t1) €U. The continuity of F is thus proved for points at which t = % F has

-

2
thus been shown to be a continuous mapping of I into E. It remains to show that it gives the
required homotopy of f and h. Fort =0,

F(s, 0) = F'(s, 0) =(s) by (1)
and fort=1
F(s, 1) = F(s, 1) = h(s) by (4)
Also F(,t) =F'(0, 2t) =x by (5)
where 0 <t < %
F(0, t) = F"'(0, 2t-1) when %s t<1.
=X by (5)
Similarly
F(L)=F(1,2t)if0<t< %
=X by (5)
F(L,t)=F"(1, 2t-1) if %g t<1
=X by (5).
and so all the verifications are complete and f ~ h .
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Remark. Since homotopy w.r to a base point x is an equivalence relation, all the paths based on x
are divided into equivalence classes.

Definition. The equivalence classes of paths based on xeE corresponding to the relation of
homotopy with respect to the base point x will be called homotopy classes of paths on E w.r. to the
base point x.

Definition. Let f and g be two closed paths on a topological space E based on a point x. Then the
symbol fg, called the product of f and g is the mapping of I into E such that

(fg) (s) = (25) foro<ss< %
(fg) (5) =g(2s-1)  for % <s<1.
Remark :- We claim that f g so defined is a path.

IN0<s< % f g is continuous because of continuity of f. In % <s< 1, fgis continuous because
of continuity of g. So s = % is the only point which needs attention. Let s = % and let U be a nbd

in E of f(g)(s). Then due to the continuity of f at s :% , there exists 6, such that if

|28" — 25| < 26,
i.e. s’ —s| < &1
N s-Z|<s, (s=1j
2 2
then f(2s') eU

Similarly due to the continuity of g at s :% we have if

|2s" -1 —(25-1)| < 25,

. 1 . 1
l.e. s'——1|<é uttings =—
| 5 <62, (p g 2)
then g(2s'-1) €U.
let d =min (81, &7). Then if
s -1]<s
2

then f(2s') and g(2s'—1) both belong to U and therefore fg is continuous at % Thus fg: I-E is a

continuous mapping.
Moreover fg(0) = f(0) = x
fg(1) =g(1) =x
So the product of two paths based on x is again a path based on x.
We shall now show that the homotopy class of fg depends only on those of f and g.

Theorem 2. If f, f', g, g’ are paths in a topological space E based on a point x and if
f~f',g~g,thenfg~f'qg".

Proof. Since f ~ f’and g ~ g, there are continuous mapping F and G of 12 into E such that
F(s, 0) = f(s) 1)
F(s, 1) =f'(s) )
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G(s, 0) = g(s) 3)
G(s, 1) = g'(s) 4)
F(O, t) = F(1, t) = G(0, t) = G(1, t) = X (5)

Define H : 1> >E by setting
H(s,t) = F(2s,1),0<s <

N |-

H(s, ) = G(25-1, 1) % <s<1.

we observe that this definition is not self contradictory for s = % , because it follows from the first
part of the definition that

H(% ) =F(L t)=x by (5)
and by the second part of the definition that

H(% 1) =G(0, 1) = x by (5)

Next the continuity of H must be shown. Only the points with s :% require attention. Let U be a

nbd of H(% , t) for some fixed t. Since F is continuous, there exists 6,> 0 such that if

|28’ — 2s| < 8, and
|t —t| <&
i.e.if|s" —s| <31 and |t' —t| < &, then
F(2s',t") eU
Similarly G is continuous and so 3 3, such that if
|(25'-1) — (25-1)| < 25,

and ' —t] < &
i.e.if |[s'—s| < &, and |t —t| < &y, then
G(2s'-1,1) €U

Let 5 = min (31, 82), then if
|s’—%| < and |t -t <

Then we have

F(2s',t') eU and g(2s’' -1, t") €U.
Hence H(s, t) is continuous.
Moreover

H(s, 0) = F(2s,0) =f (2s), for0 <s < %
H(s, 0) = G(2s-1, 0) = g(2s-1) for % <s<1.

If this is compared with the definition of fg, we see that H(s, 0) = fg(s).
Similarly

H(s, 1) = F(2s,1) =f'(2s), for0<s < %
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H(s, 1) = G(2s-1, 1) = ¢'(2s-1) for % <s< 1l

Comparing this with the definition of f' g’, we see that
H(s, 1) = (f" ) (s)

Also H(0, t) = F(0, t) = x by (5)
H(1,t) =G(1,t) =x

Thus all the necessary conditions on H have been verified and it has been proved as required that
fg~f'qg'.
Definition. Let fand g be two homotopy classes of paths based on x w.r. to the base point x and

let f be a path belonging to f, g a path belonging to g. The product f gof fand g is defined
to be the homotopy class to which the path fg belongs.

By the above theorem, this defines a homotopy class depending on the classes f_and_ g and not on
the representatives f and g. For if f ' and g’ are two more paths belongingto fand g respectively
fg ~f'g’ and so fg and f 'g’ belong to the same homotopy class.

Theorem 3. Let E be a topological space and x is a point of E. Then the homotopy classes w.r.t the
base point x of paths based on x are the elements of a group having the product just defined as
group operation

Proof. The proof of this theorem consists of three parts (i) to show that the product operator
between homotopy classes is associative (ii) to prove the existence of an identity element (iii) to
prove that each homotopy class has an inverse

(i) let f, g, h be three paths based on x and f, g, h their homotopy classes. We have to show that

(f g)h= f(gh).
It is sufficient to show that

(fg)h ~ f(gh)
By definition, fg is a continuous mapping of I into E such that

(fg)(s) =f(2s) 0<s< %
<

(fo)(s) = g(2s-1) <s< 1

Applying the definition again to the product of fg and h, it turns out that
((fg)h)(s) =fg(2s) 0<s<

N |~

1
2
<

<s<l1

g)h
((fg)h)(s) = f(4s), 0<s<

((fg)h)(s) = g(ds-1), %g s

((fg)h)(s) = h(2s-1)
Combining these statements, it follows that (

—— N |

is a continuous mapping of I into E such that
1
4

1
<= 1

5 1)
((fg)h)(s) = h(2s-1), %s s<1

Similarly f(gh) is a continuous mapping of | into E such that
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(f(gh))(s) = f(2s) 0<s< %

(fah)(s) = g(4s-2) % @

|—\ -bloo

3
(f(gh))(s) = h (4s- 3) —
Now if equations (1) are examined, it will be noticed that | is divided into three parts of lengths

1 l %and (fg) h is constructed by applying f to the first of these subintervals, g to the second

4" 4’

and h to the third, the appropriate change of scale being made in each case. For example the first
interval is of length % and (f g)h is identical with f with the scale increased by 4; the scale
increase is expressed by taking 4s as the argument of f. Similarly the scale is increased by 4 in the

second interval, 4s—1 being a variable going from 0 to 1 as s goes from % to % while in the third

interval, which is of length, % the scale is increased by 2. f(gh) is constructed in an exactly

similar manner, except that the subdivisions are in this case of Iength% % %

The idea now is to make a continuous transition from (fg)h to f(gh) by changing the three
subintervals of length ll L into those of Iengths%,%,% simply by stretching the first,

compressing the third and sliding the second sideways as indicated for example by the arrows in
the figure. D K M ¢

E

Now ABCD in the Fig can be taken as 1% PQ representing stage t of the transition from the

subd|V|S|onl 1 Eto E 1 L is divided into intervals of lengths —(1+t) % %(Z—t). Just as

2 2'4'4
(fg)h and f(gh) are defined on AB and DC, a mapping of PQ into E WI|| be constructed by applying
f, g, h to the three intervals PR, PS, SQ with suitable changes of scale. The arguments of f, g, h
being chosen so that they vary from 0 to 1 as s varies along the corresponding subinterval. This
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mapping which will be called F(s, t) will be equal to f(f—stj on PR, to g(4s—t-1) on RS and to
+

h(4s_t_ 2) on SQ. Thus we consider the function F : Ixl—X defined by

f ﬁ OSs‘.st—Jr1
1+t 4
F(s,t) = qg9(4s—t-1) %SSS%
h(1—4(1_s) %2 a1
2t 4

Then F is continuous. The continuity follows at once from the continuity of f, g and h. Also
F(s, 0) = [(f 9)hl(s)
F(s, 1) = [f(g ()

that is F coincides with (fg)h on the lower side of 12 and with f(gh) on the upper side. Moreover
F(,t) =F(1,t)=xforall t.

Hence F is the required homotopy of (fg)h and f(gh).

(i1) We shall use the symbol e to denote a constant mapping of I into E defined by

e(s) =x V sel.

The second part of the theorem will be proved by showing that the homotopy class e of the
constant mapping e acts as identity. That is to say it will be shown that for any path f based on x,

ef ~fe~f
By definition
(ef) (s) =e(25), 0<s < %
= f(2s-1), % <s<1.
that is
(ef)ls=e(2s) =x 0<s< %
1
= f(2s-1), > <s<1.

Thus | is divided in half, the first half being mapped on x, while f is applied to the second half with
the scale doubled.

The idea now is to shrink steadily the part mapped on x while extending the part to which f is
mapped. In the Fig below, ABCD is I°, AB s bisected at P and PD is joined. The horizontal line

QR at height t is divided into intervals of lengths %(1—t) at %(l+t), and as t varies from 0 to 1, it

is clear that these lengths change continuously from % %(i.e. t=0 in% (1-t) and %(1+t)) to 0,

1t=1in [E and H—t))
2 2
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DQ _DA _ DQ_Qs

QS AP DA AP

. 1-t_Qs
1 1
2
1-t
= S=—
Q 2
N SR:1_l—t:2—1+t:1+t
2 2
(since QR =1)

The continuous transition from ef applied to AB into f applied to DC should be possible by making
QR, at stage t into E’ in such a way that QS is mapped on x and f is applied to SR with the
appropriate change of scale.

