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Max. Marks : 100
Time : 3 Hours

Note: Question paper will consist of three sections. Section I consisting of one question with ten parts of 2 marks each
covering whole of the syllabus shall be compulsory. From Section II, 10 questions to be set selecting two questions from
each unit. The candidate will be required to attempt any seven questions each of five marks. Section III, five questions to be
set, one from each unit. The candidate will be required to attempt any three questions each of fifteen marks.

UNIT-I

Kinematics — Lagrangian and Eulerian methods. Equation of continuity. Boundary surface. Stream lines. Path lines and
streak lines. Velocity potential. Irrotational and rotational motions. Vortex lines.

Equations of Motion—Lagrange’s and Euler’s equations of motion. Bernoulli’s theorem. Equation of motion byflux method.
Equations referred to moving axes Impulsive actions. Stream function.

UNIT-II

Irrotational motion in two-dimensions. Complex velocity potential. Sources, sinks, doublets and their images. Conformal
mapping, Milne-Thomson circle theorem. Two-dimensional irrotational motion produced by motion of circular, co-axial and
elliptic cylinders in an infinite mass of liquid. Kinetic energy of liquid. Theorem of Blasius. Motion of a sphere through a
liquid at rest at infinity. Liquid streaming past a fixed sphere. Equation of motion of a sphere. Stoke’s stream function.

UNIT-III
Vortex motion and its elementary properties. Kelvin’s proof of permance. Motions due to circular and rectilinear vertices.

Wave motion in a gas. Speed of Sound. Equation of motion of a gas. Subsonic, sonic and supersonic flows of a gass.
Isentropic gas flows. Flow through a nozzle. Normal and oblique shocks.

UNIT-IV

Stress components in a real fluid. Relations between rectangular components of stress. Connection between stresses and
gradients of velocity. Navier-stoke’s equations of motion. Plane Poiseuille and Couette flows between two parallel plates.
Theory of Lubrication. Flow through tubes of uniform cross section in form of circle, annulus, ellipse and equilateral triangle
under constant pressure gradient. Unsteady flow over a flat plate.

UNIT-V

Dynamical similarity. Buckingham p-theorem. Reynolds number. Prandt’s boundary layer. Boundary layer equations in two-
dimensions. Blasius solution. Boundary-layer thickness. Displacement thickness. Karman integral conditions. Separations
of boundary layer flow.
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UNIT-I

Basic Concepts and Definitions
()  Let g=iu+ jv+kw,then

1= vu?+vi+w? =q

D.C’s are given byl =cos a =

=
<

w

, m=cosp = il

N =Cosy =

where I, m, n, are components of a unit vector i.e. >+ m*+n?=1

N
o

(i) ab=abcosh, axb=absinOA

@) Vo= I@H@HA(@ where ¢ is a scalar and
oy oz

OX
v=il, ]ﬁ +k2 is a vector (operator)
ox "oy oz
. . ou ov ow _
iv divg=Vg=—+—+—,0=(u,v,w
(V) divg=Vg= 2T A= 0w

If V-g=0,thenq is said to be solenoidal vector.

o2 A - op op op
V dr = idx + jdy+ kdz,dp=—"dx + —+dy+—dz
(v) jdy o X oy y+=,

and
Vo=, % (%
oX oy oz
Therefore,
do = (V¢). dr
i j k
) o 0 0
Vi Curlg=VxQq=— — —
(vi) q=Vx{Q X ¥
u Vv Ww

_T(aw avj A.(au awj A(av auJ
=il ———|+] — — |+K ———
oy o6z) \az ox X oy

(vii)  (a) Gradient of a scalar is a vector.
(b) Divergence of a scalar and curl of a scalar are meaningless.
(c) Divergence of a vector is a scalar and curl of a vector is a vector.
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o2 02 02
(viii) V-Vo=V?= axi) N ayi) 4 62‘3

where V? is Laplacian operator.
(ix)  Curlgrad ¢ =0,divcurl g=0
(x)  Curlcurl g=graddivg—Vv?2q

i.e. Vg =graddivg—curlcurlg
(xi)  Gauss’s divergence theorem

(@) [g-dS = [div g dv
S \Y

(b) [AxQqdS= [curl g dv
S \Y%

(xii)  Green’s theorem
@) [Vo-VydV=[¢Vy-dS— [¢V ydV
Vv s Vv

= [yVé-dS—[yV?p-dV
S \Y

20 —uv2a\dv — [ 4 2¥ _, 0
(b) £(¢w yv ¢)dV—£(¢ o ¢njds

(xiii) Stoke’s theorem [q-df = [curl G-dS = [curl §-AdS
(xiv) Orthogonal curvi?inear cos-ordinates : )
Let there be three orthogonal families of surfaces
%y, 2) = a, falX, Y, 2) = B, fa(x, y, 2) =y 1
where X, y, z are Cartesian co-ordinates of a point P(x, y, z) in space. The
surfaces
o = constant, B constant, y = constant 2

form an orthogonal system in which every pair of surfaces is an orthogonal
system. The values a, B, y are called orthogonal curvilinear co-ordinates.
From three equations in (1), we can get

X= X(OL, B’ Y)i y= y(OL, Bi Y)’ Z= Z(OL, B’ Y)

The surfaces (2) are called co-ordinate surfaces.
Let Tbe the position vector of the point P(x, y, z)

i.e. f:xi+y]+zl2=F(a, B, y)
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. o7 .
A tangent vector to the a-curve (f = constant, y = constant) at P is e A unit
o

tangent vector is

. O0r/oa
el = —
|OF/da |
or R
or —=h,é
PR
_ 2 2 2
where h; = or = (ﬁj +[ﬂj J{QJ
oL oo oo oo

Similarly, é,,é, are unit vectors along B-curve and y-curve respectively such
that

or . Or R
a_B h, 215 = h;€;
Further, dr = ﬂd —dB —dy
oo P oy

Therefore,
(ds)2 =drdr= hlzdocz + h%de + hgdy2

where h; da, hy df3, hs d y are arc lengths along o,  and y curves.
In orthogonal curvilinear co-ordinates, we have the following results.

- (106 1dp 10
M grad¢= (hl oo h, 9B’ h, ayj

(ii) If §=(d;,9,,93),then

divg=

hoh,h, {8 (hyhsay) + B(h hlq2)+6y(h ths)}

(i) Ifcurl G=E=(5,,%,,&,), then

G= Lfﬁ( 3q3)—§(hzq2)}

e a2 )
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& = h:h {8 (thZ)__B(hlql)}

v L))
h,h,hg|{ dal hy oca) OB\ h, OB) oy\ hy oy

The Cartesian co-ordinate system (X, vy, z) is the simplest of all orthogonal co-

ordinate systems. In many problems involving vector field theory, it is

convenient to work with other two most common orthogonal co-ordinates i.e.

cylindrical polar co-ordinates and spherical polar co-ordinates denoted

respectively by (r, 6, z) and (r, 6, y). For cylindrical co-ordinates, hy =1, h, =

r, hs = 1. For spherical co-ordinates, h; =1, h, =r, h3 =rsin 0.

1. Fluid Dynamics

Fluid dynamics is the science treating the study of fluids in motion. By the
term fluid, we mean a substance that flows i.e. which is not a solid. Fluids may
be divided into two categories

(1) liquids which are incompressible i.e. their volumes do not change when the
pressure changes

(i) gases which are compressible i.e. they undergo change in volume whenever
the pressure changes. The term hydrodynamics is often applied to the science
of moving incompressible fluids. However, there is no sharp distinctions
between the three states of matter i.e. solid, liquid and gases.

In microscopic view of fluids, matter is assumed to be composed of molecules
which are in random relative motion under the action of intermolecular forces.
In solids, spacing of the molecules is small, spacing persists even under strong
molecular forces. In liquids, the spacing between molecules is greater even
under weaker molecular forces and in gases, the gaps are even larger.

If we imagine that our microscope, with which we have observed the molecular
structure of matter, has a variable focal length, we could change our
observation of matter from the fine detailed microscopic viewpoint to a longer
range macroscopic viewpoint in which we would not see the gaps between the
molecules and the matter would appear to be continuously distributed. We
shall take this macroscopic view of fluids in which physical quantities
associated with the fluids within a given volume V are assumed to be
distributed continuously and, within a sufficiently small volume 3V, uniformly.
This observation is known as Continuum hypothesis. It implies that at each
point of a fluid, we can prescribe a unique velocity, a unique pressure, a unique
density etc. Moreover, for a continuous or ideal fluid we can define a fluid
particle as the fluid contained within an infinitesimal volume whose size is so
small that it may be regarded as a geometrical point.

1.1. Stresses : Two types of forces act on a fluid element. One of them is
body force and other is surface force. The body force is proportional to the



FLUID DYNAMICS

mass of the body on which it acts while the surface force is proportional to the

surface area and acts on the boundary of the body.

Suppose Fis the surface force acting on an elementary surface area dS at a
point P of the surface S. surface force

L
shearing stress <7 normal stress

Let F; and F, be resolved parts of F in the directions of tangent and normal at
P. The normal force per unit area is called the normal stress and is also called
pressure. The tangential force per unit area is called the shearing stress.

1.2. Viscosity : It is the internal friction between the particles of the fluid
which offers resistance to the deformation of the fluid. The friction is in the
form of tangential and shearing forces (stresses). Fluids with such property are
called viscous or real fluids and those not having this property are called
inviscid or ideal or perfect fluids.

Actually, all fluids are real, but in many cases, when the rates of variation of
fluid velocity with distances are small, viscous effects may be ignored.

From the definition of body force and shearing stress, it is clear that body force
per unit area at every point of surface of an ideal fluid acts along the normal to
the surface at that point. Thus ideal fluid does not exert any shearing stress.

Thus, we conclude that viscosity of a fluid is that property by virtue of which it
is able to offer resistance to shearing stress. It is a kind of molecular frictional
resistance.
1.3. Velocity of Fluid at a Point : Suppose that at time t, a fluid particle is at
the point P having position vector 7(i.e.OP =T)

Q(T+Sr,t+St)

=

N\




FLUID DYNAMICS 10

and at time t + 5t the same particle has reached at point Q having position
vector T+0or. The particle velocity qat point P is

(r+or)—r1 Lt ﬂ_ﬁ
St—0 ot  st50 ot gt

where the limit is assumed to exist uniquely.  Clearly @ is in general
dependent on both T and t, so we may write
a=q(tH=aq(xy,z1),

F=xi+ y] +zk (P has co-ordinates (X, Y, z))

Suppose,
g=ui+vj+wk
and since
_ dr dx - dyA dz ~
==+ 1+ K,
dt dt dt” dt
therefore
_dx dy dz
u= —, v=—=, =—
t dt dt

1.4. Remarks. (i) A point where G = 0, is called a stagnation point.

(i) When the flow is such that the velocity at each point is independent of
time i.e. the flow pattern is same at each instant, then the motion is termed as
steady motion, otherwise it is unsteady.

1.5. Flux across any surface : The flux i.e. the rate of flow across any surface

S is defined by the integral
[p(@-f)ds
s

where p is the density, qis the velocity of the fluid and fis the outward unit
normal at any point of S.
Also, we define

Flux = density x normal velocity x area of the surface.

2. Eulerian and Lagrangian Methods (Local and Total range of change)

We have two methods for studying the general problem of fluid dynamics.

2.1. Eulerian Method : In this method, we fix a point in the space occupied by
the fluid and observation is made of whatever changes of velocity, density
pressure etc take place at that point. i.e. point is fixed and fluid particles are
allowed to pass through it. If P(X, y, z) is the point under reference, then x, y, z
do not depend upon the time parameter t, therefore X,y,zdo not exist (dot

denotes derivative w.r.t. time t).
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Let f(x, y, z, t) be a scalar function associated with some property of the fluid
(e.g. its density) i.e. f(x, y, z, t) = f(T,t), where T = X1+ y] +zk is the position
vector of the point P, then

q_ Lt f(r,t+ot)—f(r,1t)
ot §t—0 ot

1)

Here, (Z—: is called local time rate of change.

2.2. Lagrangian Method :- In this case, observations are made at each point
and each instant, i.e., any particle of the fluid is selected and observation is
made of its particular motion and it is pursued throughout its course.

Let a fluid particle be initially at the point (a, b, ¢). After lapse of time t, let the
same fluid particle be at (X, y, z). It is obvious that X, y, z are functions of t.
But since the particles which have initially different positions occupy different
positions after the motion is allowed. Hence the co-ordinates of the final
position i.e. (X, Y, z) depend on (a, b ¢) also. Thus

x="i(a b, c,t),y="(a, b,ct),z="1,b,c,t).

For this case, if f(X, vy, z, t) be scalar function associated with the fluid, then

ﬁ_ Lt f(r+0or,t+ot)—f(r,t)
dt  st—o ot

)
where X,V,Z exist.

f. L : .
Here (;—tls called an individual time rate or total rate or particle rate of change.

Now, we establish the relation between these two time rates (1) & (2).
We have
f=1(x,y,z1)
Therefore,
df ofdx ofdy of dz of
= — 4+ ——=+——+

dt oxdt oydt ozdt ot

_ of - of~ of o (dX’: dyA dZ"J of
= | —i+—j+—Kk || —i+—=j+—Kk |+—
dt dt” dt ot

where

11



FLUID DYNAMICS 12

Thus
df of
—=—+47-Vf 3
il 3)

2.3. Remarks. (i) The relation

ﬁ:q+q.Vf
dt ot

= g:(ngquf
dt ot

= £E£+G.V
dt ot

The operator %(also denoted by%) is called Lagrangian operator or material

derivative i.e. time rate of change in Lagrangian view. Sometimes, it is called
‘differentiation following the fluid’.

(i) ~ Similarly, for a vector function F(X,y,z, t)associated with some
property of the fluid (e.g. its velocity, acceleration), we can show that
oF_OF o

+7-VF
a a0

Hence the relation (3) holds for both scalar and vector functions associated
with the moving fluid.
(iii)  The Eulerian method is sometimes also called the flux method.

(iv)  Both Lagrangian and Eulerian methods were used by Euler for studying
fluid dynamics.

(V) Lagrangian method resembles very much with the dynamics of a
particle

(vi)  The two methods are essentially equivalent, but depending upon the
problem, one has to judge whether Lagrangian method is more useful
or the Eulerian.

3. Streamlines, Pathlines and Streaklines

3.1. Streamlines : It is a curve drawn in the fluid such that the direction of the
tangent to it at any point coincides with the direction of the fluid velocity
vector J at that point. At any time t, let = (u, v, w) be the velocity at each
point P(X, y, z) of the fluid. The direction ratios of the tangent to the curve at
P(x, Y, z) are dr = (dx, dy, dz) since the tangent and the velocity at P have the
same direction, therefore g xdr =0
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ie. (Ui+V]+WK)x(dxi+dyj+dzk)=0
i.e. (vdy — w dy) i + (wdx —udz) j + (udy — vdx)k = 0
i.e. vdz — wdy = 0 = wdx — udz = udy — vdx
dx dy dz
- — = = —
u Vv w

These are the differential equations for the streamlines.
I.e. their solution gives the streamlines.

Streamline

In the figure, if T;,0,,03,..... denote the velocities at neighbouring points Py,

P2, Ps,...., then the small straight line segments P1P, PoP3, P3Ps... collectively
give the approximate form of the streamlines.

3.2. Pathlines: When the fluid motion is steady so that the pattern of flow does
not vary with time, the paths of the fluid particles coincide with the
streamlines. But in case of unsteady motion, the flow pattern varies with time
and the paths of the particles do not coincide with the streamlines. However,
the streamline through any point P does touch the pathline through P. Pathlines
are the curves described by the fluid particles during their motion i.e. these are
the paths of the particles.

The differential equations for pathlines are

ﬁ:qi.e.%zu,d—yzv,%zw Q)
dt dt dt dt

where now (X, vy, z) are the Cartesian co-ordinates of the fluid particle and not a
fixed point of space. The equation of the pathline which passes through the
point (Xo, Yo, Zo), Which is fixed in space, at time t = 0 say, is the solution of (1)
which satisfy the initial condition that x = Xo, Y = Yo, Z =zo whent=0. The
solution gives a set of equations of the form

X = X(Xo, Yo, Zo, 1)
y= y(XO’ Yo, Zo, t) (2)
Z = z(Xo, Yo, Zo, t)

which, as t takes all values greater than zero, will trace out the required
pathline.

3.3. Remarks : (i) Streamlines give the motion of each particle at a given
instant whereas pathlines give the motion of a given particle at each instant.
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We can make these observations by using a suspension of aluminium dust in
the liquid.

(i) If we draw the streamlines through every point of a closed curve in the
fluid, we obtain a stream tube. A stream tube of very small cross-
section is called a stream filament.

(iti)  The components of velocity at right angle to the streamline is always
zero. This shows that there is no flow across the streamlines. Thus, if
we replace the boundary of stream tube by a rigid boundary, the flow is
not affected. The principle of conservation of mass then gives that the
flux across any cross-section of the stream tube should be the same.

3.4. Streaklines : In addition to streamlines and pathlines, it is useful for
observational purpose to define a streakline. This is the curve of all fluid
particles which at some time have coincided with a particular fixed point of
space. Thus, a streakline is the locus of different particles passing through a
fixed point. The streakline is observed when a neutrally buoyant marker fluid
is continuously injected into the flow at a fixed point of space from time
T = —oo0. The marker fluid may be smoke if the main flow involves a gas such
as air, or a dye such as potassium permanganate (KMnQ,) if the main flow
involves a liquid such as water.

If the co-ordinates of a particle of marker fluid are (X, y, z) at time t and the
particle coincided with the injection point (Xo, Yo, Zo) at some time t, where t <
t, then the time-history (streakline) of this particle is obtained by solving the
equations for a pathline, subject to the initial condition that x = Xo, ¥ = Yo,
z=17zpatt=r1. As 1 takes all possible values in the angle —o < t < t, the
locations of all fluid particles on the streakline through (X, Yo, Zo) are obtained.
Thus, the equation of the streakline at time t is given by

X = X(Xo, Yo, Zo, t, T)
Y =Y(Xo, Yo, 20, 1, 7) (-0 <1 <H) )

z = z(Xo, Yo, Zo, 1, T)

3.5. Remark: (i) For a steady flow, streaklines also coincide with streamlines
and pathlines.
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(i) Streamlines, pathlines and streaklines are termed as flowlines for a
fluid.

4. Velocity Potential

Suppose that §= uf+v]+wf< is the velocity at any time t at each point
P(Xx, y, z) of the fluid. Also suppose that the expression u dx + vdy + wdz is an
exact differential, say — d¢.

Then, —d¢ = udx + vdy + wdz

ie. —(%dx+%dy+%dz+%dtj: u dx + vdy + wdz where ¢ = ¢(x, v, z, t)

is some scalar function, uniform throughout the entire field of flow.

Therefore,

u= 200 2, 200 20,

ox oy oz 't

But

D0 s 0= 0txv.2)
Hence

g=ui+vj+wk=- @ﬂ@ﬂ@r( =-V¢

x oy oz

where ¢ is termed as the velocity potential and the flow of such type is called
flow of potential kind.

In the above definition, the negative sign in @ =—-Vd¢is a convention and it
ensures that flow takes place from higher to lower potentials. The level

surfaces ¢(x, y, z, t) = constant, are called equipotentials or equipotential
surfaces.

4.1. Theorem : At all points of the field of flow the equipotentials (i.e.
equipotential surfaces) are cut orthogonally by the streamlines.

Proof. If the fluid velocity at any time t be = (u, v, w), then the equations of
streamlines are

T2 ®
W

The surfaces given by

15
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g-dr =0 ieudx+ vdy + wdz=0 2

are such that the velocity is at right angles to the tangent planes. The curves
(1) and the surfaces (2) cut each other orthogonally. Suppose that the
expression on the left hand side of (2) is an exact differential, say, —d¢, then

d¢ = udx + vdy + wdz 3)
where ¢ is velocity potential.

The necessary and sufficient condition for the relations.

R S S

OX oy 0z
i.e. §=- V¢ toholdis
curl g =curl (-V¢) =0 (4)
The solution of (2) i.e.dp =0is

d(X, y, z) = const (5)

The surfaces (5) are called equipotentials. Thus the equipotentials are cut
orthogonally by the stream lines.

4.2. Note : When curl G= 0, the flow is said to be irrotational or of potential
kind, otherwise it is rotational. For irrotational flow,  =-V¢.

4.3. Example. The velocity potential of a two dimensional flow is ¢ = ¢ xy.
Find the stream lines

Solution. The stream lines are given by

ax _dy_dz
%
where q=(u, v, w)

For an irrotational motion (i.e. motion of potential kind)

we have
curl g =0=curl (-V¢)

i.e. g =— Vo, where ¢ is the velocity potential.
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From here,
__[9b 2 dp)_
uv,w)=—[ —=+,-—=- —L|=—(cy, cx, 0
( ) (ax Y az) (cy )
i.e u=-cy,v=-cx,w=0

Therefore, streamlines are

dx _dy _dz

-cy —-cx O
i.e. xdx—ydy=0,dz=0
ie. X¥—y'=a’,z=K

which are rectangular hyperbolae

4.4. Example. If the speed of fluid is everywhere the same, the streamlines are
straight.

Solution. The streamlines are given by the differential equations.

dx_dy _dz

u Vv w
where u, v, w are constants. The solutions are
VX — Uy = constant, vz — wy = constant
The intersection of these planes are necessarily straight lines. Hence the result.

4.5. Example. Find the stream lines and path lines of the particles for the two
dimensional velocity field.

u= v=y,w=0

1+t

Solution. For streamlines, the differential equations are

dx _dy _dz
v
Therefore,
ey B _dy_dz
x y 0

17
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Here t = constant = t, (at given instant), therefore the solutions are

(1+tp) logx =logy +c1,z2=¢;
or log x 0= logy +loga,z=c,.

1+t0
or X U=ay,z=c,.
which are the required stream lines.

For path lines, we have

dx dy dz

_— = u’ —=V,— = W

dt dt dt
Therefore,

dx_ x dy_,dz_j

at 1itdt Vdt

o XAty G40
X 1+t vy

= log. x = log(1+t) +log a, logy =t +logb, z=c

= x =a(l+t),y=be', z=c¢

x-a
= y=be 2 ;z=c

which are the required path lines.

4.6. Note. In case of path lines, t must be eliminated since these give the
motion at each instant (i.e. independent of t).

4.7. Example. Obtain the equations of the streamlines, path lines and
streaklines which pass through (I, I, 0) at t = O for the two dimensional flow

where | and ty are constants having respectively the dimensions of length and
time.

Solution. We define the dimensionless co-ordinates X, Y, Z and time T by
writing
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,Yz%,zz

T=_—
Lo

X:i E’ t
I I

such that dX = Tldx, dy = %dy, dZ:%dz, dT=tidt
0

and u:?—|(1+T),v=:(—I,W:O

0 0
Streamlines are given by
dx _dy _dz

u Vv \W

_, _toldX _ toldY _IdZ
XI+T) Yl 0

dx _dv_dz
XA+T) Y O

Integrating these, we get

Z = constant = C; (say) @
and log X =(1+T) log Y + log C,, where C; is constant
= X =C, Y& 2)

As variables X, Y, Z and T are independent and C; & C, are constants,
equations (1) & (2) give the complete family of stream lines at all times
t=1T. Inparticular, X=1=Y,Z=0and T=0= C; =0, C, =1 and we get
stream lineas Y = Xi.e.y=xand z =0.

Pathlines are given by

X _xa+m Yoy %y
dT dT  'dT

Now, X, Y, Z are the dimensionless co-ordinates of a fluid particle and are
functions of T.

dXx T?
Therefore, 7:(1+ AT =logX= T+7 +logK;

19
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- X =K; eT+T2/2 (3)
dy dy
—=Y = —=dT =logY =T+logK
dT Y J 9%
= Y =Kpe'. (4)
dZ =0 = Z = constant = K3 5)

These are the parametric equations of path lines. The path line through P(1, 1,
0ie. X=1=Y, Z=0,T=0isobtainedwhen K; =K, =1,K3=0

T2
T+— T
=>X=e 2,Y=e,Z2=0

Elimination of T gives.

The pathline which passes through X =Y =1, Z=0when T = t is given by

X = exp.{T+1T2 —r—lrz}
2 2

Y=exp(T-t),Z2=0

These are the parametric equations of the streaklines true for all values of T.
At T =0, the equations give

2

X= exp.(—r—%} Y =exp(-1), Z=0.

Eliminating t, we have.

—t=logYie.t=-logY
Therefore,

1_IogY

X =oxp (s er2) =) mvfd oyl 2 ) 22

4.8. Article. To obtain the differential equations for streamlines in cylindrical
and spherical co-ordinates
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We know that the streamlines are obtained from the differential equations
gxdr=0 1)
where q is the velocity vector and T is the position vector of a liquid particle.
If the motion is irrotational, then
q=-V¢
Therefore, the differential equations (1) become
Vé- xdr= 0 (2)
(i) In cylindrical co-ordinates (r, 0, z), we have

dt =(dr, rde, dz)
and

Voé=grad ¢ = (@ 1% %)

Thus, the different equations (2) become

(@1@@j x (dr, rd@, dz) = 0
or roo oz

dr rdo dz
= = = .
op/or  1lr-o09/00 o/oz

©)

(i1) In spherical co-ordinates (r, 0, y), we have
dt=(dr, rd6, r sind dy)

and Vo =grad¢ = (% %%g rS|1n9 gj;j

The differential equations (2) become.

G 16 1 & x (dr, rd@, rsin © dy) = 0
o'roe’ rsmea\y

dr rdd  rsinbdy

ayar Law/00
r

(4)
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Equations (3) and (4) are the required differential equations.

4.9. Example. Show that if the velocity potential of an irrotational fluid motion

IS ¢ = Azwcose,where (r, 6, v) are the spherical polar co-ordinates of any
r

point, the lines of flow lie on the surface r = k sin”0, k being a constant.

Solution. The differential equations for lines of flow (streamlines) are

dr _ rdo _ rsin Odys
W Zapeo - oy/oy

rsin®

From first two members, we have

dr B rde

2A 1 A .
—y——C0SO0 ~|—w-—sind
v rs r( Wrz )

dr _ 2_rd9 :gzzc_osede
cosO sinO r sin®

= logr=2logsin® +logk = r=ksin’0

Hence the result.

4.10. Note. In the above example, the velocity potential, in Cartesian co-
ordinates, can be written as

d=AK+y +79) %z tan’? (%} :
where
X =15in0 cos y, y = r sind siny, z = r coso
are spherical polar substitutions.
Also, the streamlines r = k sin®8 can be written as r* = k r? sin0

— (X2 + y2 + 22)3/2 — k (X2 + y2)

k2/3 213

O +y?)

which are the streamlines in Cartesian co-ordinates.

ie. X2+ yP+ 2728 =
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4.11. Example. At the point in an incompressible fluid having spherical polar

co-ordinates (r, 0, ), the velocity components are (2M® cos0, Mt3sin®, 0)
where M is a constant. Show that velocity is of potential kind. Find the
velocity potential and the equations of streamlines.

Solution. Here dT = dr + rd0 0 + rsin Ocy

q=2Mr3cosof + Mrsin0
Then,
§ ro rsinoV
o/or /00 oloy
2Mr3cosd  Mr?sin® 0

curl g=——
r’sin®

= 21_ 9f~0+ré-0+rsineﬁ/(—ZMfssin9+2Mf3sine)]=5
r-sino-

Therefore, the flow is of potential kind.

Now, using the relation q=—-Vop = —(g(f r +—@6 + L

- @(p,wehave
rod  rsind oy

OMF? cosOf + MP®sinod=| - 0 105 1 ad)
ar roo rsmeaxp

From here,

¢ =2MFP? C0s0,— ¢ = MF? sing,—~— of =0
or 00 oy

Therefore,

do = @dr+@d6+@d\y
or 00 oy

= (—2Mr3 cos0)dr — (Mr? sin 8)do
= d (Mr? cos0)
Integrating, we get
¢ = MF2cos0

which is the required velocity potential.
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The streamlines are given by

dr  rd0  rsinbdy
G 1 _ 1 4

or r oo rsin@%

or dr _ . rdd  rsinBdy
2Mricos0  Mr3sin® 0

From the last term, y = constant.
From the first two terms, we get

dr _2cosf

r sin0Q

do=2cotHdd

Integrating, we get
log r = log sin®0 + constant
= r=Asin?0 , y = constant

The equation y = const. shows that the streamlines lie in planes which pass
through the axis of symmetry 6 = 0.

5. Irrotational and Rotational Motion, VVortex Lines

5.1. Vorticity. If g = (u, v, w) be the velocity vector of a fluid particle, then
the vector & defined by

E=curl g=VxqQ

is called the vortex vector or vorticity and it’s components are (&1, &y, &3),
given by

g W N M W, NV
YTy a’? oz ox T ox oy

5.2. Vortex Motion (or Rotational Motion). The fluid motion is said to be
rotational if

E=curlG=0

5.3. Irrotational Motion. If &=curl G =0, then the fluid motion is said to be
irrotational or of potential kind and then § =—V¢.
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5.4. Vortexline. It is a curve in the fluid such that the tangent at any point on
the curve has the direction of the vorticity vector &.

The differential equations of vortexlines are given by &xdr =0

o B dy 6
& & &
where E.= (&1, &, &).

5.5. Vortex Tube. It is the locus of vortex line drawn at each point of a closed
curve i.e. vortex tube is the surface formed by drawing vortex lines through
each point of a closed curve in the fluid.

A vortex tube with small cross-section is called a vortex filament.

5.6. Flow. Let A and B be two points in the fluid.
Then j@q -dris called the flow along any path from A to B
If motion is irrotational then g =-V¢ and

flow = — [SV¢- df =—[2dd = §(A) — §(B)

5.7. Circulation It is the flow round a closed curve. If C be the closed curve in
a moving fluid, then circulation I" about C is given by

r={g-dr = [A-curlgdS=[A-&dS
C S S

If the motion is irrotational, then g =—-V¢ and thus,

I'=—{Ve-dr =—{dp =(A) -9(A) =0,
C C
where A is any point on the curve C. This shows that for an irrotational
motion, circulation is zero.

5.8. Theorem :-The necessary and sufficient condition such that the vortex
lines are at right angles to the stream lines, is

_ (99 S 5d
(u, v, W)_P{&’E’Ej

i.e. 0= uV¢, where pand ¢ are functions of x, y, z and t.

25
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Proof. Necessary condition:- We know that the differential equation

q-dr=0is integrable if .+ pdx + Qdy + Rdz = 0 is integrable if
% —%) +..4=0
gq-curlg=0 (exactness condition)
i.e. g-£=0, E=curlq

This shows that the streamlines are at right angles to the vortex lines. Thus the
streamlines and vortex lines are at right angles to each other if the differential
equation @ -dr =0is integrable.

The exactness condition - curlg =0 implies thatg = —Vé.

But curlq = curl(-V¢) =0. Thus the vortexlines do not exist. The equations
(-dr =0 are therefore not exact.

So, there exists an integrating factor p(function of x, y, z, t) such that
wtg-dr =0 is integrable.

If this differential equation is integrable, then we can write

w g - dr = d¢, where ¢ is a scalar function of x, y, z, t

= utqg-dr=Veo-dr | dp= V¢ dr

= g=uV.

Sufficient condition :- Letustake =pVd = Vo=p'q
Then, curl @ = curl (uVe)

= E=Vx(uV) = (Vx V) +VuxVd =Vux Ve
Therefore,

G-E=(VuxV¢)-q =Vu- (Vo x0)

=Vu- (u'gxg) =0
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This shows that the directions of streamlines and vortexlines are at right angles
to each other.

6. Equation of Continuity

6.1. Equation of Continuity by Euler’s Method (Equation of conservation
of Mass): Equation of continuity is obtained by using the fact that the mass
contained inside a given volume of fluid remains constant throughout the
motion. Consider a region of fluid in which there is no inlets (sources) or
outlets (sinks) through which the fluid can enter or leave the region. Let S be
the surface enclosing volume V of this region and let f denotes the unit vector
normal to an element &S of S drawn outwards.

Let g be the fluid velocity and p be the fluid density.

A

S i

First, we consider the mass of fluid which leaves V by flowing across an
element 3S of S in time &t. This quantity is exactly that which is contained in a
small cylinder of cross-section 3S of length (g - n) &t.

Thus, mass of the fluid is = density x Volume = p (G- ) St. 8S

S

. : / \
RN
(G-n)dt
Hence the rate at which fluid leaves V by flowing across the element S& is
p(q-h)35S.

Summing over all such elements 8S, we obtain the rate of flow of fluid coming
out of V across the entire surface S. Hence, the rate at which mass flows out of
the region V is

>

By Gaussdivergencethe
Ip(@-A)dS =] (p) - AidS [F-AdS= [V-FdV.
S S S v
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= [div(pg)dV D
Y%
Now, the mass M of the fluid possessed by the volume V of the fluid is

M = [pdV, where p = p(X, Y, Z, t) with (X, y, z) the Cartesian
v

co-ordinates of a general point of V, a fixed region of space. Since the space
co-ordinates are independent of time t, therefore the rate of increase of mass
within V is

dM _ d (

FTIRT jpdvj = j@dv | Vdoesnotchangew.r.t.time (2)

v vot

But the considered region is free from source or sink i.e. the mass is neither
created nor destroyed, therefore the total rate of change of mass is zero and
thus from (1) & (2), we get

[P 4V, + [div(pg)dV =0
v ot vV

= j{@ + div(pq)} dv=0
vL ot
Since V is arbitrary, we conclude that at any point of the fluid which is neither

a source nor a sink,

op .,
—— + div =0
il (pQ)

ie. %+.V. (pq) =0 3)

Equation (3) is known as equation of continuity.
Corollary (1). We know that

div (pq) = pdivq +.q.(gradp)
Therefore, (3) takes the form

%+9(V-G)+(Q-V)p=0 %)

Corollary (2). We know that the differential operator %is given by

D o0 .
- == .V
Dt at+(q )

Therefore, from (4), we obtain the equation of continuity as B—? +p(V-q)=0
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. Dp —

le. — +pdivg=0 5
D TPAVa ®)

Corollary (3). Equation (5) can be written as

1@+divq =0
p Dt

D .
Dy divg =0 6
= Dt(ogp)+ v (6)

Corollary (4). When the motion of fluid is steady, then % =0and thus the

equation of continuity (3) becomes
div(pg) =0 |Here pis not a function of timei.e. p = p(x,y,2) (7)
Corollary (5). When the fluid is incompressible, then p = constant and thus

Dp_y,
Dt
The equation of continuity becomes

divg=0 (8)
which is same for homogeneous and incompressible fluid.

Corollary (6). If in addition to homogeneity and incompressibility, the flow is
of potential kind such that §= -V ¢, then the equation of continuity becomes
single word

div(-V$.)=0 =V.(Vd.)=0 =V?$=0 (9)
which is known as the Laplace equation.

6.2. Equation of continuity in Cartesian co-ordinates :- Let (X, y, z) be the

rectangular Cartesian co-ordinates.

Let g=ui+Vvj+wk (1)

andvzif+i]+ﬁf< 2
oXx oy oz

Then, the equation of continuity % +div(pg) =0 can be written as

op O 0 0
—+—(pu)+—(pVv)+—(pw) =0 3
o o P ay(p) o PW) ©)
i.e. @+U@+V@+W@+p @+@+@ =0 4)
oxX oy 0z oX oy oz

which is the required equation of continuity in Cartesian co-ordinates.
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Corollary (1). If the fluid motion is steady, then % 0 and the equation (3)

becomes

0 0 0

—(pu)+—(pv)+—(pw) =0 5

aX(p) ay(p) az(p ) ()
Corollary (2). If the fluid is incompressible, then p = constant and the
equation of continuity is vV-g=0
ie. @+@+@:0 (6)

oXx oy oz

Corollary (3). If the fluid is incompressible and of potential kind, then

equation of continuity is

Vi =0
) a¢ 8(1) 84)
i.e. =0, where §=-V¢.
ox? ay2 oz? 1=-v

6.3. Equation of continuity in orthogonal curvilinear co-ordinates: Let (u,
Uz, Ug) be the orthogonal curvilinear co-ordinates and é,,€,,8;be the unit

vectors tangent to the co-ordinate curves.
Let =06, +0,€, +036; (1)

The general equation of continuity is

op _
—+V. =0 2
p L)) )
We know from vector calculus that for any vector point function f = (fy, f2, f3),
= 1
V-f= h,hsf,) +—(hsh,f,) + —(h;h,f 3
hihyhs {a 1( 1) o, ( 2) au, ( 3)} ®)

where hy, h,, hs are scalars.
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Using (3), the equation of continuity (2) becomes

op 1
+
ot hihyhy

[8 (h zhspQ1)+—(h hpo2)+—(h1thQ3)} (4)
U

Corollary (1). When motion of fluid is steady, then equation (4) becomes
9 (hh3pay) + 2 (hghypa,) +—2— (hyhps) =0 (5)
ou; 2N3pY; au, 3P4 ous 1M2p43

Corollary (2). When the fluid is incompressible, the equation of continuity is
(p = const)

0
5_1(h h3Q1)+a 0, (h3h1q2)+@(h1h2q3)=0 (6)

Corollary (3). When fluid is incompressible and irrotational then p = const

_ 10 1 0 1 0 , .
=—Vo=—-— ,— y— and the equation of continuit
d ¢ (hl ou; h, du, hy aqu) | Y

becomes
0 (hyhs 6o N o0 (hihy 6o N o (hih, 6 _0 )
oup\ h; ou; ) ou,\ h, ou,) oduz\ hy ou,

Now, we shall write equation (4) in cylindrical & spherical polar co-ordinates.

6.4. Equation of continuity in cylindrical co-ordinates (r, 6, z) . Here,
Ui=rup=0,u3=z andhy=1,hp,=r,hs=1

The equation of continuity becomes

222 pau) + 55002+ (1pa) | <0
e. P22 pa) + S (pa) = () =0 (@)

Corollary (1). When the fluid motion is steady, then equation (8) becomes

0 0 0

—(r 4+ — +r— = 0 9

ar( pdy) ae(s)@lz) p (pa3) ©)
Corollary (2). For incompressible fluid, equation of continuity is

0 0 045

—(r — r—=0 10

é\r(ql)+ae(qz)+ P (10)

Corollary (3). When the fluid is incompressible and is of potential kind, then
equation (8) takes the form

31
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ARLR A o
or\_or) 06\rob) oz\ oz

where g =-V¢; Vis expressed in cylindrical co-ordinates.
6.5. Equation of continuity in spherical co-ordinates (r, 0, y). Here,
(U, Uz, ug)=(r,0,y) and h=1,hy=r,h3=rsin6

The equation of continuity becomes

oo 1 [8,,. o, . 5
— —(r“sind —(rsin® —(r =0
5t+r25ine{6f( i pq1)+ae( i pq2)+aw(pq3)}
0 1 . 0 o, . 0
= P, {smea(rzpql)+r%(sm9pq2)+r£(pq3)}=O (12)

& r?sino

Corollary (1). For steady case, equation (12) becomes
. 0,2 o, . 0
sin O —(r +r—(sin®. +r— =0 13
o (P00 +1 35 6N0pa2) + 0 (p03) (13)
Corollary (2). For incompressible fluid, we have
sin 6—(r q1)+r—(3|n9q2)+ra?;’ 0 (14)

Corollary (3). When fluid is incompressible and of potential kind, then

equation of continuity is

g(rzsin(a@j (smead)j ( .l .@j=0 (15)
or or) o0 00) oy\sin® oy

where 4 =—V¢; V is expressed in spherical co-ordinates.

6.6. Symmetrical forms of motion and equation of continuity for them. We
have the following three types of symmetry which are special cases of
cylindrical and spherical polar co-ordinates.