Define F : IxI -E by
2s
F(s,t)=e| —
(s 1) (1_J

=X 0

o
IA
w
IA
H
H
| I\J‘ |
— ~—+

IN
IN

S s by definition e(s) = x

N ‘

s<1

Fs, 1 :f(25+t_1j’ 1—tS

+1 2
Thus F(s,0) =e(2s) =xfor0<s< %

F(s, 0) = f(2s-1) for % <s<1

F(s, 0) = (e )(s)
and F(s,1)=f(s)for0<s<1
Moreover F(0,t) =e(0) =x
F(L,t)=f(1)=x

F(s, t) defined in this way is clearly a mapping of I? into E agreeing with ef on AB and with f on
DC and also carrying the vertical sides AD, BC into x. It remains to show that F is continuous in
the pair of variables s, t. For any point (s, t) not on the line PD, the continuity is obvious, for if
(s, t) is in the triangle APD, then F carries it into x and also carries a nbd of (s, t), namely the
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whole triangle APD, APD into x, while if (s, t) is in PBCD but not on PD, the continuity of F at
(s, t) follows from that of f and the fact that f((2s +t —1)/(t+1)) is continuous in s and t. Finally
consider point (s, t) on PD. F carries such a point into x. Now it is not hard to see that if (s', t') is
sufficiently near to the line PD and to the right of it, then (25’ + t'-1)/(t'+1) can be made as small
as one please. It follows thus from the continuity of f and the definition of F that points sufficiently
near to (s, t) and to the right of PD will be carried by F into a pre assigned nbd of x, all point the
left of PD are carried into x itself and so the continuity of F at a point of PD is removed.

F thus satisfies all the necessary conditions to show that ef ~ f. The proof that fe ~ f is carried out in
exactly the same manner.

(iii) It remains to prove that every homotopy class has an inverse that is to say, if f is any
given path based on x, it must be shown that there is a path g based on x such that fg ~ e and gf ~ e.
A path fulfilling this condition is obtained by taking f in reverse. Explicitly this means defining a
mapping g of I into E by setting g(s) = f(1-s).

We shall define F : | x | —E such that it coincides with fg at the bottom i.e. for t = 0 and with e at
the top i.e. for t = 1 and carries the vertical sides of | x I into X. Since

fa(s) = f(25), 0 < s%

= g(2s-1), % <s<1

that is
fa(s) = d(2s), 0<s< %
and fa(s) = f(1—(25-1)). % <s<1
: 1
i.e. = f(2-25) > =s<1
we define
t
<s<—
f2s-1) Les<t ST
F(s, t) = 2, 2 t
f(2-t-25),=<s<1—— (-2 (192
t2 2
Then clearly 2
f(29) OSSSl
F(s, 0) = . 2
f(2—23)535§1
X, OSS_1
F(s, 1) = 1 2
X, —<s5<1
2



140TOPOLOGICAL SPACES

Fundamental Group

The fundamental group was introduced by French mathematician Henri Poincare (1854-1912)
around 1900.

Definition. In a topological space E, the homotopy classes of closed paths w.r.t. to a base point x
form a group. This group will be called the fundamental group of E relative to the base point x and

will be denoted by n(E, X)

Now we will compare the groups n(E, X) and =(E, y) in the case where x and y can be
joined by a path in the topological space E. It is clear in this case that a given path based on x leads
by a simple construction to a path based on y. For if f is a given path based

on x and h is a path from x to y, then a path ¢(f) based on y is obtained by going along h in reverse
(i.e. from y to x) then round f and finally back to y along h. It will now be shown that this
correspondence between paths based on x and those based on y leads to an isomorphism between
the corresponding groups of homotopy classes.

Theorem 4. If E is a topological space and x and y are tow points of E which can be joined by a
path in E, then =(E, x) and =(E, y) are isomorphic.

Proof. Let h be a path in E from x to y, that is to say, a continuous mapping of | into E such that
h(0) = x and h(1) = y. Let f be any path based on x that is a continuous mapping of | into E such
that f(0) = f(1) = x. Define a path ¢(f) based on y as follows.

o(f)(s) = h(1-3s), 0<s< %

¢GX9:K%4¢%33§§

¢GXthB&2L§sssl
It is easy to see that ¢>(f ) is a continuous mapping of I into E and carries 0 and 1 into y.

One would expect that a continuous
deformation of f would lead to a
corresponding deformation of ¢(f ) ; that is if f
and g are homotopic w.r. to the base point X,
one would expect ¢(f ) and ¢(g) to be
homotopic w.r. to the base point y. To check
this suppose that homogopy of f and g w.r. to
X is given by a continuous mapping F : I>>E
such that

F(s, 0) =1(s)
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F(s, 1) =9(s)
FO,t)=F(1,t)=xVs,t
Define G by setting

h(1—3s), OSSS% and vt
1 2
G(S, t) = <F(3s-11), §SSS§ and Vvt

h(3s—2), %Ssﬁlmﬂa”t
It can be shown that G is a continuous mapping of 1% into E. Moreover we observe

h(1-3s), 0353% and all t
G@OF:F@&JQ%:H%—D%SSSE

h(3s-2), <s<1

w|N

h(L—3s), Ogss%

G(s, 1) = H%—LD:QB&4%%SSSE

h(3s—2), %ssgl

GO, t)=h(1) =y
G(1,t)=h(l) =y

Therefore G is a homotopy between ¢(f ) and ¢(g). It follows therefore that all paths in a
given homotopy class w.r.t the base point x are mapped by ¢ into the same homotopy class w.r.t y.
If fisahomotopy class w.r.t x and f is a path in this class then the homotopy class w.r.t y of ¢(f )
will be denoted by ®(f). @ is thus a well defined mapping of = (E, x) into =(E, y)

In exactly the same way a mapping v of n(E, y) into n(E, x) can be constructed. To do this let g
be a given path based on y and define y(g) as a path based on X, the definition being similar to that
of ¢(f) above.

h(3s), O<s<=

o

w()(s) = 96&4%%353_
g(3—3s),§sgl

w

Having done this  is defined as the mapping of =(E, y) into (E, x) which maps the homotopy
class of g on that of y(g).

Now we will show that the mapping ® and  are inverse to one another, this will show that both
mappings are one-one and onto. In order to do this it will be sufficient to prove that if f is a given
path based on x, then y(¢(f )) is homotopic to f with respect to the base point x and that if g is a
path based on y then ¢(y(g)) is homotopic to g with respect to the base point y.

The full definition of y(¢(f)) is as follows:
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|

h(3s), 0<s<

IA
%)
IN

w(o(f))(s) = | f(9s-4),

IN
w
IA
P NO | oo | AW

IN
(%)
IN

It will be noticed that this definition amounts to dividing I into five subintervals to each of which h
or h reversed or f is applied with the appropriate change of scale. Experience with this sort of
situation in the last theorem should suggest that the deformation of y(¢(f )) into f will be carried
out by expanding the middle one of these subintervals to which f is applied, so that it fills the
whole of I, while the remaining subintervals are compressed into the endpoints of I. And
consideration similar to those followed in the last theorem suggest that the required homotopy will
be given by a mapping F : I>-E defined as follows.

h(3s), 03331%

h(4—4t—9s),1_—t§ss4(1_t)
3 9
F(s, 1) = f[gs/(8t+1)— 4“”), 4d-h S+t
8t+1 9 9
h(9s—5— 4t), 5+94t <s< tgz

h(3—33), %gssl

It can now be proved that this mapping F gives the required homotopy of y(¢(f )) and f w.r.t the

base point x, the proof that g and ¢(y(g)) are homotopic with respect to the base point y is carried
out in a similar manner.

Having now shown that the mapping @ : =n(E, X) — =(E, y) is one-one and onto it remains to show
that for any two paths f and g based on x, ¢(f g) is homotopic to ¢(f) ¢(g) w.r. the base point y.
This will show that @ is an isomorphism, as required. If one carries out reasoning similar to that
used in the previous theorem, and the earlier part of the proof of this theorem, one will be led to
the consideration of a mapping F : I°>E defined as follows :
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h(L—6s/(2—1)), OSSS%(Z—t)
f(65+t—2),QSSSE
6 6
hBs+1-3), S t<s<l
6 2
Fs 9= t+3
h(t+3 63) —<S<T
t+3 t+4
6s-3-t), — <s<——
a( ), 5 6
h (6s—t—4) t+4SSSl
(2-1) 6
1
h(1-3s), 0<ss§
1
f(6s—2 —s <=
(6s—2), 13 12
h(6s—3), =<s<=
F(s, 0) = ¢ ¢
h(3-6s), =<s<=
i 5
6s—-3), —<s<—
g9(6s—3), 22 3
h(3s-2), §SS§1
1
h(1-6s), O<s<g
1
f(6s-1 —s <=
(6s-1), ; 3
h(6s—2), =<s<=
F(s, 1) = 3 5
h(4-6s), —=<s<-—
5 8
6s—4), —<s<—
g(6s—4), g 5
h(6s-5), —<s<1
6
f (2s), 0<s£1
(fo)(s) = 2

Therefore
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h(l-3s), 0<s<=

w

(0(f 0)(s) = | fg(3s—1), %3532

h(8s-2), —<s<1

h(l—3s), 0<s<>

N

w

Wl

IN

WIN | N[ RrN

1
f(6s-2), =<s
( )3

h(6s-3),

IA
%)
IA

F(s,0)

>
—~
w
|
(o))
(2]
~

|
NN |-
IA
w
IN

«

—~
()
w

|

w

~
IA
w
IA

IN
w

IN
[EEN

WINN | =

Moreover
F(O, t) = h(]_) =y

6-t-4
F(1,t)=h
(1,1 (2 :

j=MD=y

(BN

(0(F)o(@))(s) = [6(F)] (25), 0< s <

[6(g)] (25-1) % <s<1

Now

h(l-3s), O<s<t

o(F)(s) = | f(3s-D),

Therefore

1
[o(f )o(g)](s) = 3 3
3
5

2
=g(6s—4), —<s<—
9(6s—4). 2 5

=h®s—®,§£sg1
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It can be now shown that F gives the required homotopy w.r.t base point y of ¢(f g) and ¢(f)d(g).
This completes the proof of the theorem.