(i) Cylindrical Symmetry :- In this type of symmetry, with suitable choice of
cylindrical polar co-ordinates (r, 6, z), every physical quantity is independent
of both 6 and z so that

0 0
—=—=0andg=q(r,t
e q=a(r1)
For this case, the equation of continuity in cylindrical co-ordinates, reduces to
0
p+~—@mo 0 (1)

ot
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If the flow is steady, then equation (1) becomes
g(pqlr) =0 = pQir = constant = F(t), (say).

Further, if the fluid is incompressible then g, r = constant = G(t), (say).

(ii) Spherical Symmetry :- In this case, the motion of fluid is symmetrical
about the centre and thus with the choice of spherical polar co-ordinates
(r, 6, v), every physical quantity is independent of both 6 & y. so that

0 0 o
—=—=0andg=0q(rt
6" oy q=aq( 1
The equation of continuity, for such symmetry, reduces to
ap 1 0 2
—+=.— r<)=0 2
o 2o (Pasr®) )

For steady motion, it becomes
0 2y 2 _ -
5(pqlr )=0 = pQy I° = const = F(t), (say)
and for incompressible fluid, it has the form g, r* = constant = G(t), (say).
(iii) Axial Symmetry :- (a) In cylindrical co-ordinates (r, 0, z), axial symmetry
means that every physical quantity is independent of 6 i.e. % =0 and thus the

equation of continuity becomes

op 1| 0 0
Ept[g(pqlrhamqgr)}o

(b) In spherical co-ordinates (r, 0, ), axial symmetry means that every

physical quantity is independent of v i.e. 6i: 0 and the equations of
]

continuity, for this case, reduces to

%
ot

10 2 0 i
+—=— re)+ — sinB) =0.

o (P s 25 (002 5in6)
6.7. Example. If o(s) is the cross-sectional area of a stream filament, prove
that the equation of continuity is

%(pc)+%(poq)=0, where 8s is an element of arc of the

filament and q is the fluid speed.



FLUID DYNAMICS 34

Solution. Let P and Q be the points on the end sections of the stream filament.

/)ﬁ\

e
P ,/53 L ©
f(s) f(s+8s)

The rate of flow of fluid out of volume of filament is
0
(pdo)q — (pdo)p = PN (pdo)p s
where we have retained the terms upto first order only, since 8s is
infinitesimally small

Now, the fluid speed is along the normal to the cross-section. At time t, the
mass within the segment of filament is pcds and its rate of increase is

£ (pote) = < (po)ds
@

Using law of conservation of mass, we have from (1) & (2)

0 0
— oS+ — 0s=0 Total rate =0
at(pO') 85(pq0)

. 0 0
i.e. — +— =0 3
o (P9) + = (pod) ©)
which is the required equation at any point P of the filament.
6.8. Deduction :- For steady incompressible flow, %(pc) = 0and equation (3)
reduces to
ﬁ( og)=0 32(0(1) =0 = o (= constant
as " os

which shows that for steady incompressible flow product of velocity and cross-
section of stream filament is constant. This result means that the volume of
fluid a crossing every section per unit time is constant

( distance volume )
Gq:C:csf:C: t =C

6.9. Example. A mass of a fluid moves in such a way that each particle
describes a circle in one plane about a fixed axis, show that the equation of
continuity is
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P12 (o) =o0,

where o is the angular velocity of a particle whose azimuthal angle is 6 at time
t.

Solution. Here, the motion is in a plane i.e. we have a two dimensional case
and the particle describe a circley

50
r
9 «
Therefore, z = constant, r = constant
= ﬁ =0, ﬁ =0 @
0z or

i.e. there is only rotation.
We know that the equation of continuity in cylindrical co-ordinates (r, 6, z) is

P2 (1pan) 412 () + 2 () =0 (@)
Using (1), we get

P 122 (pg2) =0
= %+%%(prm)=0,whereq:qzzrco.
= %+%(pw)=0

Hence the result

6.10. Example. A mass of fluid is in motion so that the lines of motion lie on
the surface of co-axial cylinders, show that the equation of continuity is

op 10 0

—+——(pVvy)+—(pv,) =0

2t rae(p 0) az(p 2)
where vy, V; are the velocities perpendicular and parallel to z.

Solution. We know that the equation of continuity in cylindrical co-ordinates
(r, 0, z) is given by
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op 1o
(;t)+——(pr r)+——(pv9)+ (pVZ) 0, where Q= (v, Vo, V2)

Since the lines of motion (path lines) lie on the surface of cylinder, therefore
the component of velocity in the direction of dr is zero i.e. v, =0
Thus, the equation of continuity in the present case reduces to

6p 1 0
at
Hence the result

(PVe)+ (sz) =0

6.11. Example. The particles of a fluid move symmetrically in space with
regard to a fixed centre, prove that the equation of continuity is

Py
ot or 2 or

where u is the velocity at a distance r

(r u)=0.

Solution. First, derive the equation of continuity in spherical co-ordinates.
Now, the present case is the case of spherical symmetry, since the motion is
symmetrical w.r.t. a fixed centre.

Therefore, the equation of continuity is

o 1 0 2 o 0
_t— — r :O '.'—:—:O
8p 1 0
= == r 0, wheregi=u
2y (payr®) = s
= @+i @ur +—= 1 (ur )=0
ot 2 or r2
— @+u.@+£2(r2u)=0
ot o r2or

Hence the result

6.12. Example. If the lines of motion are curves on the surfaces of cones
having their vertices at the origin and the axis of z for common axis, prove that
the equation of continuity is

00 0 2p cosecH 0O

E+8_( pa;) + rQr“‘f—( pq,) =0

Solution. First derive the equation of continuity in spherical co-ordinates (r, 6,
v) as
P, 1
ot r°sing

[Sin(%g(pqlrz) + r%(qu sin0) + "%(D%)} =0
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In the present case, it is given that lines of motion lie on the surfaces of cones,
therefore velocity perpendicular to the surface is zeroi.e. g2 =0
Therefore, the equation of continuity becomes.

op

0
_(pqrrz)

- = 0 where (ch, Gz, ) =
at o Sing aW(Dq ) =0 where (qs, 02, )
(Ar, do. dy)
0 1 0
= a—f+r—2[r25(pqr)+pqr<2r)} aw
8p 0 cosece 0
= e 60 P R L (oa ) -

Hence the result

6.13. Example. Show that polar form of equation of continuity for a two
dimensional incompressible fluid is
ov

—(ruy+—=0
( )+

—pncoso

r2

If u=
(u,v)

Solution. First derive the equation of continuity in polar co-ordinates (r, 0) in
two dimensions as
op 10 10
arar (pran) rﬁe(qu) |
In the present case p = constant
Therefore, the equation of continuity reduces to

,thenfind v and the magnitude of the velocity @, whereq =

T 8r (ru)+ (v) 0,whereq = (a1, Gz, 03) = (U, v, W)

i.e. —( u)+@=0
or 00

Hence the result.

Nowy= —HCOSY _ Of=ncosh ) v_,,
r2 or r2 o0
pcose+@_0 j@_—pcose
r2 00 00 r2

Integrating w.r.t 6, we get



FLUID DYNAMICS 38

_ —usin®
V= 2

r
and thus| q |= q = Vu? + v? :ﬂ2
"

6.14. Equation of Continuity by Lagrange’s Method. Let initially a fluid
element be at (a, b, c) at time t = to when its volume is dV, and density is po.
After time t, let the same fluid element be at (X, y, z) when its volume is dV
and density is p. Since mass of the fluid element remains invariant during its
motion, we have

po dVo = pdV i.e. pp dadb dc = p dx dy dz

or po da db dc:pMda db dc
o(a,b,c)
or pJ = po )
where J = 0x.y,2)
o(a,b,c)

which is the required equation of continuity.
6.15. Remark. By simple property of Jacobians, we get

dJ
=~ _JV-a
dt a
] d dp dJ
Thus (1 — (PN =0 =>—"—J+p—=0
us (1) gives dt(p) ot +pdt

:>dpJ+pJV-q=0 :@+pv-q=0 Or%$+pV-G=O

dt dt

which is the Euler’s equation of continuity.

7. Boundary Surfaces

Physical conditions that should be satisfied on given boundaries of the fluid in
motion, are called boundary conditions. The simplest boundary condition
occurs where an ideal and incompressible fluid is in contact with rigid
impermeable boundary, e.g., wall of a container or the surface of a body which
is moving through the fluid.

Let P be any point on the boundary surface where the velocity of fluid is gand
velocity of the boundary surface is U.
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>

q

q-u
P N

The velocity at the point of contact of the boundary surface and the liquid must
be tangential to the surface otherwise the fluid will break its contact with the
boundary surface. Thus, if A be the unit normal to the surface at the point of
contact, then

@-u)-n=0 =q-n=u-N (1)

In particular, if the boundary surface is at rest, then =0 and the condition
becomes

q-h=0 )

Another type of boundary condition arrives at a free surface where liquid
borders a vacuum eg. the interface between liquid and air is usually regarded as
free surface. For this free surface, pressure p satisfies

P=TI 3)

where 11 denotes the pressure outside the fluid i.e. the atmospheric pressure.
Equation (3) is a dynamic boundary condition.

Third type of boundary condition occurs at the boundary between two
immissible ideal fluids in which the velocities are §; &, and pressures are p;
& po respectively.

Now, we find the condition that a given surface satisfies to be a boundary
surface.

7.1. Article. To obtain the differential equation satisfied by boundary surface
of a fluid in motion

or
To find the condition that the surface.

F(r,t)=F(x,y,z,t)=0
may represent a boundary surface :-

If 0 be the velocity of fluid and U be the velocity of the boundary surface at a
point P of contact, then

(@-u)-h=0 =g-A=0-N (1)
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where q — Uis the relative velocity and f is a unit vector normal to the surface

atP.
The equation of the given surface is

F(r,t)=F(x,y,z,t)=0 2
We know that a unit vector normal to the surface (2) is given by
. VF
A=——
| VF|
Thus, from (1), we get q-VF=u-VF 3

since the boundary surface is itself in motion, therefore at time (t + ot), it’s
equation is given by

F(r+or,t+ot)=0. 4
From (2) & (4), we have

F (F +&F, t+8t) — F(F, t) =0
i.e. F(r+or,t+ot)—F(rt+0ot) + F(r,t+ot)—F(r,t)=0
By Taylor’s series, we can have

(37 - V)F(F, t + 8t) +8t§ {FFO}=0

oz
=F(X,y,z)+dr-VF

‘ F(X+0X,y+ 8y +2+0z) = F(x,y,z)+8xg+8y%+82§+...

= (ﬂ-VJF(F,t+St)+§=O
ot ot

Taking limit as 6t—0, we get
(g.VjF + oF_ 0
dt ot
oF . DF
= —+(q.V)F=0 le.—=0 5
o T @v) Dt ()
which is the required condition for any surface F to be a boundary surface

Corollary (1) If @ = (u, v, w), then the condition (5) becomes

oF oF oF oF
—+U—+V =

—+w—=0
ot ox oy 0z
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In case, the surface is rigid and does not move with time, then % =0and the

boundary condition is u§+v%+w@ =0 1e(q-V)F=0
OX oy oz
Corollary (2) The boundary condition
oF oF OF oF
—+U—+VvV—+w—=0
ot OX oy oz

is a linear equation and its solution gives

dt _dx dy dz D d. o
—="= — =—In Lagrangian view
1 u v w Dt dt

dx _ dy_ dz_

—=U—=V,—=W
dt dt dt

which are the equations of path lines.
Hence once a particle is in contact with the surface, it never leaves the surface.

=

Corollary (3) From equation (5), we have

—oF

q-vF=—%

q ot
_VF —oFlat

= . =

|VF| | VF|
. _oFat
= ‘N=—
| VF|

which gives the normal velocity.
Also from (1), we get

— oF/at
| VF|

U-i= | g-A=T-A.

which gives the normal velocity of the boundary surface.

7.2. Example. Show that the ellipsoid

2 2 2

X y z
— o+ kt"|| L]+ 2| | =1
a2k22 l(bj +(c} }

is a possible form of the boundary surface of a liquid.

Solution. The surface F(x, Y, z, t) = 0 can be a possible boundary surface, if it
satisfies the boundary condition.
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DF oF oF oF oF
—=—+U—+V—+WwW—=0 Q)
Dt ot ox oy oz
where u, v, w satisfy the equation of continuity
v.g=0ieM N W_ @)
oXx oy oz

x2 v (z)
Here, F(x,V, z,1) =————+kt"|| 2| +| =] |-1=0
N e {(bj [cj

2 2 2
Therefore, ﬁ = _x—.2n +nkt"1 y + Z
ot a2k2t2n+1 b C

oF _ 2x  oF _2kt"y oF _ 2kt"z
ox a%k*™ 'y b* oz ¢

Thus, from (1), we get

-x% 2n L vY (zY
22k2 t2n+1+n t B + E

2. 2kt”yv+2kt”.zw_

a’k’t®.  b? c? =0
( nx) 2X ( nyj 2kyt" ( nzj 2kzt"
or U—— | ———+| V+— +| W+— =0
t a2k2t2n 2t b2 2t CZ
which will hold. if we take
I, v oo w+l2_g
2t 2
i.e. :%, Vz—y, W:_E (3)
t 2t 2t

It will be a justifiable step if equation (2) is satisfied.

. n —-n -n
ie. —+—+—=0

t 2t 2t

which is true.

Hence the given ellipsoid is a possible form of boundary surface of a liquid.
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8. Acceleration at a Point of a Fluid

Suppose that a fluid particle is moving along a curve C, initially it being at
point A(to = 0) with position vector T, . Let P and P’ be its positions at time t

and t + ot with position vectors T and T + 3T respectively.
Therefore, 5T = PP

P’(time t+5t)

P(time t)

A(t():O)

The points A, P, P’ are geometrical points of region occupied by fluid and they
coincide with the locations of the same fluid particle at times to, t, t + ot

respectively. Let fbe the acceleration of the particle at time t when it
coincides with P. By definition

Fo Lt (Changein particle velocity in time &t)
550 St

)

But the particle vel. at time tis q(r,t) and at time t+5t it is q(T + oF,t + dt) .

Thus (1) becomes

£ | [A0+3,t+30) -q )]

5t—0 ot (2)
Now,
q(r+or,t+ot)—q(r,t) q(r+or,t+ot)—q(r,t+ot) N q(r,t+ot)—q(r,t+ot)
ot ot ot
@)
Since T is independent of time t, therefore
Lt q(rat+6t)_q(rat) :@ (4)

5t—0 ot ot
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Using Taylor’s expansion, we get

T(T + F, t + 8t) — (T, t + 8t) = (5T - V)q(T, t + dt)+  (5)

where || = 0[(8F)?]

0 0 0
o F(x+0x, y +0y, z + 82) —F(X,y,z) = | OX— + 0y — +0z— | (F(X,y,z
[ F( y +8y )(y)(axyay azj((y)
2
+i E‘>xi+8yg+82é Fixy,z) + ...
|2 OX oy oz

and
8xi + SyQ + 822 = (0r- V), where
OX oy 0z

st=oxitoyjrozkv="1+234 9k
ox oy oz

But or is merely the displacement of the fluid particle in time &t, therefore,
SF = (T, t)ot (6)
Thus, from (5), we obtain

Lp A +80t+80) —qr,t+30) _ @
ot—0 ot

-V)q (")

where R. H. S. of (4) & (7) are evaluated at P(r,t). Hence, from (2), the
acceleration of fluid at P in vector form is given by

f-i@-vya ®)

8.1. Remark. We have obtained the acceleration i.e. rate of change of velocity
(. The same procedure can be applied to find the rate of change of any

physical property associated with the fluid, such as density. Thus, if F =
F(r,t) is any scalar or vector quantity associated with the fluid, it’s rate of
change at time t is given by

DF oF

—=—+(g-V)F
Dt at+(q )
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The operator DEtz§+(G-V) Is Lagrangian and operators on R.H.S. are

Eulerian since T is independent of t. %is also called material derivative.
In particular, if F = p, the density of the fluid, then

Dp op .
P_-P.qgvV
Dt ot @V

which is the general equation of motion for unsteady flow.

8.2. Components of Acceleration in Cartesian co-ordinates. Let u,v,w be the
Cartesian components of § and fy, f, f5 that of f i.e. G = (u,v,w), f = (fy, f2,

f3).
Then from equation.
: 00 - ons
f=—+(q- V), 1
5 @V @
we get
ou ou _adu ou
fi=—4+Uu—+V—+w—
ot 0 oy 0
ov ov ov
fo=—4+Uu—+v—+w—
ot ox oy 0z

which are the required Cartesian components of f .

In tensor form with co-ordinates x; and velocity components g; (i = 1, 2, 3), the
above set of equations can be written as

fi =%+qjqi,j , whereq; ; =%
j

8.3. Components of Acceleration Curvilinear co-ordinates. Before
obtaining the acceleration components in curvilinear co-ordinates; we obtain a
more suitable form of equation (1). as

f:%q+v@q2j—qx(wq)
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ot
We have

NN , BRI | BSIPN: «
WVa=@-N L +@)SD+@ <
@v)a=@Q-—_ (QJ)8y @k
For any three vectors A, B, C, we have

Ax(BxC)=(A-C)B-(A-B)C

~

A-B)C

I
>|
ol
=
)>I
3
X
O

(G-?)a—q{a-aqji—ax[ixaqj

Similarly,
_._- a_qzﬁg(l_z)__x(exa_qj
(qDay Jayzq q J8y

(q.k)a_qzlzﬁngj_qx(kxﬁ_ﬁj

6q+V(2 ) +ExT , where E=curl g=Vxq .

)

©)

(4)

()

(6)
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Now, let (u1, U, us) denote the orthogonal curvilinear co-ordinates.
Also let G=(0;,9,,03.F= (f1, f2, f3) &= (&, &, &3), where the terms have

their usual meaning. We know that the expression for the operator V in
curvilinear co-ordinates is

10 1 o0 1 0
hé’ul hzau2 h3au

where hy, h,, hs are scalar factors.

The components of & = curl ﬁ in the curvilinear system are given by

LT
= h ——(h
& h,h, _6 ( 303) U 3( 2%)}
1
€, = hyh, __8u (hlql)__au (h3q3)} (7)
LT
= h ——¢(h
&3 hh, | ou; ( 202) U 2( 1%)}

Using these results in (6), we find that

0 1 0
1:%"‘% U l(Ql +CI2 +03 )+(§2Q3 €302)
0 1 0
2= ;2 + 2h, au, ((hz +q22 +Q32)+ (€301 —&193) (8)
0 1 0
= + (Chz +Q22 +Q32 )+ (€92 —&201)

ot 2h,ou,
which are the components of acceleration in curvilinear co-ordinates.

Now, we write the components of acceleration in cylindrical (r, 6, z) and
spherical (r, 6, ) co-ordinates.

8.4. Components of Acceleration in Cylindrical Co-ordinates (r, 6, z).
Here,

Uy=ru,=0us=z. and h;=1,hy=r,h3=1
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Therefore, V= (élﬁﬁj
or roo oz
and
_ljaas 0 10; a4,
& r{ae oz (qu)} roo o
-9 %_aQ_s
&2 P @) - (CI3)— pe
=10 gy - M G 100
& r{ar(qu) ae} o oo

Thus,

fl_%JrEa_(ch +0; +CI3) (%ﬂzl—qla%)

( o9, qzz_q_gﬁqlJ
a,

or r r o0

_0g, Q1 aq, Q3 8q1 8q3

CI1 +Q; or +03 Q3 ql

oy 3 dp 0%
or r r oo

_0 00 900, O O

+ + <
o M T TRy T
If we define the differential operator
D d o g, 0 0
o AT + +03—, then
Dt dt ot Mo r e g
f _%_ﬁgg_v_z ~
Dt r Dt r
Similarly,  f,= 202 , %2 _Dv_uv )
Dt r Dt r >
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(- D& _Dw

Dt Dt

where (01, 92, g3) = (U, v, W)
Equation (9) gives the required components of acceleration in cylindrical co-
ordinates.

8.5. Components of Acceleration in Spherical Co-ordinates (r, 0, y). Here,

Up=ru;=6, us=y andh;=1,h,=r,h3=rsin6

Therefore, V= (2 12 1 aj

or'r o0’ rsind oy
and )
1 o, . 0
= —(rsin0q;) ——(r
&1 rzsine_ae( ds) a\lj(qz)}
= 21_ r(coseq3+sin68q—3j—r6q—2
resind| 00 oy
= l q3cose+sin9.%—%
rsin® a0 oy
1 |0 o, .
= —(q)—— 0
& rsin@{@w(ql) ar(rsm qs)}
= #{%—sine% —rsine%}
rsin@| oy or
B IR M %
& r{ar(rqz) ae(ql)} r[OIzH 2 89}
Thus,

afh 2 ds Ch Qs
—— sinO—rsing—=
"3 2 or (ql 02" +0s )+rsin6 oy or
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oy
27 o 00

aq, oy 50]2 a% U3 8q1_£
at 3 +0; +0; .
r or rsmeé\p r

1

+

O
=y

a3 Q2 qza% g, 09,

or r oo
Dg, a3 93 D 6, o 9 0
= —-——=—-=_where— = q1 2%, 13 @
Dt r Dt or r 09 rsin0oy
ie f_Dql_q§+q§=DU_V2+W2 \
L. L =—1 T2 THs A
Dt r Dt r
w2
Similarly,  f,= 202 , %dz ~d500t6 _Dv  uv-wicotd 50
Dt r Dt r
_ Dds _ 9195 +9,95¢c0t6 _ Dw  w(u +vcotb)
f3_ + = +

Dt r - Dt r
Equation (10) gives the required comps of acceleration in spherical co-
ordinates.

8.6. Pressure at a point of a Moving Fluid. Let P be a point in a ideal
(inviscid) fluid moving with velocity q. We insert an elementary rigid plane
area oA into this fluid at point P. This plane area also moves with the velocity
g of the local fluid at P.

If &F denotes the force exerted on one side of A by the fluid particles on the
other side,

then this force will act normal to SA.
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Further, if we assume that Lt Eexists uniquely, then this limit is called the
8A—0 A

(hydrodynamic) fluid pressure at point P and is denoted by p.

8.7.Theorem :- Prove that the pressure p at a point P in a moving inviscid fluid
is same in all direction.

Proof :- Let @ be the velocity of the fluid. We consider am elementary
tetrahedron PQRS of the fluid at a point P of the moving fluid, Let the edges of
the tetrahedron be PQ = 8x, PR = 8y, PS = 6z at time t, where 8x, dy, 6z are
taken along the co-ordinate axes OX, OY, OZ respectively. This tetrahedron is
also moving with the velocity q of the local fluid at P.

X

Let p be the pressure on the face QRS where area is 3s. Suppose that < I, m,
n> are the d.c.’s of the normal to &s drawn outwards from the tetrahedron.
Then,

I6s = projection of the area 6s on yz-plane.

= area of face PRS (triangle)

- Loyor =2
2 2
Similarly,
mds = area of face PQS = %52,&( = ?
and

nds = area of face PQR = %8x.8y = 8x_28y

The total force exerted by the fluid, outside the tetrahedron, on the face QRS is

51



FLUID DYNAMICS >
=—péds (li +mj+nKk)
= —p (I8si +mds j+ ndsk)
= —g(é}y&? + 825X ] + 5x3y k)

Let py, py, p; be the pressures on the faces PRS, PQS, PRQ. The forces exerted
on these faces by the exterior fluid are

% P, oYdz i, % p, 525X}, % p,5xdyk respectively.
Thus, the total surface force on the tetrahedron is

—g(SySZ? + SZSX] + OXOY f() + % pXSyéSzf
+ %py 828x]+%p28x8yf<

1 . . .
= b, ~poyozi-+ @, —przoxi+ o, -prxevk| @

In addition to surface force (fluid forces), the fluid may be subjected to body

forces which are due to external causes such as gravity. LetF be the mean
body force per unit mass within the tetrahedron.

Volume of the tetrahedron PQRS is %h ds i.e. %Bx oy 6z, where h is the
perpendicular from P on the face QRS.

Thus, the total force acting on the tetrahedron PQRS is = %el_:fix dydz (2)

Where p is the mean density of the fluid.
From (1) and (2), the net force acting on the tetrahedron is

% [px —p)oyoz i+ (py — p)Bsz] +(p, —P)oxdy R]+ % pl_:8x8y82

Now, the acceleration of the tetrahedron is %and the mass%p ox oy oz of

fluid inside it is constant.
Thus, the equation of motion of the fluid contained in the tetrahedron is
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% [(px —P)3ydzi +(p, — P)5z3X j+ (P, — p)3X3y R]+ % p Fox3ydz

-1 bq -
= 6p6x6y82[ Ot j (f=m a)

(Px—p) |

8si+(p, —P)M3s j+(p, - p)n65R+%pl_:h83 = %ph&%

On dividing by Ss and letting the tetrahedron shrink to zero about P, in which
case h—0, it follows that

PxP=0,pypP=0,pp=0

Px =Py =Pz =p. (3)

Since the choice of axes is arbitrary, the relation (3) establishes that at any
point P of a moving ideal fluid, the pressure p is same in all directions.

9. Equations of Motion

9.1. Euler’s Equation of Motion of an Ideal Fluid (Equation of
Conservation of Momentum). To obtain Euler’s dynamical equation, we
shall make use of Newton’s second law of motion.

Consider a region t of fluid bounded by a closed surface S which consists of
the same fluid particles at all times. Let @ be the velocity and p be the density
of the fluid.

Then p dt is an element of mass within S and it remains constant.

A

/P

The linear momentum of volume t is
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M= gpdt | mass x velocity = momentum.
T

Rate of change of momentum is

M d . g
- - dr= [ = pd 1
g I L L il @)

The fluid within 1 is acted upon by two types of forces

The first type of forces are the surface forces which are due to the fluid exterior
to 1.

Since the fluid is ideal, the surface force is simply the pressure p directed along
the inward normal at all point of S.

The total surface force on S is

| p(-R)dS=—[ phdS =[ Vpdrt (By Gauss div. Theorem)  (2)
S S T

The second type of forces are the body forces which are due to some external
agent. Let F be the body force per unit mass acting on the fluid. Then F pdrt
is the body force on the element of mass edt and the total body force on the
mass within t is

|Fpde 3

By Newton’s second law of motion, we have

Rate of change of momentum = total force

= Iz—?pdr :IIEpdr—ijdr

T

d _
= J‘(d—?p—Fp+Vder:O

Since dr is arbitrary, we get

dg -
M Fp+vp=0
dtp p+Vvp

dg - 1
S -F-Zv 4
o S VP (4)
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which holds at every point of the fluid and is known as Euler’s dynamical
equation for an ideal fluid.

9.2. Remark. The above method for obtaining the Euler’s equation of
motion, is also known as flux method.

9.3. Other Forms of Euler’s Equation of Motion. (i) We know that

d D 0
= —+
dt Dt ot

q -V )
therefore equation (4) becomes.

o o 1
@ VI=F-=vp ©)
p

But (G-V)Q =V(%q2j+gxq, E:curl g

Therefore, Euler’s equation becomes

6 (1.,) = - = 1
Ayv| = =F-=Vp. 6
oy Ja Jrexa VP ©)

Equation (6) is called Lamb’s hydrodynamical equation

. : _ = op op op
ii) Cartesian Form. Let g =(u,v,w),F=(X)Y,Z)and Vp= | —,—,— |,
(ii) q=( ) F=( ) P (ax Y azj
then equation (5) gives

ou ou  ou ou 10op

—+U—+V—F+W—=X-=

ot oX oy oz p OX

Q+UQ+V@+W@=Y—1@ (7)

ot oX oy 0z p OX

oW ow ow 10p

—+U—4+V—+W—=2—-—"—

ot OX oy 0z p 0z

Equation (7) are the required equations in Cartesian form.
(iii) Equations of Motion in Cylindrical Co-ordinates. (r, 6, z). Here,

g = (u,v,w), df = (dr, rde, dz)
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op 1op op
Vp: T Ty
or rob oz

Let F = (Fr, F0, Fz).

Also, the acceleration components in cylindrical co-ordinates are

dt r'dt r dt

dg _ @_ﬁ dv+uvdw
dt

Thus, the equation of motion

d—qzl_:—EVp. becomes
dt p

du v? _p 1
d r " por
ﬂ+ﬂ:Fe_i@
dt r rp 00
dw E 1op

ErY:

(8)

(iv) Equations of Motion in Spherical co-ordinates (r, 0, y). Here,

q=(u,v,w), dr =(dr,rdo, rsin6dy)

(®im 1
or'r o0’ rsind oy

56

Let F= (Fr, FO, Fy). The components of acceleration in spherical co-ordinates

are

—| 5 ’ - +_1_
dt dt r dt r r o dt r

Thus, the equation of motion take the form

d_q_(du vi+w? dv_wicotd uv dw  vwcotd
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du_v?ew’ L 1p
dt r p or
2

dv_w C0t9+ﬂzpe_i@ (9)
dt r r pr 00

dw vwcotO 1 op

- 4+ =F — - _r

dt r V' prsin® oy

9.4. Remark :- The two equations, the equation of continuity and the Euler’s
equation of motion, comprise the equations of motion of an ideal fluid. Thus
the equations

op -,
— +div =0
o (P9
and a—qu(G-V)q =I_:—1Vp
ot p

are fundamental to any theoretical study of ideal fluid flow. These equations
are solved subject to the appropriate boundary and initial conditions dictated by
the physical characteristics of the flow.

9.5. Lagrange’s Equation of Motion. Let initially a fluid element be at (a, b,
c) at time t = to when its volume is dV, and density is po. After time t, let the

same fluid element be at (X, y, z) when its volume is dV and density is p . The
equation of continuity is

pJ = po 1)
where J= ox,y,2)
o(a,b,c)

The components of acceleration are

yx“_awz_a%

X:atz’y_ﬁtz' e

Let the body force F be conservative so that we can express it in terms of a
body force potential function Q as

F=-VQ )

By Euler’s equation of motion,

57
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d—azﬁ—EVp:—VQ—EVp €)
dt p p

Its Cartesian equivalent is

— == 4)
ot oy poy
°z__20 1%
aot? oz poz

We note that a, b, ¢, t are the independent variables and our object is to
determine X, y, z in terms of a, b, ¢, t and so investigate completely the motion.

To deduce equations containing only differentiations w.r.t. the independent
variables a, b, c, t we multiply the equations in (4) by ox/da, dyloa, dz/oa and
add to get

82x8x+82y6y+82282_ Q 1lop

-~y rere e -7 5
o2 oa o> da ot?oa oa poa ©)
Similarly, we get
xox O'yoy ozdz _ Q 10p
+ + = (6)
> b a*db a2 b pob
Fxox dyoy dfzee_ o im

These equations (5), (6), (7) together with equation (1) constitute Lagarange’s
Hydrodynamical Equations.

9.6. Example. A homogeneous incompressible liquid occupies a length 21 of a
straight tube of uniform small bore and is acted upon by a body force which is
such that the fluid is attracted to a fixed point of the tube, with a force varying
as the distance from the point. Discuss the motion and determine the velocity
and pressure within the liquid.

Solution. We note that the small bore of the tube permits us to ignore any
variation of velocity across any cross-section of the tube and to suppose that
the flow is unidirectional.
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We u be the velocity along the tube and p be the pressure at a general point P at
distance x from the centre of force O. Also, let h be the distance of the centre
of mass G of the fluid, as shown in the figure.

| I >

X

Equations of motion of the fluid are :

(i) Equation of Continuity : Here, g =(u,0,0)
Therefore, equation of continuity becomes

ou
—=0=u=u(t 1
5 () @
(ii) Euler’s Equation : In this case, it becomes

ou uou lop 1op

ot ox pox . T pox

ou 10op .

— =—uxX-== 2 using (1
= i > o (2 | using (1)

where —uxi is the body force per unit mass, pu being a positive constant.

We observe that equation (2) can be written as

du 1dp
X ———2F 3
a . M pdx ®)

Integrating w.r.t. X, we get

Y X PLc )
dt 2 p
where C is a constant and at most can be a function of t only. w.r.t. (x, y, z)

Let I'T be the pressure at the free surfaces x =h-land x = h + | of the liquid.
Then using these boundary conditions, equation (4) becomes

du 1 , II
h-1)—=-=pth-1)2-—+C
( )Olt 2u( ) p+
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du 1 , II
h+l) — =—=pth-1)>——+C
( )dt 2“( ) p+

which on subtraction give

du
au_ _h 5
i (%)

But in the fluid motion all fluid particles move with the same velocity u and u
_dh

ot

.. Equation (5) becomes
dh_ —ph (6)
dt?

Now, we solve the different equation (6), which can be written as
(D*+wh=0
Here auxiliary equation is
D*+u=0 =D=+./ui
Therefore, the solution of (6) is

h:Acos(\/ﬁt+e)

where A and e are constants which can be determined from initial conditions.

To Calculate Pressure :— We have from (3) & (5)

1dp
—ux—=F _ _h
X
:Eﬁzu(h—x)
p dx

Integrating w.r.t. X, we get

p_nh=x" @)

The boundary condition x =h — 1, p =11 gives
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2
E:u.l—+D
p -2
2
i.e D:H/p+i

Therefore, equation (7) becomes
p_uh=x7 o
p -2
IT p 2 2
= ——Z|(h=x) -1
Sl -]

=0 B xyh—x-1)
p 2

9.7. Example. Homogeneous liquid is in motion in a vertical plane, within a
curved tube of uniform small bore, under the action of gravity. Calculate the
period of oscillation.

Solution. Let O be the lowest point of the tube, AB the equilibrium level of
the liquid and h the height of AB above O. Let o and 3 be respectively the
inclinations of the tube to the horizontal at A and B and 6 be the inclination of
the tube at a distance s along the tube from O. Let a and b denote the arc
lengths of OA and OB respectively and suppose that at time t, the liquid is
displaced through a small distance z along the tube from its equilibrium
position.

Due to the assumption of uniform small bore the flow is unidirectional along
the tube. y

A

Let the velocity be u(s, t).

The equation of continuity gives % =0 Q)
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= u is independent of s
Euler’s equation of motion becomes

ou ou ) 10p
—+U—=-0gsmB———
ot os p 0S

Using equation (1), this gives

du_au : 1dp

—=—=—0SsSmno———-

dt ot p ds
du__ dy 1dp

dt ds pds

Integrating it w.r.t. s, we find

ds
dy
j o
dx sinezﬂ
ds
du p
S—=—gqy——+C
at gy 0

where C may be a function of time t at the most.
The boundary conditions at free surface are

Q) p=IIfory=h+zsina,s=OM=a+zatM

(i) p=TIlfory=h-zsinB,s=0ON=—(b-z)atN.

Using these boundary conditions in (3), we get

(a+72) d—u:—g(h+2sinoc)—E+C
dt p

—(b-2) du_ —g(h —ZSil’lB)—E+C
dt p

Subtracting these we get

)

©)
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(a +b)%=—g z(sina+sinp) 4)

Since
yodz_ du_d%z
dt ~ dt dt?’
equation (4) becomes

d?z . .
(a+b) pre3 =—gz(sina +sinp)
d?z
= preae —Hz, %)
where _ 9(sina+sin )

a+b

We observe that equation (5) represents the simple harmonic motion. It’s
period T is given by

1

21 a+b 2
T:—:2 .

m T{g(sinwrsinﬁ)}

10. Bernoulli’s Equation (Theorem)

10.1. For Steady Flow. We shall obtain a special form of Euler’s dynamical
equation in terms of pressure. The Euler’s dynamical equation is

dg = 1
—-F-ZvVv 1
ot 5 P 1)
where G is velocity, F is the body force, p and p are pressure and density

respectively.
F be conservative so that it can be expressed in terms of a body force potential

function Q as
F=-vQ )

When the flow is steady, then %q =0 3

Therefore, in case of steady motion with a conservative body force equation
(1), on using (2) and (3), gives

63



FLUID DYNAMICS 64

V(lﬁzj—qu:—VQ—EVp
2 p
dg _oq
. Vv
ot +(q )g
ord—Q_g—q V[l 2) x & an a8 _g
dt ot 2 ot
= V(;q2+9)+1Vp gxé& (4)
p

Further, if we suppose that the liquid is barotropic i.e. density is a function of
pressure p only, then we can write

EVp:VI@
P P

Using this in (4), we get
VFG2+Q+I%}=G><E. (5)
2 p
Multiplying (5) scalarly by q and noting that
q-(qx&) =(@xq)-£=0, we get

- V{1q2+Q+I%}:O (6)
2 p

If § is a unit vector along the streamline through general point of the fluid and
s measures distance along this stream line, then since § is parallel to 7,
therefore equation (6) gives

-+ §is parallel to g

9 lqz +Q+I = q=k§
os| 2 p p
sV=—
oS
Hence along any particular streamline, we have
lq2+Q+I@=C 7)
2 p

where C is constant which takes different values for different streamlines.
Equation (7) is known as Bernaull’s equation. This result applies to steady
flow of ideal. barotropic fluids in which the body forces are conservative.
Now, if § is a unit vector taken along a vortexline, then, similarly, we get



65
FLUID DYNAMICS

%G2+Q+I@:C along any particular vortexline.  (Here, we
p

multiply scalarly by &)

10.2. Remark. (i) If Gx&=0 ie. if G&¢& are parallel, then streamlines and
vortex lines coincide and q is said to be Beltrami vector.

If £=0, the flow is irrotational.
For both of these flow patterns,

qu +Q+I%:C
2 P

where C is same at all points of the fluid.
(i) For homogeneous incompressible fluids, p is constant and

The Bernoulli’s equation becomes

+>0%+Q=C

hollke]
N| -

so that if q is known, the pressure can be calculated.

10.3. For Unsteady Irrotational Flow. Here also, we suppose that the body
forces are conservative i.e. F =-VQ

For irrotational flow, §=-V¢ =V xG=0
The equation of motion

aq —-gx(VxQ =_—1
ot V(ij qx(Vxq)=F pVIO 1)

in the present case becomes.

- v(@}rv(lqzj =—VQ—1Vp
ot 2 p
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= V 1ﬁ2+§2+f@—@ =0 | Barotropic fluid.
2 p ot
Integrating, we get
1, dp 0d
=g +Q+ | ———=1(t 2
5 Ip 5 =T @

which is the required equation.

If the liquid is homogeneous, then I% _P and the equation (2) become
p P

1_, p 0
= Q+=——T=f().
2q + +p ot (t

Further, for study case,
% _ 0, f(t) =const
ot

%qz +0+P = const

P

10.4. Example. A long straight pipe of length L has a slowly tapering circular
cross section. It is inclined so that its axis makes and angle a to the horizontal
with its smaller cross-section downwards. The radius of the pipe at its upper
end is twice that of at its lower end and water is pumped at a steady rate
through the pipe to emerge at atmospheric pressure. It the pumping pressure is
twice the atmospheric pressure, show that the fluid leaves the pipe with a speed
U give by

U?= g{gLsinoc+E},
15 p

where IT is atmospheric pressure

Solution. The assumption that the pipe is slowly tapering means that any
variation in the velocity over any cross-section can be ignored. Let the
velocity at the wider and of the pipe be V and the emerging velocity be U

(velocity at the lower end). The only body force is that of gravity, so F =—g]
and consequently Q = gy
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oQr 0Q~r Q¢

wF=-VQ =—q]=-VQ=—-—"i-=]-="k
x oy oz
oQ
=>-g=——7 =>Q=0y
oy
Bernoulli’s equation, E+%q2 +Q=C | -.- For water p is const.
P
p,1 > _
becomes —+§q +gy=C (@))
P

Applying this equation of the two ends of the pipe, we get

y

—+E.V2+gLsinoc=E+%U2 ()  |[for

lowerendy =0

Let a and 2a be the radii of the lower and upper ends respectively, then by the
principle of conservation of mass

n(2a)’V =na’ U
U
= V= 3
, ®3)
From (2) and (3), we obtain

1 (U? . 1
IM+=p — |+gpL ==pU
Zp(m} gpLsina~ L
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2
= %p(Uz—LlJ—6]:H+gpLsinoc.