Cor. If E is an arcwise connected space, the group n(E, X) is independent of the base point x.

Proof. In this case any pair of points x and y of E can be joined by a path in E, and so =(E, x) and
n(E, y) are isomorphic for any x and y in E. Hence n(E, X) is the same as n(E, y) from the point of
view of group theory.

Remark. It follows from what has been said that, if E is an arcwise connected space, one can
speak without ambiguity of the fundamental group of E without mentioning any base point, the
understanding being that this group is n(E, x) for any arbitrary x in E. The fundamental group of
an arcwise connected space will be denoted by n(E).

Now it will be shown that the fundamental group of an arcwise connected space is
topologically invariant. This means that if E and E' are two homemorphic arcwise connected
spaces then ©t(E) and =(E") are isomorphic.

Theorem 5. Let E and E’ be homeomorphic arcwise connected spaces, then =(E) and n(E’) are
isomorphic.

Proof. Let f be the homeomorphism of E onto E" and let g be the inverse of f. If xeE, then we
write y = f(x). If his any path in E based on x, then the mapping foh I-E’ is a path in E’ based on
y, for

foh(0) =(h(0)) =f(x) =y

foh(1) =f(h(1))=f(x) =y [f:E—>E' h:I>Eh(0)=h(1) =xfoh: I>E]

Suppose that k is a second path in E based on x and that h is homotopic to k, so there exists
a continuous mapping F : 1>-E such that
F(s,0) = h(s)
F(s)=k(s) [ S €'
F(O, t) = F(1, t) = x, tel
Then the mapping foF : 1>E’ is such that
(foF) (s, 0) = f(F(s, 0))
= f(h(s)) = foh(s)

(foF) (s, 1) =f(F(s, 1))
= f(k(s)) = fok(s)

(foF)(0, t) =f(F(0, t)) =f(x) =y

(foF) (1,t) =f(F(1, t)) =f(x) = .
Thus whenever h and k based on x are homotopic, foh and fok based on y are homotopic this
shows that if h is a given homotopy class on E w.r. the base point x, then for any representative
path h of h, foh always lies in the same homotopy class ¢( h) on E’, w.r.t the point y. Thus we
have constructed a mapping ¢ : n(E)—>=n(E’)
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We claim that ¢ is an isomorphism between the two groups. We have seen that foh and fok are
paths on E’. Then the product of these two paths in E’ is defined by

[(foh)(fok)](s) = (foh)(2s), O <s< %
[(foh)(fok)](s) = (fok) (25-1), %s s<1 O

Also (hKk)(s) = h(2s), <s< %

0
(hk)(s) = k(2s-1), %g s<1

and therefore
[fo(hk)](s) = (foh)(2s), 0<s<

[fo(hk)](s) = (fok) (2s—1), %s s<

From (1) and (2) it follows that
(foh) (fok) = fo(hk)
which proves that ¢ is homomorphism.

Since any path h' on E' based on y can be obtained by comparing f with foh” and so any homotopy
class in E" w.r.t y can be obtained as an image under ¢. Hence ¢ is onto mapping.

Finally suppose that ¢( h) is the identity of =(E'). If h is a path in the class h, this means that foh
is homotopic to the constant mapping in E’ w.r.t y. that is to say, there is a continuous mapping F*
: I>-E' such that

F*(s, 0) = (foh)(s)

F*(s,1) =e(s) =y

F*(0,t) = F*(1,t) =y
Then goF* : I>-E, where g is the inverse of f is the mapping such that

(goF*) (s, 0) = goF*(s, 0) = g(foh)(s)

= [(gof)oh](s) = h(s)
(9oF*) (s, 1) = g(y) = 9(f(x)) = x
(goF*) (0, 1) = (goF*) (1, 1) = x

that is to say, h is homotopic to the constant mapping with respect to x. Thus ¢( h) is the identity

of n(E") = h is the identity of =(E), which proves that the mapping is one to one also. Hence ¢ is
an isomorphism.

Definition. A closed path f on a topological space E beginning and ending at x will be said to be
shrinkable to x or to be homotopic to a constant w.r.t to the base point x if f is homotopic to the
mapping e : I>E defined by e(s) = x for all sel, w.r.t the base point x.
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Definition. A topological space E will be said to be simply connected w.r.t base point x if every
closed path in E beginning and ending at x is shrinkable to x.

It follows therefore that a space E is simply connected w.r. the base point x iff ©(E, x) reduces to
identity element only.

Theorem 6. Every closed path beginning and ending at a point x on a circular disc is homotopic to
a constant w.r.t base point x.

Proof. Set up polar coordinates in the plane of the disc taking x as a pole then if f : I>E is the
given closed path, f(s) will have polar coordinates (r(s), 6(s)). Define F(s, t) as the point with polar
coordinates ((1-t)r(s), 6(s)). Since (r(s), 6(s)) in E, all points (r, 6(s)) with r < r(s) are on E and so
F(s, t)eE. F is thus a mapping of 17 into E and it can be seen that F is continuous. Also setting t =
0, F(s, 0) is the point (r(s), 6(s)) = f(s) while the radial coordinate r of F(s, 1) is zero.

The Fundamental Group of the Circle

Our goal in this section is to show that the fundamental group of the circle is isomorphic to the
group of integers. In order to do this we need several preliminary results. We begin with the
definition of a function p that maps R onto S*. Define p : R—>S! by p(x) = (cos 2nx, sin 2nx). One
can think of p as a function that wraps R around S. In particular, note that for each integer n, p is
a one-to-one map of [n, n + 1] onto S*. Furthermore, if U is the open subset of S' indicated in
Figure 8.7, then p~*(U) is the union of a pairwise disjoint collection of open intervals.

N

Figure 8.7
To be specific, let U = {(x, y) €S*: x 0andy > 0}. Then if x ep*(U), cos 2nx and sin 2nx are

both positive, so p™(U) =U,., (n, n +1). Moreover, for each n €Z, |nn+1] IS a one-to-one
!

[

function from the closed interval (n, n +1] onto U. Thus, since [n, n +1] is compact, p|[n el IS a
Ty

homemorphism of [n, n +3] onto U. Therefore P is a homeomorphism of (n, n +7) onto U.
Ty

Throughout the remainder of this section, p denotes the function defined above.

The following result is known as the Covering Path Property.

Theorem 7. Let a : 1->S' be a path and let xoeR such that p(xo) = a(0). Then there is a unique
path B : I->R such that B(0) =xpand po B = a.

Proof. Since a is continuous, for each t 1 there is a connected neighborhood U; of t such that
a(Uy) is a proper subset of S'. Since | is compact, the open cover {U; : tel} of | has a finite
subcover {Uy, Uy,.....Un}. If U; = I for some i, then a(l) is a connected proper subset of S*. If U;
# | for any i, choose U; so that 0eU;. There exists t' el such thatt’ = 0, [0, t'] c U;, and t' € Ui n
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U; for some j = i. If U; wU; =1, ([0, t']) and a([t’, 1]) are connected proper subsets of shifuu
Uj # I, choose t"" el such that t”" > t', [t', t""] < Ujand t"” € U; n Uy for some Kk (i # k #j). Since
{Uy, U,,....Un} is a finite cover of I, after a finite number of steps, we will obtain to, ti, to...., tn
such that 0 = to, t, = 1, tiy < tj and a([ti_s, t]) is a connected proper subset of S* for each i = 1,
2,..., 0.

For each i = 0, 1, 2,..., n let P; be the statement : There is a unique continuous function
Bi : [0, ti] —>R such that Bi(0) = xo and pof; = oy (,;- In order to prove the theorem, it is sufficient

to show that P; is true for each i. It is clear that Py is true. Suppose 0 < i <nand P;_; is true. Let Vj_;
denote the component of p~* (a[ti_1, t])) that contains Bi_y (ti1), and let piiy = plvi. Then pis :
Vi_1—a([ti-1, ti]) is @ homemorphism. Define B; : [0, ti]] >R by

Bi(D) = {Bi_l(t)_,1 ifo<t<t,
(Pi) (1)), if tiy <t<t;.
Then B is continuous, Bi(0) = Xo, and poBi =|, ;. We must show that B; is unique. Suppose B: :
[0, ti] —R is a continuous function such that B; (0) = Xo and pop; =g ;. If 0 <t < tiy, then
B; (t) = Bi(t) since P;_y is true. Suppose ti; <t <t. Since(po;) (1) = a(t) ea([tis, t]), B; (t) e p*
(a([ti-a, t])). Therefore [3'i (t) € Vi1 since B} is continuous and Vi_; is a component of p~*(o([ti_s,

ti])). Therefore Bi(t), B (t) € Vi_1 and (pi_1 0 Bi)(t) = (pi_1 OP;)(t). Hence Bi(t) = B; (t) since pi_1 is a
homeomorphism.

Example. Let o : 1-S" be a homemorphism that maps I onto {(x,y) €S': x>0 and y > 0}and has
the property that a(0) = (1, 0) and a(1) = (0, 1), and let Xo = 2. Then the function  : | - R given
by Theorem 6 is a homemorphism of | onto [2,2.25], which has the property that $(0) = 2 and
B(1) = 2.25.

The following result is known as the Covering Homotopy Property.

Theorem 8. Let (X, T) be a topological space, let f : X—>R be a continuous function, and let
H : X x I— S be a continuous function such that H(x, 0) =(p of)(x) for each xeX. Then there is a
continuous function F : X x IR such that F(x, 0) = f(x) and (p oF) (X, t) = H(x, t) for each (x, t)
eX x|l

Proof. For each xeX, define o : 1->S* by a,(t) = H(x, t). Now (p of )(X) = ax(0), and hence, by
last Theorem (6) there is a unique path By : I->R such that Bx(0) = f(x) and poPx = ax. Define F: X
x | >R by F(x, t) = Bx(t). Then (poF)(x, t) = (poPx)(t) = H(x, t) and F(X, 0) = Bx(0) = f(x).

We must show that F is continuous. Let xoeX. For each t <l, there is a neighborhood M; of x, and
a connected neighborhood N; or t such that H(M; x Ny) is contained in a proper connected subset of
s, Since I is compact, the open cover {N : tel} of | has a finite subcover {Ny.N Ny} Let

m =N, M,. . Then M is a neighborhood of xo, and, for each i = 1,2,...m, HM x N,. ) is contained
| |

t2 1y

a proper connected subset of S*. Thus there exist to, ti, ..., tm Such that t; = 0, t, = 1, and, for each j
=1,2,...,m, tj1 < tjand H(M x[t;_1, t;]) is contained in a proper connected subset of S,

For each j = 0, 1,...,m, let P; be the statement : There is a unique continuous function
Gj: M x [0, t;] =R such that Gj(x, 0) = f(x) and (p 0 Gj) (X, t) = H(X, t). We want to show that P; is
true for each j. It is clear that Py is true. Suppose 0 < j < m and Pj_; is true. Let Uj_; be a connected
proper subset of S' that contains H(M x li-1), let Vj_1 denote the component of p‘l(UH) that
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contains Gj_1(M x {ti_1}), and let pj-1 = p|vi-.. Then pj—1 : Vj-1 — Uj_1 is a homemorphism. Define
Gj:Mx[0,t] > Rby
G ,(x,1), if 0<t<t
Gi(x, )= {, 7 ) H
i1 {(pj_l) HH(x,),if t <t<t,
Then G; is continuous, Gj(x, 0) = f(x), and (p 0G;) (X, t) = H(X, t). We must show that G; is unique.
Suppose G;: M x [0, tj] — R is a continuous function such that G| (x, 0) = f(x) and (p 0 G )(x, t) =

H(x, t). If 0 <t < tj_4, then G'j(x, t) = Gj(x, t) because Pj_; is true. Suppose tj1 <t < tj. Since
(p 0 G)(x, ) = H(x, t)eUj1, G|(x, t)e p~* (Uj-1). Therefore, since G| is continuous and Vj y is a
component of p* (Uj-), G'j(x, t) € V1. Hence Gj(x, t) and G'J-(x, t) are members of Vj_; and
(pj-1 0G;j) (X, t) = (Pj-1 oG'j)(x, t). Thus, since pj_1 is a homemorphism, Gj(x, t) = G'j(x, t). We have

proved that there is a unique continuous function G : M x I—>R such that G(x, 0) = f(x) and
(p 0 G)(X, t) = H(X, t). Therefore G = F|puxpy. Since M is a neighborhood of X, in X, F is continuous
at (Xo, t) for each t € I. Since Xo is an arbitrary member of X, F is continuous. This proof also
shows that F is unique.

It o is a loop in S* at (1, 0), then p(0) = o(0), and hence, by Theorem 6 there is a unique path
B = I>R" such that p(0) = 0 and poP = a. Since (poB)(1) = a(1) = (1, 0), B(1) € p (1, 0), and
hence B(1) is an integer. The integer B(1) is called the degree of the loop a, and we write
deg(a) = B(2).

Example. Define o : 1-S* by a(x) = (cos 4nx, — sinnx). Then o “wraps” I around S* twice in a
clockwise direction. The unique path  : I - R such that $(0) = 0 and pop = a given by Theorem 6
is defined by B(x) = —2x for each xel. Therefore deg(a) = (1) = -2.

Theorem 9. Let a; and o, be loops in S* at (1, 0) such that ~p a2. Then deg(o) = deg(atz).

Proof. Since a ~ , ay, there is a continuous function H : IxI—S* such that H(x, 0) = ay(x) and
H(x, 1) = ap(x) for each xel and H(0, t) = H(1, t) = (1, 0) for each tel. By Theorem 6 there is a
unique path B; : I->R such that 1(0) = 0 and poB; = ou. Thus, by Theorem 8, there is a unique
continuous function F : I x I—>R such that (p oF)(x, t) = H(x, t) for each (x, t) elxI and
F(x, 0) = B1(x) for each xel. Define y : I->R by y(t) = F(0, t) for each tel. Then vy is continuous,
and (p 0 y)(t) = (p 0 F)(0, t) = H(O, t) = (1, 0) for each tel. Therefore y(I) = p™* (1, 0), and, since
v(1) is connected and p~(1, 0) is a discrete subspace of R, y is a constant function. Thus F(0, t) =
v(t) = v(0) = F(0, 0) = B1(0) = O for each tel. Define B, : I->R by B2(x) = F(x, 1) for each xel.
Then B2(0) = F(0, 1) =0 and (p 0 B2)(X) = (p 0 F) (X, 1) = H(X, 1) = ap(x) for each xel. By
definition, deg(o) = B1(1) and deg(az) = B2(1). Now define a path & : I-R by 5(t) = F(1, t) for
each tel. Again (p 0 8)(t) = (p o F)(1, t) = H(1, t) = (1, 0) for each tel, and hence &(1) = p~*(1, 0).
Therefore & is a constant function, and hence F(1, t) = &(t) = 6(0) = F(1, 0) = B1(0) = 0 for each
tel. Therefore B,(1) = F(1, 1) = F(1, 0) = B1(1), and hence deg(a;) = deg(a).

Remark :- Now we are ready to prove that the fundamental group of the circle is isomorphic to
the group of integers. Since S* is pathwise connected, the fundamental group of S is independent
of the base point.

Theorem 10. m; (S, (1,0)) is isomorphic to the group of integers.
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Proof. Define ¢ : m1(S%, (1, 0)) > Z by ¢([o]) = deg(a). By Theorem 9 ¢ is well-defined. Let [ou],
[oo] emy (S1,(1, 0)). By Theorem 7 there are unique paths By, B2, I—R such that B1(0) = B2(0) = 0,
p 0 P11 =0y, and p o B2 = ap. By definition, deg(a) = B1(1) and deg (o) = B2(1). Define 5 : I-R
by
_ By(2x), if 0<x<i
8(x) = {31(1) +By(2x—1), if t<x<1.
Since B,(0) = 0, & is continuous. Now 5(0) = 31(0) = 0, and, since
PI(B1(1) + B2(2x-1)) = p(B2(2x-1)),
_ J(poBy)(2x), ifo<x<i
(p0d)() = {(poﬁlz)(zx L1),if 1< x <1
_ oy (2x), if 0<x<i _
Cap(@x-1), if l<x<1l

Therefore ¢([ou] 0 [2]) = ¢([ou * 02]) = deg(au *az) = 5(1) = Ba(1) + B2(1) = deg(ou) + deg(az) =
d([a1]) + ¢([o2]), and so ¢ is a homomorphism.

(ar* o2)(X).

Now we show that ¢ maps mi; (S, (1, 0)) onto Z. Let z €Z, and define a path o : >R by a(t) = zt
for each t el. Then a(0) = 0 and a(1) = z, so poo. : 1»S" is a loop in S* at (1, 0). Therefore
[p o a]em (S, (1, 0)), and, by definition, deg(p 0 &) = a(1) = z. Therefored([p 0 o) = deg (p 0 )
=z

Finally, we show that ¢ is one-to-one. Let [au], [a2] em (S', (1, 0)) such that ¢([ou]) = ¢ ([a2]).
Then deg(ou) = deg(az). By Theorem 7 there are unique paths 1, B2 : 1-R such that $1(0) = B2(0)
=0,pofB1=o0g,and po P2 = oy By definition, deg (o1) = B1(1) and deg(a) = B2(1). So B1(1) =
B2(1). Define F : I x I > R by F(x, t) = (1-t) B1(X) + tB2(x) for each (x, t) € | x I. Then F(x, 0) =
B1(x) and F(x, 1) = B2(x) for each xel and F(0, t) = 0 and F(1, t) = B1(1) = B2(1) for each tel.
Therefore p o F: | x 1S is a continuous function such that (p 0 F)(x, 0) = (p 0 B1)(X) = 0u(X)
and (p 0 F)(X, 1) = (p 0 B2)(X) = ap(x) for each xel and (p o F)(0, t) = p(0) = (1, 0) and
(poF) (1, t)=(poP1)l)=o0a(l)=(1,0)foreach tel. Thus o4 ~, 0, SO [o1] = [o2].

Covering Spaces

In this section we generalize Theorem 7 and 8 by replacing the function p:R—S* defined by p(x)
= (cos 27X, sin 27x) with a function called a “covering map” from an arbitrary topological space
(E, T) into another topological space (B, u).