15 )
= —pU* =TI +gpL sina.
329 gp o

= u?= 32 gLsinoc+E
15 p

Hence the result.

10.5. Example. A straight tube ABC, of small bore, is bent so as to make the
angle ABC aright angle and AB equal to BC. The end C is closed and the tube
is placed with end A upwards and AB vertical, and is filled with liquid. If the
end C be opened, prove that the pressure at any point of the vertical tube is
instantaneously diminished one-half. Also find the instantaneous change of

pressure at any point of the horizontal tube, the pressure of the atmospheric
being neglected.

Solution. Let AB=BC=a

A
'T‘+
z
M= M
Pl .
(K
inl
l —>
}
Be«— X—>0Q C

When the liquid in AB has fallen through a distance z at time t, then let P be
any point in the vertical column such that

AM=z, BP=x,BM=a-z

If u and p be the velocity and pressure at P, then equation of motion is

M Mg 1o (1) U =u(x, 9
ot OX p OX
and equation of continuity is

ou .
— =0 i.e.u=uf(t
v ®)
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Therefore, equation (1) becomes

au_ g, 1o
ot p OX
Integrating. w.r.t. x , we get
ou 1
X—=—0X.——p+C 2
o 9P )

Using the boundary condition p = 0 at X = a-z, we get
au
C=(@-z)—+9(@a-z
(a-2)— +9@-2)

Therefore, equation (2) becomes

x%:—gx—§+(a—z)%+g(a—z)
i.e. P_ —(x—a+z)(a—u+g) 3)
p ot

Now, we take a point Q in BC, where BQ = x’ and let u’, p’ be the velocity and
pressure at Q, then

P_ —(x'—a)% | z=0and g is not effecting 4)

P

Equating the pressure at B, when x =0, x’ = 0, we get

(a-2) (%u + gj = a(%u | From (3) & (4)
ou
=—-a— | ~u=-u
ot

Initially, when C is just opened, then z =0, t =0 and we have

(&),

ou -9 . a_u _
= (ELO_ > |.e.[atjo g/2 (5)

Therefore, from equation (3), initially, the pressure at P is given by
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pFO =—(X— a){[%)o + g} IPo = (P)t0
= _—Zg(X—a)
SR s g

But when the end C is closed, the liquid is at rest and the hydrostatic pressure
atPis
p1 = pgh = pg (a-X) Ih=AP =a-x (7)
From (6) and (7), we get
Y —lp
0 2 1

Thus, the pressure is diminished to one-half.
Now, from (4), initial pressure at Q is given by

p_'()__ __ Q = " a_u = _ 'g

p TV a)(atl_o 4 a)(at)tzo @705
1 1 1

= Po'=5p0a-X)

When the end C is closed, the initial pressure (hydrostatic) p, at Q (or B or C)

is pga.
Therefore, instantaneous change in pressure

' 1 ' - 1 1
= P2=Po =pga—§pg(a—X) = Epg(a+x )
10.6. Example. A sphere is at rest in an infinite mass of homogeneous liquid of

density p, the pressure at infinity being IT. Show that, if the radius R of the
sphere varies in any manner, the pressure at the surface of the sphere at any

time is
2/p2 2
H+Ed<R>+(d_Rj
2| dt? dt

Solution. In the incompressible liquid, outside the sphere, the fluid velocity q

will be radial and thus will be a function of r, the radial distance from the
centre of the sphere (the origin), and time t only.
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The equation of continuity in spherical polar co-ordinates becomes

1d
r—za(rzu) =0 1)
_ 0
G =(U,0,0), U=u(r,t), V= (g,o,oj

190 ,
V.q=—2(u).
q IrZaIr( )

1.e. sphericalsymmetry

= r’u = constant = f(t)

On the surface of the sphere,

r=R,u=R
Therefore,
f) =R* R
and thus
r‘u=R?R (2)

We observe that u — 0 as n — oo, as required.
From (1), itis clear thatcurl g = 0O

= the motion is irrotational and @ =-V¢

% _ _db_T
or o r?
= ¢="1Ir (3)

= U= - | From (2)

The pressure equation for irrotational non-steady fluid motion in the absence of

body forces is

0?2 =c

hollke]
+
N| -
N
2|2
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ie. P Ll _00_
.e. p+2u ot C(1). 4

where C(t) is a function of time t.

Asr— oo, p — I, u=f/r* - 0, p—>0

so that C(t) = I/p for all t (5)
Therefore, from (2), (3), (4) and (5), we get
P_I, 94/ L RR 2 (6)
p p ot 2\ r?
But q=1(RZR)=F%R2+2RF‘Q2
ot dt

At the surface of the sphere, we have r = R and equation (6) gives

P_IT, 1 RR? 4 RR?)-1R?
p p R 2
=PI g2 pr_lp?
PP 2
= E+1(3F'ez +2RR) (7)
p 2
Now,
d*(R%) (sy d : 52
+(R)] =—(2RR)+ (R
SR = )
= (2RR+2R?%)+R?

=2R R +3R?

Therefore, from (7), we obtain
1 | d%(R?) (deZ
=1+ +| —
P 2'{ dt? dt

Hence the result.

10.7. Example. An infinite mass of ideal incompressible fluid is subjected to a
force ur~""® per unit mass directed towards the origin. If initially the fluid is at
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rest and there is a cavity in the form of the sphere r = a in it, show that the
cavity will be completely filled after an interval of time 7a®3(10p) 2.

Solution. The motion is entirely radial and consequently irrotational and the
present case is the case of spherical symmetry. The equation of continuity is

1d

Ty (r?u) =0=r2u = constant = f(t) 1)

On the surface of the sphere, r = R, R = v (say)
Therefore,

> i =f(t) =R°R

= f(t)=R?’R+R2RR = de—+2Rv

= m=ZV‘2+RQ:2v2+Rﬂd—R
R dt dR dt
=2v° + Rvﬂ (2)
dR
The Euler’s equation of motion, in radial direction, using f =u, is
ou ou 1op
— 4t uU—= = ——
ot or p or
But aj:é(@}:l:), F. :_ur‘7’3
ot otir r

So, we need to integrate the Euler’s equation

f a(1.\_-n_0(p
r2 +8r[2u j_rm Gr(pj )

Let us assume that the cavity has radius R at time t and its velocity then is
R=v. Integrating (3) over the whole liquid (r = R to r = ) at time t, we

obtain
“fo] [t [ L] [e]
r 2 VR p
R v R R
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Since the fluid is at rest at infinity, u, = 0. Also p,, = 0, pr = 0 (cavity), thus
we get

f0 1, % 1

R 2 4 R4
— 2Rv j—é +3v2 = 32“ R%‘/3 | using (2)
To make it exact, we multiply by R? so that
ordy LYy 3r2y? = 3R
drR 2
d(R3 ) 3M L 2/3
== ‘-_"- R
drR 2
Integrating, we get
3.2 _ IM 53
RIvVI=A- TR )

When R =a, R =v =0, which gives A = i—:a5’3.

Now, we take v = R < 0 because as the cavity fills, R decreases with time.

Thus (4) gives
dR 9].1 1/2 a‘5/3 R5/3 1/2
ot (Ej (R—]
Therefore,
1/2 3/2
("t
10 ( 5/3 Rsla)1
6a5/3
= *2sin?0de |R**=a"sin’0i.e. R=a (sin 0)°°
_ I
10
Thus,

t=x a5/3 (10“)—1/2 )
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Hence the result.

11. Impulsive Motion

Impulsive motion occurs in a fluid when there is rapid but finite charge in the
fluid velocity q over a short interval 6t of time t, or a high pressure on a
boundary acting over time &t, or the rapid variation in the velocity of a rigid
body immersed in the fluid. Such type of actions are termed as impulsive
actions.

The situation of impulsive action is effectively modeled mathematically by
letting the body force or pressure approach to infinity while 6t—0 in such a
way that the integral of body force or pressure over the time interval 5t remains
finite in this limit.

It the flow is incompressible, infinitely rapid propagation of the effect of the
impulsive action takes place, so that an impulsive pressure is produced
instantaneously throughout the fluid. Here, we consider only the

incompressible fluid with constant density p. The impulsive body force I and
impulsive pressure P are defined as

T= Lt [ Fdt
t+3t
P= Lt [ pdt

ot—0

We note that finite body forces such as gravity do not contribute to the

impulsive body force 1.
To determine the equation of impulsive motion, we consider the Euler’s

equation

Integrating w.r.t. time t from t to t + ot and taking limit as 5t—0, we get

jt+6t %dtz Lt J‘t+6t 6_th+ Lt J~t+8t (G- V)dt
8t—0°t Dt 8t—0°t ot dt—0°t
_ 8t = 1 t+8t
= Lt [ Fdt 5650jt Vpdt 2)

Assuming that fluid is accelerated impulsively at t = 0 and since we expect a
finite change in @ as a result of the impulse, we get from (1) and (2)

75
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q'—a=i—%VP 3)

where @ and Q' denote respectively the fluid velocity before and after the
impulsive action.
Thus, the equation of impulsive motion is

p(@'-q)=pl- VP 4)

which holds at each point of the fluid.
In cartesian co-ordinates, (4) can be expressed as

oP

p(u'-u) = pX’ o
X

oP

V'—v) = pY' ——
p(v'-v) =p oy
oP

p(w-w) = pZ' ——
0z

where
g=(u,v,w),qg'=u",v,w), I=(X,Y",Z)
When there is no externally applied impulse, then 1=0 and equation (4)

becomes
~-VP =p(g-0) )

Further, if the motion is irrotational, then §=-V¢, '=—-V¢', where ¢ and ¢’

denote the velocity potential just before and just after the impulsive action,
then (5) becomes

P=p(¢’ —¢) (6)

Where we have ignored the constant of integration since an extra pressure,
constant throughout the liquid, would not effect the impulsive motion.

11.1. Corollary. If the fluid is at rest prior to the impulsive action, then the
velocity Q generated in the fluid by the impulse is given by

q=1-

ol

VP (7)

|In(3),put g=0and q'=q
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For this case, equation (5) can be put as

—-VP=p{q (8)
and equation (6) becomes

P=p¢ 9)
Equations (6) and (9) give the relation between impulsive pressure P and the
velocity potential ¢.

11.2. Remark. From the above discussion, we observe that, likewise, an
irrotational motion can be brought to rest by applying an impulsive pressure
—p¢ throughout the fluid.

11.3. Example. A sphere of radius a is surrounded by an infinite liquid of
density p, the pressure at infinity being I1. The sphere is suddenly annihilated.
Show that the pressure at distance r from the centre immediately falls to

n(l—%j. Show further that if the liquid is brought to rest by impinging on a

concentric sphere of radius %, the impulsive pressure sustained by the surface

of the sphere is |/ 7ITpa’ /6.

Solution. Let v’ be the velocity at a distance r’ from the centre of the sphere at
any time t and p be the pressure. The equation of continuity (case of spherical
symmetry) is

— = (r’v)=0  =r?v=f(t) 1)

Equation of motion is

ﬂ-pv'ﬂ:_—l@ | No body force
o o par

or m + V'ﬂ = _1@
r? or' por

Integrating w.r.t. r’, we get

—f(—t)+£v‘2=—p+c

r 2 p
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Sincer'-» o = p=II, v =0sothat C =I1/p.

Thus _fl(t) FEIVEIR bl (2)
2 p

When, sphere is suddenly annihilated i.e. r' =a, v/ =0, p = 0, then

_f(_t)zn/p ie. fty=—112 ©)
a P

The velocity v’ vanishes just after annihilation, so from (2) and (3), we get

Ma_M-p  _al_p

prop r’

Thus, the pressure at the time of annihilation (' =r) is

& n-p :p:H(l—EJ
r r

which proves the first result.
Now, let P be the impulsive pressure at a distance r’, then from the relation

-VP =pQ, we get

—%2 pv' = dP=—pv'dr
From the equation of continuity, we have

rv=r?v =) 4
So dP = —pv (r*/r'®) dr’ (5)

where r is the radius of the inner surface and v is the velocity there.
Integrating (5), we get

P=pv (/) +Cy

Whenr'—w, P=0sothatC; =0
Thus P = pv(ri/r) (6)

Equation (6) determines the impulsive pressure P at a distance r’. The velocity
v at the inner surface of the sphere (p = 0) is obtained from (2) as
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_@+1V2 :E (7
r 2 p
From (4), f(t) = i(r2v) 2 AV dr 2 dvdr o
dt dt dt dr dt
o IO dv o
r dr
Thus (7) becomes
w2 Ll IO
dr 2 p
dvv 3 , -II
or V—+-v2=——
dr 2 p
= oy Vg2 2202 IMultiplying by r?
dr p
3,,2
— d(r \' )_ 211 ,
dr p
Integrating, we get
A2 = 2l +C,
3p
2ITa®

Sincer=a, v=0so we find C, =
3p

Therefore, rPv®= i’—n(a3 —r?)
P

The velocity v at the surface of the sphere r = a/2, on which the liquid strikes,
is

g2 2l -@2)? 141
3p (a/2)° 3p

From relation (6), using r = a/2, we get

14

2
Sar ©

o
1

bl

© |3

which determines the impulsive pressure at a distance r” from the centre of the
sphere.
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Thus, the impulsive pressure at the surface of the sphere of radius a/2 is given
by

4 al2

P:B /141_[ a’ 7Hpa /6

Hence the result
12. Stream Function

When motion is the same in all planes parallel to xy plane (say) and there is no
velocity parallel to the z-axis, i.e. when u, v are functions of x, y, t only and w
= 0, we may regard the motion as two-dimensional and consider only the
cases confined to the xy plane. When we speak of the flow across a curve in
this plane, we shall mean the flow across unit length of a cylinder whose trace
on the xy plane is the curve in question, the generators of the cylinder being
parallel to the z-axis.

For a two-dimensional motion in xy-plane, @ is a function of x, y, t only and

the differential equation of the streamlines (lines of flow) are

dx _ dyle vdx —udy =0 @
u v

and the corresponding equation of continuity is

8_u+@:o (2)
ox oy

We note that equation (2) is the condition of exactness of (1), it follows that (1)
must be an exact differential, dy(say). Thus

vdx —udy =dy = a\de+a\|1

oy
so that u:—a—w v_aw
oy oX

This function y is called the stream function or the current function or
Lagrange’s stream function.

Obviously, the streamlines are given by the solution of (1) i.e. dy = 0 i.e.
w = constant. (For unsteady flow, streamlines are given by y = f(t))
Thus, the stream function is constant along a streamline.

From the above discussion, it is clear that the existence of stream function is
merely a consequence of the continuity and incompressibility of the fluid. The
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stream function always exists in all types of two dimensional motion whether
rotational or irrotational. However, it should be noted again that velocity
potential exists only for irrotational motion whether two dimensional or three
dimensional.

12.1. Physical Interpretation of Stream Function :-

Let P be a point on a curve
C in xy-plane. Let an
element ds of the curve
makes an angle 6 with x-

axis. The direction
cosines of the normal at P
are

(cos (90 +6), cos 6, 0)
i.e. (-sin 6, cos0, 0).
The flow across the curve C from right to left is

= [ g-fAids,wherefi = —sin0i+cos0],

0

C
G:ui+v]
= [ (-usin6+vcoso)ds

Cc
) @sin(ﬂ@cose ds u=—@, v=@
c Loy OX oy X
| %%+%y ds cosf=—, sm@:ﬂ
c \ox ds oy ds S ds

_((ov ., oy
= i (&dx+5dyj

= [ dy=(v8— ya)
c

where wa and yg are the values of y at the initial and final points of the curve.
Thus, the difference of the values of a stream function at any two points
represents the flow across that curve, joining the two points.

12.2. Corollary. If we suppose that the curve C be the streamline, then no fluid
crosses its boundary, then
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(ve—ywa) =0 = ys=ya
i.e. wis constant along c.

12.3. Relation Between ¢ and y (i.e. C—R equations) :-
We know that the velocity potential ¢ is given by

__ o o9
A= (6x ayj
ie. u:—@,v:—@ 1)
X oy
Also, the stream function y is given by
u= _@ V= 8_\]! (2)
oy OX
From (1) and (2), we get
a—d):@and—d):—@ (3)
ox oy oy OX

Equations in (3) imply
Vi =0and V?y=0
i.e. ¢ and ware harmonic functions.
Again, from (3), we get
Vo=grad o =—q =—(Ui+Vj)

@]j

|
|
2|2
-
R

_.>
|

2|2

2l 2@

(]xlz)+@(i><f<)
OX

i+ @jjxk
oy

éTé

<

wxk= grad wxk
i.e. grad ¢ = (grad z,u) x grad v
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ie. Vo =Vyxk (4)
Again, from (3), we note that
ooy _oy[ oo
ox ox oy\ oy
N %oy 90 _,
OX OX oy oy
ie. V-V =0 (5)

Thus, for irrotational incompressible two-dimensional flow (steady or
unsteady), ¢(X, y), w(X, y) are harmonic functions and the family of curves
¢ = constant (equipotentials) and y = constant (streamlines) intersect
orthogonally.

12.4. Exercise. Show that u = 2c xy, v = c(a®> + x> —y?) are the velocity
components of a possible fluid motion. Determine the stream function and the
streamlines.

12.5. Remark. We shall consider the study of two dimensional motion later
on. At present we continue discussing three dimensional irrotational flow of
incompressible fluids.
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UNIT - 11

1. Three Dimensional Irrotational Flow

1.1. Acyclic and Cyclic Irrotational Motion. An irrotational motion is called
acyclic if the velocity potential ¢ is a single valued function i.e. when at every
field point, a unique velocity potential exists, otherwise the irrotational motion
is said to be cyclic. Clearly, only acyclic irrotational motion is possible in a
simply connected region.

For a possible fluid motion, even if ¢ is multivalued at a particular point, the
velocity at that point must be single-valued. Hence if we obtain two different
values of ¢, these values can only differ by a constant.

At present, we restrict ourself to acyclic irrotational motion for which we prove
a number of results related to ¢.

1.2.Mean Value of Velocity Potential Over Spherical Surfaces. Theorem :
The mean value of a ¢ over any spherical surface S drawn in the fluid
throughout whose interior V2 = 0, is equal to the value of ¢ at the centre of the
sphere.

Proof. Let ¢(P) be the value of ¢ at the centre P of a spherical surface S of
radius r, wholly lying in the liquid and let ¢ denotes the mean value of ¢ over

S. Let us draw another concentric sphere ® of unit radius. Then a cone with
vertex P which intercepts area dS from the sphere S, intercepts an area do from
the sphere ® and we have

do r S

PR = dS = rldo (1)
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Now, by definition

fods
o
6= [dS  4mr? id)ds
s
_ 1 2, 1
= £¢r do = 4n£¢dm
L Bl 1 s

o Admny or _4“5 or r?

1 . 8
= ~-*ds 2
Amr? £ or @)

| -+ r?is constant on S

Since the normal f to the surface is along the radius r, therefore on S, we have

od 0 N
— =L =V 3
or on ¢ )
From (2) & (3), we find
ob 1 R
— = Vé.ndS
or 4nr2£ ¢
=1 > [div(V)de | Gauss theorem
™ =
=1 [v2gdi=0 vZh=0
- 4mr? $e=0, V0=

where 1 is the volume enclosed by the surface S.

Thus g—(l) =0 = ¢ = constant.

This shows that ¢ is independent of choice of r and hence mean value of ¢ is
same over all spherical surfaces having the same centre P. When S shrinks to
point P, then ¢ = ¢(P)

1.3. Corollary.  The velocity potential ¢ can not have a maximum or
minimum value in the interior of any region throughout which V2¢ =0.

Proof. If possible, suppose that ¢ has a maximum value ¢(P) at a point P. We
draw a sphere with centre P and radius €, where < is small. Then the mean

value ¢ of ¢ must be less than ¢(P) i.e. & < ¢(P) as ¢(P) is maximum. This
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is a contradiction to the mean potential theorem in which ¢ = (P). Thus ¢
cannot have a maximum value. Similarly ¢ cannot have a minimum value.

1.4. Theorem. In an irrotational motion the maximum value of the fluid
velocity occurs at the boundary.

Proof. Let P be any interior point of the fluid and Q be a neighbouring point
also lying in the fluid. Let us take the direction of x-axis along the direction of
g at P. Letgp and qq denote the speed of particles at P & Q respectively.

> _(3)°

Then qp_(axl,

anc b -(2) (% Z(@f
© \ax)y \oy), \az)g

. 0 o[}
Since VZ%$=0 = — (V%) =0 VZ(—jzo
ince V¢ = = (V°9) = x

= @satisfies Laplace equation. Therefore, by mean value theorem
OX
(corollary), i cannot be maximum or minimum at P. Thus, there are points

ox
such as Q in the neighbourhood of P such that

2 2
0 0
(), (&), =0
Q P
= Qp cannot be maximum in the interior of fluid and its maximum value |q|, if
any, must therefore occur on the boundary.
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1.5. Note. g = |G| may be minimum in the interior of the fluid as g =0 at the
stagnation point. i.e. g is minimum at stagnation points.

1.6. Corollary. In steady irrotational flow, the pressure has its minimum value
on the boundary.

Proof. From Bernoulli’s equation, we have

L2 %q %= constant (1)

Equation (1) shows that p is least when g is greatest and by above theorem, g?
is greatest at the boundary. Thus, the minimum value of p must occur only on
the boundary.

1.7. Note. The maximum value of p occurs at the stagnation points, where q =
0.

1.8. Theorem. If liquid of infinite extent is in irrotational motion and is
bounded internally by one or more closed surfaces S, the mean value of ¢ over
a large sphere ., of radius R, which encloses S, is of the form
- M
=—+C
¢ R

where M and C are constants, provided that the liquid is at rest at infinity.

Proof. Suppose that the volume of fluid acrossing each of internal surfaces
contained within 2., per unit time, is a finite quantity say —4nM (i.e. -41M
represents the flux of fluid across 2. or S). Since the fluid velocity at any point

of 2 is S—g radially outwards, the equation of continuity gives

% 4
ié_ —41M 1)

But
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Therefore,

L% Roge =M
41tZ OR
o, —M
—do
4n2 R R?
2 [ 4do=3
4TC OR 5 R?

Integrating w.r.t. R, we get

1 M
— | ¢do=—+C
4n£¢m R

where C is independent of R.

=

2q)clz:M

47R? R

— M

<I>=E+C 2

To show that C is an absolute constant, we have to prove that it is independent
of co-ordinates of centre of sphere >.. Let the centre of the sphere > be
displaced by distance 6x in an arbitrary direction while keeping R constant,

then from (2),

Also,

infinity.

2= ®)

| *- R is constant

& _o 1w
X O_X{4_n£¢ }47& ox "

¢

=0, since x =0 on 2 when R—o0 as the liquid is at rest at



89
FLUID DYNAMICS

.. From (3), we get

@ =0 = C s an absolute constant.

OX
Hence

o= % +C, where M and C are constants.

1.9. Corollary. When closed surfaces within >_ are rigid then no flow can take
place across them, therefore, in that case M =0 and ¢ = C.

This shows that mean value of ¢ over any sphere enclosing solid rigid
boundaries is constant.

2. Kinetic Energy of Irrotational Flow

We shall prove that K.E. is given by

o e
2£ ds,

where ¢ is the velocity potential.
We know that if t be the finite region occupied by the fluid, then the K.E. is

given by

= 5] o= ol

1 _
= 5] p(Vove)e | 9=-V¢
If fluid density is constant, then
T= g [(vovo)de (1)

Now, div (¢ V) = V.(6V) = V. V. + ¢ (V. V)
V. Vo + o V2
Vo.Vo. | V=0
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Therefore, from (1) & (2), we get

T= %jdiv (6Vo) dt = %j' oVo. AdS | By Gauss theorem
T S

:EI ®(Vo.n)dS = EI ¢@ds, where S =Sy +S; + S, +...+ S,
2 23 on

denotes the sum of the outer boundary surface Sp and the inverse boundaries
S1, S2,..., Spand f is unit normal to S drawn out of the fluid on each
boundary.

AlsoT = —%j d)%ds, where f is unit normal to S drawn inside the fluid on
S

each boundary.

2.1. Kelvin’s Minimum Energy Theorem. The kinetic energy of irrotational
motion of a liquid occupying a finite simply connected region is less than that
of any other motion of the liquid which is consistent with the same normal
velocity of the boundary.

Proof. Let T be the K.E., § be the fluid velocity and ¢ be the velocity potential

of the given irrotational motion. Let t be the region occupied by the fluid and S
be the surface of this region, then

_ P
ki ®

Let T; be the K.E. and @, be the velocity of any other motion of the fluid
consistent with the same normal velocity of the boundary S (or consistent with

the same kinetic boundary condition)
For both the motions, the continuity equation is satisfied i.e.
V-g=0=V-q, )

The boundaries have the same normal velocity



FLUID DYNAMICS

ie. (G, —)-A=0 3

Now, let us consider

Tl—T:%.‘[ (qlz—qz)d’t
=21 b @-o+@ -0
=21 20-@ -+ B[ (@ -a)ds

==p[ Vo. @-qdr+ ] (@-0) e (4)
From vector calculus, we have

V[o (@ -9)1= Ve (9, -q)+¢ V-(q, —-T)
ie. Vo (0, —a)= V-[¢(q, - )] -¢V- (@, - T)
Therefore, from (4), we find
Ti—-T=-p[ V[6(G -Tq)dt+p[ ¢V-0(q; —T)dr
+ gj (0, -0)° de

=—p[ 0@ -8 -AdS+p| ¢V-(@ -T)de
S T

+ % [ (@ -a)%d IBy Gauss theorem
= g [ (@ -a)% | using (2) & (3)
>0

= T,>T.

Hence the theorem.
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2.2. Kinetic Energy of Infinite Liquid. Theorem : An infinite liquid is in
irrotational motion which is at rest at infinity and is bounded internally by solid
surface (s)S. Show that the K.E. of the moving fluid is

= le Id)@ds

2 S on

where S =S; + S, + ... Sy denotes the sum of the inner boundaries Sy, S, ...,
Snand A is normal to S drawn out of the fluid on each boundary.

Proof. Let > be a large surface enclosing the surface (s) S and t be the region
bounded by S internally and by > externally.

Using the result of K.E. for finite liquids, we find that the K.E. T* for finite
region t is given by

wz Py 4, Pry Q0
T —2£¢6nd8+2£¢ands (1)

Now, div § = V2 = 0 throughout t and the divergence theorem accordingly
gives
[divgdt=0 = [A-gdS=0

SUZ

—  [A.vedS=0 = | Pds=o

Sus suz On
= j@dsq@dszo )
son son

Since the surface S is solid, there is no flow across it, hence

i%dS:O 3)

Therefore, from (2), we get
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%
—+dS=0 4
ian )
For the surface 2., as X_ goes to infinity, the liquid is at rest
= 0=0=Vd=0 = ¢=constant = C (say) (5)
Hence, as 2. goes to oo, the K.E. of the liquid is

P, 0b p [0 :
T 5 T=L[¢Pds+Pc[Pys Using (5
~ 2£¢an 2 ian | Using ()

pr, 0 .

== |$—dS Using (4

20 | Using (4)
Hence the result

2.3. Remark. We note that the K.E. for finite and infinite liquid has the same
expression.

2.4. Theorem. Show that acyclic irrotational motion is impossible in a finite
volume of fluid bounded by rigid surfaces at rest or in infinite fluid at rest at
infinity and bounded internally by rigid bodies at rest.

Proof. If possible suppose that acyclic irrotational motion is possible and let ¢
be the velocity potential. Then, K.E. of the fluid is

p 24 _ P[0
T=2|(Vo)*dt=2Z|o—dS 1
o | (V0= Ton 1)
Where S is the sum of all the rigid boundaries when < is finite or the sum of

internal rigid boundaries when t is infinite.

Now, since the boundaries are rigid, then at every point of S, the normal
velocity is zero

i.e. % =0 at each point of S 2

From (1) & (2), we get

[ g°dt=0 =¢°=0= G =0 at each point of .

= liquid is at rest.

Hence there is no motion of fluid.
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= acyclic irrotational motion is impossible.

2.5. Corollary. If the solid boundaries in motion are instantaneously brought to
rest, show that the motion of the fluid will instantaneously cease to be
irrotational.

Proof. If possible, assume that the motion remains irrotational, then the K.E. is

given by
1 ¢ 5 1 0
T== dr== - ds 1
pPlade=sel oo (1)

When the surface S (solid boundary) is brought to rest instantaneously, then

g =0 at each point of S.

= ¢ = constant at each point of S.
o .
= Fe =0 constant at each point of S.
n
= = 0int
= there is no motion.

Thus the motion is no longer irrotational.

2.6. Uniqueness Theorems. Theorem 1: If the region occupied by the fluid is
finite, then only one irrotational motion of the fluid exists when the boundaries
have prescribed velocities. OR Show that there cannot be two different forms
of acyclic irrotational motion of a given liquid whose boundaries have
prescribed velocities.

Proof. If possible, let ¢; and ¢, be two different velocity potentials
representing two motions, then
Vi =0 = VA4 (1)

Since the kinetic conditions at the boundaries are satisfied by both flows,
therefore at each point of S,

%y _ O

on on @

Let¢:¢1—¢2
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= V% = V?y — V2, = 0 at each point of fluid. and % _Oh g 4

on
each point of S.
= ¢ represents a possible irrotational motion.

Also, the K.E. is given by

P (@) 2dr =2 [690 ds = % _
§£(q) dr_zid)ands 0 on "

= =0 at each point of fluid.

= V¢ = 0 at each point of fluid.
:>V(I)1—V(|)2:0:>V(I)1:V(I)2

on

which shows that the motions are the same. Moreover ¢ is unique apart from
an additive constant which gives rise to no velocity and thus can be taken as

zero (without loss of generality)

Theorem 1. If the region occupied by the fluid is infinite and fluid is at rest at
infinity, prove that only one irrotational motion is possible when internal

boundaries have prescribed velocities.

Proof. If possible, let there be two irrotational motions given by two different

velocity potentials ¢; & ¢,. The conditions on boundaries are

Oy _ G,
on on

and G, =, =0 at infinity
Let us write ¢ = ¢1 — ¢
= V2=V - V2, =0-0=0

= motion given by ¢ is also irrotational.
Further from (3), we get

% _ 0 _ %,

=0 using (1
on on on | 9(1)

= 0-N=0 = 0=0 on the surface

Also,

)

)
©)
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q=-Vo=-Vo, +V¢,
=0, -0, =0at o | using (2)

Therefore G =0 everywhere on the surface and also at infinity.

Hence we get ¢ = constant = ¢, — ¢, = constant 4
Without loss of generality, we can take the constant on R.H.S. of (4) to be zero
(it gives no motion) and thus we get ¢; = ¢,

2.7. Remark. The above two uniqueness theorems are useful in finding
solutions of V29 = 0 subject to prescribed boundary conditions.
3. Axially Symmetric Flows

A potential flow which is axially symmetric about the axis 6 = 0, = (i.e. z-axis
is taken as the axis of symmetry) has the property that at any point P, all the
scalar and vector quantities associated with the flow are independent of

azinuthal angle y such that ais 0, where (r, 6, ) are spherical polar co-

\}
ordinates.
1y
P(x,y,2)
(r,0,vy)
r
0 0
Y
\UJ
X Q

The equation of continuity div §= 0 for steady flow of an incompressible fluid
becomes.

10
r2 or

L9 (sin0qy) =0 &)

2
r
P9+ 5o 2

For irrotational motion = -V¢, where ¢ is velocity potential and thus

0 10
o g o ted

or r oo
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From equation (1), we have

2 ( 5¢j —1 (snead)j 0 (2
or or r?sin@ 00 00

Let a solution of (2) in separable variables r, 6 has the form

¢ =-R(r) ©(6) ©)

Using (3) in (2), we get

ﬁ{rz g(R(@)} iﬁ[sm 9—(R®)} =

or sin© 00
= @g(rzﬁ}r R a(sn 986) 0
or or sin© 00 00
1d(,dR 1 d(_. .d®
= Rdr( dr) G)sinede[I dej ®

The L.H.S. of (4) is a function of r only while the R.H.S. is a function of 6
only. The equation can therefore be satisfied if and only if either side is a
constant, say n(n+1) and thus we get

1d(,dR)

Ea(r Wj_n(n+1) 5)
and

d smed—® +n(n+1)Osin6=0 (6)

do do
To solve (5), we put

R=r" = IR _ppms

dr

1 d 2 m-1
Th 5 ——\rrmr =n(n+1
US():> " dr( ) ( )

= m %(rm”): r™n(n+1)
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=m(m+1) r" =r"n(n+1)
= (M*+ m-n*-n) =0
= (m-n) (m+n+1) =0
= m=norm=—(n+l)
Therefore, solution of (5) can be written as
R(r) = An " + Byr (™

To solve (6), we put

C0sO =
iEd—,'liz—sine1
do dodu du

Therefore, equation (6) becomes.

—sin® d sine(—sin(i))d—® +n (n+1) Osin6=0
du du

_, 9 fginzd@ +n(n+1)©®=0
du du

= i{(1—0052 e)d—(ﬂ +n(n+1)®=0
du du

-4 (1—p2)d—® +n(n+1)®@=0
du du

(7)

(8)

98

Equation (8) is a Legendre’s Equation and possesses a solution known as

Legendre Function of the first kind P,(u)

Therefore,
© = Pn(w)
Hence the general solution of (3) is of the form
o(r, 6) =-R(r) ©(6)
= —[An 1" + B, ™I P, (cos 0)

(9)
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( complete solution is the sum of all such solutionsi.e. > ....... )
n=0

3.1. Uniform Flow. Consider the flow which corresponds to a potential given
by (9) with

A,=US;,, B0, n=0,1,2, ...... ) | Sij is knonecker delta
Si=1S;;=0fori=]j

Where U is a constant.
Since Py (cosB) = cos6, equation (9) becomes

d(r, ) =-Ur cos 6 =-Uz | z=rcosO
Thus

which is a uniform streaming motion of the fluid with speed U along the
direction of z-axis or the axis 6 = 0.

3.2. Sphere at Rest in a Uniform Stream. Consider an impermeable solid
sphere of radius ‘a’ at rest with its centre at the pole of a system of spherical
polar co-ordinates (r, 6, y). The sphere is immersed in an infinite
homogeneous liquid with constant density p, which, in the absence of the
sphere, would be flowing as a uniform stream with speed U along the direction
06=0.

The presence of the sphere will produce a local perturbation of the uniform
streaming motion such that the disturbance diminishes with increasing distance
r from centre of sphere. We say that the perturbation of the uniform stream
tends to zero as r—oo.

In this problem z-axis is the axis of symmetry. Undisturbed velocity of
incompressible fluid is Uk ie. g=U k
= the velocity potential ¢o due to such a uniform flow would be

do = -Uz = -Ur cos0

When the sphere is inserted, the undisturbed potential —Ur cos6 of uniform
stream has to be modified by “perturbation potential” due to the presence of the
sphere. This must have the following properties.

0] It must satisfy Laplace equation for the case of axial symmetry

(i) It must tend to zero at large distances from the sphere

So, we write  ¢(r, ) =-Urcos 6 + ¢y (r, 0) (r>a)
where ¢, satisfies the Laplace equation together with boundary conditions
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o9

—=-Ucos0+

3 =01.e. velocity normal to
;

%, %
r or
sphereiszeroatr=a
:%:+Ucose (r=a,a<06<n)
and
|[Véi| — 0 as r—oo.
Hence a suitable form of function ¢; is

& = —BT? cosd
So, we assume (in view of (9)) that
&(r, ©) = -Ur coso —EZ coso Q)
r

The constant B is to be determined from the fact that there is no flow normal to

the surfacer =ai.e. [@J =0
or J)_,

= —U cosO + 2—3Bc056=0 :B:%Uag'
a

Thus (1) becomes
3

¢(r, 8) = —=Ur coso —sziz cosO
r

2r

=-U {r + a—i}cose 2

Now, the uniqueness theorem Il infer that the velocity potential in (2) is
unique.
The velocity components at P(r, 0, v), (r > a), are

q9=—1@:—U(1+a—2jsin6 3)
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1 o _
rsin® oy

Qy =

Different terms related to motion are obtained as follows.

(i) Stagnation Points : Stagnation points are those points in the flow where the
velocity vanishes i.e. §=0. Thus these points are obtained by solving the

equations
aS
Ujl-—|cos6=0
r

a3
U 1+—3 sin6=0
2r

and

(4)

which are satisfied only by r = a, sin@ = 0. i.e.r =a, 6 =0, = Thus the
stagnation points are (r =a, 6 = a) and (r = a, 6 = ©t) on the sphere. These are
referred to respectively as the rear and forward stagnation points.

(i) Streamlines : The equations of streamlines
dr _ rd® _ rsin6dy
Qr qe qw

for the present case, become

dr rdo _ rsinBdy (>a

al - ad ) . o '
U 1——3 cosO -U l+—3 sinod
r 2r

= dy=0 = y =constant.

as ad ) .
r 1——3 c0s0do = — 1+—3 sin@ dr
r 2r

1( 2r® +a®
rl 3_38

and

]dr:—2cot9d9

2

352
= (%Jdr:—%otede
r-—a’r

Integrating, we get

log (" —a*r*) =—2 log sin6 + log C

101
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3 _ad
= log — |= —log sin®0 + log C

— sin’0 = % where C >0
r’—a

For each value of C, above equation gives a streamline in the plane
y = constant. The choice of ¢ = 0 corresponds to the sphere and the axis of
symmetry.

(iii) Pressure at Any Point : The pressure at any point of the fluid is obtained
by applying Bernoulli’s equation along the streamline through that point,
taking the pressure at « to be of constant value p... Thus, in the absence of
body force, the Bernoulli’s equation for homogeneous steady flow is

Piliwer=c
p 2

At infinity, p = p.. and —V¢ = UK , we get

:p_°°+1U2
p
Thus
1 1
=p,+= U2__ \V4 2
P=potsp 2p( )
= P =Pt
1 .., 11 ., a®)’ g ) a® ) )
“pU —=p U°|1-=]| cos0+U"|1+— | sin“ O
27 2P ( r3j ( 2r3J
|Vo=-7
1 a®)’ a® )
= p=pw—§pU2(——3J cosze+(l+F) sin®0-1 (5)
r r

which gives the pressure at any point of the fluid. Of particular interest is the
distribution of pressure on the boundary of the sphere. It is obtained by putting
r=ain (5) and thus
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= Pw +%pu2 (9c0s?0 —5)
The maximum pressure occurs at the stagnation points, where 6 =0 or . Thus
1
Pmax = Po +—= pU2
2
(pmax- Is also called stagnation pressure)

The minimum pressure occurs along the equatorial circle of the sphere where 6
=n/2

Therefore,
5
Pmin. = Peo —ngz
A fluid is presumed to be incapable of sustaining a negative pressure, thus
8
Pmin. =0 => U= P
op

At this stage the fluid will tend to break away from the surface of the sphere
and cavitation is said to occur. i.e. a vacuum is formed.

(iv) Thrust on the Hemisphere : Now, we find the thrust (force) on the
hemisphere on which the liquid impinges, r =a, 0 <6 < /2.