Definition. Let (E, T) and (B, u) be topological spaces, and let p : E—»>B be a continuous
surjection. A n open subset U of B is evenly covered by p if p~(U) can be written as the union of a
pairwise disjoint collection {V, : aea} of open sets such that for each o e, plv, IS a
homemorphism of V, onto U. Each V, is called a slice of p~(U).

Definition. Let (E, T) and B(, u) be topological spaces, and let p: E—B be a continuous surjection.
If each member of B has a neighborhood that is evenly covered by p, then p is covering map and
E is a covering space of B.

Note that the function p : R—>S" in Section 8.3 is covering map. Covering spaces were introduced
by Poincare in 1883.
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Definition. Let (E, T), (B, u), and (X, v) be topological spaces, let p : E—B be a covering map, and
let f : X—B be a continuous function. A lifting of f is a continuous function f ' : X—E such that p o
f " = f(see Figure below).

x’f_,B
Notice that Theorem 7 provides a lifting of a path in S*, where p is the specific function discussed
in last section rather than an arbitrary covering map.

Theorem 11. Let (E, T) and (B, u) be topological spaces, let p : E — B be a covering map, let
eocE, let by = p(ep), and let o : 1->B be a path such that (0) = by. Then there exists a unique
lifting o’ : I -E of f such that 6’(0) = e.

Proof. Let {U, : o e} be an open cover of B such that for each ae, U, is evenly covered by p.
So, there exists t, ti,...., tysuchthat 0 = to <t; <... <ty =1 and for each i =1, 2,..., n, o([ti_1, ti])
c U, for some a.e A. We define the lifting o’ inductively.

Define o'(0) = ey, and assume that o’'(t) has been defined for all t €[0, ti_1], where 1 <i<n. There
exists a e such that o([ti-1, ti]) < Uq. Let v = {Vs : Bel'} be the collection of slices of pt (Uy).
Now o'(ti-1) is a member of exactly one member V,, of v . For te[ti_y, ti], define o'(t) = (p|vw )*

(o(t)). Since p|vay : Vay— U, is @ homemorphism, o’ is continuous on [ti_1, tj] and hence on [0, t].
Therefore, by induction, we can define ¢’ on I.
It follows immediately from the definition of ¢’ thatpo ¢’ = ©.

The uniqueness of ¢’ is also proved inductively. Suppose ¢’ is another lifting of o such that ¢
(0)eo, and assume that ¢’'(t) = o”'(t) for all te[0, t;_1], where 1 < i< n. Let U, be a member of the
open cover of B such that o([ti_1, t]]) = Uy, and let V, be the member of V chosen in the definition
of o'. Since o" is a lifting of o, 6" ([tiy, ti]) = p™* (Uo) = Uper Vg - Since V is a collection of

pairwise disjoint open sets and o’ ([ti_1, ti]) is connected, "' ([ti_1, ti]) is a subset of one member of
V. Since 6" (ti-1) = o'(ti-1) €V 0"'([ti-1, ti]) < Va,. Therefore, for each te[tiy, ti], 6" ()e Voy N
p(c(t)). But Voy N P (o(t) = {o’'(t)}, and so o”'(t) = o'(t). Therefore o'(t) = o'(t) for all te[0,
ti]. By induction, ¢" = ¢'.

Theorem 12. Let (E, T) and (B, u) be topological spaces, let p : E—B be a covering map, let eocE,
let bo = p(eo), and let F : I x I—B be a continuous function such that F(0, 0) = bg. Then there exists
lifting F' : | x I»E of F such that F'(0, 0) = eg. Moreover, if F is a path homotopy then F’ is also.

Proof. Define F'(0, 0) = eo. By Theorem 11, there exists a unique lifting F’ :{0} x I>E of Flsp
such that F'(0, 0) = ey and a unique lifting F : | x {0} — E of F|iy such that F(O, 0) = e,.
Therefore, we assume that a lifting F’' of F is defined on ({0} xI) u (I x{0}) and we extend it to
I x 1.

Let {U, : a €A} be an open cover of B such that for each aea, U, is evenly covered by p. So,
there exists Sg, Si,..., smand to, t1,.....,tasuchthat 0 = sg <s; <..<sp=1,0=t <t; <...<t, =1,
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and foreachi=1,2,...m1,2,...,mandj=1,2,...,n, let Ui x Jj = [Si-1, Si] x [tj-1, §j]. We define F’
Inductively on the rectangles I; x J; in the following order :
Il X ‘]11 |2 X ‘]17"') Im X ‘]ly Il X ‘]2’ |2 X JZ,---,Im X ‘]2’ Il X ‘]37"'5 Im X Jn-

lixdn [ laxdy | oo | ImxJdn
|1><J2 |2><J2 |m><J2
|1><J1 |2><J2 |m><J1

Suppose 1 < p <m,1<p<n, and assume that F' is defined on C = ({0} x I) u (Ix{0} U
M U1 Jj) U (1 x Jg). We define F” on I x Jq.

There exists a.e A such that F(lp x Jg) < U,. Let V = {V,p : Ben} be the collection of slices of p™
(Uy). Now F' is already defined on D = C n (I, x Jg). Since D is connected, F'(D) is connected.
Since V is a collection of pairwise disjoint open sets, F'(D) is a subset of one member V,, of V.
Now p|VOW is @ homemorphism of V,, onto U,,. Since F' is a lifting of F|c, ((p|vw) 0 F)(X) = F(x)

for all x eD. For xe I, x lg, define F'(x) = (p|Vay ) (F(x)). Then F' is a lifting of F|(Cu(,qXJq)) :

Therefore, by induction we can define F' on | x I.

Now suppose F is a path homotopy. Then F(0, t) = by for all tel(. Since F' is a lifting of
F, F'(0, t)e p*(bo) for all tel. Since {0} x I is connected, F’ is continuous, and p~*(bo) has the
discrete topology as a subspace of E, F'{0} x I) is connected and hence it must be a single point.
Likewise, there exist b; eB such that F(1, t) = b for all tel, so F'(1, t) € p(b,) for all tel, and
hence F'({1} x 1) must be a single point. Therefore F’ is a path homotopy.

Theorem 13. Let (E, T) and (E, u) be topological spaces, let p : E—>B be a covering map, let
eo €E, let by = p(ep), let by B, let a and B be paths in B from b, to by that are path homotopic, and
let o’ and B’ be liftings of o and B respectively such that a'(0) = '(0) = eo. Then o'(1) = p’(1) and
o ~p B'.

Proof. Let F : | x I—-B be a continuous function such that F(x, 0) = a(x) and F(x, 1) = p(x) for all
xel and F(0, t) = by and F(1, t) = by for all tel. By Theorem 12 there exists a lifting F’ :I x | > E
of F such that F'(0, t) = e for all t el and F'({1} x 1) is a set consisting of a single point, say e.
The continuous function F'|.oy is a lifting of F|i.¢oy such that F'(0, 0) = eo. Since the lifting of
paths is unique F'(x, 0) = a/(x) for all xel. Likewise, F'|u«y is a lifting of F|q.¢13) such that
F'(0, 1) = eo. Again by Theorem 11 F'(x, 1) = p’(x) for all xel. Therefore o’'(1) = p'(1) = e; and
o ~p B'.

The Fundamental Theorem of Algebra

Definition. Let (X, T) and (Y, U) be topological spaces and let h : X — Y be a continuous
function. Then h is inessential if it is homotopic to a constant map and h is essential if if it is not
inessential.

Result 1. Let (X,T) be a topological space and let h : S' — X be a continuous function. Then the
following are equivalent.

1) h is inessential

2 h can be extended to a continuous function
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Result 2. Let (Y, U) be a topological space and let h : S* — Y be an inessential function. Then h«
is the zero homomorphism.

The Fundamental Theorem of Algebra says that if n €N, then every polynomial equation of degree
n with complex coefficients has at least one solution in the set of complex numbers. This theorem
is difficult to prove, and most proofs involve non-algebraic concepts. We give a proof that uses
the concepts used in the last sections.

Theorem 14. Let n eN and let x" + a,_; X" +...+ a;x + ao = 0 be a polynomial equation of degree
n with complex coefficients. Then this equation has at least one solution in the set of complex
numbers.

Proof. We consider the members of S* to be complex numbers and define continuous function f :
st 5 st by f(z) = 2". Let o = (1, 0) and consider the induced homomorphism f. : 71(S', so) —
(S, so). Define o : | - S' by o(x) = (cos 2xx, sin 2nx) = €™, Then f.([c]) = [f 0 6] em (S,
(1,0)). Since (f o )(0) = (1, 0), the unique path o : I—>R given by Theorem 7, is the path defined
by g(x) = nx. Let p : R — S' be the standard covering map defined by p(x) = (cos 2nx, sin 27x).
Thenpo a =fo o, sodeg (foo)=n. From the proof that my(S, (1, 0)) is isomorphic to the
group of integers (Theorem 10), we see that [f 0 ] is not the identity element of m; (S, (1, 0)).
Therefore f. is not the zero homomorphism.

First we show that we may assume that [a,-1| + [an—2| +...+ Jag| < 1. We let ¢ be a positive real
number and substitute X = cy in the given polynomial equation to obtain the equation

(cy)” + an_1(cy)" ™ +...+ai(cy) +a =0
or y! + (ana/C)y" L +.. + (a/c" Ny + ap/c” = 0.

Now choose ¢ large enough so that |an_1/c| + [an_o/c?| +...+ |a/c"™| + |ao/c”| < 1. Then if yo is a
solution of y" + (an_1/c)y" " +...+ (as/c" 1) y + ap/c” = 0, x = cyy is a solution of X" + a,_g X" +.. .+
aiX + ap = 0. Therefore it is sufficient to show that y" + (an_1/c) Y™ +...+ a/c™) y + ag/c” = 0 has
a solution. This means that in the given polynomial equation, we may assume that |a,_1| + |an—2|
+...+ |aol <1

The proof that the given polynomial equation has a solution in B? is by contradiction. Suppose
X" + a,q X"t +...+ a;x + ag = 0 has no solution in B2 Then there is a continuous function
q: B?5>R* - {(0, 0)} defined by q(z) = 2" + an_1 2"} +...+ a1z + ao. Let r : S'5>R?* — {(0, 0)} be the
restriction of q to S. Then q : B> — R? — {(0, 0)} is an extension of r. So, by result 1, r is
inessential.

We arrive at a contradiction by showing that r is homotopic to a continuous function that is
essential. Define k : S* — R?—{(0, 0)} by k(z) = z", and define H : S* x I - R* — {(0, 0)} by
H(z, t) = 2" + t(an1 2" + an_p 272 +...+ ag). Note H(x, t) = (0, 0) for (x, t) €S x | because
IH(X, £)] > 2" — [t(an-y 2" + @n_p 2" 2 +...+ ay|
>1—t(jan1 2" | + [an-2 272 +...+ |ag|)
= 1-t (|an-1| + |an—2| +...+ |ag|) > 0.

We complete the proof by showing that k is essential. Note that k = j o f, where j : S' — R? —
{(0, 0)} is the inclusion map, so k. = j. of.. Since the fundamental group of S* is isomorphic to the
group of integers, f. is essentially the homomorphism that takes an integer a into the product na.
Furthermore j. is an isomorphism. Therefore k. is not the zero homomorphism. By result 2, k is
essential.
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10

PARACOMPACT SPACES

Paracompact spaces were first introduced by Dieudonne (one generalisation des espaces compacts,
J. Math. Pures. Appl 23(1944), 65-76) as a natural generalisation of compact spaces still retaining
enough structure to enjoy many of the properties of compact spaces, yet sufficiently general to
include a much wider class of spaces. The notion of paracompactness gained structure with the
proof by A. H. Stone, that every metric space is paracompact and the subsequent use of this result
in the solutions of the general metrization problem by Bing, Nagata and Smirnov.

We need some new terminologies for coverings and collections which recently have proved to be
very powerful tool for study not only of paracompact spaces but also of metric spaces.

Covering of a Space

Definition. If uand v are covers of X (Topological space) we say that u refines v and write u<v iff
each Uep is contained in some Vev. Then we say that p is a refinement of v.

Definition. (i) Any subcovering of a given covering is a refinement of that covering.

(if) A compact space can be characterized by saying that every open cover of it has a finite
cover which is its refinement.

(iii) The relation < of refinement is a pre-ordering i.e. it is reflexive, transitive but is not
partially ordering as it is not antisymmetric.

Definition. If {C,} < {A.} and {C,} < {Bg} then (C,} is called common refinement of {A,} and

{Bs}.

Definition. If p is a cover of X and A c X, the star of A with respect to p is the set
St(A,wW=UUep; AnU = ¢}

Definition. We say p star refines v or p is a star refinement of v written as p* < v iff for each
U e u, there is some Vev such that
St(U, w) V.

Definition. p is a barycentric refinement of v, written as p A v, provided the sets St(x, p), for xe X
(topological space) refines v.

Theorem 1. A barycentric refinement w of a barycentric refinement v of u is a star refinement
of .

Proof. Suppose Wyew. Choose a fixed yo eW,. For each Wew such that W n Wy = ¢ choose a z
€ WﬁWo.
Then WU Wy U{W; ; zeW, W3 € w}
=St (z,w) csomeV ev
because w is a barycentric refinement of v. Now since each such V contains yo, we conclude that
St (Wo, w) = U{W ew ; Wy "W = ¢}
< St(yo, V) c some Uey,
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Since v is a barycentric refinement of u. Thus for each Wyew, there is some Uep such that
st (Wo, w) < U. Hence w is a star refinement of p. This completes the proof.

Theorem 2. A barycentric refinement of any refinement of p is a barycentric refinement of p.
Infact, let

w={W, ; acA}
be barycentric refinement of a family

v={V,;acA}
where v is a refinement of . Let x X, then

St(x, w) = U{W, ; xeW, ; W, ew}

<V, {VOL GV}

since w is a barycentric refinement of v. But since v is a refinement of yu, to each VeV, there is
some Uep such that V, < U. Thus
St(x, w) < U for some U ep.
= w is a barycentric refinement of .

Locally Finite Covering

Definition. A collection p of subsets of X if called locally finite or (neighbourhood finite) iff for
every xeX has a neighbourhood meeting only finite Uep. we call p point finite if and only if
each xeX belongs to only finitely many Uepu. Obviously every locally finite collection is point
finite.

Remark. (1) But every point finite need not be locally finite. e. g. consider the covering of the set
R.

{{x} ; xeR} is a covering of R.

It is a point finite covering of R but not locally finite. Since in usual topology of R, every point has
neighbourhood (an open interval) which contains uncountable number of points of R. So every
point has no neighbourhood which intersects finite number of members of the covering. However
if we consider the discrete topology of R, then above covering is also locally finite. Thus for any
space X, {{x} ; xeX} is a point finite cover, which is locally finite only under stringent conditions
on X.

(2) The covering of R by the sets [n, n+1], as n ranges through all integers is point finite.

Definition. A collection p of subsets of X is discrete if and only if each xeX has a neighbourhood
meeting at most one element of p clearly every discrete collection of sets is locally finite.

Finally, we have that any property of collection of sets in X, there is a corresponding o-property
which we illustrate with an example.

A collection v of subsets of X is called o—locally finite iff v = fj V,, where each V, is a locally
n=1

finite collection in X i.e. iff v is the countable union of locally finite collections family) in X.

Similarly, a collection v of subsets of X is o—discrete iff v is the countable union of discrete
collections in X.

If v is a o—locally finite cover of X, the subcollections V, which are locally finite and make up v
will not usually be covers.

Theorem 3. If {A, ; L ea}isa locally finite system of sets in X, then so is



156TOPOLOGICAL SPACES

{ Ay ; Len}
Proof. Given peX and find an open neighbourhood U of p such that UnA, = ¢ except for finitely
many A. [since {A; ; Aea} is a locally finite system of sets]
=  Un A, = ¢ except for some A.
U~ A, = ¢forsomei
= { Ay; hen}islocally finite.

Theorem 4. If {A; ; A en} is a locally finite system of sets, then U A; = UA, . In particular, the
union of a locally finite collection of closed sets is closed.

Proof. U A, c UA, (Trivial) .

Conversely, suppose pe UA, . Now some neighbourhood of p meets only finitely many of the sets
Ay, say A, ..., A, . Since every neighbourhood of p meets UA;, every neighbourhood of p must

then meet
Akl ,U...U Akn

Hence pe A, UA,, v...u A, so thatfor somek, pe Au. Thus
UA, cUA, proving the lemma.

Theorem 5. For each L.ea {U A, ; hea} is closed.

Proof. LetB=U { A, ; e} we will show B=B
= B is closed.
Suppose x¢B, we will show x can not be a limit point of B.
x¢gB = xg U A, = xg A, Vien.
If there is a neighbourhood U which is not disjoint for finite number of A, ’s.
ie.Un Andfori=1,2,...n. Then X — Ay is open neighbourhood of x and so

rn]{x —A,,}is open neighbourhood of x.
1

Thus U ~{() (X~A,) is neighbourhood of x disjoint with each A, and U ~(N{X—-A, }) is
1 1

disjoint with U A; = B. Thus x is not a limit point of B.
Paracompact Spaces

Definition. A Hausdorff space X is paracompact if and only if each open cover of X has an open
locally finite refinement. For example A discrete topological space is paracompact since every
open cover of a discrete space X has a locally finite refinement. {{x} ; xeX} is an open cover of x
and refines every open covering of X and {{x} ; xeX} is locally finite since every point has a
neighbourhood {x} which intersects only one set namely {x} .

Remark. Some of the books use regular space instead of Hausdorff space in defining paracompact
space. .

Michaell Theorem on Characterization of Paracompactness

Theorem 6. 1. (Michael) If X is a T3-space, the following are equivalent
(a) X is paracompact
(b) Each open cover of X has an open c-locally finite refinement.
(c) Each open cover has a locally finite refinement (not necessarily open)
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(d) Each open cover of X has a closed locally finite refinement

Proof. (a) = (b) Since X is paracompact, each open cover of X has an open locally finite
refinement. Also, a locally finite cover is o-locally finite. It follows therefore that each open cover
of X has an open c-locally finite refinement.

(b) = (c) let u be an open cover of X. By (b), there is a refinement v of u such that v = fj Vi,
n=1

where each v, is a locally finite collection of open sets, say
Vp = {Vnﬁ ;p €B}. For each n,

let Wa= UV, - Then {Ws, W.....}
B

covers X . Define A1 =W, - U W,

i<n
Then {An ; neN} is a locally finite refinement of {W, ; neN}. Now consider {A, N Vnﬁ : neN},
BeB.

This is a locally finite refinement of v and since v is a refinement of u. Thus each open cover of X
has a locally finite refinement.

(c) = (d). Let p be an open cover of X. For each xeX, pick some Uy in p such that xeUy and [as
X is Ts-space] by regularity, find an open neighbourhood Vy of x such that V, < Uy. Now {Vy
xeX} is an open cover of X and so by (c) has a locally finite refinement {Ag, BeB}. Then { Ag ;
BeB} is still locally finite by the (proved earlier) and for each B, if Ag = Vy, then Aﬁ c VycU
for some Ueyp. It follows that { AB ; BeB} is a closed locally finite refinement of p. [closure].