Let &S be a small element at Py (a, 0, y) of the hemisphere bounded by circles

at r = a and at angular distances 6 and 6 + 86 from axis of symmetry
(i.e. z-axis)

Z!

pmin

The component of thrust on &S is p cosO 6S. Hence the total thrust on the
hemisphere is along Z'O and is given by

pd

a

l=r0=ad0
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dS = (2ra sin 6)(adb)
F= [p cosbdS

hemisphere

nl2
[ pcos (2ra sind) (adob)
0

/2
[ (2ma®) sind cosd {pw +%pU2(9 cos? 0 —5)}d9
0

(using value of p at boundary)

1
= a{ - UZ]
ma| P, 16P

3.3. Sphere in Motion in Fluid at Rest at Infinity. Let a solid sphere of

[P

radius ‘a’ centred at 0 be moving with uniform velocity ~Uk in
incompressible fluid of infinite extent, which is at rest at infinity. Z-axis is the

axis of symmetry and k is unit vector in this direction. (As the sphere is
moving with velocity —-Uk = the relative velocity of fluid if the sphere be
considered to be at rest is Uk )

The boundary value problem for ¢ is now to solve

Vi =0 )
such that _a—ard) =-Ucoso, (r=a) 2
and
[V¢) =0, (r—>) ®)
The present case is also a problem with axial symmetry about the axis 6 = 0, =,
SO
¢ = o(r, 6)
Also, since P;(cos0) = cosO | Legendre’s function

and the boundary condition (2) implies that the dependence of ¢ on 6 must be
like cos6, therefore ¢ has the form

B B
= —[Ar+r—2jP1(cose) = —(Ar+r—2jcose

However, to satisfy (3), it is necessary that A = 0, and then from (2), we get B

=£U§.
2
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Thus the solution for ¢ is

~Ua®
2r?

= coso ()]

From here, the velocity components are obtained to be

op —Ua® _-1ap -Ua®

qr:_E rs r oo 2

sin6, q,, =0,

where (r, 6, ) are spherical polar co-ordinates. The various terms of
particular importance related to this motion are obtained as follows.
(i) Streamlines : The differential equations for streamlines are

g:rd_e: rsin6dy

qr qe q\y
. dr rdo rsin Ocdy
l.e. 3 = 3 =

—Ua Ua® .

5 €0s6  ——-sind
r 2r

= dy =0 = y = constant.
and

drr 2 cotd d0 = logr=2logsinb +log C
- r=C sin’0

Therefore, streamline lines are given by r = C sin®0, y = constant

(if) K.E. of the Liquid : Let S be the surface of sphere and p be the density of
liquid, then K.E. is given by

- g; 422 s (5)

A

Where f is the outwards unit normal. But for the sphere f is along radius

vector

o) _(_400
Therefore, (d) anjs —( d)ar)r:a

= (% Ua cosej (U cos0)
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1 U?a cos?0
2

Therefore,
2
T,= EJ’ 1 U2acog edS:&J'gE c0s%0 (27a sind) (ado)
2% 2 4
3112
_ mpa’U jncoszesinG do
2 0
0<0<n
0<w<2r

2 3
= l a’U? = ﬂ 33) U_Z
3™ 3™ 1
EVEtE (6)
4

where M* = gn pa® is the mass of the liquid displaced by the sphere.

Also, K.E. of the sphere moving with speed U is given by

T, = %MUZ (7

where M = %ncaS is the mass of the sphere, o being the density of the

material of the sphere.
Therefore, from (6) and (7), total K.E. T is given by

T=T+T,= %(l\m%juz (8)

The quantity M + % is called the virtual mass of the sphere.

3.4. Accelerating Sphere Moving in a Fluid at Rest at Infinity. The solution
derived above for ¢ is applicable when the sphere translates unsteadily along a
straight line. In the present case, we take U = U(t) and get the velocity
potential as

-~ U(t)a®

o2 cosO (¢D)]

¢=0(r, 0,1 =
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The instantaneous values of velocity components and K.E. at time t are given

by

= &cose,qe = %sine, qy =0 | similar to steady case
r r
and T= %(M +%M')U2(t) (2)

The pressure at any point of the fluid is obtained by using Bernoulli’s equation
for unsteady flow of a homogeneous liquid, in the absence of body force, as

p 1—p 0
E+§U —E—f(t) (3)

where f(t) is a function of time t only.
Let p., be the pressure at infinity where the fluid is at rest, then from (3), we get

f(t) = 2= and thus
p

P_P. 12, % )

p p 2 O

To find % , we proceed as follows :

Since U =-Uk =-U(t)k is the velocity of the sphere, the velocity potential
given in (1) can be expressed in the form

_1a°U-n
2 r3

¢ (5)

since T is the position vector of a fixed point P of the fluid relative to the
moving centre O of the sphere, it follows that

= 0,
U=—(-T 6
PG (6)
Also, sincer’= T-T :rqzl"-qz—F-U lusing (6)
ot ot
= (-N-(-UKk)
=rU (F-k) |F=rf

=r U cosO
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=T _ Ucoso (7
ot
Differentiating (5) w.r.t. time t and using (6) & (7), we get
2 2
o) :lag{ U? cos9ou 3U* o e}

= =54 co
ot 2 r3

_a*|Ucosd U? 3U%cos’0 ‘ oU
=—— - U=—
2| r? r3 r3 ot
Also,
. U2q° 296
2 2 2 2 2
U°=q, +q; = r6 Cos“ 0+ a8 sin“ 0
2,6
= Uf (cos2 9+lsin26j
r 4

The pressure at any point of the fluid can be obtained from equation (4).
In particular, at a point on the sphere r = a

o9

—_—l[UacoseJr U? —3U? cos® 9]
ot 2

2

and U= UT (4 cos?0 + sin0)

and the corresponding pressure is given by

E:p—"°—EL'Jacos(%Lluz(g cos’0 — 5) (8)
p p 2 8

The force (thrust) acting on the sphere is given by

F = [ pcosb(2rasin 6) (ade)k

= 21 Rjg{pw —%pUaCOSO+%pU2(9COSZ 6—5)} cos0 sind do

= 202Uk = [ 2 ratp Uk = MUKk
3 23 2
where M’ =%na3p is mass of the liquid displaced. This shows that the force

acts in the direction oppositing the sphere’s motion.
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3.5. Equation of Motion of the Sphere. Let R be the external force per unit
mass in the direction of motion of the sphere. Let us use the result that the rate
of doing work is equal to the rate of increase in K.E.

Thus ru=%_1d (M+Mjuz(t)
dt  2dt 2
| From (2)

= (M +M)Ud_u
2 dt

= Ve VL
dt 2 dt

If the liquid is not there, then M’ = 0 and the equation of motion of the sphere

9)

is
M auv =R (10)
dt
Comparing equation (9) & (10), we note that the presence of the liquid offers a

resistance of the amount %Mcij—ltJ to the motion of the sphere

Let R’ be the external force per unit mass on the sphere when there is no liquid,
then

MR = external force on the sphere in the presence of the liquid.

=MR'— MR = (M -M") R’

3 3
Since, M = 4moa M'= 4
3 3
R = (G—_ijl (11)
c

From equations (9) & (11), we find

Md_U _[o—P R'_EM'd_U
dt c 2 dt

N e an e
2 ) dt o} M
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MC:j—Uz M_::/l/r R'= ""i R' (12)
t M + cs+E

This is the required equation of motion of a sphere in a liquid at rest at infinity.
From equations (10) & (12), we note that the effect of the presence of the

liquid reduces the external force in the rationc —p : ¢ + % .

3.6. Remark. We have already studied the impulsive actions in Unit-1, where,
we had derived the relation between the impulsive pressure P and the velocity
potential ¢ as P = p¢. Here, we derive the expression for K.E. generated due to
impulsive action.

3.7. Kinetic Energy Generated by Impulsive Motion : Let us consider
incompressible fluid, initially at rest, which is set in motion by the application

of impulse 1, 1,,..., I, to rigid boundaries Sy, S, ..., Sm, respectively. The fluid
may be of finite or infinite extent. We know that the K.E. of the irrotational
motion generated in the fluid is given by

T= gjsq)%ds (1)

where S=S; + S, +... +Sp, A is outwards unit normal on each S;
Let the velocity givento S;be U, (i=1, 2,..., m), then on S;, we have

op .=
-—=Nn.U; 2
n i )
|a=-Vo
using (2) in (1), we get
_ PN A
T=-=)> U.| N¢dS 3
522 Uil i 3)
But the impulsive force exerted by the fluid on S; is R, where
ﬁi:jsiﬁpd5=pjsiﬁ¢ds |P=po
(4)
Thus from (3) & (4), we get
1m__
T=-->U;-R; (5)
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3.8. Example. Incompressible liquid of constant density p is contained within
a region bounded by two concentric rigid spherical surfaces of radii a, b (a <
b). The fluid is initially at rest. If the inner boundary is suddenly given a

velocity Uk, where k is a constant vector, show that the outer surface
experiences the impulsive force

2npUa’h? -
b®—a’ K
Also calculate the corresponding K.E. generated by the impulsive motion.
Solution. The motion generated in the fluid is irrotational =
G=-V¢ = V=0 which is the equation of continuity. The boundary
conditions which ¢ must satisfy, are

—? =Ucoso (r=a) Q)
r

_ _g =

~ 0 (r=bh) (2)

with (r, 6, ) spherical

polar co-ordinates and

with 6 = 0 along the

direction of k.

The form of boundary conditions suggest a
solution of the form

& = —(Ar + BT?) cosf (3)

which satisfy (1) & (2) if
A—2—3B= U, A—Z—S’zo
a b
~Ua® _  -Ua%®
b®-a%’ 2(b% —a®%)

= A=

111
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Thus, the solution of the problem is

Ua® b3
= r+ c0s0
¢ b®-a® ( ZrZJ

Impulsive force acting on the outer boundary in the direction of K is

F =5, (P)._y cosbds]k

where (P)r=b = (Ph)r=b

_ pUa® b*
= R (b+2|02 c0s0

_ 32Ua’bcosh
2 b*-a’
and for the outer sphere r = b,

dS = 2x (b sind) (bd6),0<O< =
b3
_ 3rpUa’bik
== s
_ 2mpUa’b’®
- p3-ad

Thus, impulsive force, F = [">-==—"cos 2 9(2nb? sin ) dok

j cos? 0sin® do

Hence the result

Now, if U;, U, denote the velocity of spheres of radii a & b respectively and
R,, R, be the corresponding impulsive forces exerted by the fluid, then

17— 1—- = 1
=_§[U1'R1+U2'R2]:_EU1'R :_EUk R, (4

Also,
:pjsi ApdS =R, =pjslﬁ¢ds

= ﬁ1'|2:p.[saﬁ'lz(q))r:a ds
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3 3
= jsa cose[bgufa3 {a+ 222 jcose} 2n (a sind) (a de)

( negative sign due to inwards normal i.e. on the inner sphere, pressure is

inwards)

3 3 3
_ pUa 2a°+b 2 (T 2~ .
D S R 2ma IO c0s%0 sind do

_ —2mpla’(2a® +b°)
3 b3 -a®
Thus, from equation (4), we get

_ 1npU%a®(2a° +b°)

T
3 b3 —a?

3.9. Deduction : If we let b—oo, then it becomes the case of a sphere of radius
‘a’ moving in an infinite liquid at rest at infinity and we get

T= Lt - 3 a
b—o a
1_E
-1 ﬂn 3 UZ—EI\/I1U2
4\ 3 4

where M; = % npa’ is the mass of liquid displaced by the sphere r = a

3.10. Example. (Motion of Two Concentric Spheres) : The space between two
spheres is filled with incompressible fluid. The spheres have radii a, b (a < b)
and move with constant speeds U, V respectively along the line of centres.
Show that at the instant when the spheres are concentric, the velocity potential
is given by

{(a?’u —b3V)r +;(U —V)a3b3fz}cose

¢= bd-a

Also determine the impulse which is required to produce the velocity U to the
inner sphere, when outer sphere is at rest.

Solution. Let p be the density of the liquid.
We are to solve V¢ = 0 under the boundary conditions

113
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—@:Ucose,r:a (D)
or
and —% =V cosH, r=>0 2

where U & V are taken in the same direction.

The solution of the Laplace equation is of the form

& = —(Ar + BT?) cosf

= _% = [A—EJCOSG
or rs
and thus the boundary conditions give
A —2—? =U, A—Z—? =V
a b

Solving for A & B, we find
_ 3|3 311 _p3
B:E(U V)a’b A_aU b°V

2 a%-p* ' at-pt
Thus the velocity potential for this motion is

b= a’U-b’V) 1(U-V)a’h’ 1) o
a3_b3 2 a3_b3 r2

{(a3u —b3V)r +;(U - V)a3b3fz}cose

b —-as
Hence the result

Impulse :- When outer sphere is at rest, then VV = 0 and from equation (3), we

get
Ua® b*
= r+ coso 4
¢ b? —a3( 2er )
Let M = gn a’c be the mass of inner sphere

and M’ = %na?’p is the mass of liquid displaced by the inner sphere.
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If | be the impulse, then by the principle of linear momentum, we have

| = MU + Total impulsive Pressure

ie. | = MU + [ (P), =a cos6 dS
_ = Ua® b3 2 .
=MU + pjo e [a+ 2a2]COS 0 27 (a sind) (a do)
|P=pd
3 3 3
ie. 1= MU + TRU (22 3+b )j: c0s%0 sind do

b -a

3 3 3
- MU + 2 mpa”U(2a® +b”)

3 b3 —ad
1 3 3
U LMUQa+bY)
2  bd-ad

3.11. Deduction :- If b —oo, then it will be the case of a solid sphere moving

in an infinite liquid and
| =MU + MU =[M+Mju
2 2

3.12. Remark. The problem in which we solve the Laplace equation V¢ = 0
when the normal derivative of ¢ i.e. 2—:is given on the boundary, then such
type of problem is called a Neumann problem whereas the solution of
V%9 = 0 when the value of ¢ is given on the boundary, is termed as Dirichlet
problem.
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4. Sources, Sinks and Doublets (Three-dimensional Hydrodynamical
Singularities)

4.1. Source : An outward symmetrical radial flow of fluid in all directions is
termed as a three dimensional source or a point source or a simple source.

Thus, a source is a point at which fluid is continuously created and distributed e.g. an
expanding bubble of gas pushing away the surrounding fluid. If the volume of fluid per unit
time which is emitted from a simple source at 0 is constant and equal to 4rm, then m is termed

as strength of the source.

4.2. Sink : A negative source is called a sink. At such points, the fluid is
constantly moving radically inwards from all directions. Thus a simple sink of
strength m is a simple source of strength —m.

4.3. Velocity Potential due to a Simple Source of Strength m. Let there be
a source of strength m at a point 0. With 0 as the centre, we draw a sphere of
radius r around 0.

The flow across the
sphere per unit volume
is given by

[g.AdS
S

In case of a source there is only the radial velocity i.e. @ has only radial
component g .
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Therefore, the flow is

= [q, dS |g.A = qy, since § and A have same directions i.e.
radial direction. S

=g (4n r?).
Thus, we get

4nm = q; (4 )

It is observed that curl @ = 0 (except at r = 0), therefore for irrotational flow,

qr:—g—d’ G =-Vo %)
r

From (1) & (2), we find

m
r

(I):

which is the required expression for the velocity potential for a source.

4.4. Remarks. (i) For a simple sink of strength m, the velocity potential is ¢ =
m

r

(if) A source or sink implies the creation or annihilation of liquid at a point.
Both are points at which the velocity potential (and stream function for two
dimensional case) become infinite and therefore, they require special analysis.

P

M .
z-axis
4.5. A simple Source in Uniform Stream. Let us consider a simple source of
strength m at 0 in a uniform stream having undisturbed velocity Uk, k be the
unit vector along z-axis which is taken as the axis of symmetry of the flow.
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We shall find the velocity potential at any point P(z, 6, y). From P, draw L on
OZ. LetOP =r, |POZ =6;0M =z

We observe that the velocity potential of the uniform stream in the absence of
source is

¢1 =-Uz =-Urcos 0 @

and the velocity potential of the simple source is

m
b2= — (2)
r
Thus, the velocity potential of the combination is
&= ¢+ ¢2=-Ur cosb +?
= —(Urcos@—?) 3)
From here, the velocity components at P(r, 6, y) are
ob m
=——=UcosO+—
o or r?
1 0<6
qe_——@:—Usine O<y<2n
roo 5
oy
__ 1 %
Qv=—""c A =
rsin@ oy

The stagnation points (G =0) are given by U cos6 +m2 =0,sin6=0 =6=0
r

orm
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But 6 = 0 gives r to be imaginary = 6 =mandr = \/g

Thus there is only one stagnation point (\/g,n,oj

4.6. Doublet (Dipole). The combination of a source and a sink of equal
strength, at a small distance apart, is called a doublet.

4.7.  To Find the Velocity Potential of Doublet. Suppose that there is a
simple source of

strength m at O; and a
simple sink of strength m
at O,. Origin O is taken as
the mid point. of O; O,. It
is also assumed that there
IS no other source or sink.
Let P be a fixed point
within the fluid and

O, -h O h 0O:im) z-axis

OP=r, P =1, ,P=T1,, |POO, =6,

001 =h, 00,=-h, h=h|

The velocity potential at P due to the combination of source and sink at O; and
0O, is

o= E_E B I
2 .2

_mp—n) _ m(; —r)

I nr(r +1,)
_ m(f, —1).(T, +T;)

nr(r +r,)

_ T,=h+T
But T,-T =2hand T, +7, =2F 2



FLUID DYNAMICS 120

m(2h).@r) _  4mhr
re(n+r)  nn(n+r)

Thus d=

2nr

= - where i =2mh (1)
nry(r +r;)

In equation (1), let us first keep p a finite constant and non-zero vector, so that
u = |[| is a finite constant and non-zero scalar. Let h — 0 along O,O.

Then m—oo in such a way that [ remains the same finite non-zero constant

vector. In that case, both ry, r,—r and thus under this limiting process, (1)
results in

_ 2nr_ prcosd  pcoso

¢ 2r3 rs r? @)

The limiting source sink combination obtained at 0 when we keep the direction
of h fixed but let h—0 and m—co with p = 2mh remaining a finite non-zero
constant, is called a three-dimensional doublet (or dipole). The scalar quantity
u is called the moment or strength of the doublet. The vector quantity o = pj
is called the vector moment of the doublet &1 (unit vector from 0, to 0,)
determines the direction of the axis of the doublet from sink to source.

From (2), the velocity components are given by

q :_@: 21Cc0s0
' or r3

" Tre0 f3
qy =0

The streamlines due to the doublet are given by

dr ~ rd0 _ rsin6dy
2ucosd  usin® 0
r3 I,3
dr
= dy =0 = y =constant and —= 2cot6 do

r

— r=Asin%0
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4.8. Doublet in a Uniform Stream. Let there be a doublet of vector moment
1 =pkat O in a uniform stream whose velocity in the absence of the doublet is

-U R(U = constant).

P(r,0,vy)

<
- Uk

=l

o) M Z

Let P be a point in the fluid having spherical polar co-ordinates (r, 6, ), the

direction OZ of the doublets axis being the line 6 = 0. We shall find the

resultant velocity potential due to the combination of the uniform stream and

the doublet. We know that the velocity potential due to the uniform stream is
¢1 = Uz = Ur cosO Q)

and the velocity potential due to a doublet at O, is

cosoO
b= B0 )
r

Thus, the resultant velocity potential at P. due to the combination, is
0= ¢+ ¢ = (Ur + pt?) cosd

From here, the velocity component are

qr = _%b_ —(U —Qjcose

or r3

10d TR
=———=| U+ [sin6
e rae( r3j

1 @—0
rsin® oy

Qy =

Stagnation points are determined by solving.

(U—Zujcosezo,(U+%jsin6=0 |

Qo
Il
ol

rs r
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1/3
which are satisfied when sind =0 and r :(Z—J)

Thus, we have the two stagnation points.

1/3 1/3
(Qj 0 |and (ﬁj , T
U U
which lie on the axis of symmetry.

13
If wewriter=ai.e. a= (Z—JJ e u= %U a, then for the region r > a, we

obtain the same velocity potential as for a uniform flow past a fixed
impermeable sphere of radius a and centre 0. Thus, for r > a, the effect of the

. 1 . : . .
sphere is that of a doublet of strength p = 3 Ua® situated at its centre, its axis

pointing upstream. So the sphere can be represented by a suitably chosen
singularity at its centre.

4.9. Line Distribution of Sources. Let us consider a uniform line source AB
of strength m per unit length. This means that the elemental section of AB at a
distance. x from A and of length ox is a point source of strength max.

P
M d
r r
________ M
A «— X — OX B« x,—

X1

Let P be a point in the fluid at a distance r from this element, then the velocity

. . . moéx
potential at P due to the point source is mox :
r

The total velocity potential at P due to the entire line distribution AB (= 2I) is

¢=m]— 1)
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Let AM = x;, BM = x5, where AM is the orthogonal projection of AP on AB.
Also, let PM =d, AP =1y, BP =1, . Since r? = (x; —x)* + d* = (x¢—x)* + 1> —
x,2, therefore from (1), we get

2/ dx

° Jx —x)7 + (12 - x2)

o=m |

2/ B 1
2 2 2 V| ——=——=dX
" Iog{(xl—x)+\/(xl—x) +(r —xl(} ja %2 4 a2

- 0 :[Iog(x+\/x2+a2)]B

o

0
=m [Iog{(x1 —x)+\/(x1 —X)2+(rf —xf)}LI
=m llog(x1 Jrrl)—log{x2 X5 rf X2 ﬂ | X1 -2l =%, ~AB =X,

X, +T
:mlog( L lJ,Whererf—xf:dzzrzz—xg.
X, +1,

Again, the relation r? —x7 =r7 —x5

=
o+, +2
rn+r, -2
rn+r+2l
Thus, d=mlog| +—2—
n+r, -2l
a+l
:mlog[—lj 2

where 2a is the length of major axis of the ellipsoid of revolution through P
having A and B as foci since for such an ellipsoid r; + r, = constant. It follows
from here that the equipotential surfaces ¢ = constant are precisely the family
of confocal ellipsoid r; + r, = 2a obtained when a is allowed to vary.

123
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Expression for Velocity :- The velocity at P is given by 4 =-V¢ = —(%j A

©)

Let P be any point on the ellipsoid specified by parameter a and P’ the
neighbouring point on the ellipsoid specified by parameter a + da, where

PP'=8nn

0 a+l |, 1 1 |oa., 2lm oa ,
Thus §=-m—|log— i=-m —--——|—A= ———N (4
f 6n[ ga } L+I a—I}an a’—12on )

The normal at P to the a-surface bisects the angle 2o between the focal radii
AP, BP.

Now,

(ry + 8r1)® = 12 + (8n) — 2r; n cos (180—a)

A
=12 + (8n)? + 2r, 8n cosa.
2 2 2
- c
cosC = u b
2ab
= c? =a? +b? —2abcosC
B a C
= 2r, 8r1 = 2r1 8n cos o + (8n)? — (8r)°
=N 8r, = 8n cosa. | (8r1)% = (8n)?
on
= —L =cosa
on

Similarly, a@% — cosa

Since, 2a=r1+15
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p08 _0on o

— .=C0S o+ CoSa=2CcoS o
on on on

oa
= —=C0sSn
on

and thus from equation (4), the velocity of fluid at P is given by
_ {ZImcow}ﬁ

a%—1?
5. Hydrodynamical Images for Three Dimensional Flows

Let us consider a fluid containing a distribution of sources, sinks and doublets.
If a surface S can be drawn in the fluid across which there is no flow, then any
system of sources, sinks and doublets on opposite sides of this surface S may
be said to be images of one another w.r.t. to the surface. Further, if the surface
S be considered as a rigid boundary and the liquid removed from one side of it,
the motion on the other side will remain unaltered.

5.1. Images in a Rigid Impermeable Infinite Plane. (i) Image of a source in
a plane : consider a simple source of strength m situated at A(a, 0, 0) at a
distance a from an infinite plane YY".

We shall show that the
appropriate image system
for this is an equal source
of strength m at A’'(—a, 0,
0), the reflection of A in
the plane.

<

To prove this, we consider
two equal sources f
strength m at A(a, 0, 0) &
A’ (-a, 0, 0) with no rigid
boundary. Let Py be any v
point on the plane YY'.

Then the fluid velocity at

Po due to the two sources

is

©)
o o A
>
=
2
L
(=]
N—r
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g=—"_ApR,+— M AP g="p=Mr
(AR 7 (AP Y ° 2yl
Po
(m) 0 (m)
A'(-2,00) | _g A(a,0,0)
_ m = o
0
AP, + A'P,
m = 2m == = =\ o Ae
= 20P,)= ——(OP, =(A0O +0P,)+(A', +OP
(Apo)g( 0) (APO)3( 0) ( o) + (A o)

= 20P,

This shows that at any point Py of the plane Y'Y, the fluid flows tangentially to
the plane x = 0 and so there is no transport of fluid across this plane.

Let ¢ denotes the velocity potential then, at all points Py on the plane YY’, the
normal component of velocity is zero

= P 0. Hence, the image of a source at A in the rigid plane YY' is

a9 _
n
a source at A', as required.

(if) Image of Doublet in a
Plane : Consider a pair of
sources —m at A and m at
B, taken close together and
on one side of the rigid
plane YY’. The image
system is —m at A’, m at
B’, where A’ & B’ are
respectively the reflections
of A and B in the plane
YY’. In the limiting case,

when B—A along BA in
such a way as to form a
doublet at A, we find that
the image of

Y
B'(m) B(m)
PN A
A'(-m) A(-m)

Y!
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a doublet in an infinite impermeable rigid plane is a doublet of equal strength
and symmetrically disposed to the other w.r.t the plane.

5.2. Example. A three dimensional doublet of strength u whose axis is in the

direction OZ is distant a from the rigid plane z = 0 which is the sole boundary
of liquid of constant density p, infinite in extent. If p., be the pressure at oo,

. . avb
show that the pressure on the plane is least at a distance T\/_ from the doublet

Solution. Let there be a
doublet of strength p at
the point A with OA = v
a and YY' (i.e. z = 0)
be the infinite plane.
Then the image system < a>
is an equal doublet of 0 Aln) Z
strength p at A’, the
reflection of A in the
plane z = 0, and the
axis along ZO. The Y’
line OZ is taken as the (z=0)
initial line 6 = 0 and

planez=01is 0 = /2.

so that P(r, 6, ) is confined to the region 0 <6 < w/2. Let AP=r, AP=r,
and oy, o be the angles which these lines make with the axis of the doublets as
shown in the figure.

Then, the velocity potential at P is

Y ! P(r:e:W)
Iy e
Ol :
o I
= VAL
Awa 0 |a A(p) M Z
_ UCOSo;  pcoso,
¢_ 2 + 2 (1)
N P
r2 =r’+a? —2racos@
where s o (2
ry =r-+a” +2racoso

(By cosine formulae in A POA, POA')
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AM OM-OA rcosO-a

But cosoy =
and cos (180 —ap) = AM:AO+OM =a+rcose
2 > r,
(a+rcos0)
= COS o = I
2

Using these relations in (1), we get

_ ﬁ(rcose—a}rﬁ{—(aﬂcose)}

2
n r I

©)

—u rcosb—a rcosb+a
2 rs

Further from (2), we have

21 on _ 2r —2acos0 :%z—r—acose
or or rn

or, r+acoso o rasin®

Similarly, —= = : =
or r, 00 r

or,  rasin®

00 r,

Thus from (3), the velocity components are given by

160 cosO or, )1 coso o)1l
=—-—= -3 —= |—(rcos6+a)— +3 — |—(rcosf—a
L F{ r ((’% j rz“( ) r? 3(ar rl“( )

—u {cose _3 (r+acosb)(rcosb+a) cosd N 3(r—acosb)(rcoso —a)}

r3 r; 2 ry
1a e (rcose—a)(ggj e (rcose+a)(aar92j
q9=———¢=ﬂ rsin L3 _rsin _3

roo r| r’ o ry ry
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pulrsin® 3rasinO(rcoso—a) rsin® _rasin6(rcoso +a)
v 3 T 5 5t 3 5

ren n r r

qy =0

When the point P lies on the plane YY’ or © = /2, we have 12 =17 =r* + a°
and so at (r, ©/2, ), the velocity components are

qr = -6 ra/(r’ +a%)*?, g9 =0,q, = 0.
Along the streamline through this point, Bernoulli’s equation is

g% = const= "=

p

+

hollke]
N| -

where G =0 at infinity.

Thus, the pressure at any point on the plane YY" is given by
P = P _%,3[36u2a2r2/(r2 +a2)5]

18pu%a’r?

i.e. p(r) = po — (2 1a0)°

Now,

p'(n) = % =36pu’a’r(4r’ —a?)/(r* +a?)®

which gives  p’(r) =0whenr = %a

p'(%—j <0, p'(%q >0

i.e. p’(r) changes sign from negative to positive when r passes through %

Also

= pisminimumatr :% 0 =mn/2
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i.e. at the point Py (%,n/Z,\yj

The distance PoA is given by

2
(Ej L2 Y8,
2
Hence p is least at a distance 7a from the doublet and the minimum value is

.9 ,(4Y1
pmm.—poo_zpkt 5 a_6

5.3. Images in Impermeable Spherical Surfaces. We have already studied
the effect of placing a solid impermeable sphere in a uniform stream of
incompressible fluid, taking the case of axial symmetry. Here, we discuss the
disturbance produced when a sphere is placed in more general flow.

We shall make use of Weiss’s Sphere Theorem which states as follows :

“Let ¢(r, 6, y) be the velocity potential at a point P having spherical
polar co-ordinates (r, 6, y) in an incompressible fluid having irrotational
motion and no rigid boundaries. Also suppose that ¢ has no singularities
within the region r < a. Then if a solid impermeable sphere of radius a is
introduced into the flow with its centre at the origin of co-ordinates, the new
velocity potential at P in the fluid is

2
o(r, 0, ) + %4{&7,9,@—% EITH(R, 0, ) R, (r>a)

2
a . . .
where r and — are the inverse points w.r.t the sphere of radius a.”
r

Here, the last two terms refer to perturbation potential due to the presence of
the sphere.

0] Image of a Source in a Sphere : Suppose a source of strength m is
situated at point A at a distance f(> a) from the centre of the sphere of
radius a.
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Let B be the inverse point of A w.r.t. the sphere, then OB = a’/f

A(f,0,0)

The velocity potential at P(r, 0, y) in the fluid due to a simple source of
strength m at A(f, 0, 0) is

o(r, 0) = %

(OP)? +(OA)” —(AP)? _r* +f* —(AP)

From A OAP, cosO =
2(0OP)(0A) 2rf

= AP = /r2 +£2 _2rfcosd
Thus, the velocity potential is

o(r, 0) = m(r* + - 2rf cosp) 2
oy

Introducing a solid sphere in the region r < a, where a < f, we obtain on using
Weiss’s sphere theorem, a perturbation potential

a a® 1 .2,
?4{7’9)—5[0 ¢(R, 0) dR

4 2 -1/2
ic. M8 2 28 foose| -~ [RZ + £ — 2Rf
r|r2 r a®
cosf] 2 dR
i o (ma/f) _mIaZ/r drR
e. :

Jri—2r@?/fycoso+(@2/f)> @ JR2 —2Rf cosh + f 2

This shows that the image system of a point source of strength m placed at
distance f(> a) from the centre of solid sphere consists of a source of strength
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2
m : . .a%. . : .
Ta at the inverse point Tln the sphere, together with a continuous line

distribution of sinks of uniform strength ? per unit length extending from the

centre to the inverse point.

(if) Image of a doublet in a sphere when the axis of the doublet passes
through the centre of the sphere :- Let us consider a doublet AB with its axis

BA pointing towards the centre 0 of a sphere of radius a. Let OA =f, OB = f
+ of. Let A’, B’ be the inverse points of A & B in the sphere so that

(m) (=m)
A B

OA' = a/f, OB’ = a?/(f+35f).

At A, B we associate simple sources of strengths m and —m so that the strength
of the doublet is u = mdf, where p is to remain a finite non-zero constant as
m—oo and 6f—0 simultaneously.

2 2 2 2 -1
BA=OA _op = & _a af, of
f frof f fLU f

2 2 2
= a__a_+a_§to the first order
f f f f

2
= :—26f to the first order

Now, from the case of “Image of source in a sphere”, the image of m at A

: ma . . e
consists of ' at A’ together with a continuous line distribution from O to A’
: m : . .
of sinks of strength — per unit length and the image of —m at B consists of
a

-ma : : . N

Wat B’ together with a continuous line distribution from O to B’ of
+

m :
sources of strength — per unit length.
a
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The line distribution of sinks and sources from O to B’ cancel each other

leaving behind a line distribution of sinks of strength m per unit length from
a

2
B’ to A’ i.e. sink of strength m B'A' = m a—6f :i(me) =“—aat B’. The
a a | f? f? f?
source at B’ is of strength
-1
—ma _-—maf, of) " __maf, of , to the first
f + of f f f f
order terms
—_—Mma mac —ma pa
f2 f f2

L . .. ma a
which is equivalent to a sink Tat B'and a source?—2 atB'.

. : a . .
As there is already a sink ?—2 at B', therefore source and sink at B’ neutralize.

Finally, we are left with source ?at A’ and a sink. ?at B’. Thus, to the
first order, we obtain a doublet at A’ of strength

2

ma ma a

— (B'A)= — —-of
f ( ) f f?
_mad o pa’
f3 f3 '

Hence in the limiting case as 6f—0, m—o, we obtain a doublet at A of

strength p with its axis towards O, together with a doublet at the inverse point
3

A’ of strength % with its axis away from O.

6. Stream Function for an Axi-Symmetric Flow (Stoke’s Stream Function)

If the streamlines in all the planes passing through a given axis are the same,
the fluid motion is said to be axi-symmetric. We have already considered such
flow for irrotational motion in spherical polar co-ordinates. (r, 6, y) in which
the line 6 = 0 is the axis of symmetry.

Suppose the z-axis be taken as axis of symmetry, then g = 0 and the fluid
motion is the same in every plane 6 = constant (meridian plane) and suppose

133
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that a point P in the fluid may be specified by cylindrical polar co-ordinates (r,
0, z). Thus, all the quantities associated with the flow are independent of 6.
The equation of continuity in cylindrical co-ordinates, becomes

—(fCI)+ (rqz) 0

. 0 0
1.e. E(rqr) :_E(qu) @)

This is the condition of exactness of the differential equation
rgdz —rg,dr=0 2

This means that (2) is an exact differential equation and let L.H.S. be an exact
differential d¥(say)

Therefore,
rgrdz —rg, dr=d¥ = a—lPdr+a—\sz
or oz
which gives
6‘1’ o¥
- qz’ =1rq, (3)

o
The function W in (3) is called Stoke’s stream function.

The equation of streamlines in the meridian plane 6 = constant at a fixed time t
IS

dr_dz
a, Q,
= g.dr=q,dz

Using (3), we get

_lo¥  _10¥
r or r oz

= a—\Pdrjt(ﬂ)—\ydz 0
or 0z

= d¥ =0
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= Y = constant = C

which represent the streamlines.

6.1. Stoke’s Stream Function in Spherical Polar Co-ordinates (r, 0 y) :
We consider the axi-symmetric motion in r, 6 plane such that q,, =

0. The equation of continuity in spherical polar  co-ordinates becomes

10,, 1 0 .

——(r + —(rsino® =0

r2 5r( ") r2sino 89( %)
] 0,0 . 0 .
.e. —(r°sino =—(-rsino 1
[ ar( d) ae( o) (1)

This is condition of exactness for the different equation

r sind go dr — r? sinb g, d® = 0 (2)
Thus the expression on L.H.S. of (2) is equal to an exact differential function
Y such that
r sind go d; — g, r* sind do = d¥ = M ar+ o
or 00

oY . oY 2 i
—— =(,rsin6,— =—q, r°sino.
= o qG 0 q,

6.2. Remark. In the above cases, the motion need not be irrotational i.e.
velocity potential may not exist. In case of irrotational motion, it can easily be
shown that the velocity potential ¢ and the Stoke’s stream function ¥ do not

satisfy C—R equations due to the fact that ¥ is not harmonic.

6.3. Stoke’s Stream Function for a Uniform Stream : Let a uniform stream
with velocity U be in the direction of z-axis such that g =U k. Then, from the

relations
__lo¥ ~_10¥
B==1 U=
we get U= _}6_‘}”0:}8_‘1’
ror r oz
= a—\Pz—Ur,ﬁ—\P:O

135



FLUID DYNAMICS 136

2
= VY =-U % where the constant of integration is found to be

Zero.

In spherical polar co-ordinates we have
Y= —E(rsine)2 —Yiaginze,
2 2

6.4. Stoke’s Stream Function for a Simple Source at Origin : In case of
simple source

q=f(ne

But we have already calculated that for a source of strength m at origin.

f(r > 0) in spherical polar co-ordinates.

_ m
4==

r

ie. (I Qo) = rﬂzf 6

Also, we know that in spherical polar co-ordinates,

1 o¥ 1 o¥
qr = q 2

" 2sin0 00’ ° " rsind or

From (1) & (2), we get

m 1 ¥ oY

2 r2sin0 o0 or

= a—‘Pz—msine,a—\yzo
00 or

= Y =m cosO .

A constant may be added to this solution and this is usually done to make ¥ =
0 along the axis of symmetry 6 = 0. In such case,

Y=m (cos 6 —1)
For a sink of strength m at origin, the Stoke’s stream function is

Y =m (1-cos6)
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6.5. Stoke’s Stream Function for a Doublet at Origin : We assume that the
flow is due to only a doublet at origin 0 of strength p. Taking the axis 6 = 0 of
the system of spherical co-ordinates to coincide with the axis of the doublet,
we find that the velocity potential at P(r, 6, ) is

c0s0
¢:“r2 (r>0) (1)
op 2ucoso 10p usind
=== Qo =———-= =0 (2
= "= Y ree 2 @

But the relations between the velocity components and the Stoke’s stream
function W are

-1 8_‘Pq __ 1 oY
r2sino 80 ° " rsin® or

From (2) and (3), we get

©)

oY _ 2usinBcosd o¥ _ psin’6
0 r L or r

Integrating, we get

_ —pusin®@
r

Y

6.6. Stoke’s Stream Function due to a Uniform Line Source : Let a uniform
line source of fluid extends along the streamline segment AB of length I.
Consider an element QQ' of length &z at a distance z (= AQ) from A. Thus we
have a simple source of strength m &z, where m is the constant source strength
per unit length of the distribution along AB.

Let QP =r, |PQB=Q, PM =d b

The Stoke’s stream
function 8W at P for the
simple  source  of
strength mdéz at Q is
mdz(coso-1). Then,
the value of the Stoke’s
stream function ¥ at P
due to entire line source «z 5Q%(Q B« b —M z-axis
AB is given by 0=0

Y= mj;(cose—l)dz = mﬂ)cosedz— mj;dz
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In APQM, coso = 2M _ QB+BM
| l+b-z PQ PQ
—m|

0\/d2+(l+b—2)2 dz—ml _I—Z+b_ l—-z+Db
1 Jd2 1 (+b-2)?

Puttingl +b -z =x = dz = -dx

When z=0,x=1+b,
when z=1,x=b
Therefore,
b X(—dx)
¥Y=m —— —ml
L+b\/m
_Melsb o oap

or \P_Ejb (d® + x%) ™2 (2x) dx — ml

2 1/2

l+b
_ m[_Jd ] .

=ml|Jd? + (1 +b)? —Jd? +b? |-m
= m[AP — BP] - mAB
- m[AP — BP — AB].

As p is the only variable point, the simpler form m (AP—BP) can be taken for
evaluating velocity components at P. The stream surfaces are

Y = constant i.e. AP — BP = constant.
These are confocal hyperboloids of revolution about AB, with A and B as foci.

We have shown earlier that the equipotentials were confocal ellipsoids of
revolution about AB with the same foci. Also it is well known result that two
families of confocals intersect orthogonally.