(d) = (a). Let u be an open cover of X, v a closed locally finite refinement. For each xeX, let Wy
be a neighbourhood of x meeting only finitely many Vev. Now let A be a closed locally finite
refinement of {wy ; xeX}. Foreach Vev, let

V* =X - U{AcA: ANV = ¢}

Then {V*, Vev} is an open cover (The sets VV* are open by the result proved above) and is also
locally finite. For consider xeX, there is a neighbourhood U of x meeting only A;, As...., Ay, say
from A. But whenever U N V* = ¢ we have Ax N V* = ¢ for some K =1, 2,..., n which implies
Ax NV = ¢. Since each Ax meets only finitely many V, we must then have U n V* = ¢ for all but
finitely many of the V*. Hence {V* ; vev} is locally finitely .

Now for each V ev, pick Uep such that V < U and form the set U n VV* The collection of sets
which results, as V ranges through v, serves as an open locally finite refinement of p.

Corollary. Every Lindelof T3-space X is Paracompact.

Since X is Lindelof, every open covering of X has a countable subcovery and A countable
subcover is a o-locally finite refinement. Thus each open cover of X has an open c-locally finite
refinement. Then by the above theorem, X is paracompact.

Remark. (1) A compact space can be characterized by the fact that for every open cover of X,
there is a finite cover which is refinement of it.

(2) Since a finite subcover is a locally finite refinement, we have the fundamental result
that a compact Hausdorff space is Paracompact.
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(3) A discrete space is paracompact since every open cover of it is locally finite
[paracompact < locally finite by the above theorem].

(4) The real line R is paracompact that is not compact. The fact that R is paracompact is a
consequence of the theorem that every metrizable space is paracompact. But a direct proof is
given as follows.

Suppose we are given an open covering p of R. For each integer n, choose a finite number
of elements of p that cover the interval [n, n+1] and intersect each one with the open interval (n—1,
n+2). Let the resulting collection of open sets be denoted by B,. Then the collection

B=U Bn
nezZ
is a locally finite open refinement of u that covers R.
Theorem. 7. (A. H. Stone). Every metric space is paracompact.
Proof. Let p be an open cover of the metric space (X, d). For each n =1, 2,3,... and Uey, let
U, = {xeU ; d(x, X-U) 22%} Then we observe that

1 1 1
d(Un, X - Un+l) Zz_n_ 2n+1 - 2n+1

Since by triangular inequality
d(x, X-U) <d(x, y) +d(y, X-U)
= d(Un, x=U) <d(x,y) +d(y, X-U) V xeU,.

1
= 2—n£ d(U,, X-U) <d(x,y) +d(y, x-U) V¥V xeU,.

Since for all yeUp+

1
d(y, X-U) > ol
and V yeX — Upsg [Reverse]
dy. XV < o5

= Now from (*)
“rdx,y) + 4y, X-U)

<d(x ;y)+2n+l
L L <d (U,, X-U vV xeU X-U
ZT_F_ ( ny A~ n+1) XeUp, YeX-Unu
1
= d(Un, X_Un+1) 2 2n+1

Let < be a well ordering of the elements of p. Foreachn=1, 2,... and Ueyp, let
U, =Uy—U{Vq1; Vep, V< U}

Foreach U, Vep, and eachn=1, 2,..., we have
U, < X-Von

or
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V, < X-Unu
depending on which comes first in the well-ordering. In either case,
* * 1
d(u,, V,)= ol
Since UrcUn, V. © X = U
1

= d(U;,V;)2d(Uy, X-Upa) 2 P

Hence defining an open set Dn , foreach Uep and neN, by

U, = {xeX ; d(x, U%) < zi}

n+3

Now d(U, V) <d(U:, U,)+d(U,,V,)
+d(V,,V;)
1 * * 1 1 -~ —~
= Nl = (Univn)gﬁ'l'w*-d(un'vn)
~ 40, Vy>—+ 2 _1

- 2n+1 - 2n+3 - 2n+2 '

and so V, = {Gn;Ueu} is discrete for each n [i.e. every point xeX has a neighbourhood meeting
at most one element of ]

Hence v = UV, is o-discrete [A collection v of subsets of X is o-discrete iff v is the countable
union of discrete collections in X] and thus o-locally finite [c-locally finite definition] Moreover
v refines . Thus we have proved that each open cover of X has an open o-locally finite
refinement. Hence by Michael’ theorem (X, d) is paracompact.

The relationship between paracompactness and normality is given in the next th :
Paracompactness and Normality

Theorem 8. Every paracompact space is normal.

Proof. We shall show first that a paracompact space is regular. Suppose A is closed set in a
paracompact space X and x¢A. For each yeA. 3 open set Vy containing y such that x¢ Vy. Then
the sets Vy ; yeA together with the set X—A, form an open cover of X. Let w be a locally finite
refinement and

V=U{Wew;WnA=¢d}
Then V is open and contains A, and V= U{ W ; W n A = ¢} [By a result proved earlier]

But each set W is contained in some Vy since w is refinement and hence, W is contained
in V. hence xg W. (since xg Vy). Thus x¢ V. ButV o A. Thus x and A are seperated by open
sets in X. i.e. the space is regular. Now we will prove that the space is normal. Suppose A and B
are disjoint closed sets i X . Since the space is regular, to each yeA, 3 an open set V, containing y
and Vy, N B = ¢. Then the sets V, together with X—A form an open cover of X. Let w be an open
locally finite refinement and

V={Wew, WnA=o¢}

Then V is open and contains A and
V=U{ W;WnA=¢d}.
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But each such W is contained in some Vy (since w is refinement) and hence each W is contained
in Vy. Thus there is an open set V such that

AcVand VAB=¢.
Thus X is normal.

Remark. Every normal space need not be paracompact e.g. space of ordinals which are less than
the first uncountable rationals w.r.t. order topology is a normal space but not paracompact.
Theorem. 9. Each Fs-set in a paracompact space is paracompact i.e. every closed subspace of a
paracompact space X is paracompact.

Proof. Let F = | J F,be an Fs-subset of a paracompact space. X, where each Fy is closed in X. Let
1

{U, ; a€A} be an open covering of F and each U, = F n V, where V, is open in X. For each
fixed n, {X — F}U {V, ; aeA} is an open covering of X and so has an open locally finite
refinement W, Let

Bn={WnNF ; Wew,}

Then each B, is locally finite collection of open subsets of F and Loj B, refines {U, ; aeA}. Thus
n=1

{U, ; acA} has an open c-locally finite refinement. Thus by Michael theorem, F is paracompact.

Theorem. 10. (Michael). If each open set in a paracompact space X is paracompact, then every
subspace is paracompact.

Proof. Given an B — X and any open covering {W n B}, where each W is open in X. Then UW is
an open set and so is paracompact by hypothesis. Therefore there is an open locally finite
refinement {V} of the covering {W} of UW. Then {V n B} is a locally finite refinement of
{W N B and hence every covering of {W n B} of B has an open locally finite refinement. Thus
is paracompact.

Remark. (1) If S, is a well-ordered set and S, xS, is compact Hausdorff and is therefore
paracompact. The subspace S; x S; is not paracompact because it is not even normal thus an
arbitrary subspace of a paracompact space need not be paracompact.

(2) The product of paracompact spaces need not be paracompact e.g. the space R (real line)
is paracompact but RxR i.e. R? is not paracompact because it is not normal.

Theorem. 11. The product of a paracompact space with a compact T,-space is paracompact.

Proof. Let X be a paracompact space and let Y be a compact space. Let u be an open cover of

XxY. For fixed xeX, a finite no. of elements of p, say Uél,..., Uén cover {x}xY. [since Y is

compact] and X is paracompact [every open cover of X has an open locally finite refinement] Pick
n

an open neighbourhood Vy of x in X such that VyxY c Lj U, . The sets Vi as X ranges through X,
i=1

form an open cover of X. Let v be an open locally finite refinement. For each Vev, V < V, for

some x. Consider the set (VxY) m Uéi, i=1,2,..., ny formed as V ranges through v. This is a

refinement of v and an open cover w of XxY. Moreover, given (X, y)eXxY, there is

neighbourhood of x which meets only finitely many Vev and the neighbourhood UxY of (X, y)
can then meet only finitely many sets of w. Hence XxY is paracompact.
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Theorem. 12. (Michael) Paracompactness is invariant under continuous closed surjections
(i.e. Let X be paracompact and p : X—Y a continuous closed surjection. Then Y is paracompact).

Proof. Let {U, ; acA} be any open covering of Y. Since a paracompact space is normal and
normality is invariant under cont. closed sujrections, Y is normal. We know that a space Y is
paracompact iff each open cover of Y has an open o-locally finite refinement therefore to prove
the theorem it is sufficient to show that {U, ; a.e A} has an open o-locally finite refinement. We
assume that A is well ordered (A partially ordered set W is called well ordered (or an ordinal) if
each non-empty subset B — W has a first element i.e. for each B = 0, 3 a byeB satisfying by < b for
all beB) and begin by constructing an open covering {Vo.» ; (a,n) eAxZ*} of X such that

(1) For each n, { V... ; acA} is a covering of X and a precise locally finite refinement of
{p™(Us) ; acA} - -

(2) If B> o, then p( V1) N P( Van) =6

Proceeding by induction, we take a precise open neighbourhood. finite refinement of {p UL}
and shrink it to get { V4,13 Assuming {V,, i} to be defined for all i< n, let

Woc,n+l = p_l(Ua) - p_l p ( U vk,n)

A<a

Since by locally finiteness, | VM is closed and p is a closed map, each W, n+1 IS open. Further

A<o
{Wan+1 ; aeA} is a covering of X. Infact given xeX, let ay be the first index for which xep H(Uy)
. Then xe W, ., since pt p( Vin) < p(U,) for each A. Taking a precise, open locally finite

on,N+l
refinement of {W,n+1 ; a.c A} shrink it to get { Vol

Clearly (1) holds i.e. Y is normal and since Vg1 is not in the inverse image of any p( V) for
a <B. Condition (2) is also satisfied.

For each n and a, let

B~

Hon=Y-p (U Vﬁynjwhich is an open set. We have

(@) Hun < ( Von) < Uy, for each n and o
P (Han) =X —p7'p [BU \_/B,nJ
<X p(X = Van)
< Voncp H(Uy)
(b) Hon M Hp o = ¢ for each n whenever o # 3.

In fact yeHon = yep( Vo) and is in no other p( V)
(©) {Hqn ; (o, n) €A x Z'} is an open covering of Y.

Let yeY be given, for each fixed n, there is because of (1), a first o, with yep( V). Choosing
now

ax = min {on; neZ'}
We have ye(VOLk ) 1f B < ou, then the defn. of ax shows yep( Vj k1), if B > o, then by (2), we

find that yep( Vpk+1), therefore we conclude that

=  yeY- p( U \_/BMJ = yeHqk K+1.

Prak
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= {Hen ‘ (o, n) €A x Z'} is a covering of Y.

To complete the proof, we need only modify H,, » slightly to assume locally finiteness for each n.
Choose a precise open locally finite refinement of

{p " (Hop) ; (0, n) eAx Z°}
and shrink it to get an pen locally finite covering {K,n} satisfying p(Kq.n) < (Ho.n)

p( Kqn) < Hqn For each n, let S, = {y ; some neighbourhood of y intersects at most one Hy,n}
Sn is open and contains the closed set

Up(K,n)=pUK,,)

and so by normality of Y, we find an open set G, with
U p(KaYn) cGyc G, S,

Now the open covering
{Gh N Hgn;(o,n) e AxZ}

is o-locally finite refinement of {U,} with {G, N Hyn; a€A}, n=1, 2,... is locally finite. Thus by
Michael’s theorem “(If X is a T3-space, the following are equivalent

(a) X is paracompact.

(b) each open cover of X has an open c-locally finite refinement.

(c) each open cover has a locally finite refinement.

(d) Each open cover of X has a closed locally finite refinement]”, Y is paracompat.
Thus Y is paracompact.

Theorem 13. Let X be normal and u = {u,, ; oA} an locally finite open covering. Then p has an
open barycentric refinement.

Proof. Since X is normal, we can shrink p to an open covering B = {V, ; acA} such that
V. < U, for each o. Then B is locally finite. For each xeX, define
W(x) = n{Uy ; xe Vo3 N[{C Vp;xe Vp}

We show that w = {W(x); xe X} is the required open covering. Being the intersection of finite no.
of open sets, "{U,; xe V,} and the last term ~{C V; ; xg¢ Vp} = {C U Vg} is an open set.
Therefore each W(x) is open. Next W is a covering since xeW(x) for each xeX. Finally fix any
XoeX and choose a V, containing Xo. Now for each x such that xoe W(x), we must have xe V.,
also, otherwise W(x)c C V,. Now because xe V,, we conclude that W(x) = U,. Thus
St (x, W) < U, which proves that W is an open barycentric refinement of u. This completes the
proof.

Nagata- Smirnov Metrization Theorem

Let T be a fixed, infinite cardinal no and suppose that A is a fixed set of elements whose
cardinality is T. The generalized Hilbert space (H, dL) of weight T is the set H' of all real valued
mappings f defined on A such that each mapping is different from zero on at most a countable
subset of A and the series Y[ f(L)]* converges, with the metric d/, defined by setting d[, (f, g) =

AeA
ST -9 df;is a metric for H'.
ren

To prove the main theorem, first we prove two lemmas.

Lemma 1. In a T3-space with a o-locally finite base, every open set is an F-set.



TOPOLOGY163

(A subset A of a space X is called a F; set in X if it equals the union of a countable collection of
closed subsets of X).
Proof. Let X be a Ts-space with a o-locally finite base {B,»; neN, Lean} and suppose G is an
open subset of X. By regularity, for each xeG, there exists an open set containing x, whose closure
is contained in G. Since for each fixed integer K, the collection {Bk, » ; ek} is locally finite, if
we let

Bk= U BK,MX),then

xeG
Bk = U Bkuixnc<G.
XxeG
Thus we have
G=U By
KeN

which is countable union of closed sets.
Lemma 2. A Ts-space with a o-locally finite base is normal.

Proof. Let F and K be disjoint closed subsets of the Ts-spce X with o-locally finite base
{Bn, »; neN, Lenn}. By regularity, for each point xeF, there exists a basic open set Bnp), 1)
containing x whose closure is contained in X—K, and for each yeK, there exists a basic open set
Bny), n(y) CONtaining y whose closure is contained in X-F. If we let

Bxr= U Bikaxand

xeF
Bk = U Bukay) then by the local finiteness of {By s ; A eAx}
yeK

Q’F =U Ek,x(x)g X-K

xeF

and Bk,K == U Bk,)\(y) g X—F
yeK
Thus the sets
Gn,F = Bn, F— U Bk,K
ken
and Gnk = Bnk— |J Bye

k<n
are open sets with the property that G, contains every point xeF for which n(x) = n, and Gpk
contains every point yeK for which n(x) = n. Finally, we may let
Ge= U Gprand Gk = U Gnk

neN neN
and obtain two disjoint open sets containing F and K respectively. Hence X is normal.

Now we state the main theorem.
Theorem 14 (Nagata-Smirnov Metrization Theorem).

A topological space is metrizable iff it is a Ts-space with a o-locally finite base.
Proof. The necessity, of the condition follows from Stone’s Theorem (Every metric space is

paracompact). If we consider the open covering of a metric space X by balls {B(x, l);XEX}, we
n

may find for each n, a locally finite open cover which refines it. The union of these covers is a
o-locally finite base for X.
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Conversely, suppose that X is a Ts-space with a o-locally finite base {By, »; neN, Aean}. We shall
prove that X is metrizable. We shall denote by A the collection of all pairs (n, A) with neN and
A€, With which we have indexed the base and suppose that cardinality of A is T. We shall show
that X is homeomorphic to a subset of H'.

Now by the above lemmas, X is normal and every open subset is an F;-set. Now using the result
“If E is an open F-set in a normal space X, then there exists a continuous mapping f : X—|[0, 1]
such that f(x) > 0 iff xeE, thus and X\E = f(0)} so for each (n, ) €3 a continuous mapping f, ;.
: X—[0, 1] such that f,,(x) > 0 iff xe B,,. For each fixed integer n, the family {Bn, ; AeAn} is
locally finite, and so for each fixed point xex, f,(X) = 0 for at most a finite number of values of A.

Hence 1 +% fn%ﬁ (x) is a well defined continuous mapping of X which is never less than one. From
B

this it follows that we may define a continuous mapping gn,. : X—[0, 1] by setting

-1/2
gn,k(x) = fn,x(X) {1"'% fnz,[s (X):|

Again, we see that gn,(X) > 0 if x €B,, , while for a fixed integer n and fixed point xeX, gnx(X) #
0 for at most a finite number of values of A. It is obvious that Zgﬁ’X <1
A

and then Y[ gn 2(X) — gn.2(Y)]° <2 forall x, yeX.
A

n
We now set hn, 2. (X) = 2 2 gn, 2.(X)
Then
> h2,(x)=x2"3% 92, (x)
(n,A) n A
=y2"=1
n

Thus for each xeX, h, , (x) is a real valued mapping of A which is such that the mapping is
different from zero on at most a countable subset of A and is such that the series of squares
converges. From the definition of generalized Hilbert space of weight T, it follows that for each
xeX, we have found a point f(x) = hy ;(x) in H'. Thus we have defined a mapping f of X into H'
which is onto some subset of f(X). We shall show that f is a homeomorphism.

If x and y are distinct points of X, then there exists a basic open set B, ; containing x but not y
since X is a T-space. It follows that hy 5(x) > 0, while hy, ;(y) = 0 so f(x) = f(y) and hence f is one
to one.

2
Now suppose that xeX and >0 are given. First choose an integer N = N(e) such that 27N < %

By the local finiteness property, there must exist an open set G containing x which has a non-
empty intersection with at most a finite number of the sets B, ; with n < N. Let us denote these sets
by Bniki , Where Nj <N fori=1, 2,..., K. Since each function h, ; is continuous we may find for

each <n, A> e, an open set Gy, ; containing x such that
I, (%) = P 5 (V)] <—=

2K

for every y €Gy, ;. Let us set
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K
G*=G m(ﬂlGnMi)
i=

Which is an open set containing X. We now note that for <n, A> € A, but not equal to some
(ni, Xi).

hn,2.(X) = hn5(y) =0 V yeG*
Thus we have for yeG*

2 2
2 € _<
nﬁ%,x [hn k(X) - hn, k(y)] < K(\/R} - 2 :

while % 09—y ik
=% 2" I RIOR Wk
2 2
-n _ -N e_ — G_
<23 2" =2(2 )<2(4J .

Thus we have show that
df (F 09, F(y) = \/ lhy, 00—y, I < €

Vv yeG* and so f is cont.

Finally, let G be an arbitrary open set in X and choose a point xeG We must have xeB,; <G for
some <n, A> € A. Let h, (x), which is a positive real no, be denoted by &. If f(y) is a point of
f(X) such that dy"(f(x), f(y)) < &, then h, ;(y) is also positive and so yeB, ; = G. Thus

1 (B(f(x), 5)) = G.

so that f is open. From this, it follows that f is a homeomorphism.