6.7. Stoke’s Stream Function for a Doublet in a Uniform Stream : Let a
doublet of vector moment pk is situated at origin O in a uniform stream whose
undisturbed velocity is —UKk.
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In spherical polar co-ordinates (r, 0, y), the Stoke’s stream functions for each
separate distribution are

A

Y, = % Ur?sin0  (for uniform stream, g =—-Uk)

Wy, = —%sinze (for doublet at origin)
Hence the stream function for the combination is
¥ (r,0)= G Ur? —;ytlrjsin2 0

The equation of the stream surfaces are Y¥(r, 6) = constant.

In particular, the stream surfaces for which ¥ = 0 are given by
1 2 Y
(EUr —u/rjsm 6=0
Lo 1.2 1
= sine=0or =Ur“-—-==0
2 r
2u

13
= 0 =0, mi.e. the z-axisorr = (U) , the surface of the sphere

2 1/3
with centre 0 and radius (UM) )
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7. Irrotational Motion in Two-dimensions

Suppose that a fluid moves in such a way that at any given instant, the flow
pattern in a certain plane within the fluid is the same as that in all other parallel
planes within the fluid. Then at the considered instant, the flow is said to be
two-dimensional flow or plane flow. Any one of the parallel planes is then
termed as flame of flow.

If we take the plane of flow as the plane z = 0, then at any point in the fluid
having cartesian co-ordinates (X, y, z), all physical quantities i.e. velocity,
density, pressure etc, associated with the fluid are independent of z.

Thus G =70 (X, y,t) p=p(X, Y, t) etc

Plane flows, as described above, cannot be achieved in reality, but in certain
important cases, close approximation to planarity of flow may occur.

We have already considered such flow when defining Lagrange’s stream
function. We consider here some special methods for treating two-dimensional
irrotational motion.

7.1. Use of Cylindrical Polar Co-ordinates. For an incompressible
irrotational flow of uniform density, the equation of continuity V¢ = 0 for the
velocity potential ¢(r, 0, z) in cylindrical polar co-ordinates (r, 6, z) is

2 2
L2 ), 15,7 "
ror\ or) r?200%2 oz2

If the flow is two dimensional and the co-ordinate axes are so chosen that all
physical quantities associated with the fluid are independent of z, then ¢ = ¢(r,
0) and (1) simplifies to

10( 60) 1 0%
T ir=l+==—T=0 2
rar( ar) r? 90? @

Let us seek solutions of (2) by putting

¢(r, 8) = —f(r) 9(6) ©)

in (2) for separation of variables. Thus, we get

1dy . 1 "
90) T4 I O]+ 5 f(g" @) =0
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dr.
. ra[rf (n] g0 "
- f(r) 9(9)

Thus, L.H.S. of (4) is a function of r only and R.H.S. is a function of 6 only.
As r and 0 are independent variables, so each side of (4) is a constant A(say).
Thus, we have

@+t 9O,

f(r) 9(6)
ie. rPEn) +rf'() -2 f(r)=0 (5)
and g9"(6) +A g(8) =0 (6)

Equation (6) has periodic solutions when A > 0. Normally the physical
problem requires that g(6 + 2x) = g(6) and this is satisfied when A = n? for
n=1,2,3,....

Thus, the basic solution of (6) are
g(6) = ¢y cos N + ¢, sin N @

Now, (5) is of Euler-homogeneous type and it is reduced to a linear different

equation of constant co-efficients by putting r = e'i.e. t=logr = % =
rr

Also, f'(r) = g:ﬁgzlﬁ
dr dt dr rdt
2
and fr(r) = ﬂ:ﬂ(ﬁjzﬂ(}ﬂ}
dr2 drldr) drlrdt

_1d(dfj df( 1)
= | — -|—— —_——
rdridt) dt\ r?
_1 E(d_fjﬁ o 1ldf
ridtldt)dr| r? dt
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d’f  df
qu -2 _“
= r (9] 4 dt

Therefore, equation (5) reduces to

d’f df df

- +——n?*=0
dt? dt dt
2
= g—nzfzo
dt

It’s solution is
N
f=exp(+nt)=e™= (etyn =r"

ie. f=car"+cyr™ 8)

A special solution of (2) is obtained by linear superposition of the forms (7) &
(8) to give

¢(r, ©) = —f(r) 9(6)
= (A" + B, ") (Cncos n® + D, sinngd)  (9)

The most general solution is of the form
o(r, 0) = - i(An "+ B, r") (C, cos nO + Dy sin no) (10)
n=1

7.2. Particular cases. (i) for n =0, we have
f=ki+kit=k;+kylogr
and g=ks+ k40
so that another solution of (2) is
o(r, ) = —(ky + kz log r) (ks + k4 0)
(i) for n = 1, we get a special solution as
=—rcos0,d=-rsin®, ¢=-r'cosH, ¢=—r"sino

7.3. Example. Discuss the uniform flow past an infinitely long circular
cylinder.
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Solution. Let P be a point with cylindrical polar co-ordinates (r, 0, z) in the
flow region of an unbounded incompressible fluid of uniform density moving

irrotationally with uniform velocity ~Ui at infinity past the fixed solid
cylinderr<a

When the cylinder r = a is introduced, it will produce a perturbation which is
such as to satisfy Laplace equation and to become vanishingly small for large r.
This suggests taking the velocity potential for r > a, 0 <6 < 2x in the form

o(r, 0) = Ur cos® — Art cos 0, (1)

where the velocity potential of the uniform stream is Ux = Ur cos6 and due to
perturbation, it is —Ar ™ cos® which —0 as r—oo and gives rise to a velocity
pattern which is symmetrical about 0 = 0, 7. (the term r* sind is not
there since it does not give symmetric flow)

As there is no flow across r = a, so the boundary condition on the surface is
a—d’:o, whenr=a 2
or

Applying (2) in (1), we get A = —Ua? for all 8 satisfying 6 < 6 < 2.

Thus, the velocity potential for a uniform flow past a fixed infinite cylinder is
2

¢(r, 6) = U cos6 [r+aTJ,r>a,OsE)£2n 3)

From here, the cylindrical components of velocity are (0= -V¢)

o0 a’
=-—=-Ucosf| 1-—

2
qo=-2 2 _Lysingl r+ 2 |~ UsinolL+a? /r?)
rog r r
ah
Z:——:O
a oz

We note that as r—oo, g, = —U c0s0, ge = U sin® which are consistent with the
velocity at infinity ~Ui of the uniform stream.

7.4. Example. A cylinder of infinite length and nearly circular section moves
through an infinite volume of liquid with velocity U at right-angles to its axis
and in the direction of positive x-axis. If the section is specified by the
equation.
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r=a(l +< cosno)

where n is positive integer and e is small, show that the approximate value of
the velocity potential of the fluid is

n+1 n-1
Ua{E COSO+ € G) cos(n+1)6—e (%) cos(n —1)6}

r

Solution. Let the tangent at a point P on the plane of cylinder makes angles a,
(m—av) with the radial line OP drawn from 0 as shown in the figure

\

At large radial distances r from OZ, the fluid velocity becomes vanishingly
small.

Let us assume the velocity potential ¢(r, 6) of the form —r* ke (k = 1,
2,....).
Thus, we seek a solution of the form

o, 0) =— 3 1 (Ay cos kO + By sin ko) )
k=1

(If we take k = 0, this would add on to ¢ an arbitrary constant Ao).

At 6 = 0 and 6 = = on the boundary, ¢ = 0 which is satisfied by taking Bx = 0
k=1,2,...)

Thus, the velocity potential simplifies to the form

o(r, 0)=—3 Axr*cosko (2)
k=1

which approximately remains unaltered on replacing 6 by 27—6.

At any point (r, 6,z) of the fluid, the cylindrical polar velocity components are

(@=-V9)

qr = _Z_(l) =3k A r%D cos ko
kil
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0o = _%% =~ 3k A 1D sin ko
k=1
o9
=—_T=0
% 0z

At P on the boundary, since (n —a) is the angle between the tangent and the
radius vector OP, therefore

ldr d
cot (m—at) = i E(Iog r)
r_7n-
= —cota = dd_e [log a(1+ecosnO)] /
0
1

=———(-ae nsinnb)
a(l+ e cosnob)

ensinnd do

= cota = sin (m—a) =r— (3)
ds

1+ e cosnd

The normal component of velocity Uy of the boundary at P is cos (r—a) = %

Un = U sin (o —0)
= U (sin a cos 6 — cosa. sin 0)

_ U[cost(l+ e cosnB) —sin6 e nsinnf]

i.e. Un
@+ € cosnB)?+ €2 n?sin? no

(4)

As there is nO transport of
fluid across the surface
and n6 breakaway from it,
so Uy is also the normal
velocity component of the
fluid. ensinnd

1+e cos nd

(03

Thus,

Un =0 Sin o + (g COS a..
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[— SKA,r*kD coske}(1+ e cosno) [— KA, r®9sin ke}(e nsin no)
k=1 + k=1

J(@+ e cosnd)? + (e nsinnd)? J(@+ e cosnd)? + (e nsinnd)?

~> kA D (1+ e cosnd) “[coskd(L+ e cosnd) +sinkd € nsinn6]
— k=1

J@+ € cosn®)? + (e nsinnp)?

()
Equating the two forms for U, we get
~ SkAa €D (Lt e cosnf) *D[coskd(L+ e cosn)+ e nsin kOsin no]
k=1
= U[cos 6(1+e cos nB) — en sin 6 sin n6] (6)
We further simplify (6) for the terms upto 1st order in €.

L.H.S. of (6)

= SkAa D1 e (k +1) cosnd][coskd+ e coskOcosnd+ e nsin kOsin né]
k=1

=— Z kA, a Y [coskd- e (k +1) cosk®cosnd
k=1

+ € coskOcosnb+ e nsinkOsinno]
= - > kA a “P[coskd- e kcoskdcosnd+ e nsin kOsin nd]
k=1
= ZkAka’("*l) {coske _Ek {cos(n + k)0 +cos(n —k)6}
k=1 2
en
+ {cos(n —k)0 —cos(n + k)e}}

=— ikAka‘(kﬂ) {cos ko —g(n +k)cos(n + k)0 + ; (n—k)cos(n — k)e} (7)
k=1

R.H.S. of (6)
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=U| cos0 +§{cos(n +1)0 +cos(n —1)0} — %{cos(n ~1)0—cos(n +1)6}}

=U cose+§{(1+ n)cos(n +1)0+ (L—n)cos(n —1)9}} (8)

Correct to the first order of approximation, from (6), (7) & (8), comparing
coefficients of cos 0, cos (n—1)6, cos(n+1)6, we get

U:_i\l = A, =-Ua? (9) In+k=1
a

- [(n ~DA, a" +%A1a2 e(n —1)} = % Ue(n-1)

In (7) cos k6 — cos(n—1)6
cos (n—k)6 — cos (n—-1)6
similarly for n+1

and - {(n +1)A, a2 —%Ala‘2 e(n +1)} - —% Ue(n+1)

= A, ;=Uead", Apq=-Uea™?

All Ay other than Az, An_1, Ans are zero. Putting the value of these three non-
zero co-efficients in (2), we get

o(r, 0) = —[Asr ™ cosd + Aq1 r " cos (n-1) 0 +Ans1 r ™ cos (n+1)0]
n+1 n-1
a a a
= Ua{— COSO+ € (—j cos(h+1)6—e (?) cos(n —1)9} :
r r

Hence the result.
8. The Complex Potential

Here, we confine our attention to irrotational plane flows of incompressible
fluid of uniform density for which the velocity potential ¢(x, y) and the stream
function wy(x, y) exist. Here (X, y) specify two dimensional Cartesian co-
ordinates in a plane of flow. Let us write

W= 6(x, y) +iy(x, y) 1)

We suppose that all four first-order partial derivatives of ¢ & y with respect to
X, y exist and are continuous throughout the plane of flow. Now, the velocity

g = (u, v) has components satisfying G = -V¢.
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OX oy

o Bb_ v _ % _ov

- ’ oy ox @

Thus ¢ and v satisfy the C-R equations and so W must be an analytic function
of z=x +iy
Therefore, we can write (1) as
W=1(z) = ¢ +iy @)
The function W = f(z) is called the complex potential of the plane flow.
8.1. Complex Velocity. We have
W=¢+iyandz=x+iy
Differentiating partially w.r.t. X, we get

W _d ov_dh .o _

— = I—=—"F—-1—=-u+iv
OX OX OX oOx oy
But oW _dW oz _dw Loy
OX dz ox dz OX
Thus. d—Wz—u+iv

dz
:>—dd—VZV=u—iv:qcose—iqsine

= q(cosd — i sind) =qe™®

The combination u —iv is known as complex velocity

Thus, speed q :‘—(L—VZV‘ =vu?+v?

and for stagnation points, dd—W =0
z

8.2. Example. Discuss the flow for which complex potential is
WERS

Solution. We have
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W = ¢ + iy = 2% = (X + iy)? = x*—y* + 2i xy
= ¢(X! y) = X2_y21 W(Xv y) = 2Xy

The equipotentials, ¢ = constant, are the rectangular hyperbolae
x? — y* = constant having asymptotes y = + X.

The streamlines, y = constant, are the rectangular hyperbolae xy = constant
. dw

having the axes x = 0, y = 0 as asymptotes Also e = 2z, therefore the only
z

stagnation point is the origin. The two families of the hyperbolae cut
orthogonally in accordance with general theory.

8.3. Complex Potential for a Uniform Stream. Let the uniform stream
advance with a velocity having magnitude U and being inclined at angle a to
the positive direction of the x-axis.

Then, we have u = U cosa, V = U sina and thus

—d—W:u—iv: Ue®
dz

The simplest form of W, ignoring the constant of integration, is
W=-Uze™
Ie. ¢ + iy = -U(X + iy) (cos a—Ii sin o)
= —U(x cos o+ y sin o)) ~U i (y cos a.— X sin o)
Equating real and imaginary parts, we get
d=-U(Xcosa+ysina)
v =-U(y cos o — X sin o)
Thus, the equations of equipotentials are
X €COS o + Y sin o = constant (@)

These equations represent a family of parallel streamlines. The equations of
the streamlines are

y cosa — X Sina. = constant (2
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These equations represent another family of parallel streamlines inclined at
angle o to the positive x-direction. The two family of streamlines intersect
orthogonally in accordance with general theory.

8.4. Line Source and Line Sink. Line source and line sink are the two-
dimensional analogues of the three-dimensional simple source and sink. Let A
be any point of the considered plane of flow and C be any closed curve
surrounding A. We construct a cylinder having its generators through the
points of C and normal to the plane of flow. Suppose that in each plane of
flow, fluid is emitted radically and symmetrically from all points on the infinite
line through A normal to the plane of flow and such that the rate of emission
from all such points as A is the same. Then the line through A is called a line
source. We may take the closed curve C to be a circle having centre A and
radius r.

Suppose the line source
emits fluid at the rate
2nmp units of mass per C
unit length of the source
per unit time, in all
directions in the plane of
flow (say, xy-plane). We
define the strength of the
line source to be m. A line
source of strength —m is
called a line sink.

An example of a line source is a long straight hose with perforations along its
length, commonly used for watering lawns for long periods of time.

8.5. Complex Potential for a Line Source. Let there be a line source of
strength m per unit length at z = 0. Since the flow is radial, the velocity has the
radial component g, only. Then the flow across a circle of radius r is (by law
of conservation of mass)

(2nrq)p =2mmp

_m
= Q= —
r

The complex potential is obtained from the relation

_d_W:u_ivzqrcose—iqrsine
dz

= g (cosH — i sin) :?e“e
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W __m o _-m_-m

dz r re® z
Integrating, we get

W =-mlogz
where we have ignored the constant of integration.
We can write it as

o + iy =-mlog (r e")

=-mlogr—imo

= é=-—mlogr, y=-moO
Thus, the equipotentials and streamlines have the respective forms

I = constant, © = constant

ie. x2 + y? = constant, tan"* ¥ = constant
X

ie. X2 +y*=Cy,y=CoX.

Thus the equipotentials are circles and streamlines are straight lines passing
through origin.

If the line source is at z = zg instead of z = 0, then the complex potential is
W =-m log (z—2o)

For a line sink of strength m per unit length at z = zy, the complex potential is
W =m log (z—zp).

If there are a number of line sources at z = z;, z5,...,z, of respective strengths
my, Ma,..., my per unit length, then the complex potential is

W =-mj log(z —z;) — my log (z-2))....... —m, log (z—z,).

8.6. Complex Potential for a Line Doublet. The combination of a line source
and a line sink of equal strength when placed close to each other gives a line
doublet. Let us take a line source of strength m per unit length at z = a ¢'* and
a line sink of strength m per unit length at z =0

Therefore, the complex potential due to the combination is

151



FLUID DYNAMICS 152

W = —-m log(z — ae'*) + m log (z—0)

_ z—ae' ae'"
=-m log =-mlog| 1-
z z

{aeia a2eZic g3 gdia }
= + +

z 272 3z°

In the figure,
OP = a = 8s where a is the distance between the source and sink.
As a—0, m—oo so that ma —pu and thus, we get

io
w= M
z
If the line sink is situated at z = z,, then the complex potential is
MeiOL
W =
If o = 0, then the line source is on x-axis and thus.
w=—F~
If there are number of line doublets of strengths i, ps ....... un per unit length
with line sinks at points z;, z,,....... , zn and their axis being inclined at angles

o4, Oa,....., 0y With the positive direction of x-axis, then the complex potential
IS given by

ei(xl icx2 io

W=y +H, +os +H,

z2-2, z-z, z-z,

8.7. Example. Discuss the flow due to a uniform line doublet at origin of

strength p per unit length and its axis being along the x-axis.
Solution. We know that the complex potential for a doublet is

ueion

z-1,

and when the doublet is at origin having its axis along x-axis, then =0, zo =0
w=H__ B _ u(ZX—IBQ

Z X+ly x°+y

n

W =

. 8¢ . uy
= +iy = -1
o+ 1y X1yl X21y?
_ kX Ty
= ¢ = %2 y2' T2 2
y X" +y
Thus the equipotentials, ¢ = constant, are the coaxial circles
X2+ y* = 2kyx 1)

and the streamlines, y = constant, are the coaxial circles
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X* +y* = 2kpy 2)

Family (1) have centres (ki, 0) and radii k; and family (2) have centres (0, k»)
and radii k,
The two families are orthogonal

Streamlines

Equipotentials

8.8. Milne-Thomson Circle Theorem :Let f(z) be the complex potential for a
flow having no rigid boundaries and such that there are no singularities within
the circle |z| = a. Then on introducing the solid circular cylinder |z| = a, with
impermeable boundary, into the flow, the new complex potential for the fluid
outside the cylinder is given by

W =f(z) +f (a%/z), |z] > a

Proof. Let C be he cross-section of the cylinder with equation |z| = 1.
Therefore, on the circle C, [z =a =z z=a*> =7 =a/z

where Z is the image of the point z w.r.t. the circle. If z is outside the circle,
then Z = a’/z is inside the circle.  Further, all the singularities of f(z) lie
outside C and the singularities of f(a%/z) and therefore those of f (a%/z) lie
inside C. Therefore f(a%/z) introduces no singularity outside the cylinder.
Thus, the functions f(z) and f(z) + f (a%/z) both have the same singularities
outside C. Therefore the conditions satisfied by f(z) in the absence of the
cylinder are satisfied by f(z) + f (a%/z) in the presence of the cylinder. Further,
the complex potential, after insertion of the cylinder |z| = a, is
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W = f(z) +f (8%/z) = f(z) +T (Z)
=f(2) +f(2)
= a purely real quantity
But we know that W = ¢ + iy

It follows that w =0

This proves that the circular cylinder |z| = a is a streamline i.e. C is a
streamline. Therefore, the new complex potential justifies the fluid motion and
hence the circle theorem.

8.9. Uniform Flow Past a Fixed Infinite Circular Cylinder. We have
already dealt with this problem using cylindrical polar co-ordinates. Here, we
use the concept of complex potential.

The velocity potential due to an undisturbed uniform stream having velocity
—Ui (U isreal) is Ux = U Re(2).

Since z is an analytic function, the corresponding complex potential is

f(z) = Uz
Thus

f(z)=f(z)=Uz=Uz=Uz
and so

f (a’/z) = Ua%z .

With the cylinder |z| = a present, by circle theorem, the complex potential, for
the liquid region |z| > a, is

W =f(z) + f (a%/z)

ie. o+ i\p:U(z+£j

z

Taking z = re'®, where r > a, equating real and imaginary parts, we get

2
¢ = Re(W) = U cosO [r +aTj | Same expression as derived earlier
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v = Im(W) = U sin6 [r—?j

2
The perturbation term f (a%/z) = UaTgives the image of the flow in the

cylinder. This image represents a uniform line doublet of strength Ua? per unit
length and axis in the direction i.

9. Images in Two Dimensions

In a two dimensional fluid motion, if the flow across a curve C is zero, then the
system of line sources, sinks, doublets etc on one side of the curve C is said to
form the images of line sources, sinks, doublets etc on the other side of C. To
discuss the images in two dimensions, we use complex potential.

9.1. Image of a Line Source in a Plane. Without loss of generality we take
the rigid impermeable plane to be x = 0 and perpendicular to the plane of flow
(xy-plane). Thus we are to determine the image of a line source of strength m
per unit length at A(a, 0) w.r.t. the streamline OY. Let us place a line source
per unit length at A’(-a, 0).

I r

m 92 91 X
A0 O MA@o)

The complex potential of strength at a point P due to the system of line
sources, is given by

W =-m log z-a) -m log(z + a)
=-mlog [(z-a) (z+a)]
=-mlog |,e"tr,e"2 Jz -m Iog[rlrzei(91+92)]
= ¢ + iy =—mlog (ry rz) —im (01 + 62)
= v =-m (01 +6,)

If P lies on y-axis, then PA=PB = |PAB=|PBA
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i.e. n—-0:=0, =0,+0,=n
Thus y = —mm = constant

which shows that y-axis is a streamline. Hence the image of a line source of
strength m per unit length at A(a, 0) is a source of strength m per unit length at
A'(—a, 0). In other words, image of a line source w.r.t. a plane (a stream line)
is a line source of equal strength situated on opposite side of the plane (stream
line) at an equal distance.

9.2. Image of a Line Doublet in a Plane. Let us consider the rigid
impermeable plane to be x = 0 and perpendicular to the plane of flow (xy-
plane). Thus we are to determine the image of a line doublet w.r.t.

Y
B’ m m B
—m -m (0}
* R\A AN X
7 O A

the stream line OY. Let there be line sources at the points A and B, taken very
close together, of strengths —m and m per unit length. Their respective images
in OY are —m at A’, m at B, where A’, B’ are the reflections of A, B in OY.

The line AB makes angle o with OX. Thus A'B' makes angle (m—a) with
OX. In the limiting case, as m—o, AB—0, we have equal line doublets at A

and A’ with their axes inclined at a, (m—a) to OX . Hence, either of the line
doublet is the hydrodynamical image of the other in the infinite rigid
impermeable plane (stream line) x =0

9.3. Image of Line Source in a Circular Cylinder (or in a circle). Leta line
source of strength m per unit length be present at a point z = d in the fluid; d >
a. Let us then insert a circular cylinder |z| = a in the fluid. The complex
potential in the absence of cylinder is —m log (z—d) and after the insertion of
cylinder, by circle theorem, we get

o + iy = W = —m log (z—d) —m log(a’/z)—d
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=0 A'(z :azld)\ A(z=d)

—-m m m
m

= -m log (z-d) -m log H_Td)(_%z ' ZH

= -m log (z-d) -m log (z—a?/d) + m log z + constant (1)

Ignoring the constant term, we observe from (1) that the complex potential
represents a line source at z = d, another line source at the inverse point z =
a’/d and an equal line sink at the centre of the circle. Thus the image of a line
source of strength m per unit length at z = d in a cylinder is an equal line
source at the inverse point z = a?/d together with an equal line sink at the centre
z = 0 of the circle. Further, (1) can be written as

b +iy = -m Pog{(x —d)? 4y tan_l(x—zdﬂ

1/2

a’ ‘ 2 . 1( Yy )
-m | log| x—— | + +itan™| —X—
g{ dJ Y x—aZ/d

+ m[log(x2 +y?)Y? +itan‘1ﬂ Jlogz=log+i0r=4x*+y?,0
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y ., Y
1 x—d x-a?/d
1— y

x—-dx—a%/d

= -m tan” +mtan™

y
X

X2+y2 =a2

Y _yz — %2

= mtan Y tmtant¥ =0,
X

X

Thus, the circular cylinder is a streamline i.e. there is no flow of fluid across
the cylinder.

9.4. Image of a Line Doublet in a Circular Cylinder (or in a Circle). Let
there be a line doublet of strength p per unit length at the point z = d, its axis
being inclined at an angle o with the x-axis. The line doublet is assumed to be
perpendicular to the plane of flow i.e. parallel to the axis of cylinder. The
complex potential in the absence of the cylinder, is

Heie

z—-d

When the cylinder |z| = a is inserted, the complex potential, by circle theorem,
becomes

_ MeiOL “e—i(x
= +
z—-d (a%*/z)-d

Meiot ~ Me—iotz
z—d _a2
d2-%)

i(n—a)

pe'® L _Hze
z—d _a2
o)
_ uei“ s uei(n—(x) s Ma2 ei(n—(x)
~z-d d d? 2—37
d

If the constant term (second term) in (1) is neglected, then the complex
potential in (1) is due to a line doublet of strength u per unit length at z = d,

1)
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2

. . , : a
inclined at an angle o with x-axis and another line doublet of strength P;—z per

unit length at the inverse point z = a%/d inclined at an angle n—o with x-axis.

Thus the image of a line doublet of strength p per unit length z = d inclined at

2
. . . a .
angle o with x-axis is a line doublet of strength —22 per unit length at the

inverse point a’/d which is inclined at an angle n—o. with x-axis.

o J =

9.5. Remark. The above two cases i.e. (iii) and (iv) alongwith ‘uniform flow
past a fixed infinite circular cylinder’ are applications of Milne-Thomson circle
theorem.

9.6. Example. What arrangement of sources and sinks will give rise to the

a2
function W =log| z——|?
z

Also prove that two of the streamlines are a circler =aand x =0

2 2 .2
Solution. We haveW:Iog(z—a?JﬂOg[z Za J

ie. o + iy = log (z%-a?) — log z
=log (z—a) + log (z+a) — log z @

This represents a line source at z = 0 and two line sinks at z = + a, each of
strength unity per unit length. We can write

¢ + iy = log(x—a + iy) + log(x +a + iy) — log(x +iy)

— y=tan'Y stantY _tantY

X—a X+a X
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y .Y
=tan | X=2 X+a _tantY

1- Y X

x? —a?

=tan71 %j—tan_lz

x?-y?-a X

7,2 2 2
o [xP+y?+a?)y
| X

Since y = constant is the equation of the streamlines, therefore equations for
streamlines are

y (¢ +y* +a%) = (* + y? —a’)x tan a
where a is a constant.

In particular, if we take o = n/2, then we get the streamlines as

(x*+y*-a?)x=0

ie. X +y*—a=0, x=0
ie. X¥+y'=a>  x=0
ie. r=a,x=0.

Hence the result.

9.7. Example. A two dimensional doublet of strength ui per unit length is at a

point z = ia in a stream of velocity -V i in a semi-infinite liquid of constant
density occupying the half plane y > 0 and having y = 0 as a rigid impermeable

boundary, i being the unit vector in the positive x-axis. Show that the
complex potential of the motion is

W = Vz + 2uz/(z* + a9)

Also show that for 0 < p < 432V, there are no stagnation points on the
boundary and that the pressure on it is @ minimum at the origin and maximum

at the points (ia\/§, 0).
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Solution. We know that the image of the line doublet uf at point A(0, a) is a

line doublet pi at point A’(0, —a)

A(OA S

Therefore, the complex potential of the system is

W=Vz+ L+L
Z—-la z+la

=Vz+ 22“22 =Vz+2uz (2*+a)™"
22 +a

From here, we get

0('1_\’2\/: V +2u(@® - 2% (@° + 2%

On the boundary y = 0 and thus z = x, therefore,

= ‘—d—W =‘—d—W =V + 2u (a%—x%) (@% + x%)
dz
For stagnation points aw =0
dx
= Vx* +2x% (Va2 —p) + Va* + 2ua® = 0 (1)

which is a quadratic in x* whose discreminant is
A = 4[(Va® —p)? -V (Va* + 2pa’)]

= 4p (n—4a’V)

From here, A < 0 if 0 < u < 4a®V, showing that the quadratic equation (1) has
no real root. Therefore there is no stagnation points on the boundary y = 0.
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Applying Bernoullis equation along the streamline y = 0, we have

2 2 7
E+1 V +2u az Xz > | = constant
e 2 (@ +x°)
E+1q2 = constant.
e 2
2 72
P is maximum when X = {V+%} is minimum and conversely.
a® +X

From here, we get
Xl/Z =V +2H (aZ _ XZ) (aZ + X2)—2
Differentiating w.r.t. x, we get

%X‘l’z. X' = —4px (3a%-x%) (@2 + x?) 2 X’ :(;—X
X

For extreme values of X, we have X’ = 0 which gives
x =0+ a3,

We observe that X' changes sign from positive to —ve when x passes through
zero and thus X is maximum atx =0 = p is minimum at x = 0 i.e. at (0, 0) i.e.
the origin.

Similarly X' changes sign from negative to positive as x passes through + a/3
showing that X is minimum at x = + a~/3and thus p is maximum at (+

a\/§,0).

10. Blasius Theorem

In a steady two dimensional irrotational flow given by the complex potential W
= f(z), if the pressure forces on the fixed cylindrical surface C are represented
by a force (X, Y) and a couple of moment M about the origin of co-ordinates,
then neglecting the external forces,

. 2
X —iy =P (d—wj dz
2°C \ dz

2
M = Real part of _P z(d—w} dz
2°C  dz
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where p is the density of the fluid

Proof. Let ds be an element of arc at a point P(x, y) and the tangent at p makes
an angle 6 with the x-axis. The pressure at P(X, y) is pds, p is the pressure per
unit length. pds acts along the inward normal to the cylindrical surface and its
components along the co-ordinate axes are

pds cos (90 + 6), pds cosO
i.e. —pdssinG, pdscoso

The pressure at the element ds is

y
pds sin6
w pds coso
pds
0
@)
X
dF = dX +idY
= —psinO ds + ip coso ds
= ip (cosO + [ sind) ds

pds sin 6 alongnegative X — axis
= —pds sin O along positive x —axis

=ip %-Fiﬂ ds cos(%:%, sinezﬂ
ds ds ds ds
=ip (dx + idy) = ip dz )
The pressure equation, in the absence of external forces, is
Py %qz = constant
1 -
or p=—2pq + K (2)

Further Z—VZV =—Uu+iv=-qcosO +iqsind

163



FLUID DYNAMICS 164

=—q (cosb — i sinB) = —q o i )

and dz =dx +idy = (%H%}ds =(cos O +isin@)ds=e’ds (4)

The pressure on the cylinder is obtained by integrating (1). Therefore,

F=X+iY =], ipdz = [. i(k-1/2 pg®) dz

__p . _
__E-[C qzdz | .IC dz=0

__p 2 ,i0
== [c q°e"ds
From here ;

X—iY:'Eij g e ds
_ip “2i0y i
— EJ‘C (qze ZIG) ele dS

. 2
ip dw :
= — | dz using (3) & (4
5 Je (dz) | using (3) & (4)
The moment M is given by

M= [ |FxdF|=]. [(pds sind) y +(pds cos6) x]

{8 o]

T xdF
| ] k
= X y 0
—pdssin® pdscoso

= [o p(xdx +ydy]

= e (k—%pqzj (xdx + ydy)
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=kJq dE(xHyz)}—gJC q” (xdx + ydy)

= —% [o dP(xdx + ydy) | -+ 1% integral
vanishes.
_—P 2 : dx = cosbds
= — X €0SO + y sinB) ds
2 JC T y sinb) dy =sin6ds

_ (=P 2 -
= R.P. of _7JC q2(x +iy)(cos® —isin e)ds}

_ _—P 2,0
=R.P of _7ch ze™ ds}

=R.P of{%’jC z(qze‘Z‘e)eieds}

e dw)’
=R.P. of I:_E'[C Z(E) dZ:|

Hence the theorem.

11. Two-dimensional Irrotational Motion Produced by Motion of
Cylinders

Here, we discuss two-dimensional irrotational motion produced by the motion
of cylinders in an infinite mass of liquid at rest at infinity (the local fluid moves
with the cylinder). The cylinders move at right angles to their generators
which are taken parallel to z-axis. Thus we get the xy-plane as the plane of
flow. For the sake of simplicity, we take the cylinders of unit length. For such
motion, the stream function y or velocity potential ¢) is determined in the light
of the following conditions.

0] v satisfies Laplace equation i.e. Vzw = 0 at every point of the liquid.

(i) Since the liquid is at rest at infinity, so

N =0 and v =0 at infinity.
OX oy
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(i) Along any fixed boundary, the normal component of velocity must be

Zero so that 8_\4; =0i.e.

oS

y = constant, which means that the boundary must coincide with a
streamline.

(iv)  On the boundary of the moving cylinder, the normal component of the
velocity of the liquid must be equal to normal component of velocity of
the cylinder.

Further, we observe that the two-dimensional solution of the Laplace equation
v2y =0, in polar co-ordinates (r, 6), is

v =Anr"cosnd +B,r"sin 0

where n is any integer, A, and B, being constants. Also, all the observations
made for , are valid for velocity potential ¢, where ¢ and y satisfy C-R
equations.

11.1. Motion of a Circular Cylinder. Let us consider a circular cylinder of
radius a moving with velocity U along x-axis in an infinite mass of liquid at
rest at infinity. The velocity potential ¢ which is the solution of V¢ = 0, must
satisfy the following conditions.

Q) (— @j =Ucos0
or),_,
Ucos6
(i) _% and—E@ — 0asr—wo
8!’ r 89 0 U
AN X
A suitable form of ¢ is
B
¢ (r,0)= (Ar+ ?j coso Q)
— _% :(—A+E) cos0 (2
or r?

Applying conditions (i) and (ii) in (2), we get

(—A+E2jcose =Ucos6,(-A + 0.B) =0 forall 6.
a
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= -A +E2 =UA=0
a
- A=0,B=Ua
_ Ua?
Thus o(r, 0) = Tcose 3)

The second condition of (ii) is evidently satisfied by ¢ in (3)

But % = 1oy (C-R equation)
or r oo
2
S0, 16—\“ = —Ui cos0
r o0 r?
2
i.e. % = —Ui cos0
00 r

Neglecting constant of integration, we get

2

\p:—U%sine )
__ Ua? .
Thus W=¢+iy= - (cosO — i sind)
_Ua® Ua®
e  z

which gives the complex potential for the flow.

11.2. Remarks. (i) For the case of ‘Uniform flow past a fixed circular
cylinder’, using circle theorem, we have obtained the complex potential as

W = f(z) + f(a%/2)

2
—uz+uL
Z

where the cylinder moves with velocity U along positive direction of x-axis. If
we give a velocity U to the complete system, along the positive direction of x-
axis, then the stream comes to rest and the cylinder moves with velocity U in

x-direction.

167
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Thus, we get

2 2
W:Uz+Ua——Uz=Ui
z z

(i) Similarly, if we impose a velocity U in the negative direction of x-axis
to the complete system in the present problem, then the cylinder comes
to rest and the liquid flows past the fixed cylinder with velocity U in
negative x-axis direction and thus we get

2
w=Y" s
Z

(iii)  If we put Ua? = p, then we get

i0

W: E:l«le
z z-0

which shows that the complex potential due to a circular cylinder with velocity
U along x-axis in an infinite mass of liquid is the same as the complex potential
due to a line doublet of strength p = Ua? pre unit length situated at the centre
with its axis along x-axis.

11.3. Example. A circular cylinder of radius a is moving in the fluid with
velocity U along the axis of x. Show that the motion produced by the cylinder
in a mass of fluid at rest at infinity is given by the complex potential

Ua?

W=o+iy= z— Ut

Find the magnitude and direction of the velocity in the fluid and deduce that
for a marked particle of fluid whose polar co-ordinates are (r, 0) referred to the
centre of the cylinder as origin,

2 ) 2
1g+i@ :E(a—e'e —e'ej and (r—a—Jsin 0 = constant

rdt dt rlr? r

Solution. The cylinder is given to be moving along x-axis. At time t, it has
moved through a distance Ut. Taking z = Ut as the origin, the complex
potential is

Ua?

W=y = z-Ut
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Therefore

Therefore,

dw Ua? Ua?

= S=——e?, z-Ut=re"
dz  (z-Ut) r

. Ua? .
u—iv= r—z(cos 20 — i sin 20)

2 2
u= Uizcosze, v=Uizsin26
r r

5 7 Ua®
q: U2+V2 :—2
r

The direction of velocity is tan o = V- tan20 = a =260

u

When the cylinder is fixed and its centre is at 0, then

2 2
W =Uz +U%: U(x+iy)+Uiz(x—iy)
r

2
¢ + iy = Ur (cos + i sind) +U%(cose—isin 0)

2 2
¢ = Ur coso + w, Y= U(r—aT]sine

The streamlines are given by y = constant

Further,

aZ
r—T sin@ = constant

dr o Ua? _
—=——"=-Uco0s0+——co0sO =-V
dt  or r? & ¢
2 -
r@:_E@:Usine_p—Ua sin6
dt r 60 r?

1dr .d0  Ucos® Ua®cosd iUcosd .Ua?sin®
i = + + +i
rdt dt r re r r

169
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Hence the result.

11.4. Equation of Motion of a Circular Cylinder. Let a circular cylinder of
radius a move with a uniform velocity U along x-axis in a liquid at rest at

o . . . . Ua?
infinity. The complex potential for the resulting motion, is ¢ + iy =W =——,

z
where origin is taken at the centre of the cylinder.

2 2
Thus, o= U%cose, Y= —U% sind

SO (@j =-U cos0
or),_,

Let T, be the K.E. of the liquid on the boundary of the cylinder and T, that of
the cylinder. Let o and p be the densities of material of the cylinder and the
liquid respectively. Then

__ P00
T1——§J¢—ds
-_P 2”(¢@j ado, s=ad —=ds=ad0 |I1=10
r=a
_ P2 Uaz
_EIO Tcose (U cos0) ado

cos® 0 do

U2a2 2n
g 2 .[O

2,2 2

U2
2 2

where M’ = it a%p = mass of the liquid displaced by the cylinder of unit length.
K.E. of the cylinder, T, = % MU? M = na’c

Thus, total K.E. of the liquid and cylinder is
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T:T1+T2:%(M+M’)U2 1)

Let R be the external force on the cylinder in the direction of motion. We use
the fact that rate of change of total energy is equal to the rate at which work is
being done by external forces at the boundary.

1d

RU= = —(M+ M) U?
2 dt
workdone forcedistance
time time

= force velocity

_M+M,  du
2 dt
= +myudY
dt
= mIY_r_mdY @)
dt dt

Equation (2) is the equation of motion of the cylinder. This shows that the
presence of liquid offers resistance (drag force) to the motion of the cylinder,
since if there is no liquid, then M’' = 0 and we get

du
M—=R 3
ot ©)

. R . .
Now, |fmz external force on the cylinder per unit mass be constant and

conservative, then by the energy equation, we get
1 1 2 1 R —
5 (M+ M) U”—(M -M )Mr = constant 4)

where r is the distance moved by the cylinder in the direction of R. Diff. (4)
w.r.t. t, we get

du

R
M+M)U——(M-M)—U=0
( )V ¢ Y

du |\/|—|\/|'R:ncsaz—npa2

or — =
dt M+M'  mosa?+mpa’

R
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ie. mdY_o-pp (5)
dt o+p

which gives another form of equation of motion

If U= (u,v)and R = (X, Y), then

M%:G__px, MQ:G_pY (6)
dt o+p dt o+p

Are the equations of motion of the cylinder in Cartesian co-ordinates.
Comparing (3) and (5), it can be said that the effect of the presence of the
liquid is to reduce external forces in the ratio

o—p.c+p.

11.5. Motion of two co-axial cylinders. Let us consider two co-axial
cylinders of radii a and b (a < b). The space between them is filled with liquid
of density p . Let the cylinders move parallel to themselves in directions at
right angles with velocities U and V respectively, as shown in the figure

The boundary conditions for the velocity potential ¢ which is the solution of
V% =0, are (q=-Vd)

Q) —2—(1) =UcosO, r=a Q)
(i) —g—T:Vsine,r:b 2

A suitable form of velocity potential is

b= (Ar+$)cose+(Cr+Bjsin9 3)

r

- @:(A—E)cos(ﬂ(C—BjSinO 4)

ar r2 r2
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Using (1) & (2) in (4), we get

—U cos0 = (A—%)cos(ﬂ(C—%jsine
a a

-V sin@ = (A—%)COSO+(C—EJS“‘IO
b b2

Comparing co-efficients of cosd and sin6, we get

B D
A-S-_U C-==0
a’ a’

B D

Solving these equations, we obtain

2 1 1a2n2 2 212
A=- zuaz’B: Eabz’cz 2\/02’D:\£a bz
a‘-b a-—b a‘—-b a‘-b

Thus, (3) becomes

Ua? b? Vb? a’) .
=— — _|r+—|[cosO+———| r+—|sinod
¢ az—bz( rJ az—bz( r

2 2 2 2
Ua r+b— cose—L r+2 |sing (5)
r b2 —a? r

b —a?

The expression for y can be obtained from

9 _loy
o r oo
i.e. ﬁzr@
00 or

= Ua® r—lo—2 c0sO — Vb® r—i sin®
"~ b2-a2 r b? —a? r

Integrating and neglecting the constant of integration, we get

173
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Ua? b2 ) . Vb2 a’
= — |r——|sinB+ r—— |coso (6
\ll b2_a2( rj b2_a2( r ( )

It should be noted that the values of ¢ and y given by (5) and (6), hold only at
the instant when the cylinders are on starting i.e. the initial motion.

11.6. Corollary. If the cylinders move in the same direction then the boundary
conditions are

o9 _

i ——L=UcosH,r=a
® or

(i) _% V coso, r=b
or

Using these conditions in (4), comparing co-efficients of cos6 and sin6 and
then solving the resulting equations, we get

_ Ua®-W? B —UVa %p?

A , )
b? —a? b? —a?

C=0,D=0

2102
So, ¢= bziaz {(Uaz—Vbz)r—Uvar b }cose

2182
and  y= {(Uaz—Vbz)Huvab}sine

b® —a? r

11.7. Example. An infinite cylinder of radius a and density & is surrounded
by a fixed concentric cylinder of radius b and the intervening space is filled
with liquid of density p. Prove that the impulse per unit length necessary to
start the inner cylinder with velocity V is

2
7z e b’ (op) &IV

Suppose that V is taken along the x-axis.

Solution. Let the velocity potential be
o= (Ar+$)cose+(Cr +%)sin6 Q)

The boundary conditions are (G =—Vo)
o _

M ——=VcosO, r=a
or
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. 0
I -——=0,r=b
U or
Applying these conditions in (1) and then comparing co-efficients of cos6 and
sinB, we get
B D
A-—=-V, C——=0
a’ a’
B D
A 7 =0, C Y =0
Solving for A, B, C, D, we obtain
2 22
A=t B=i 7 C=D=0
b -a b —-a
Thus, the potential (1) is
212
=1 vazre YAl oee
b2 _a2 r

Now, the impulsive pressure at a point on r = a (along x-axis), is

Va? b?
P=(pd)=a= bpz 5 (r+—Jcos|r_a

r

_ pVa
b2 —a?
The impulsive pressure on the mole cylinder is

2n pVa 9 . 2
s b2 o2 (a” + b®) cose. a cosd do

(a% +b?)coso

Now, change in momentum = the sum of impulsive forces

2 2
Therefore, = a’c (V-0) = | — na’p [b *a ]V

b? —a?
= = na’c V + naZp(%jV
Thus, impulse due to external forces, is
1= 2V o (7-a0) + o7+ )
na’V

= b2 _aZ [(c + p) b* —(o—p) @]

Hence the result.
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UNIT — 1

1. Vortex Motion

So far we have confined our attention to the cases involving irrotational motion
only. But the most general displacement of a fluid involves rotation such that

the rotational vector (vortex vector or vorticity) &=curlg=0. Here we

consider the theory of rotational or vortex motion. First of all we revisit some
elementary definitions.

Lines drawn in the fluid so as at every point to coincide with the instantaneous
axis of rotation of the corresponding fluid element are called vortex lines.
Portions of the fluid bounded by vortex lines drawn through every point of an
infinity small closed curve are called vortex filaments or simply vortices and
the boundary of a vortex filament is called a vortex tube.

If C is a closed curve, then circulation about C is given by

I'= {qdr=[n.curlgdS=[AEdS=[E.dS
c s s s

The quantity

A -E‘BS is called the strength of the vortex tube. A vortex tube
with a unit strength is called a unit vortex tube.

We shall observe some important results for vortex motion which are
consequences of the following theorem due to Lord Kelvin.

1.1. Kelvin’s Circulation Theorem (Consistency of circulation). The
circulation around a closed contour C moving with the inviscid (non-viscous)
fluid is constant for all times provided that the external forces (body forces) are
conservative and the density is a function of pressure only.

Proof. The circulation round a closed curve C of fluid particles is defined by
I = {q.dr,
c

whereq is the velocity and T is the position vector of a fluid particle at any
time t.

Time derivative of I" following the motion of fluid is
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90 g9
-i[a dr+Q q (dr)}
:im—?-dﬂq-dﬂ (1) ‘ —(dr) d(grj dg

Since the system of forces is conservative; therefore F= -VQ, where Q is a
potential function Euler’s equation of motion is

99 _¢ lyp-_va-lvp @)
dt p p

Multiplying each term of (2) scalarly by dr, we get

ar-99 __gr.va-Larvp
dt p
i, 99 4 — _gop - 9P 3) |- drV =d
dt p

Thus from (1), we get

ar_
dt

o-—e-.
|
o
e,
|
E
+
o]
o
o
N

1
O ——y
1

(4)

where A is any point on the closed contour C. Now, if density is a function of

. d .
pressure only, then the integral f ap vanishes and hence we get
C
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d_F =0 = T =constant for all time

dt

Corollary (1). In a closed circuit C of fluid particles moving under the same
conditions as in the theorem,

[curl §.dS = [£.dS = constant (5)
S S

where S is any open surface whose rim is C. To establish (5), we note that, by
Stock’s theorem,

[curlg.dS = {g.dF =T = constant
s c

This shows that the product of the cross-section and angular velocity at any
point on a vortex filament is constant all along the vortex filament and for all
times.

Corollary (2). Under the conditions of the theorem, vortex lines move with the
fluid.

Proof. Let C be any closed curve drawn on the surface of a vortex tube. Let S
be the portion of the vortex tube rimmed by C. By definition vortex lines lie
on S. Thus

0= fcurl §dS = {q.dr | - on surface circulation is zero
S C
Let C be a material curve and S be a material surface, then

%i(ﬁ.curl q)dS:ig(ﬁ.curl 0)ds=0

Thus A.curl § remains zero, so that S remains a surface composed of vortex
lines. Consequently vortex lines and tubes move with the fluid i.e. vortex
filaments are composed of the same fluid particles. This explains why smoke
rings maintain their forms for long periods of time.

Corollary (3). Under the conditions of the theorem, if the flow is irrotational in
a material region of the fluid at some particular time (e.g. t = 0 or t = tp), the
flow is always irrotational in that material region thereafter.

i.e. If the motion of an ideal fluid is once irrotational it remains irrotational for
ever afterwards provided the external forces are conservative and density p is a
function of pressure p only.
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Proof. Suppose that at some instant (t = to), the fluid on the material surface S
is irrotational

Then, & =0 1)
for all points of S.

Let C be the boundary of surface S, then

I = {g.dr = [(A.curl §)dS = [(N.E)ds=0 | using (1)
C S S

But by Kelvin’s circulation theorem, I'" is constant for all times. Hence
circulation I" is zero for all subsequent times. At any later time,

[AEdS =
S
If we now take S to be non-zero infinitesimal element, say AS, then

A.EAS =0 = & =0 atall points of S for all times and the

motion is irrotational permanently. This proves the permanency of irrotational
motion.

1.2. Remarks (i) The above three corollaries are properties of vortex filaments.

(i)  The Kelvin’s theorem is true whether the motion be rotational or
irrotational In case of irrotational motion, & =0 and thus T =0

(iii)  From the results of the theorem, we conclude that vortex filaments must
either form closed curves or have their ends on the bounding surface of
the fluid. A vortex in an ideal fluid is therefore permanent.

1.3. Vorticity Equation. Euler’s equation of motion for an ideal fluid under
the action of a conservative body force with potential Q per unit mass is

DG &g 1_2j = 1
—=—4+V|= — =-VQ-=V 1
S (2 9’ |-ax& VP M
where the vorticity & =curl =V xq. If the fluid has constant density, then
taking curl of equation (1), we get

q X l_z —Vx(GxE&)=Vx| — _1
VXE-I-V [V(zq ﬂ Vx(@xg)=V ( vQ prj
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x@— x(GxE) =

= \% P Vx(@x§g)=0

- O (vxT)-Vx(GxE) =0
ot
G_E_ (G x &

= il (@x¢)

=(E-V)a-(q-V)§

- %+(G-V)E=(E'V)G
| DE . .
1.e. E—(E_, V)q (2)

which is the required vorticity equation.

Equation (2) is called Helmholtz’s vorticity equation. For two-dimensional motion, the

vorticity vector & is perpendicular to the velocity vector { and the R.H.S. of (2) is identically

zero. Thus, for two dimensional motion of an ideal fluid, vorticity is constant.

In the case, when body force is not conservative, equation (2) becomes
D - _
_gz(g-v)q+curl F
Dt

where F is body force per unit mass.

1.4, Example. A motion of in viscid incompressible fluid of uniform density is symmetrical
about the axis r = 0 where (r, 6, z) are cylindrical polar co-ordinates. The cylindrical polar
resolutes of velocity are [q.(r, z), 0, q,(r, 2)]. Show that if a fluid particle has vorticity of
magnitude &, when r = ro, its vorticity when at general distance r from the axis of

symmetry has magnitude & = (&y/ro)r, if any body forces acting are conservative.
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Solution. The vorticity vector E satisfies the vorticity equation

D -~ _._
5 _(¢.v 1
ot (E-V)g €y
Now,
P ro 4
E—curlq—1 O
ri or 09 0z
q.(r,z) 0 q,(r,2z)
L ﬁ{ (r, z)}+r6{ q,(r,z) —q (r, z)}+z(0)
r oo
oz or
Therefore,
. 0 10 .0
V)=E.|F=—4+0=2+22
Ch &(rarJr r oo Zazj
=éaqr o, .(?£+é1£+22j
oz or or roo oz
_1(%_%j5 0F=0=02
r\oz or )oo

1 )0, . .
Thus (&Ww;(%— pe j%(qrquz)

_Or| % a9, |OF
r| oz or |09
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:&(%_%j@ T s 2y @
r\oz or 00 0

. QOr= .
Hence (EV)q = T& | using (2) 4

. From (1) & (4), we get

DE _arg
Dt ra ©)

Now, g = ., so equation (5) becomes

g o
r—=aq.r 6
or & (6)
] Dr Dr
Since P=r’>f—=r—
Dt Dt
r Dr Dr . Dr Dr ._ Dr
= - = —=— ===
r Dt Dt Dt Dt Dt

DE _Drg
Dt Dt
riz_gﬂ
— D_é_EE: = Dt Dt=0
Dt Dt r?
= 2 é =0 :>§=const E"—O
Dt{r r o

Hence the result.
2. Vorticity in Two-dimensions

For an incompressible fluid in the xy-plane, we have

182
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= ov au
Therefore, =Vxq=(0,0,—-—
erefore & x{=( r 8y)
_yv_a
ox oy

which shows that in two-dimensional flow, the vorticity vector is perpendicular
to the plane of flow.

Also, EJ:‘E‘:___

Thus E=ke
Now, for this case, the Helmholtz’s vorticity equation
dg

i (¢-V)q gives

45 _ 0 = & =constant
dt

i.e. & = constant.

which shows that in the two-dimensional motion of an incompressible fluid,
the vorticity of any particle remains constant.

Here, we may regard  as a vortex strength per unit area.

Also, in terms of stream function, we have

B
oy OX
2 2
Therefore, E=k 6_\g+8_\2|/ =k Viy
OX oy
ie. £=Viy

This gives vorticity in terms of the stream function.
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2.1. Circular Vortex. The section of a cylindrical vortex tube whose cross-
section is a circle of radius a, by the plane of motion is a circle and the liquid
inside such a tube is said to form a circular vortex.

If o is the angular velocity and ma® the cross-sectional area of the vortex tube,
then circulation

r'={g-dr=| curlg-AdS= curlg-dS
C S S
=30 _[dS:cona2 = k(say)
S

This product of the cross-section and angular velocity at any point of the vortex
tube is constant along the vortex and is known as the strength of the circular
vortex.

2.2.Rectilinear or Columnar Vortex Filament. The strength k of circular
vortex is given by k = ona®. If we let a—>0 and w—»oo such that the product
on a remains constant, we get a rectilinear vortex filament and represent it by
a point in the plane of motion. Such vortex filament may be regarded as
straight gravitating rod of fluid lying perpendicular to the plane of flow. It is
also termed as a uniform line vortex. The strength of a vortex filament is
positive when the circulation round it is anticlockwise and negative when
clockwise.

2.3. Different Types of Vortices. We may divide vortices into the following
four types

Q) Forced vortex in which the fluid rotates as a rigid body with constant
angular velocity.

(i)  Free cylindrical vortex for which the fluid moves along streamlines
which are concentric circles in horizontal planes and there is no
variation of total energy with radius.

(iii)  Free spiral vortex which is a combination the free cylindrical vortex
and a source (radial flow)

(iv)  Compound vortex in which the fluid rotates as a forced vortex at the
centre and as a free vortex outside.

2.4. Complex Potential for Circulation about a Circular Cylinder
(Circular vortex). In case of a doubly connected region, the possibility of
cyclic motion does exist and as such we proceed to explain it presently in the
case of circle.
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If the circulation in a closed circuit is 27k, then k is called the strength of the
circulation.
Let us consider the complex potential
W=¢+iy=iklogz (1)
On the circular cylinder |z| = a, z=a "
Thus, W = ik log (a €"®) = ik (log a + i0)
le. ¢+ iy =-ko +ikloga
= ¢ = —k6, y = k log a = constant.

This shows that the circular cylinder is a streamline and thus equation (1) gives
the required complex potential for circulation about a circular cylinder.

When the fluid moves once round the cylinder in the positive sense, 6 increases
by 27 and then

¢1 = -k (0 +21) = —kO 21k
= ¢ —2nk
Therefore, circulation = 2tk = ¢ —¢s
= decrease in ¢ moving once round the circuit.

Hence there is a circulation of amount 2rk about the cylinder.

AlSO, d_W:K
dz z
- _ ‘_d_W _k
q dz r
i.e.k=rq

Therefore, k=qgwhenr=1
Thus k is the speed at unit distance from the origin.

2.5. Complex Potential for Rectilinear Vortex (Line Vortex). Let us
consider a cylindrical vortex tube whose cross-section is a circle of radius a;
surrounded by infinite mass of liquid. We assume that vorticity over the area
of the circle is constant and is zero outside the circle.
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Let y be the stream function, then
E=Viyk

. oty %y
— 2, —
l.e. E=V >

s

_ Oy Loy 10y
or>2 ror r? 02

Since there is a symmetry about the origin y is a function of r only and so

%y _
062
1d( dy
=-—|r— | forr<a
6= rdr( drj
=0,forr>a
. d( dy
ie. —|r— | =r& forr<a
dr( drj s
=0, forr>a

Integrating, we find

2
(;W &r—+A forr<a

=B, forr>a

We are interested in the fluid motion outside the cylinder |z| = a. Therefore,
integrating the second of the above result, we get

y=Blogr+C,forr>a.

The constant C may be chosen to be zero. Further, for r > a, the vorticity is
zero and the fluid motion is irrotational, therefore velocity potential ¢ exists
and is related to y as

18¢8\VB
roo or r

- ¢$=-BO+D
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= ¢ = —B0, neglecting D
Let k be the circulation while moving once round the cylinder, then
k = decrease in value of ¢ on describing the circuit once
=-B[6-(6+27)] = 2nB
= B = k/2n = K(say)
Thus,  =-K6 and y = ZK log r
Hence W = ¢ + iy = —k6 + iK logr

= iK (logr +i6)
=iKlogz= iﬁlogz.
21

If the rectilinear vortex is situated at the point z = zo, then by shifting the
origin, we get
W =iK log (z—zp)

If there are vortices of strengths Kij, Kj, ...K, situated at zj, z»,..., zp
respectively, then the complex potential is

W = iK; log(z-z;) +iK; log(z—2z,) +...+ iK, log(z—z,).
2.6. Remarks (i) By a vortex, we mean a rectilinear vortex or line vortex.
(i) K = k/2r, where K is the strength of a vortex and k that of circulation

2.7. Complex Potential for a Spiral Vortex. The combination of a source
and a vortex is called a spiral vortex or a vortex source.

Let us consider a source of strength m and a vortex of strength K both at the
origin. Then the complex potential is

W =-mlogz + iK logz
= (-m +iK) log z = (—m + iK) log (re'®)
= (—m +iK) (log r +1i0)
= o+iy=—mlogr—Ko+i(-m6+Klogr)

Therefore, o=—(mlogr+K0),y=-m6+Klogr
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If we go once round the origin, then ¢ decrease by 27K and y be 2ztm.

2.8. Example. Find the complex potential for the motion due to a system
consisting of a coincident line-source of strength m per unit length and line-
vortex of strength K per unit length in the presence of a circular cylinder of
radius a, whose axis is parallel to and at a distance b( > a) from the line of the
source and vortex. Show that the cylinder is attracted by a force of magnitude

2np @ (M? + K?)/ b(b*-a?)
per unit length.

Solution. We suppose the line-source and line-vortex to be at the origin, then the complex

potential is

W=-mlogz +iKlogz= (iK-m) log z (D)
When the circular cylinder |z—b|=a (b > a) is inserted, the complex potential, by circle

theorem, becomes

_ _ a’
W = (iK—m) log z + (~iK—m) log [ . +bJ (2)

where

lz-bj=a= (z-b) (z-b) =a°

- a
= Z-b= —
b z-b

By Blasius theorem, force on the cylinder C is given by

2
: _ dw -
X—1iY =—np[ sum of residues of d_ within C ]
z

®3)

(dwjz iK-m  iK+m a2 )’
Now | — | = — (4)
dz z  a’+b(z-b)z-b




FLUID DYNAMICS

dw)? a’
The only singularities of (d_J withinCareatz= bandz=b - F since z = 0 is not

Z
inside C.
Now,
_ K2 +m?
residue (z= b)= -2 T Only product term of (4)
and will contribute

2 2 2
residue (z = b— a—) = 2AK"+m7)b :

b (b2_a2)

Therefore, from (3), we get

X=iY = =27p (K*+ m?) [ b —i}
b?2-a? b
= —2npa’(K? + md)/b(b’—a’)
Thus
Y =0, X=-2npa’(K*+m?/b(h*-a?) .

The negative sign implies that the cylinder is attracted towards the origin where the spiral

vortex is situated.

2.9. Complex Potential for a Vortex Doublet. Two equal and opposite

vortices placed at small distance apart, form a vortex doublet.

Let us consider a vortex of strength K at z = ae'* and another vortex of strength

—K at z = 0, then the complex potential is

W = iK log (z—ae') —iK log z

= iK log E%J —iK Iog(l— aez J

) aeia a'2e2i0L
=K + 5 F e
y4 27

189
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As a—0, K—oo, then Ka—p and we obtain

W —i},teia _ },Lei(“_”/z)

z z

This is the required complex potential for a vortex doublet at the origin.

uei“
z

Thus, it follows that the complex potential of a vortex doublet is the same as

that for a doublet with its axes rotated through a right angle.

Also, we note that the complex potential for a doublet at the origin is

2.10. Image of Vortex in a Plane. Let us consider two line vortices of
strengths K and —K per unit length at A(z = z;) and B(z = z,) respectively. The
complex potential due to these line vortices is

W = ¢ + iy = iK log(z-z;) —iK log(z -z,)

z-2,

= Klogr—1
P

= v =K log

Iy I

Ifry=ry theny =Klogl=0

Thus the plane boundary OP is a streamline so that
there is no flow across OP. Hence the line vortex at  g(_x 0 A(K)
B with strength —K per unit length is the image of

the line vortex at A with strength K per unit length OA=0B

so that A and B are at equal distances from OP. l—z4| = 11, [z-22| = 1

2.11. Remark. In case of two dimensions (as for
sources, sinks and doublets), a vortex means a line vortex and strength means
strength per unit length.

2.12. Image of a Vortex in a Circular Cylinder (or in acircle). Let a vortex
of strength k be present at z = d, then the complex potential is iK log (z—d).
When the cylinder |z| = a is introduced into the fluid, the complex potential, by
circle theorem, becomes

2
W = iK log (z—d) — iK |og[a7—d]

2
. o + iy = iK log(z—d) —iK log (z —%J +iK log z + constant

@)
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» s w2 .. 4y
=iK Iog{(x—d) +y} +itan (x——dﬂ

5 2 1/2
—iK | log (x—%j y?l o itant Y
X_i

+iK | logyx? +y? +itan‘1ﬂ

where we have ignored the constant term

a{(a cos®—d)? +a?sin? 6}1/2

1/2

2 2
(acose—ZJ +a%sin?0

|zra =z=ae"
= X =acoso,
y=asin0

= K log d = constant.

This shows that the cylinder is a streamline. Thus (1) represents the complex
potential of the fluid motion. From (1), we observe that the image of a vortex
of strength K at z = d is a vortex of strength —K at the inverse point z = a/d
together with a vortex of strength K at z = 0 i.e. centre of the circle.

2.13. Circulation about a Circular Cylinder in a Uniform Stream. Let a
liquid be in motion with a velocity —U along the x-axis. The complex potential
due to the stream is Uz. If the circular cylinder of radius a is introduced inside

2
- . : a

the liquid, then the complex potential, by circle theorem, becomes Uz + U —.
z

Let there be a circulation k about the cylinder. The complex potential due to
circulation is ik log z. Thus the complex potential of the whole system is

2
W:Uz+Ua?+iklogz. )

191
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_d a’ ik
—g=——=U-US + 2
= a dz 722z

At the stagnation points, g =0i.e.q=0

2 -
= U—ULZ+K:O
Z V4
= UzZ+ikz-Ua’=0
2
N =K aho K
2U 4a3°U?

Since a and U are constants, therefore the flow potential term depends very
much on the magnitude of k. We shall consider three cases.

2
Case I. When k < 2aU i.e. % <1, we put
4a°U

2

W :Sin2 B and then
a

z=-iasinp +acos
Thus the stagnation points are (a cos 8, — a sinp) and (—a cosp, — a sinp)
Further |z|=a|+cosPB —isinB|=a
.. The stagnation points lie on the boundary of the cylinder. They lie on the

line MN below the diameter AB as shown in the fig. The velocity increases
above MN and decreases below MN.
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Further, from Bernoull’s equation,

Py %qz =constant

P
we observe that the pressure decreases above MN and increases below MN.

Thus, there is an increase of pressure by the liquid due to circulation. If there
is no circulation, then k =0 = sinf=0

= B=0,mt,z=+a

Therefore, MN coincides with AB and thus the stagnation points are at A and
B. Therefore we conclude that the circulation brings the stagnation points
downwards and put an upward thrust on the cylinder.

2

Case I1. When k = 2aU i.e. =1,thensing =1

4a°U?

= B=n/2, z=-la =|z|=a
and thus the stagnation points coincide at C, the bottom of the cylinder.

2 2

Case Il11. When k > 2aU i.e. %> 1, then we put

= cosh?p so that
4a°U

4’02
z =a(—icosh B + sinh B)
=—jael —iae™
.. The stagnation points lie on y-axis.
Further |(—iae”) (—iae )| = &

this shows that the stagnation points are inverse points w.r.t. the circular
boundary of the cylinder. One of these points lie inside and other is outside the
cylinder. The point which is inside the cylinder does not belong to the motion.

|z, |7 —iae? |= ae® ,outside the circle
|z, || —iae ? |=ae™?,inside the circle

since ae® <ae®.

We know that at the stagnation points (critical points), there are two
branches of the streamlines which are at right angles to each other. Thus the
liquid inside the loop formed at the stagnation points will not be carried by the
stream but will circulate round the cylinder
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Pressure (Force) on the circular cylinder :- From (1), we have

_ - dw\? - _
= —ntp (sum of the residues of 4z within the circle |z| = a)
z

2
By Cauchy's Residue theorem as (dd—wj is @ meromorphic function
z

where X, Y are components of the pressure of the liquid and p is the density of
the liquid

dw)’ a2\’ 2ku(, a?) K?
Now, (E) =U{1—Z—2J : (1—2—2}2—2
The only pole inside the cylinder |z| =ais z = 0 i.e. a simple pole. The residue
atz=01is 2ikU
Therefore, X =1y = —np(2i kU)
= X=0,Y =2nkpU

This represents an upward thrust on the cylinder due to circulation. The lifting
tendency (k = 0) is called the Magnus effect. The moment M is obtained to be
zero, since residue is zero in that case.

2.14. Exercise. Show that the complex potential

2
W = U[z+a7]+ik log z represents a possible flow part a

circular cylinder. Sketch the streamlines, find the stagnation points and
calculate the force on the cylinder.

2.15. Example. Verify that W = iK log ( :ZJ, K and a both real, is the
+

complex potential of a steady flow of liquid about a circular cylinder, the plane
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y = 0 being a rigid boundary. Find the force exerted by the liquid on unit
length of the cylinder.
Solution. Putting W = ¢ + iy, we get

Z—ia
Z+ia

¢+ iy =iKlog
=ik Ioglz;!alﬂtan‘ly—_a—itan‘ly—Jr{jl
|z+ia | X X

|z—1a|
|z+ia|

= v =K log

The streamlines y = constant are given by

zZ-ia
| - |: constant = A (say)
|z+ia |

For A = 1, these are non-intersecting coaxial circles having z = + ia as the
limiting points i.e. circles of zero radius. In particular, for A = 1, we get a
streamline which is the perpendicular bisector of the line segment joining the
points + ia and it is the radical axis of the coaxial system. No fluid crosses a
streamline and so a rigid boundary may be introduced along any circle
A = constant of the coaxial system, including the perpendicular bisector A = 1

We note thatfor A =1, [z—ia| =z + iq|
=N X2+ (y—a)=x*+(y+a)? =y=0
Hence we can introduce rigid boundaries along

Q) a particular circle A = constant (= 1)
(i)  along the planey =0 (A =1)

and this establishes the result of the
first part of the question. The
circular section C of the cylinder
and the rigid plane y = 0 are shown
in the fig. Circle C is any member
of the above mentioned A-system of
coaxial circles and it encloses the
point. A(0, a) whereas the point T TTTIGTTTTIIITTT > X
B(0, —a) is external to it. =0
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Since W = iK [log (z — ia) — log (z + ia)]

R Wf:d_W:iK( 1 _ 1_]
dz Z—la z+ia

Therefore, by Blasis theorem,

X—Nzigmgﬁfd
22\ dz
. 2
e. X—WYZJBIPK(—ET“— 1_j}dz
2 ¢ Z-la z+ia
_ —iK?%p 1 1 2
2 I{(z—ia)zJr(z+ia)2_(z—ia)(z+ia)

The integrand has double poles at z = + ia. Out of these poles only z = ia lies
within C.  Thus, we find residue at z = ia. It is only the last term of the
integrand which gives a non-zero contribution to the contour integral and the
appropriate residue at z = ia is

u{@-my——lg———}zlgziézé

z-ia (z—ia)(z+ia) 2ia ia

Hence by Cauchy-Residue theorem, we get

2 H : 2
x—w:’4<pﬁzml}:55£
a a

2

—K?%p
a

= X=0,Y =

which shows that the liquid exerts a downward force on the cylinder of amount

K?p
a

per unit length. In case of moment M, the sum of residues is obtained

to be zero and thus M =0
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2.16. Motion of a Vortex Filament. We find the velocity of the point P(z)
due to a vortex filament K at z = z;. We know that, the complex potential is

W =iK log (z—zp)

_dw iIK —-iK  —iK
dz z-z, Re® R

where z — zo = Re'®.

AP =R, arg (z-z9) = 6

u—iv= K g
Re
= i(cose—isine)
R
= =isine, v:Ecose,q:E
R R R
Therefore, E =—cotd =tan(90+ 6)

Thus, the direction of motion at P is perpendicular to AP with speed K/R in the
sense given by the rotation of the vortex at A.

3. Motion of Rectilinear Vortex (Line Vortex)

The stream function  at a distance r < a (the radius of a cylindrical vortex) is
determined by & = V2y. Using polar co-ordinates, we get

197
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diy 1
Vi = —F 4=
V= Ty

. d?y
symmetry | i.e.—— =0
y y[ y j

(jj_\:[’ where y is a function of r only, due to

Thus, we get

1d( dy
Vig==—|r=t|= 1
v rdr(rdrj gr<a 1)

Integrating (1) and noting that & is constant, we obtain

d_\llzlr +é (2)
dr 2 r

But the radial and transverse components of velocity are

__loy _oy
=1 Ty

1 A
:0, = ré+—
Qr Jo 5 & ;

The velocity cannot be infinite at the origin (r=0)andso A =0
1
Therefore, Qo = 2 rE=0atr=0

Thus there is no motion at the centre of a circular vortex. Therefore, in case of
a rectilinear vortex (line vortex), its motion is not due to itself but due to the
presence of other vortices. Thus, if motion is due to n vortices of strengths Ks
at the points zs (s = 1, 2,...,n), then the complex potential at a point P(z), not
occupied by any vortex, is

W= 3 iKlog (z-zy) ®)

s=1

and the complex velocity is given by

u—iv=—d—W=—ii( Ks J 4)
dz sa\z-z

Further, the complex velocity of the vortex of strength K;, which is produced
only by the other vortices, is
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: n K
U—ivi==3X1 , Where s #r. (5)

s=1 \ £y —Zg
The result (5) is practically obtained as

so that

: ( dW'j dw K,
U —ivy = | ——— =|-—+
dz J,_, dz z-z, 22,

3.1.Centroid of Vortices. Let there be two vortices of strengths K; and K; at
points A(z = z;) and B(z = z,) respectively, then

W =K log (z-z1) + iK; log (z-2,)

The velocity of A is due to the presence of other vortex at B and vice-versa.

Thus
- ( de ~iK,
le —_— =
dz ),,, 7,-1,
and
5 _( de -iK; K,
, = —— - —
dz ),,, 2,-2, z,-1,
Therefore,
Z,—4Z, Z11—1
or K121+K222:O o d( Kz +K,7, 0
K, +K, dt{ K;+K,

Integrating, we get

Kiz; +K,z,
K; +K,

= constant

199



FLUID DYNAMICS 200

- Kyizg+Kyz, i . . . .
The point LK22 divides AB in the ratio K : K;. This point remains
1 TR

fixed (not necessarily a stagnation point) and is called the
centroid G of the vortices at A and B.

Further

AG GB AB { B@)
K, K, K;+K,

K,

Therefore, AG=——AB
K;+K,
B _de
V=Er o=r—
dt
The velocity of A is
. K
lug —ivy| = A—é
_ K,AB 'K1+K22 _AGe
Ki+K; (AB)
where ®= Kl;Kzz
(AB)

Thus, A moves with a velocity AG.o perpendicular to AG. Similarly B moves
with a velocity GB.w perpendicular to GB. So AB rotates with an angular
velocity . Further, neither vortex has a component of velocity along AB, it
follows that AB remains constant in length.

3.2. Vortex Pair. A pair of vortices of equal and opposite strengths is called a
vortex pair.

Let K and —K be the strengths of the two vortices at A(z = z;) and B(z = z,)
respectively. Then the complex potential is

W =iK log (z-z;) — iK log (z-2)
=W, + W, (say)

The velocity at A is due to the presence of the vortex at B and vice-versa.
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Therefore the velocity at A is given by

K
“™ N
A| (z=2,) B ‘(Z—Zz)
o ( szj iK
Up—Ivy = | — =
dz ), z-12,
Similarly, the velocity at B is
Uy — iV2 = (—Mj
dz -7,
_-iK K
Zy =21 21—
_ o K
= O = |up —ivq| = AR’
. K
4y qu, —iv, |=ﬁ3 |1z1 — 22| = AB

Therefore, both the vortices have the same velocity.

Further, W = iK log 274
z-1,
- ¢+iw:iK[log | +i(91—62)}
z-1,
- r
= v =K log 274 =Klogt
z-1, r

: r
Therefore, the streamlines, y = constant, are r—l = constant.
2

which are co-axial circles.

Thus the streamlines in case of a vortex pair are co-axial circles which have A

and B as limiting points.

‘9 =tan™

201
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3.3. Example. A vortex of circulation 27k is at rest at the point z = na (n > 1),
in the presence of a plane circular impermeable boundary |z| = a, around which
there is circulation 2zAk. Show that

Show that there are two stagnation points on the circular boundary z = ae®
symmetrically placed about the real axis in the quadrants nearest to the vortex
given by

cosf = (3n°-1)/2n°.
and prove that 6 is real.
Solution. The circulation of vortex is 2zk and thus the strength of vortex is k
Therefore, complex potential due to the vortex is

f(z) = ik log (z—na)

= f(2) = —ik log (z —na) | kn, a and the
function form are real.
— a2
= f(azlz): —ik log | ——na
Z

The complex potential, when the circular cylinder |z| = a is introduced into the
fluid, becomes f(z) + T (a%/z), by circle theorem.

Now, there is a circulation 2zAk around the cylinder. This is equivalent to the
line vortex at z = 0 of strength Ak.

Thus the total complex potential is

2
W = ik log (z-na) —ik log [a——naj +ink log 7
Z

=ik log (z—na) —ik log (z —%)+ irk log z + ik log z + constant.

=ik log (z—na) —ik log (z —%} +1k (A +1) log z + constant (1)
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This is equivalent to the complex potential due to a vortex of strength k at
z=na,—katz=a/nand (A +1)k at z = 0 as shown in the figure

S

na
1 1 1
T T T

O(z=0) A (Z = %) A (z=na)
(A+1Dk —k k

The velocity at point A is due to the motion of other two vortices (i.e.
excluding first term in (1))

Therefore,

[d_wj _| ik | (kD)
dz /), na na_2 na

n
(Differentiating (1) and put z = an excluding Ist term of (1))

The vortex at A is at rest if
‘dw

dw N kA+) K
dz

=0
Z=na na——

= A=

Hence the result
Now, from (1), we get

Putting z = a €' and simplifying, we get

dw _ ike”  2n°cosf-3n’ +1
dz a (n?-2ncos6+1)(n%-1)

usnga =

n%-1
The stagnation points on the circle, if any, are given by

aw _ Ofor z = ae"
dz
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Thus
aw_ 0 = 2n°cosb —3n’+1=0
dz
3n? -1
= cos0 = 2
o 2)

Now, we know that —1< cos 6 < 1 i.e. [cos6| < 1 therefore R.H.S. of (2) must lie
within these limits for 6 to be real

Let us write
) = 3n*-1_3 1
2n® 2n  2n°
Then
3 3
f1)=1, and also, f'(nN)=——+—
@ ") 2n?  2n*

= 2%(1—n2)<0forn>1
n

From here, we note that f '(n) < 1 for n > 1. Thus for n > 1, f(n) decreases
monotonically from 1 at n = 1 to 0 as n—oo. For all n >1, real values of 6 are
obtained from (2). Two distinct values of 6 are obtained for any given n > 1,
one of the values is 6 = a, where 0 < o < /2 and the other is 0 = 2n—a.
Hence the two stagnation points are symmetrically placed about the real axis in
the quadrants nearest to the vortex.

4. \Vortex Rows

When a body moves slowly through a liquid, rows of vortices are sometimes
formed. There vortices can, when stable, be photographed. Here we consider
infinite system of parallel line vortices and two dimensional flow will be
presumed throughout.

4.1. Single Infinite Row of Vortices. We shall find the complex potential of
an infinite row of parallel rectilinear vortices (line vortices) of same strength K
and a distance ‘a’ apart.

First, let there be 2n+1 vortices with their centres on x-axis and the middle
vortex having its centre at the origin. The vortices are placed at points
Z=+na,n=0,1,2,...... , symmetrical about y-axis. The complex potential
due to these vortices is
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| | i | i | X
-3a —2a -a O a 2a 3a

+iK log (z+a) + iK log (z +2a) + ...... + iK log (z + na)

= iK log z (2 —a°) (z%-2%%) (2* - 3%)......... (z-n?a?)
2 2 2 2
. TZ Z Z Z Z
=iKlog 5| 1-2||1- -2 1. 1-
93 ( azj[ 22a2J( 32a2J ( nzazj
+iKlog 2 (C1)" (a2 22 a2 3%2......... nZa?)
T

: : z
Ignoring the constant term and putting T _ 9, we get
a

. 02 02 02
W -_ IK Ioge (1_?j(1_WJ .......... (1_Wj

Making n— oo, we find
: : . . TZ
W =iK log sin6 = iK log sm? Q)
The velocity of the vortex at origin is given by

0o = _%[W— iKlogz],, |~ The motion is due to other vortices

d]|. . MZ .
=——|iKlogsin——iKlogz
dZ‘: g a g :|Z=0



FLUID DYNAMICS

206
174
ncos— 1
=K |= Tcaz I
dgin™ 2
a

z=0

which is indeterminate form and — 0 as z — 0. Hence the velocity at z = 0 is

zero. Similarly, all other vortices are at rest. Thus, the infinite row of vortices
does not induce any velocity by itself.

Now, the velocity at any point of the fluid other than the vortices is given by

dW —iKn

B . Z
g=u-iv=—-—= cot—
dz a a
cosn(x+i )
_ —iKn T ] - —iKr T Y
= cotl —(X+1y) | =
a a & sin ™ (x +iy)
a
TT . . T .
_ K Zcosg(x+|y)smg(x—|y)
a ZsinE(x+iy)sinE(x—iy)
a a
. 21X . 2myi
) sin—— —sin—>
_ —IKzm a a
a cos@i—cosziX
a a
. 2nX . . 2my
 _iKn smT—lsmhT
a cosh@—cos@
a a
= u= =
cosh@—cos@ cosh@—coszix
a a a a

Also, we have W = ¢ + iy = iK log sinﬁ—Z

and W = ¢ — iy = —iK log sin %
a
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(¢ +iy) — (¢ —iy) = iK log sin %Z—(— iK Iogsin%zj

. . . MZ . TZ

= 2 iy =iK log sin ™ sin ™~
a a

Streamlines, y = constant, are found to be

21 271X
y — C0OS—— = constant.
a a

cosh

4.2. Double Infinite Row of Vortices. Let us suppose that we have a system
consisting of infinite number of vortices each of strength K evenly placed
along a line AA’ parallel to x-axis and another system also consisting of
infinite number of vortices each of strength —K placed similarly along a
parallel line BB'. Let the line midway between these two lines of vortices be
taken as the x-axis.

k

e Ean lantanCan i

1
Z,—-2a Z1—a Z1 Z,+a zl+2a

BK*K*K*K*K* .

Z,-2a Z-a Z,+a Z,+2a

Let one vortex on infinite row AA’ be at z = z; and one vortex on infinite row
BB’ be at z = z,, so that the system consists of vortices K at z = z; + na and
vortices—Katz=z,+na,n=1,2, ....

The complex potential of the system is

{(z—zl—na)(z—zl+na)}

(z—z,—-na)(z—z, +na)

:in log

n=0

© _ 2 h2,2
:iKZIog{(Z z,)“—n‘a }
0

(z-2,)* —n%a?®

= iK log [z—z j+|Kz log (2-2)° -

n=1 (z- Z)—na
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- iK log (ﬂjﬁ {1—(2—21)2/;1232} "

2-2, ha|1-(z-2,)%/n’a?

) 2
Now, since sin6 =6 [] (1— (3 ZJ v 6 real or complex,
n=1 n-m
wWz-2z,) _ mz-2,)
a

we get, on setting 6 =

o m2-z) _m(z-z) ¢ 1_&—4?]
sin ]1 [

a a nZa’

a a n2a2

o M(2-2,) _ m(z-2,) ¢ 1_a—aVJ
sin 1:{ (

Therefore, equation (1) takes the form.

sin n(z_azl)
W=iKlog | ——%— (2)
sin TC@
a
The velocity at any point P(z), not occupied by a vortex filament, is

u—iv= —(L—W =—iK\ [cot A (z —z1) — cot A (z—22)], where A= n/a
z

= 2iKA sin A(z—21)/[cos A(z,—21) — cOSA (2221 —22)] (3)

To find the velocity (uy, v1) of the vortex K at z = z;, we have

Up —ivq = —{% {W_ K IOg(Z _Zl)}}

=71

=iK {kcotk(z—zz)—XcotX(z—zl)+ ! }
T =g
Since

[cotk(z -2,)— } —0as z—z;

1
Mz-1z,)

208
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Therefore,

u; —ivy = iKA coth (21— 22), A =n/a

(4)

4.3. Karman Vortex Street. This consists of two parallel infinite rows AA’
and BB’ of vortices of equal spacing ‘a’ so arranged that each vortex of
strength K of AA' is exactly above the mid-point of the join of two vortices of
BB’ each of strength —K ; as shown in the figure

y
i|b
A a+?b ZaTib 3a=+ib A
i b
X
0
— i
B } } } } B’
a 3a 5a
——ib ——=ib ——i
2 2 2

Therefore, the complex potential, in this, case is
sin ™ (z —ib)
a
sinntz _a, ibj
a 2

( Similar to (2) of previous article on putting z; = ib, z, = %—ib).

W =iK log

The velocity of the vortex at z = ib is

U — iVl
a a

T iK cotn(& - 1)
a a 2
Tik cot(_—TE + _Zmbj
a 2 a

miK (Zﬂiib)
——tan| ——
a a

ik cotE(ib - % + ibj | Similar to (4) of previous article
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= ﬁtanhz_nb
a a

= up = ﬁtanhz—nb, v; =0 .
a a

It can be shown that each of vortices at the rows. AA’ and BB’ move with the
same velocity. This means that the vortex configuration remains unaltered at

all times, since both AA’ and BB’ have the same velocity ﬁtanhz—nbin X-

a a
direction. Hence the street moves through the liquid with this velocity.

4.4. Example. If n rectilinear vortices of the same strength k are symmetrically
arranged along generators of a circular cylinder of radius ‘a’ in an infinite
liquid, prove that the vortices will move round the cylinder uniformly in time

4ma’

———— . Also find the velocity at any point of the fluid.
K(n-1)

Solution. Since then rectilinear vortices of /N 7\
strength k are symmetrically distributed {
around the circular cylinder, the angular { -
distance between any two consecutive \ / A —

™~~~
el

%
vortices is Z—TE. Let the line through the generators
n

centre of the cylinder and one of the

vortices be taken as x-axis Thus, the
vortices are at points Centre of cylinder
ST

2mi/n 4mi/n “aGZn(n—l)lln

z = ae?, ae?™M g g™

which are n distinct roots of the equation z" —a" =0

n_,n 2mir 2mir/n

|- z2"-a"=0 =z"=a"e —z=a

Total complex potential of the system is

W = iK log (z-a) + iK log (z—ae*™™) +............
21‘Ci/n)

=iKlog (z-a) (z—ae
=iK log (z" - a")
The velocity at any point outside the vortices is

dw —nikz"?
dZ Zn _an

u—iv=—
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The velocity at the point z = a is

d .
a= | ——|W-=-iKI - _
a= |- L w-iKiogz-a).,
= —iKi{logZ —a }
dz z-a | .

=K %[Iog(z”‘1 +az"? +......+a”‘l)]2=al

KI(n-1)z"2+a(n-2)z"2+.....+a" 2],

[z” P 4az" P + a”‘l]z_a
_5[(n—1)+(n—2)+ ........ +2+1} _Kn-1
a n a 2
Therefore, time period is given by
2ma distance
Tz — T=""—-
K(n-1) ‘ velocity
2a
. _ 4ma’®
i.e. =
K(n-1)

Hence the result.

4.5. Remark. If we use K = 2Li.e k =2nK, then
7T

4ma®  8n’a’

T= =
L(n_l) (n_l)k
21

4.6. Example. Three parallel rectilinear vortices of the same strength K and in
the same sense meet any plane perpendicular to them in an equilateral triangle

of side a. Show that the vortices move round the same cylinder with uniform
2

speed in time

2mpil3

Solution. Here, the vortices are situated at points z = re wherep =0, 1, 2,

A
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From A OCD, %: rcos30° = rg

= r= where r is the radius of the cylinder.

a
\/§ ]
The complex potential of the system is
W =iK log (z-re%) + iK log (z—re*™®) +iK log (z—re*™"?)
=iK log (z° - r®)

For the motion of vortex at A, we have

Ua — VA —%[W—iKlog(z—r)]Z:r

3 3
= —iKi{logZ il }
dz z—r |

d
= KE[Iog(r2 +2° +zr)]zzr
r2+z2+7" |, r

Therefore, if T be the time period during which the vortex A moves round the
cylinder, then

2nr 2nr? _@( a jz 2ma’

T=—= — -
Kir K KI\J3) 3K

Hence the result.
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5. Wave Motion in a Gas

When studying impulsive motion of incompressible fluids, we have observed
that a small disturbance applied at any point of such a fluid is transmitted
instantaneously throughout the whole field of the fluid. In case of
compressible fluids, such as air, a small disturbance applied at a point of the
fluid is propagated throughout the fluid as a wave motion. Before studying
wave propagation, in compressible fluids, we first discuss some elementary
concepts of wave motion. We first treat wave motion in one-dimension and
then generalize the results to propagation in two or three dimensions.

A wave is a disturbance in a medium such that there is no permanent displacement of the
medium and the energy is propagated to the distant points.

5.1. One-dimensional Wave. The one-dimensional wave equation is

o2 1 82
6_10% @)

VZ:—_
¢ ox?  ¢? ot?

The function ¢ = ¢(x, t) is known as wave function. We find that

o(x, 1) = f(x—ct) )

is a solution of the wave equation (1). The shape of the disturbance ¢ is known as wave
profile. Fort=0, we get

¢ =f(x)

and the graph varies with t. We note that
o(X + cT, t+ T) = f[(x +cT)—c (t + T)] /\/

= f(x—ct) 0 X

=o(x, 1) ®)
This shows that the value of ¢ at distance x and time t is equal to the value of ¢ at distance x +
cT and time t + T, i.e., the wave profile at time t has moved through a distance cT along the x-
axis at time T with constant speed c.

o .
])/ ¢
ST > Ckoa > \
(Profile at t) Profile at t +T)

Thus the shape of the wave profile in (3) remains unchanged when it has moved a distance cT.
For this reason the wave profile represented by equation (2) is called a wave without change of
shape or undistorted wave. Equation (2) represents a wave which propagates with time. Such
a wave is also termed as progressive wave. Similarly, the function defined by

o(x, 1) = g(x +ct) (4)
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satisfies the wave equation (1) and it represents a disturbance moving without distortion in the
negative x-direction with speed c.

5.2. Principle of Superposition. We note that a wave equation is a second order
homogeneous linear partial differential equation. If ¢, and ¢, are two solutions of it, then ¢; +
¢, is also a solution. Hence ¢ = ¢; + ¢, also represents a wave. This principle is called the
principle of superposition for wave motion. Clearly, the combination

d(x, t) = f(x—ct) + g(x + ct) (5)

represents the superposition of a forward and a backward travelling wave, each moving with
speed c. From equation (5), we can show that

0% _ 2 0%

2 ¢ 72 (6)

ot oX

where equation (6) is known as the one-dimensional wave equation and the form ¢ in (5) is its
general solution.

5.3. Wave Equations in Two and Three Dimensions. If a disturbance takes place in three
dimensions in such a way that the disturbance is constant over any plane perpendicular to the
direction of propagation, then the wave is called a plane wave and any such plane is called a
wave-front. If such a wave is travelling with speed c in a direction specified by the unit vector

A =l, m, n], then the function f(Ix + my + nz —ct) satisfies these requirements since the wave
fronts have equations Ix + my + nz = constant at any considered time. Similarly g(Ix + my +

nz + ct) would represent a disturbance travelling in the direction —fi with the same speed.
Hence the function

o(x,y,z,t)=f(Ix+my+nz—-ct)+g(Ix+ my+nz+ct) (7)

represents the superposition of plane waves travelling with speeds ¢ in the directions + fi.
Finding the second-order derivatives of ¢ W.r.t. X, y, z, t and using the fact that I> + m* + n?=1,
we get the wave equation in three dimensions as

%y 0% 0% 1 0%
= + + =
ox2 6y2 oz2  c? at?

Vi (8)

Equation (7) gives the general solution of (8). The solution (7) can also be expressed as
o=f(A-T—ct)+g(n-T+ct) (9)

In two dimensions (xy-plane), the wave equation is

0%hp o2 1 62
Vi = ¢+ ¢_—2 j’ (10)

ox%? oy? c® ot
having general solution

(X, y, t) = f(Ix +my —ct) +g(Ix + my + ct) (12)
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where I> + m? = 1.

5.4. Spherical Waves. Let us consider the three dimensional wave equation

Vip = iz

52
c ﬁ (12

in spherical polar co-ordinates (r, 0, ). It can be written as

2
TS TN T
o2 ror r%sin® oo

— (13)

If there is spherical symmetry so that ¢ = ¢(r, t), equation (13) reduces to

%0 200 1 0%

o2 ror ¢ oat?
or
0* 16
Pl (r¢) "2l (r¢) (14)

The general solution of the one-dimensional wave equation gives the solution of (14) for r¢ as

ro = f(r —ct) + g(r + ct)

or

o(r, 1) = %{f(f—Ct) +9(r +ct)} (15)

The above solution represents concentric spherical wave fronts with centre O and having radii
which increase or decrease with speed c. Here, the wave profiles change because of the factor

1
— in the solution.
r

215
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5.5. Progressive and Stationary Waves. Upto now, we have considered
various types of wave equations whose solutions represent the superposition of
wave fronts travelling in opposite directions with speed c. In each case, the
wave profile remains unaltered, except in the case of spherical waves where it

is diminished by the factor % Such waves, plane of spherical, are called

progressive waves because of their movement in some direction.

Now, let us consider one-dimensional wave equations in the special forms

f(x—ct)= acosm(% — tj,
(16)
g(x+ct) = acosm[% + tj

where a, ¢, m are constants. If the wave profile is either a sine or a cosine function, then the
waves are harmonic waves. Thus, (16) represents harmonic waves. Superposition of the
functions in (16), gives

d(x, t) = f(x—ct) + g(x + ct)

mx
= 2acos (Tj cos (mt) an

This type of disturbance is known as stationary wave, since its profile does not move. Thus at

l\cn
all times ¢ = O at the fixed positions where x = (p + Ej_ , Where p is an integer. These
m

pCr

determine the positions of zero displacement, called nodes. The points where x = ?
determine the positions of maximum displacement, called antinodes. In both forms f(x—ct),
g(x+ct), the amplitude is a. The period or periodic time in each case and also in ¢, is %t
denoted by T. The angular frequency is m and the frequency in cycles per unit time,

m 1
denoted by n, is 2— so that n = ? i.e. nT = 1. If, keeping t constant, we increase or decrease
T

2nc
x by an amount —— or whole-number multiple of it, then all f, g, ¢ remain unaltered. The
m

2mC
quantity —— is called the wavelength of the harmonic wave or of he combination of
m

2m
harmonic waves which ¢ represents. The wavelength is denoted by A. Thus, A = ——. The
m

number of waves in a unit distance is called the wave number. If k is the wave number, then

1
Ak=1ie k= x . Also, we observe that the amplitude of ¢ is 2a cos (m t), which varies with
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time. Further, if in the forms for f and g, the cosines are replaced by sines, then similar results
follow.

Another convenient way of representing a progressive harmonic wave is by
considering either real or imaginary part of

aexp{im(t$%)},i )

The harmonic wave motions are of two types as follows.

(i) Transverse : If the vibrations occur in planes at right angles to the direction of
propagation, then the waves are known as transverse waves. e.g. light waves

(i) Longitudinal : When the vibrations occurs in the direction of propagation, then the
waves are called longitudinal waves. e.g. sound waves.

As an another illustration, one-dimensional longitudinal waves propagate on a rod and
transverse waves propagate on a string.

5.6. Some Elementary Concepts of Thermodynamics. The measurable quantities of a
compressible substance are its pressure p, density p and temperature T. It is found that these
quantities are connected through a functional relation of the form

f(p.p, T)=0 1)

where f is a single-valued function of the variable p, p, T. Such an equation (1) is known as
the equation of state of the substance. The form (1) depends on the nature of the substance
and for certain kinds of gas it is of very simple form.

For some gases, the molecules have negligible volume and there are virtually no mutual
attractions between the individual molecules. Such a gas is said to be a perfect gas and its
equation of state (1) takes the simple form

p=RpTorpv=RT 2

1
where v = — is the volume of unit mass of the gas and R is a constant for the particular gas
p

under consideration. Let 3Q be the amount of heat added to unit mass of a substance so as to
produce a temperature increment 3T. Then the rate of increase of heat added with temperature

0
rise is a—$ This defines a quantity known as the specific heat of the substance, which is the
heat addition per unit mass of the substance required to produce unit temperature rise. The
0
quantity a—$ may not be unique. For gases, it will depend on the manner in which the heat has

been supplied. We can associate a specific heat at constant pressure, denoted by C,, and a
specific heat at constant volume, denoted by C,, which are defined as

o ()5
aT ), aT ),
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These quantities in (3) are unequal.

For a perfect gas, the kinetic theory shows that C, and C, are constant and that
CJ/Cy=y 4)

where v is a constant termed as the adiabatic constant.

From first law of thermodynamics, the relation for dQ, for a perfect gas, using pv = RT, can be
written in the form

C
ds = —pdv+&dp )
v p

aQ

where dS =

—

This shows that dS is an exact differential. So we may integrate it to get

S—-S,=Cplogv+C,logp

or log (pv') = 5=S,
C,

or pv' = exp 5—S (6)
C,

The quantity S is called the entropy per unit mass and dS is the entropy differential. Flows for
which S is constant are called isentropic and from equation (6), we find that they are
characterised by

pv' = constant, i.e., p = K p’ (7

1
where v =— and K is a constant.

p

The change in a substance from a fixed state A to a fixed state B may be effected in many
ways. A change from A to B in which the temperature T is kept constant is said to be
isothermal. In case of a perfect gas, since p = RpT is the equation of state, an isothermal
change would be governed by Boyle’s law given by p o« kp i.e. pv = constant.



FLUID DYNAMICS

An adiabatic change is one in which there is not heat exchange between the working
substance and its surroundings. If a change is made so that the entropy of every single particle
of the working substance remains constant, then such a change is termed as isentropic. When
the entropy of every single particle of a substance of fixed mass is the same and remains
constant in any change, then the change is said to be homentropic. The constant under
reference is the same for each considered small quantity of gas in isentropic flow but a
different constant attaches to each such quantity.  For homentropic flow, however, the
constant is the same throughout the entire volume of gas.

6. The Speed of Sound in a Gas
We suppose that a small disturbance is created within a non-viscous gas such that

Q) The disturbance is propagated as a wave motion, known as a sound wave, by small
to-and-fro motions of the medium without resulting in mass transport of the medium
itself.

(i) Before the disturbance, the fluid is at rest and thus the motion is irrotational so that a
velocity potential ¢ exists at each point of the fluid. The fluid velocity at any point is

q=-v

(iii)  The squares and products of all disturbances from the equilibrium state
specified by pressure po and density po can be neglected. Also q = |{]
is so small that g? can be neglected.

(iv) The isentropic law p = kp” holds as a consequence of assuming that changes take
place so rapidly that heat exchanges and hence entropy changes are negligible, where
v is an adiabatic constant.

We write p = po(1 + s), where s is the condensation of the medium. This is a dimensionless
quantity expressing the fractional increment of local fluid density during the disturbance over
the undisturbed density p, of the medium. It is a function of time t and space co-ordinates (X,
y, z) if the motion is three-dimensional. The equation of continuity

%W-(DG) =0 )
becomes

@ =V -{(1+s)V$} =0 )

ot

If we assume that the velocity —V¢ is so small in magnitude that sV¢ is negligible, then (2)
simplifies to

0s
—=V 3
ot ¢ ®)

In the absence of body forces, the equation of motion becomes

I% - @ = constant (4)
p ot

219
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where we have neglected g2

Assumption (iv) implies that p = kp', where k = p—g. Therefore,
Po

% = kypyél :yp_Opy—l

v-1
= ag(ﬂj = a(z) L+s)t~a?
Po

where s is small and

YPo
Po

ag =

Hence

990 S} 0
p \dp p p

=ay? log p + constant (6)

From (4) and (6), we obtain

o9

2
— =4aglog p + constant
ot

= a,2 {log po + log (1 +s)} + constant
~a,> s + constant, to the first order.

Absorbing the constant into s, we get

% ag’s

ot

Eliminating s from (3) and (7), we have

0%

Q)

()

(8)

220

Equation (8) is a wave type equation and shows that small disturbances are propagated in the

gas with speed



221
FLUID DYNAMICS

12 12
d P
dp Po
This speed is called the speed of sound in the gas. A vibrating tuning fork would produce

disturbances propagating with such a speed. Equation (9) is obtained under isentropic
conditions. When we wish to emphasize this we write

a’= (@j :
op )

7. Equation of Motion of a Gas

We know that the equation of continuity for a compressible fluid is

op _
4V =0 1
i (PQ) 1)

and Euler’s equation of motion is

00 o _E L
Eq+(q-V)q=F——Vp @
P

In the case of steady motion under no body forces, (1) and (2) become

v-(pq) =0 )
e 1
(@-V)q=-=vp (4)
p
For such flow, Bernoull’s equation becomes

1_ d

—=( 24 I—p = constant (5)

2 p

In the special case of isentropic flow for which the entropy of each particle remains constant
along any streamline and for each such particle p = kp” so that (5) reduces to

1 2 -2
Eq + [ kr p"? dp = constant

y—1
or qu +kYL = constant
2 y—-1
2
or E q2 + a . constant (6)
2 vy-1
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where a2 = (@j
op )

In (6), the constant is same along any streamline, but unless the flow is homentropic, it will
vary from one streamline to another. The condition for constant entropy of a fluid particle in
its steady motion along a streamline is

(@-V)s=o0 ©)

, . . . 0S :
since the total rate of change of the particle’s entropy S per unit mass is E + (q -V)S in the

general time-varying case. In addition, the equation of state may be taken in either of the
equivalent forms

f(p,p, T)=0 (8)
or

p=F(p.S) 9)
where the forms f, F are known. Equation (9) is more convenient for discussing the cases of
isentropic and homentropic flows. Equations (3), (4), (7) and (8) or (9) are distinct equations
for determining p, p, 0 and S. Bernaulli’s equation is really derived from the equations of
motion, but the forms (5) and (6) are very useful. Thus the problem of determining the nature
of gas flow is solvable.
Now, since

(q'V)G=VG§2j—GXE,

scalar multiplication of (4) by Q gives

— o1 1_
Q'V(EQ jz——Q'VD (10)
p

Using the equation of state in the form (9), we get

op 6pj
dp=|— | d — | dS
P (Gp)s p+(as ;

op apj
vp=|— | V — | VS
P (apl g +(as i

For homentropic flow,

so that

VS =0and Vp=a’ Vp,
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then (10) becomes

From (3), we get

pV-Q +(Vp)-Q =0

and so

G-V(%ﬁzj:azvq (11)

Equation (11) is anther important result.
8. Subsonic, Sonic and Supersonic Flows

Let g be the speed of a gas at a certain location and let a be the local speed of sound, where

/2 /2
-
dp p

Then the local Mach number M is defined to be the dimensionless parameter M = g/a.
Now, we consider the following three cases

Case (i) : When q = a, M = 1 then the flow is said to be sonic since the speed of gas flow and
the local speed of sound are the same.

Case (ii) : When M < 1, g < a then the flow is subsonic i.e. the speed of the gas flow is less
than the local speed of sound.

Case (iii) : When M > 1, g > a then the flow is termed as supersonic i.e. the speed of gas flow
exceeds the local speed of sound.

Subsonic and supersonic flows have many different physical features. To know what type of
flow pattern is realized, we should know the Mach number. We examine these physical
features by discussing the nature of spherical sound waves in a moving stream of gas.

8.1. Theorem : Show that for subsonic flow, the spherical disturbances speed throughout the
entire field, whereas for supersonic flow, the disturbances are confined to the interior of the
cone, the region outside the cone being unaffected by the disturbances.

Proof : Let us consider a source O emitting spherical sound waves in a gas at rest. Spherical
wave fronts centred at O travel outwards from O and at time t after starting from O, the
disturbance is spread uniformly over the surface S of the sphere with centre O and radius a.t,
as shown in the figure 1.

S S’
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O
%t —<—
Figure 1. Vv

Now, suppose that the gas flows with uniform velocity V past the source. Then at time t,
every particle of S is displaced through a distance v t relative to S’ and the disturbance which
was initially at O is now on the surface S’ of a sphere with centre P and radius a.t, where

@ =Vt. Here, M =v/a. When M <1, v <aand O lies within S’. When M >1,v>aandO
lies outside S’. We discuss these two cases in turn.

Case (i) : When M < 1, let Py, Py, Ps,... denote the centres of the spherical disturbances at
times t, 2t, 3t,..., the radii of the corresponding spheres being at, 2at, 3at,....

Also, OP, = \_/[,O_Pz = 2\_/t,O_P = 3Vt ..., as shown in the figure 2.

Figure
It is seen that the disturbances at times t, 2t, 3t,..., are on the boundaries of non-intersecting
spheres.

Case (ii) : When M > 1, then O lies outside the spheres as shown in the figure 3. It is seen that
the

3at

2at at o
P; B\ | P
Figure 3

spheres intersect. They have an envelope which is a right circular cone having vertex O and
axis OP1P2P3.

From the above two cases, we conclude that for subsonic flow the spherical disturbances
spread throughout the entire field while for supersonic flow the disturbances are confined to
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the interior of the cone, the region outside the cone being silent, i.e., supersonic flow is
characterised by a domain of dependence, which in the above case is the conical interior.

Corollary (1). In figure 3, let u be the semi-vertical angle of the right-circular cone, then

_ at 2at 3at

sinp= —=—-=—

vt 2vt 3vt
i.e sin —E—i
.e. u v |\/|.

The angle p is termed as the Mach angle and it is real only when M > 1. It does not exist for
subsonic flow. The cone is called a Mach cone.

Corollary (2). In two dimensions, the spheres in the above models become circles and the
cone becomes pair of Mach lines or Mach waves.

8.3. Remark. If an aircraft is flying overhead at subsonic speed, any observer on the ground
will hear the disturbance once the sound waves have spread out to meet him. However, if the
aircraft is travelling at supersonic speed, disturbances will be confined to a domain of
dependence relative to the aircraft and the observer will hear noise only when he comes within
this domain. Thus, one may see a supersonic aircraft or missile travelling overhead but only
hear the sound some little while afterwards when the domain of dependence encloses him.

9. Isentropic Gas Flow

We have obtained that Bernaulli’s equation for isentropic gas flow along a streamline is

2
_o a
g° +—— = constant
’Y—

1
2

[

(1)

The L.H.S. of (1) shows that the maximum value of g, denoted by qumax., 0CCUrs Whenever a = 0.
Such case corresponds to gases expanding to zero pressure and is entirely theoretical i.e.

cannot be obtained in practice. Also we introduce the critical speed of sound a. which is

defined to be the value of a when g = a, and the stagnation speed of sound a, corresponding to
g = 0 i.e. when the fluid is locally at rest. Then (1) can be written as

lq +_—1q2
2 _2 max

2
_ L 2 % @
2(y-1) v-1

Equation (2) gives three different forms of the constant on R.H.S. of (1).

Since a = m, other forms of (2) are
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gz _vbr+Dp. 1o
27 pr=0) 2(v=Dp~ (v—Dpo

©)

where P is critical pressure, p« is critical density for local sonic flow with g = a, whereas,
Po IS stagnation pressure, py is stagnation density for local condition of rest g = 0.

Now, for a perfect gas

P :vRT:CpT
p(y-1) y-1

(4)

where C, Ry/(y—1) is the specific heat at constant pressure. Thus Bernoulli’s equation along a
streamline can be written as

1,
E q" +CT=CyTo (5)

Here, T is the local temperature in Kelvins and T, is the stagnation temperature at a point on
the same streamline where g = 0. Dividing both sides of (5) by C,T, we get

E=1+1q2 p(y-1)
T 2 Yp
1 2
=1+ > (-1)M (6)
qz
where M? = —5 = pg%lyp, M being the Mach number. For isentropic flow, we have the
a
relations
(r-1)/ -1
a _ o vp_h_(p_ojy ' _(p_oJY
> = =—= = (7)
a po/ p T \p p
so that
B /D)
Po 1 2 |
20— 142 (y-)M 8
-l 2(7 ) | ®)
B G-
Po 142 (y-M? ©
p L 2 i

Other isentropic relations, which are easily found from (5), are



FLUID DYNAMICS

lzl_v_—l(

2
q
dg

1 2
zl_L[iJ
v+1\ a«

which result in the following relations for p/py and p/pg

P _fyr1
Po 2
po_jq_rl
Po 2

|
|

q

)

q

dg

2 /(v

jz YO-D)

v+1\ a«

- 1_Y__1(EJ
vy +1\ a.

At sonic or critical speeds (M = 1), p=pP«, p= px, | = T« and so

D 2 y/(y-1)
Po - (Y +1j

&_( 2 jl/(v—l)
po \v+1

Tx 2

T_0=Y+1

For air, y ~ 1.400, equation (13), (14), (15) result in

P p+

Po p

10. Reservoir Discharge through a Channel of Varying Section (Flow Through a Nozzle)

Let us consider a reservoir containing stationary gas at high pressure po, density po,
temperature To. An open-ended axially symmetric channel is fitted to the reservoir and we
assume that the gas discharges steadily and isentropically into the air at the open section where
the pressure is less than p,. Let the section of the channel vary so slowly that to a first order of
approximation, the velocity is constant across any section. However, the velocity varies from

= ~0528 —

Ts
~0.630, — ~0.833.
T

0

(10)

2 v/(v-1)

2 Y(y-1)

(13)

(14)

(15)

section to section. Here, the flow can be considered as one-dimensional.

At a location of the channel where the cross-sectional area is A, let p be the pressure, p be the
density and u be the gas speed. For steady flow, the equation of continuity across the section is

PUA = constant

Differentiating, we get

(11)

(12)

227
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pudA + pAdu+uAdp=0

= aA + dp + du =0 Q)
A p u
Po(high)
Po uﬁ A
TO _
Figure 1.
Bernoulli’s equation is
1 u?+ f @ = constant (2)
2 p
Differentiating (2), we get
udu+ d_p =0 3)
p
. . .. dp .
Putting dp = a“dp in (3) and eliminating — from (1) and (3), we obtain
P
vy - _9A (4)
u A

where M =u/a i.e. the local Mach number. We discuss the following two cases.

Case | : If M < 1, equation (4) shows that a decrease in A produces an increase in u and
conversely. Thus, to accelerate subsonic flow through a channel it is necessary to decrease the
channel section A downstream of the flow.

Case Il : If M > 1, equation (4) show that A and u increase or decrease together. Thus, to
accelerate supersonic flow it is necessary to widen the channel downstream of the flow.

Also, on putting dp = a?dp in (3), we get

dp MZd_u

> U Q)



FLUID DYNAMICS

which indicates how the fluid density varies with changing Mach number. In fact equation (5)
shows that for a given speed increment there is a density drop whose magnitude increases with
increasing Mach number. Further, for M > 1, the drop in density is so large that the channel
must expand to satisfy continuity requirements.

dA
From equation (4), if — =0, then either M = 1 or du = 0. The case du = 0 is realized in

incompressible flow where the speed of the flow reaches a maximum at the stage when the
channel section attains a minimum area of cross-section. For compressible fluids, M may be
unity when the section A is a minimum.

To summarise the above results we may say that if, starting with subsonic flow in a channel,
we decrease the section downstream, then the flow is accelerated until the section has attained
a certain minimum at which the Mach number is unity. If beyond this minimum section we
now widen the channel, then the flow can be accelerated downstream of the section to produce
supersonic flow. This illustrates the principle of flow through a nozzle. The minimum
section is termed as throat, as shown in figure 2.

M<1 M=1 M<1

Throat
Figure 2

10.1. Maximum Mass Flow Through a Nozzle. We consider a channel which is tapering
steadily to a minimum section at the outlet. Let A be the section at the outlet of the channel
where the velocity is u, pressure p and density p. Then, applying Bernoulli’s equation along a
stream-line from the reservoir to the section A, we get

1, J{LJE:(LJ& )
2 v=1)p \v=1)po
so that
5 1/2
| 2w (1_ ppoj o
(r=Dpo ' Pop
1/y
Using Po :(p—oj , (2) becomes
p P
1/2
(rDly
u=| 2P0 1—(£j (3)
(v —Dpo Po

The mass flux per unit time across the section A is

m=pUA=pou A(p/po)lly (4)

229
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Using u from (3) in (4), we get

1/2
21y (r-D/y
L a| 2PoPs (gj 1_(£J -
y—=1 (Po Po

To find the stationary values of m for fixed A and variable p/p,, we write P = p/p, so that
m? = k (P?" — ptrii) (6)
where k is constant

Differentiating (6) w.r.t. P, we get

2m d_m :MP(Z—Y)/Y L_P(Y_l)/“{ )
dp Y y+1
% =0 when P = {2/(y+1)}"* Y = P, ®)

Also, z—rs <0whenP > P*,(i—? >0 whenP < P. These inequalities depend on the

assumption that for any gas y > 1. From these inequalities, we conclude that m is maximum
when P = P.

y/(y-1)
i.e. P = (ij 9)

and

2/(y-1)
2 2
Mmax, = A (’Y_YJpOpO (_J (10)

Thus, we find that P. = & where P« is the pressure at a point where M = 1. It therefore
Po
follows that for maximum isentropic mass flow, conditions at the exit plane are sonic.

From (5) and (10), we obtain

1/2 1y (y-Dly
m - (7_"'1} l (Y + 1)1/ (v-1) (EJ 1— (ﬂj
m max. Y- 1 2 pO pO

(11)

1/2

which gives the variation of m/my,,, with p/p,.
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11. Shock Waves

Shock waves are not waves in real sense. These are plane discontinuities, pulse-like in nature
and are sometimes more appropriately called shock fronts. For the formation of shock waves,
we consider a piston which is being driven with uniform velocity u into a long open tube,
known as shock tube.

Gas moving

—> ////

—> U Rest

W

S U
Shock

The gas particles within the vicinity of the piston acquire the uniform velocity u but those some
way ahead of the piston are at rest. A plane normal discontinuity or shock front travels
forwards with velocity U(> u) into the virgin gas as the piston advances into the tube. The
shock is the mechanism by which the gas between it and the piston acquires the velocity u.
The existence of the shock can be detected experimentally by certain delicate kinds of
photographic methods such as shadowgraph. The velocity U > a, the local speed of sound in
the fluid. A simple physical explanation of the shock formation in this case is as follows :

Suppose we approximate the continuous motion of the piston by a set of forward-moving
pulses, each of short duration. When the piston makes the first short movement forward, a
small disturbance is propagated forward into the gas at the speed of sound. This small

amplitude wave (or sound wave) heats the gas slightly and since a « ﬁ where T is the
temperature, the second pulse will be propagated as another sound wave at a speed slightly in
excess of the first one. Similarly, the third pulse will be propagated at a speed slightly in
excess of the second and so on. Thus the discreet pulses cause a train of sound waves of ever
increasing velocity to be propagated through the gas. The model discussed here is a simplified
model explaining shock formation in the tube when the piston is activated with constant
velocity.

Let us consider another more analytical model in which first of all we consider a sound wave
of velocity a moving into a gas at rest (figure. 1). The pressure ahead of the wave is p, then
density p and the particle velocity zero. The pressure immediately behind the wave is p + &p,
the density p + dp and the particle velocity du. Here, the disturbance is assumed to be
weak so op, dp, ou are small. Figure 2 shows the equivalent model obtained when the sound
wave is brought to rest by imposing a backward velocity a on the entire system.

p
p+3p P p+3p p
p¥op 0 p+3p p
ou a a-du a
> — —
Figure 1. Figure 2.

Let us consider figure 2, where we apply the equation of continuity across the stationary wave
to obtain

pa=(p +3p) (a—ou) )
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Here, we have considered the mass flux per unit time across unit area of the wave.

Thus dp/p = du/a

v-1
But 2= TP y(p_oj(gj 2)
Po A Po

So, we have

du = ad_pp — ,Yl/Z p%)/Z pBY/Z p(}/73)/2 dp

which, on integration, gives

pdu 2 1/2 ,1/2 ~ y
U= Id_dp :_%(p(v DIz _ o 12y
po P v=1 pf

(y-1)/2
=1\ po

) 1
(p/po) 2 =142 ) (v (@)

Hence

where g is the speed of sound in the undisturbed gas. Now
y-1
A TR (o
a5 Up \vpo) UpJ){Po) (po

a = a0 (plpo) V2 = g + % (-1u (6)

Hence

232

Now, each small disturbance propagates itself at a velocity equal to local speed of sound
relative to the fluid. Thus if the fluid moves with velocity u, then velocity of propagation of

disturbance
1
=ut+a=a+ — (y+t1u ()
2
Hence in a short time interval 1, the distance moved by the disturbance is

(u+a)= {ao +%(y+1)u:|r (8)
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Equation (8) shows that in a given interval t, the points of high velocity move farther to the
right than those of low velocity. The type of shock wave just considered is a normal shock,
since it is perpendicular to the incident gas stream. Another type of shocks are oblique shocks
which are inclined at oblique angles to the direction of flow.

UNIT - IV

1. Stress Components in a Real Fluid

Let 8S be a small rigid plane area inserted at a point P in a viscous fluid.
Cartesian co-ordinates (X Y, z) are referred to a set of fixed axes OX, OY, OZ.

Suppose that 8F, is the force exerted by
the moving fluid on one side of &S, the A
unit vector Abeing taken to specify the

normal at P to &S on this side. We know p n
that in the case of an inviscit fluid, SI_:n is afzn

A

aligned with A. For a viscous fluid, 3S
however, frictional forces are called into o Y
play between the fluid and the surface so

that SF, will also have a component
tangential to &8S.  We suppose the ‘y
Cartesian components of o6F, to be
(8Fnx, OFny, 8Fn;) so that

4

SF,= OFn | +8Fny |+ 8Fn K.

Then the components of stress parallel to the axes are defined to be ony, Gny,
Gnz, Where

_ 0F. _ dRy
Gnx = = )
8550 S ds
SFny any
Ony = —< =
3550 OS ds
- oF,, _ anZ

- 5550 8S  dS
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In the components Gnx, Gny, Onz, the first suffix n denotes the direction of the
normal to the elemental plane 6S whereas the second suffix x or y or z denotes
the direction in which the component is measured.

If we identify A in turn with the unit vectors i, j,k in (OX), (OY),(OZ) , which

is achieved by suitably re-orientating &S, we obtain the following three sets of
stress components

Oxxs  Oxys Oxz ;
Gyx; Oyy, Oyz ,
Ozxy Ozys, Ozz .

The diagonal elements oy, oyy, G5, Of this array are called normal or direct
stresses. The remaining six elements are called shearing stresses. For an
inviscid fluid, we have

Oxx = Oyy = Oz = —
Oxy = Oxz = Oyx = Oyz = Ozx — Ozy = 0

Here, we consider the normal stresses as positive when they are tensile and
negative when they are compressive, so that p is the hydrostatic pressure. The
matrix

O O Ox
Oyx Oyy Oyz 1)

zx Ozy Op

is called the stress matrix. If its components are known, we can calculate the
total forces on any area at any chosen point. The quantities oj(i, j = X, y, z) are
called the components of the stress tensor whose matrix is of the form (1).
Further we observe that j; is a tensor of order two.

2. Relation Between Rectangular (Cartesian) Components of Stress

Let us consider the motion of a small rectangular parallelopiped of
viscous fluid, its centre being P(X, y, z) and its edges of lengths 6x, 8y, 6z,
parallel to fixed Cartesian axes, as shown in the figure.

i 4 8z
Z : AR
i };P(x, ,2)
P, dx
Y%
Y
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X

Let p be the density of the fluid. The mass pdx 8y 6z of the fluid element
remains constant and the element is presumed to move alongwith the fluid. In
the figure, the points P; and P, have been taken on the centre of the faces so

that they have co-ordinates (X —%X,y, j and(x +—Y, j respectively.

At P(x, y, z), the force components parallel to OX,0Y,0Z on the
surface area dy. 6z through P and having i as unit normal, are

(oxx0Y 82, GOyxy dYdZ, Oy, 8YdZ)

OX . - :
At P2(x+ Y, j since i is the unit normal measured outwards from the

fluid, the corresponding force components across the parallel plane of area
dyoz, are

o o 5 55 o]

For the parallel plane through Pl(x—%x,y,zj, since —i is the unit normal

drawn outwards from the fluid element, the corresponding components are
X (00, S [ OOy 5x (do,,

- - dydz, - dydz, — - dydz

Hc’” Z(axj}y {Xy Zlax]}y {G” Z(ax]}y}

The forces on the parallel planes through P, and P, are equivalent to a single
force at P with components

oo
DO DOx O |5y sy 52
oX OX 0OX
together with couples whose moments (upto third order terms) are
— Oxz OX Oy 0z about Oy,

Oxy OXdydz about Oz.

235
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Similarly, the pair of faces perpendicular to the y axis give a force at P having
components

{&syx | 6(5yy | acsyz } 5 5y 52
o oy oy
together with couples of moments

— oyx OX 8y 8z about Oz,

Gy, 6X8Yydz about OX.

The pair of faces perpendicular to the z-axis give a force at P having
components

aczx aGZy 6022
oz ' oz oz

} OX 8y 8z
together with couples of moments

— Gy OX 8y 6z about OX,

G2x OX0Ydz about Oy.

Combining the surface forces of all six faces of the parallelopiped, we observe
that they reduce to a single force at P having components

Cox | POyx , 00y , Oy , By, 0y e Oy B | |5, 8y &z,
x o aflx oy allx y

together with a vector couple having Cartesian components

[(Gyz - Gzy)1 (GZX - ze), (ny - ny)] OX 8y dZ.

Now, suppose the external body forces acting at P are [X, Y, Z] per unit mass,
so that the total body force on the element has components [X, Y, Z] p ox 8y

5z. Let us take moments about i —direction through P. Then, we have

Total moment of forces = Moment of inertia about axis x Angular
acceleration

i.e. (oy—0y) 8x 8y 8z + terms of 4™ order in 8x, 8y 8z = terms of 5™ order in
oX, dy, oz.
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Thus, to the third order of smallness in 8x, dy, dz, we obtain

(Oyz — Ozy) OX 8y 62 =0

Hence, as the considered fluid element becomes vanishingly small, we obtain
Oyz = Ogy.

Similarly, we get
GOzx = Oyxz, Oxy = Oyx

Thus, the stress matrix is diagonally symmetric and contains only six
unknowns. In other words, we have proved that

oij = oji, (1, ] =X, Y, 2)
I.e. ojj Is symmetric.
In fact, oj; is a symmetric second order Cartesian tensor.

2.1. Transnational Motion of Fluid Element. Considering the surface forces
and body forces, we note (from the previous article) that the total force

component in the i —direction, acting on the fluid element at point P(x, y, z), is

19
00 L Oy o Sx 8y 8z + X pdx dy 8z (1)
x oy | ez

where (X, Y, Z) is the body force per unit mass and p being the density of the
viscous fluid. As the mass p 6x 8y dz is considered constant, if g = (u, v, w)
be the velocity of point P at time t, then the equation of motion in the
i —direction is

0o
(acxx L _,_aGZXJSX dy 0z + p X dX 8y 6z = (pdX dy 82)(3_[:

x oy oz
0
or DO, LOyx, 0o +pX = p% (2)
ox oy oz dt

If u=u(x,y, z, t), then

du ou ou _du au d o0 _
—=—+4+U—+V—+W— where —=—+107-V
dt ot ox oy 0z dt ot

Thus, (2) becomes



FLUID DYNAMICS 238

ou,  ou ou ou_ o 1fdoy +56yx+6cszx @)
ox oy | oz

Similarly the equations of motion in ]andR directions are

+

oV ov oV oV +1 06 8cyy+8cszy @
OX oy 0z

0
@+u%+v%+w@—2+l aGXZ + Oyz aGZZ (5)
ot OX oy 0z OX oy 0z

Equations (3), (4), (5) provide the equations of motion of the fluid element at
P(x, Y, 2).

In tensor form, if the co-ordinates are x;, the velocity components u;, the body
force components X, where i = 1, 2, 3, the equations of motion can be
expressed as

ou; 1 L
—liu.u.=X,+= G--ﬁ-(l,J:l,2,3).
o M T AT O

3. Nature of Strains (Rates of Strain)

The change in the relative position of the parts of the body under some force, is
termed as deformation. By Hooke’s law, the stress is proportional to strain in
case of elastic bodies, while in case of non-elastic bodies the stress is
proportional to the rate of strain.

Strain is of two kinds, the normal and the shearing. The ratio of change in
length to the original length of a line element is called normal (or direct)
strain. The shearing strain measures the change in angle between two line
elements from the natural state to some standard state. We shall consider two
dimensional case and then extend it to three dimensions. Let us consider a
rectangular element ABCD of an elastic solid with co-ordinates of A as (X, y)
and length of sides as Ax and Ay in the natural state.

Let the point A. be defined to a point A’(x +&, y +n) then

B(x +AX, y) goes to B'(X +& +Ax + Zé

AX, y +n+ gn AX)

(x,y+Ay) (X+AX,y+Ay)
D C
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Ay

AX
A(X,y) B(x+Ax,y)

(Before deformation) (After deformation)

The point D(X, y +Ay) goes to the point

g o
D'(x+§+—=Ay, y+n+ Ay + —Ay).
oy 9%
Therefore, projected lengths of A’'B’ along x and y axes are AX + %Ax and
M Ax
OX
Thus,
& ) ()
(A'B)’ = (Ax +—ij +(—ij (1)
OX OX
The normal strain along x-axis is defined by
o= A'B-AB
XX AB
= AB =(1+ex) AB=(1+ ex) AX |AB=Ax (2

From (1) & (2), we have

2 2
(1+ex)’ (A%)* = (AX)? K&gj +(5nj }

OX X
P 2 2
= (L)’ = (“&&j +%j
From here, to the first order terms only, we get
EXX = % .
OX

Similarly, the normal strain along the y-axis is

239
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The shearing strain yyy, at the point A is the change in the angle between the
sides AB and AD. The right angle | DAB between AB and AD is diminished

by Yxy = 0, + 0, = tanBd, + tanO,, 61 & O, being small.

@AX %Ay
ie. Yxy = ax@g + ay
S el

-1 -1
= @[14_%) +%(1+@j
ax\ax) oyl ey

_1{on & :
( ) Z(ax ayj upto first order.

We observe that the strains have the nature of change in displacement in a
given unit length in a given direction. Hence strain is a tensor of order two.

In the case of fluids, there is no resistance to deformation but only to the time
rate of deformation. Hence in fluid dynamics the rate of change of strain with
time i.e. rate of strain is to be used in place of strain in elasticity. Thus, for
viscous fluids, replacing strains by rates of strain, the corresponding results are
obtained to be

2(%)2(%] 0 (-

ot\ ox ox \ ot oX OX
ov

EWZE’V:%

3Rl 5
YT Satlex Tay) 2lex oy

In case of three dimensions, these become
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ou ov ow

EXX aX1€yyZElEZZ:E

L1 o
=Wyl =5 oy

v (A)
et ):1[%@)
ety o 2loy oz
o -1y )zz(ma_uj
2ol 2 lox ez

where u, v, w are the velocity components of the viscous fluid along X, y, z
axis respectively.

The six quantities exx, €yy, €22, Yxys Yyzr Yax IN (A) are called components of the
rates of strain or gradients of velocity

3.1. Transformation of Rates of Strain. v P(X.y)
We shall obtain the rates of strain interm  Y'n  [.______ xy)

of the new co-ordinates x’, y’, changing
from x, y to X, y'. Let us obtain the new

-

axes by rotating the original axes through
angle®and let 1=cos6, m =sinO o | X
Then X'=Ix+my,y =—mx+ly
= X=IX'—my,y=mx"+ly
0 0
Further, —(X)=—(x+m
5 ) =5 ( y)
= u' =lu+mv
and vV '=—mu+lv
Also, (OP)? = x* +y? = x"? + y? | -+ they are still perpendicular
Now, €'wx = a_u:(a_ujg+ vy
ox' \ox/Jox' \ oy )ox
, _[,ou ov aou ov
or €w=|l—+m— |l +| | —+m—|m
ox  OX y oy

_pou 2 OV ov au
= —=+m°—+Im —+—=
X oy oX oy
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=1? gy + M? Eyy + IM.yxy

ou' oV
Vxy = 5+6_X =2Im (eyy — €x) + (IP-M?) .

which are the rates of strain of the new system in terms of rates of strain in the
original system. If we put back | = cos0, m = sin0, then

, S + e S — €
€= X Y 0520+ 2 5in 20
2 2 2
. S + e S — €
e = TSy S TSy 6609 - Y9 gin 20 (B)
W 2 2 2

1 Sxx Sy Txy
=— =——— 2735in20+—2c0s20
€y 2(vxy) 5 5

These equations give the transformation formulae for the rates of strain.

We observe that the rate of strain is also a tensor of order two, there must exist
at least two invariants of the rate of strain to the choice of co-ordinate systems.
These can be obtained as follows.

€'+ €'y = (P +m?) (exx + €yy)

:exx+€yy:a_u+@=divﬁ1 ﬁZ(U,V) (1)

x oy

(V' )?
Y2 = (I e +M? ey + IMyy) (M ey + 1P €y — IM 1)

E,XX E'yy_

- % [2Im (Eyy —€xx) (|2 - mz) yxy]Z

2
Y
=(1*+ 2 P m? + m?) ex eyy—Txy (I* + 217 m? + m*)

Y
= Exx Eyy _y (2)
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Equation (1) shows that the divergence of the velocity vector at a given point is
independent of the orientation of the co-ordinate axes. Equation (2 is related to
the dissipation function. i.e. loss of energy due to viscosity.

Let us now consider the general case of the rates of strain in three dimensions.
The direction cosines between x, y, z and X', y', z" are related as follows.

X y Z
rd Iy mz Ny
y' I m- Ny
yal I3 ms N3

The relations between co-ordinates in the two systems are
X' =X+ myy n;z
Yy =X + myy + nyz
Z' = Is3x + mgy + n3z
and
X=hx'+lLy +137
y =mix"+ myy + msz’
Z=nx"+nyy +nzz’
From here, we get
u = Ilu+ myv+mw
V' = lhu + myv + naw
W' = l3u + mav+ naw

We shall use these relations to find out the rates of strain w. r. t. the new co-
ordinates x', y', Z'.
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Let us work out

w_wax oy wa
ox' oxox' oyox ozox

! —_—
€ xx —

_(, éu N ow
OX OX OX

au ov ow

+ Ia—u+m @+n@n
oz toz tez)t

ov au
Il Exx"'ml eyy'i'nl €z +1imy &“‘_

oy
o oW oW du
+ming | —+— [+nl)| —+—
oz oy oX oz

—1.2 2 2
=" exx+my EytN1" €+ Iy Miyxy + M1 N1y, + N1y Yzx

Similarly, we have

8v
e’yy - - I2 Exx T m2 Eyy t r]2 €zt lhomy Yxy T M2N2 vy + naly Yzx
s
€z = F = |3 Exx t m3 SRS n3 €z + lsms Yxy + M3z vy, + nsls Yzx
L X Ny ez, X audy v
Ty T oy Oxox' oyox oz ox oxoy oyoy oz oy
+ (limz + myly) yxy + (M1n2 + N1My) vy, + (N1l2 + 11N2) 2«
5W 8V

+ (Iamz + mal3) yyy + (M2N3 + NaMg) vy, + (N2l + 12n3) v«
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, _ou ow'_

+ (Iamy + msly) yxy + (Mang + N3mMy) yy, + (N3ly + 13n1) 72«

From here, we find

€'xx t E'yy + €'y, (Il2 + I22 + ISZ) Exx t (m12 + m22 + m32) Cyy
+ (N + np® +n3%) €2 + (Iimy + Lmy + 13ms) 7y
+ (Mgng + MaNz + M3ng) vyz + (N1ly + N2l + N3l3) v
—Extewt ey
where we have used the orthogonality relations
|12 + |22 + |32 =1letc
and lim; + Iom; + I3mg = 0 etc.
Thus we conclude that
€'xx t E'yy te'z=ext Eyt €z
ou ov ow . _
= —+ + =
is invariant.

Similarly,

1
€'xx E'yy + E'yy €'t €'y €' _Z I:('}”xy)2 + ('Y’yz)2 + ('Y'zx)z]

1
S Exx Eyw Tt €y €7z F €77 Exx _Z [('ny)2 + ('sz)2 + ('sz)z]

is also invariant.

3.2. Remark. The stress tensor ojj and the rates of strain €;; follow the same
rules of transformation. Thus, the three equations in (B) can also be written for
stress components so that we get the relations between the original and the new
stress components as
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. (0) +C O,, —O

O = XX2 a0 XXZ Y c0s20 + o, Sin 20

. o,, +O O,, —O

Gy = ”‘2 v _ XXZ Y cos20-c,,sin20¢ (C)
. O, —O

Gy :—ysin 20 +0,, 0520

4. Relations Between the Stress and Gradients of Velocity
(Equivalence of Hooke’s Law in Case of Viscous Fluids)

In elasticity, generalized Hooke’s law gives a relation between the stress and
the strain components.

For viscous fluid, the following assumptions are to be made to find the
relations between the stress and the rate of strain.

Q) The stress components may be expressed as linear functions of rates of
strain components.

(i)  The relations between stress and rates of strain are invariant w.r.t
rotation and reflection of co-ordinate axes (Ssymmetry).

(ili)  The stress components reduce to the hydrostatic pressure when all the
gradients of velocity are zero.

. o _ou . _
1.e. Oxx — _p - ny— Ozz, Exx — &:0— Eyy— €z7.

First we consider two dimensional case and then we extend it to three
dimensions.

Under the assumption (i), we can write
Oxx = A1 €xx+B1 ey + Cryyy + D1
Oy = As exx+ By eyy + Coyyy + D (1)
Oxy = Az €xx + B3 €yy + C3vyy + D3
where A’s, B's, C’s and D’s are constants to be determined.
From the assumption (ii), we have
6'xx =A1 €'+ B1 ey +Cry'yy+ D1

G’yy = A2 E,XX + BZ e,yy + C2 ’ery + D2 (2)
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G,xy =Az €'xxt B3 e'yy +C3 Y’xy + D3

But the relations between the original and the new stress components are (from
equation (C))

. (¢) +0 (e} —0

G = XXZ W XXZ Y c0s20 + 6, Sin 20

. (@) +0 (@) —0

Gy = XXZ w_ XXZ P cos20-c,,sin20¢  (3)
. (¢} —0

Gy =—%sin 20 +6,, C0S20

Using the equation (1) in 1% of (3), we get

. 1 1 1
O =5 (Ar+ Az) exx + > (B1+B2) €y + > (C1+C2) 1y
1 1
+ E (D1+D2) +§ (Al—Az) Eyx COS 20
1 1
+ 5 (B1—By) €yy C0Os 20 + > (C1—Cy) yxy COs 20

Also, the relations between the original and the new rates of strain are

. €y tE € — € Y .
e =X W, X yyc0526+7xysm29

h 2 2
, S + e S — €

e =% TSy S TS 6009 1 sin2g (5)
vy 2 2 2

(S — &
= —%sin 20+ c0s20

Yy
Using equation (5) in 1* of equations (2), we get

) A A A .
Oy — 71(Exx+ Eyy) +71 (exx— Eyy) cos 26 +71 Vxy SIN 20
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— Ci(€xx — €yy) SiN 20 + Cy 1y COS 20 + Dy (6)

Comparing co-efficients in (4) & (6), we get

% (1+cos 26) + % (1-cos 260) + Az sin 20

— Al Bl H

=5 (1 + cos 20) + > (1—cos 26) — C; sin 26 | €xx
B, B, :
> (1+cos 26) + > (1—cos 26) + B3 sin 20

— Al Bl :

Sy (1 — cos 20) + > (1+cos 20) + C1sin20 | ey

% (1+cos 20) + % (1—cos 26) + C3sin 20

7lsin 29—%sin 20 + C c0s 20 | Yy

% (1+co0s 20) + % (1—cos 26) + Ds sin 26 = D,

From these equations, we get
A, =B, = B(say), B,=A; = A(say)

C,=A3=-C;=-B3= —C(say)

A,-B, A-B

Ce=
T 2

,D1=D,=D (say), D3 =0

The stress components in terms of the rates of strain are now obtained to be

O =A€, +Bey, +Cvy,, +D
oyy =Bey +Aey,, —Cy,, +D @)

A-B
_C(Exx - Eyy) + Tny

ny:

To find A, B, C and D, we make use of the assumption that there is symmetry
of the fluid about the co-ordinate axes.
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Let us take the symmetry w.r.t. the y-axis. If (X1, y1) are the new co-ordinates

of the point with co-ordinates (X, y), then
X1==X,y1=Y
le. Up=—-U,Vi=V

The rates of strain w.r.t. (X1, y1) co-ordinates are

oup _—0u_ Oudu aduoy

XX

X, OX,  OXOX, Oy OX,

2|2

Similarly,

Sy =Cyyr Ty = Vxy
and

lexl = Oxx 'GY1Y1 = ny’ leyl = _GXY

Using these in (7), we get

GX1X1 = Aexlxl +Bey1Y1 _CYX1Y1 +D

Gylyl = Bexlxl +AEY1V1 +CYX1V1 +D (8)
A-B

leyl = C(exlxl a eYlYl) + 2 yxlyl

The relations (7) are invariant where there is a symmetry w.r.t. any co-ordinate

transformation and so

c$X1X1 = Aexlxl +BEY1Y1 +C’Yxl)ﬁ +D

GYlyl = Bexlxl +AEY1Y1 _CYX1Y1 +D (9)
A-B

GX1y1 = _C(exlxl - E)/1)’1) + 2 yX1Y1

Comparing (8) & (9), we find C = 0. According to the assumption (iii), we

have
GXX:ny:_pa EXX:EWZO

Thus from (7), we find D = —p, since C =0.
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The last equation in (7) becomes

Oxy = A-B Yxy = M Yxy» Where p = A;B is called the co

efficient of viscosity. :
The relations in (7) are now,
Oxx=A €x+tB ey —p=(A-B) exx+ B (exx+ €yy) — P
=2uex+BV-q-p
a=(u,v)

Oxy = K Yxy = 21 Exy

These are the required relations between the stress components and the rates of
strain in two dimensions.

For three dimensional case, we can write.

O, = 2UE +BV-q—p=2u2X—u+kV-q—p

ny:2ueyy+BV-q—p:2u%+7Nﬂ—p (10)

_ ow _
G, = 2UE, +BV-q—p:2u§+7N~q—p
)

_ _ [(ov au
Oxy = UL 7Yxy = 1 &"'5 )

~—

oW oV
Oyz = W V¥yz = H(E +§j (11)

o~ Hiecm ox oz) |

where B = \.
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AlSO, Oy + Oyy + 0z = 2U(Exx + Eyy + €5) + 3L V--3p
=2uV-G+3% V-G-3p
=(2u+3%) V-q-3p

For incompressible fluid V-q = 0.

= Oxx + Oyy + Gz = —3p

io (o +cs:;,y+csZZ _

This shows that the mean normal stress is equal to the hydrostatic pressure (i.e.
constant)

4.1. Remarks : (i) For compressible fluids, B =A = —2?”

(i)  Equations (10) and (11) may be combined in tensor form. Thus, if x;
denote the Cartesian co-ordinates, u; the velocity components (i = 1, 2,
3), then (10) & (11) may be collectively written as

oij = (A0-p) Sij + p(uij + ui), (1, =1,2,3)
where 6 =div 7 = uj,;,
1

p= -3 i, 0 = 0 for incompressible flow,

A= —% u for compressible flow.

(iv)  For viscous fluids, stress is linearly proportional to rate of strain. This
law is known as Newton’s law of viscosity and such fluids are known
as Newtonian fluids.

4.2. The Co-efficient of Viscosity and Laminar Flow :

g et A Y

/I‘IT'I'I'ITI'"I" X
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Z

The figure shows two parallel planes y = 0, y = h, a small distance h apart, the
space between them being occupied by a thin film of viscous fluid. The plane
y = 0 is held fixed and the upper plane is given a constant velocity U i.Ifuis
not very large, the layers of liquid in contact with y = 0 are at rest and those in
contact with y = h are moving with velocity Ui i.e. there is no slip between
fluid and either surface. A velocity gradient is set up in the fluid between the
planes. At some point P(X, y, z) in between the planes, the fluid velocity will
be Ui, where 0 < u < U and u is independent of x and z. Thus, when vy is
fixed, u is fixed i.e. fluid moves in layers parallel to two planes. Such flow is
termed as Laminar flow. Due to viscosity of the fluid there is friction between
these layers. Experimental work shows that the shearing stress on the moving
plane is proportional to U/h when h is sufficiently small. Thus, we write this
stress in the form

_ .U du
Oyx = H!mm)ﬁ:“d_y

where p is the co-efficient of viscosity. In aerodynamics, a more important
quality is the Kinematic co-efficient of viscosity v defined by

v =ulp.

For most fluids p depends on the pressure and temperature. For gases,
according to the Kinetic theory, u is independent of the pressure but decreases
with the temperature.

5. Navier-Stoke’s Equations of Motion (Conservation of Linear
Momentum)

Let us consider a mass of volume t enclosed by the surface S in motion at time
t. Let dt be an element of volume, then the mass of this element is pdr, p
being the density of the viscous fluid.

Let the element moves with the velocity q. The inertial force on the element
IS

pdt (?}I—?j |F=ma

The resultant of inertial forces (or the rate of change of linear momentum) is
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[ =f”pi—?dt 1)

Let X be the body force per unit mass, then the resultant of body force is
Fy =[]]pXdr )
The surface force on an element dA of the surface is given by the vector
f =fxi, +fyi, +fzi,
= (B dA)i, +(P,.dA)i, +(P,.dA, ?)

~

where ix,ly,izare unit vectors, dAis the vectorial area of the element and

Px, Py, Pz are components of stress vector, given by

= O by + 0y Iy + 0y, 1,
D _ o 2 o X .

Py =0yl +0y, 1y +0,1, | Ti=1ij % (4)
P, =0, 1 +0, 1y +0,1,

The resultant of the surface forces is given by
R =i [[P dA+i, [[P,.dA+i,[[P,dA (5)
Using Gauss divergence theorem this can be written as
F =1 JIIV-Bdv+i, J[[V-Bde+i, [[[V-Pdr (6) |- dA=ndS

Let us use the law of conservation of momentum. By this law, the time rate of
change of linear momentum is equal to the total force on the fluid mass.
Equating the resultant of body and surface forces with that of inertial forces,
we obtain.

”fp%drzf”p)_(dtﬁxf”V~I3xdr+?y”fV-l3ydr+fZ [[[v-Pdt (7)

Since drt is an arbitrary volume element, so we have

W _ X +v.Pi +V-B,i +v-P

z

i, ®)
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This is the required equation of motion in vector form using the values of
P,.P,,P,, we get

I:>X
OX oy 0z

and let G= (u, v, w), X = (Xx, Xy, X;) then the equations of motion can be put
as

0
p% =pX, + QO | DOy, 00
dt OX oy 0z
0 0 0
pﬂ = pr + ny + ny + GyZ (9)
dt OX oy 0z
0
pd_W = sz + aGZX + Gzy + aGzz
dt OX oy 0z

These are the equations of motion in terms of the stress components. (We have
also drawn these equations previously)

Also, we know that

a
dt

0
—+
ot
and the relations between stress and rates of strain are
ou
o, =2U—+AV-q—
XX u x q-p

ov
Oy =20—+AV-G—p
G
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oW 0oV
Cyz = (E‘f‘a—}

ow au
G, =W &4‘5

Using these in (9), we get

du apa(auz_jaauav
i 1L I | R F T R
Pt~ ox x| \"ox 3 oyl oy ox
af (v ow

where A = — 2?“compressible fluids.

i

J_ %{“ (az (Xﬂ
wfars)

ow auﬂ a“aw avﬂ
—+—||+=|y —+=
ox oz oy| \oy oz

(10)

The equation in (10) are called Navier-Stoke’s equations for a viscous

compressible fluid.

5.1. Deductions (i) If u = co-efficient of viscosity = constant, then Navier-

Stoke’s equations (10) become

du op 1 0

Xy——+=-p—
Pt ~ P ok T3Mex
du op 1 0
_:X__+__
Pt ~ P ok T3Max
dw op

X -9
Pat ~ P T o B“az

which can be expression in vector form as

dg
dt

(i) Forincompressible fluid,

U v ow
ox oy @
U v ow
ox oy oz
u_ v ow
ox oy @

p = constant,

+uV2u

+uV2u

+HV2W

p——p[—+(q V)q} pY—Vp+uV2q+§V(V-q)

255
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p = constant, V-ﬁ:a—u+@+%=0.
OX oy 0z

Thus the equations become

dg _oq
-V X——V
at at+(q )q = > p+p “q
ie. 9 _x_ p+vV2q
dt p

where v = u/p is called the Kinematic co-efficient of viscosity.

For steady motion with no body forces, we have
@ v)g=—L+ vz —=0,X=0
PP

(iii)  Ifthere is no shear atall i.e u =0, then

dq _dq - Vp
i .V X - F
G a A (@-vyg-= 5

These are Euler’s dynamical equations for an incompressible non-viscous
fluid.

5.2. Equations of Motion in Cylindrical Co-ordinates (r, 6, z). In
cylindrical co-ordinates (r, 6 2), we have @ = (qy, Qe, q) and the
acceleration is given by.

g _;(da, a5 |,; (49, GiGo ), ; 4,
dt "l dt dt r Z dt

1)

where i, iy, 1, are the unit vectors in the directions of r, 6, z increasing.

Sy
A

dz

T

&
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N

(The surface forces are obtained on cylindrical volume)

Thus, in cylindrical co-ordinates; the resultant inertial force is

F :mpi_?dt

dg, a5 ) = (dgy . 9,0 ). = dg
— r 19 Z d 2
Hjl: ( , +ig St + r +1, m pdt  (2)

The components of stress vector, P,, Py, P, in cylindrical co-ordinates are
given by

I, G, + Iecre +l;00,
|

r Ogzr + 'ecze + Izczz

In cylindrical co-ordinates we have

= l_ 0 0 o
V- Pr = rl (rGrr)+ 0 (0r9)+ oz ( rz)} -5
— 1[0 0 1 o
V-Py :F_é ("Ger)JFa (Cgo) +— (rGez)_ Tre
— 1[0 0 0 |
V- Pz = __E (err) +%(Gze) +§(r022)_

Therefore, the equations of motion in vector form

d o ° By, 4 D H P
pd—?:pX+Ir(V-Pr)+Ie(V'Pe)+|z(V'Pz)
reduces to

2
[ddi;—q%j:pxﬁﬂa (50)+ 25(10,) +-2 (1) |- 22

257



FLUID DYNAMICS 258

aGrr +186r6 +acrz +Grr_066
o r 00 oz r

:pXr+

10

dge |, 9,9 o 0 o
p[d_te+ rrGJZPXe+§(Gre)+?%(Gee)+§(09z)+27re
pdqz :pX +aGrz +18662 +aczz +&
dt 2o r 09 0z r

Qo O 0

- d o o
where X =(X,, X4, X,),—=—+0Q, —+—2—+0, —
(Xr: Xo Z)dt a rat e Yy

The relations between the stress components and the rates of strain, in
cylindrical co-ordinates are

2 _
c$rr:2l~l err_?l’lv'q_p
20 _ -2u
=2 -——=V-q- A=—
Goo U €o0 3 q-p 3

GZZZZH EZZ_Z_;V'q_p

O = LYo, Orz= KU Yrz Opz = Yoz, where

0 10

_ _ e Qo 109,
2= 5 T T T e

laqz a% aQr aqz
y= =%z Ho A Az
=0 T Tt T o

Using the above relations, the equations of motion (Navier Stoke’s equation) in
cylindrical co-ordinates become

dg, g5 op, o (L0 2y
99 Yo |_ox P91 [2N _2y.
‘{ at ) P T TaM e s
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r oo r oo or r

P O] (%, 2|, 200 10, a
oz 0z or rior r o9 r

or roo or r
f O (10, 20|, 20(100, %y Qo
0z r oo 0z r\r oo or r
dg op 0 g, 2 _
Mz _ oy L Y25z ‘.
Par P 6z+az{u[ oz 3 qﬂ
L10] (108, aa )|, 0 u(%ﬁq_zj
roo roo oz or 0z or

R 5(%@2}
r\.oz or

WhereV-q:aq'+laq9+aqz+%.
o ro oz r

5.3. Special cases. (i) If p = constant and p = constant, then V-q = 0 and the
equations of motion are
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dg, op 2
=pX, —— +uVvas,.
P at pPA; p uv-q;
2 2 2
WhereV255—+Ea 10 0

or? ror r?ee? oz?

(i) If the fluid is non-viscous then p = 0 and if it is incompressible, then
V-q=0, p = constant and the equations of motion become

2
. di_q_ejz x %
dt r or

dd&+mj:pxe_@
t r roo

dq op
Mz | _ox. - H
p )Pz pe

These are Euler’s dynamical equations in cylindrical co-ordinates.

5.4. Equations of Motion in Spherical Co-ordinates (r, 6, y). We know that
the velocity and acceleration. components in spherical co-ordinates (r, 6, ) are

L ade Lo dr de
r=rcos0sind—+sin“0—, qy=r—oy,
| at’ 1~ ot
. dy
=rsing —
Qy at
2, 42
and ar:%_qeﬂqw
dt r

2
2 = dg, L drfo 9y cotd
dt r r

— dq\y n qrq\y I qquCOte
dt r r

Wy

The equations of motion for a viscous incompressible fluid of constant
viscosity p are :

pz—?=p>_<—Vp+uV2G
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In spherical co-ordinates,
vp: @11‘@1i@ '
or rod rsind oy
>_<:(Xr,X9,XW)
Let us simplify
Vig=V(V-§)-Vx(Vx0Q)
10

_ 1 o, . 1 oqy
ButVv-g==-—(rq,) +———(sin0qg,) + =
g rar( ) rsineae( %) rsin® oy

hei, hyiy hsi,

Further Vxg=—1|o/ar o0 ofoy
hihahg

h.a, h,de hyq,

. i, riy rsin@i,
=———|0/or 9/B  O/oy

r<sin@ .
d, rge rsinbq,

—_ 1 2] 0 . _i 2 5C|r _g .
= m{”{%(rsmeqw) 8W(rqe)}Her{&V ar(rsmeqw)}

!

_ 2 2 0. 2 o
Vig=1,|V3, -=q, - —(sinbggy) — —
| { e rzsineée( %) rsind é\v}

.. 0 q
+ i rsin0—(rg,) ——
v {8r( %) o0

Then

+?9 que_ 2q-92 +%6qr_ §C.0529 By
r‘sin“® r° o r°sin“0 oy

+i\v qu\v_ 2q-wz + 22- 6qr+ 30-0326 Ho
r<sin“® r<sin® oy r<sin“0 oy
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Thus, the equations of motion for a viscous incompressible fluid in spherical
co-ordinates are

dg, d5+d5 ap
Mr 10 THv 1 oy 9P
p( dt r P or

2 2 0, 2 o
+1 V3, —=q, —————(sinBg,) — —
H{ T 2 gine 50 (500 r?sin® oy }

dg, 9,00 Gy COMO 14p
+ — =pXp———
p[ dt r r P70 r 0o
i 5,
i resin“® r= 00 r°sin“0 oy
A da, , 9:dy o9, COtO _ox. - L @
dt r r Y rsin@ oy
u qu\v_ 2q-W2 + 22- aqr+ 30_0329 al
r<sin“® r<sin® oy r°sin“0 oy

, 10(,0 1 o(. o 1 &
where Vo= = — 1" — |+ —5——— | sin—- |+ ——————
reor\. or) r<sing oo 09/ r°sin“0 oy

If we put p = 0 in the above equations, we get the equations of motion for ideal
fluid.

6. Steady Flow Between Parallel Planes

For a viscous incompressible fluid in steady flow, the Navier Stoke’s equation
with negligible body forces, are

d_q:—_VF)+EV2q:—_
d  p p p

In Cartesina co-ordinates; these are
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du oau 0
- Forsteadycase — =—+(G-Vu=(g-V)u,— =0
ycase at+(q u=(q-Vv) a

0 0 0
U—+V—+W— [U
ox oy oz

ou ou ou
U—+V—+W
ox oy

oz
v v  1op [(0°v d*v d%v
U—+V W —=——— V| —+— +—
ox oy 0z p oy OX° oy- oz

ow ow ow  1ép [d*w 8w o*w
U—+V—4+W—=———+V + + (1)
oXx oy oz  poz ox2  oy? ozl

The equation of continuity for incompressible flow is

a—“+@+@=0 (2) |-V-g =0

oXx oy oz

The equations (1) are non-linear 2" order partial differential equations and
there is no known general method for solving them. However, we shall find
some exact solutions of the Navier-Stoke’s equations in some special cases.
This is one of those cases.

Let us consider a two dimensional steady laminar flow of a viscous in
compressible fluid between two parallel straight plates. Let x-axis be the
direction of flow, y-axis be perpendicular to it and z-axis be parallel to the
width of the plates and let h be the distance between the plates.

We have the conditions
_ _ 0
v=0,w=0and —=0 3)
oz
From the continuity equation (2), we have

S —0=u=uy) @)
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/

z

Y

The second equation of equations (1) gives

S =0=p=p) ©)

The 3" equation of equations (1) is identically satisfied and the 1% equation
gives

Lo, @ _dp_ o

o
= ARV 6
pdx dy? dx : dy? P ©

Since u is a function of y only, so g_p is either a function of y or a constant.
X

But from (5), p is a function of x alone.

Hence g_p is constant. i.e. pressure gradient is constant.

X

Integrating equation (6) w.r.t y twice, we get the general solution to be

2
u :E@y_+Ay+ B (7)
ndx 2

where A and B are constants to be determined from the boundary conditions.
Now we take the following particular cases

6.1. Couette’s Flow : It is the flow between two parallel planes (flat plates)
one of which is at rest and other moving with velocity U parallel to the fixed
plate. Here, the constants A and B in (7) are determined from the conditions

u:O,y:O}
and u=U,y=h (8)
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0 u=0

R L A P P R R Lt
z

Using these conditions, we get

2
B=0, U :1(%)h—+Ah

pldx) 2
= A:H_L(@j,B:o
h  2u\dx

Therefore, the solution (7) becomes

2
J= 18] fU_h (o)
pldx) 2 h  2u\dx

_ yz_—hy(@}ﬂ
2u  \dx h

2
- Hy_h_@z(l_xj
h® 2udxhl” h

We note that equation (10) represents a parabolic curve.

This equation is known as the equation of Couette’s flow. Thus the velocity
profile for Couetle’s flow is parabolic. The flow Q per unit breadth is given by

1 dp y? U hd
o [ 8% (V-2

mdx 2 h  2udx
_hu_h®dp
2 12udx
3
_hu L dp

9)

(10)

(*)

(11)

()

(12)

265
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In non-dimensional form (11) can be written as

Lzmz[l_zj (13)
U h h h
2
where o= h—(— @) (14)
2uU \  dx

o is the non-dimensional pressure gradient. If o > 0, the pressure is decreasing
in the direction of flow and the velocity is positive between the plates. If o <
0, the equation (13) can be put as

2
u y ay
— =2 (1+0)-2- 15
TR (15)
The pressure is increasing in the direction of flow and the reverse flow begins

when a < -1

| -~y is small. i.e.
y? is neglected

Ifa=0 (i.e.% = 0), then the particular case is known as simple Couette’s

flow and the velocity is given by

u_y
U h
which gives u = 0 where y = 0 i.e. on the stationary plane.

(i) Average and Extreme Values of Velocity : The average velocity of a
Couette’s flow between two parallel straight plates is given by

1
o= Ioudy (16) | u=u(y)

Using the value of u from (13), we get

Ug = %Ioh{% + U(X%[l—%j} dy

= U_hz+ UOL i_h_s
2h? 2h? 3hd
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= %+U“=(1+9ju a7

2 2
_U dp_U+h PP——@

(18)

2 12udx 2 12u ' dx

In the case of a simple Couette’s flow, the velocity increases from zero on the
. . ..U

stationary plate to U on the moving plate such that the average velocity is 5

When the non-dimensional pressure gradient is a = —3, then from (17), we get
Up = 0. This means that there is no flow because the pressure gradient is
balanced by the viscous force.

For maximum & minimum values of u, we have

du :O:>H+Uoc(%—ﬂJ:O

dy h h?
Sy =(_1+ “jh (19)
20
From here, % =1 whena =1
y_ - _
and H_O’ when o = -1

So, from (13), we get

U= l+(x+a 1+a 1_1+a U
20 20 20
(1+oc)2
4q,

U

and thus u is maximum for a > 1 and minimum for o < —1.

(if) Shearing Stress : The shearing stress (drag per unit area) in a Couette’s
flow is given by

du U paU 2y
xTH—=p—+——|1-== 20
Oy, de Hy + h ( h j (20)
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= W , for a simple Couette’s flow (o = 0).
When'y = % then the second term in (20) vanishes. Thus the shearing stress

is independent of o on the line midway between the flow. The shearing stress
at the stationary plane is positive for o > —1 and negative for o < —1.
| y = 0 at stationary plate

The velocity gradient at the stationary plate is zero for . = —1 and the shearing
stress is zero for a=-1.

Thus oy 20 when o z-1.

Further, drag per unit area on the lower and the upper plates are obtained from
(20) by puttingy=0and y = h, as

pU  pold g Y pol

h h h h

combining the two results, drag per unit area on the two plates is

WY ol U o hdp )
h h h 2dx
i.e. Eip—h =—%
h 2 dx

6.2. Plane Poiseuille Flow : A flow between two parallel stationary plates is
said to be a plane Poiseuille Flow.

The origin is taken on the line midway between the plates which are placed at a
distance h and x-axis is along this line.

The conditions to be used in this problem are

u:O,Wheny:i% (21)
y
- , - 7y -
]
h @) A2 X
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Using these conditions in (7), we get

2
A= 01 B= 1(_@)h_
p\ dx/ 8

and thus the solution (7) is

2
gics e &
dx 8
This represents a parabola and thus the laminar flow in a Plane Poiseuille Flow

is parabolic.

(i) Average and Maximum Velocity : For extreme values of u, we have

3—;- 0 and thus from (22), we get

(dpjy 0 =y=0
dx

2

Therefore , Unax = h—(— %j (23)
8ul dx

The average velocity in the plane Poiseuille flow is defined by

b= 1"
i

Using the value of u from (22), we get

2 2
Uo = lf " dp[l—ﬂ}iy

h_;, 8u dx h?
_h2
= g i% :ZUmaX (24)
3\ 8. d, | 3

From (23) & (24), decrease in the pressure is given by
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dp 8u —8u3 -12u

This further shows that ((ji_p IS a negative constant.
X

(if) Shearing Stress : The shearing stress at a plate (lower plate) for a plane
Poiseuille Flow is

() n=(nd4] - tdh
yy=— l'Ldy g “p X 2
__hdp
2 dx
4
=T“um, (26)

The local frictional (skin) co-efficient Cs is defined by

.= Ovd-nz _ 4y puj
=2, Tnim/ g
pUg2

w3 u |1 12
ph ZU(Z)/Z hUO Re

Where R, = % is the Reynolds number of the flow based on the average

velocity and the channel height.
7. Theory of Lubrication

The hydrodynamic theory of Couette flow can be applied in the study of
lubrication by considering an example of the slipper bearing which consists of
a sliding block moving over a stationary guide and inclined at a small angle
with respect to the stationary pad. The gap between the sliding block and the
pad is always much smaller than the length of the block and is filled with a
lubricant, usually oil. For such a case viscous forces are predominant. The
theory of lubrication was first developed by Osborne Reynolds in 1886, and the
discussion is due to Lord Rayleigh (1918).

load

|

slipper block
-
—> U
bearing guide

.7
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In order to make the motion steady, a system of co-ordinates is chosen in
which the slipper block is stationary and the pad moves with a uniform velocity
U in the x-direction. Since the slipper block is inclined relative to the guide, a
pressure difference is set up in the gap between the slipper and the guide. At
high velocities, extreme pressure difference can be created to support heavy
loads in the direction normal to the guide. Let the block be so wide in the z-
direction that the problem may be treated as two-dimensional.

Y
N
A
N o— B
b T—
. h(x) h,
o| v X

Let (a, hy), (b, hy) and (X, h) be the co-ordinates of A, B and any point on AB.
Since the addition of a constant pressure throughout the fluid will make no
difference to the solution, so we may for convenience assume that p = 0
beyond the ends of the block. Since the inclination of the plane faces is small,
(i.e. the faces are nearly parallel) the velocity u at any point is given by

2_
u= y“—hydp +ﬂ( from (*) of previous article) and the
2n dx h
flow Q in x-direction is
hU h* dp . .
= — ———— (from (*=) of previous article
Q 2 12 dx (from (+*) of p )

The condition of continuity requires that Q must be independent of x i.e. Q =
Q(y). Hence
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3
th—h—% = constant = 1hOU
2 12u d, 2

- LI h-h° 1)
d, H h®

where hy is the value of hat the points of maximum pressure (s.t.j—p = O] .

X
Now, the equation of AB is

h-h; = M(X_a)
b-a

- %ZhZ_hlth_hl (2)
dx b-a I

where | is the length of the block and % is the slope of the line AB.

From (1) and (2), we get

dp_dp dx __6uUl [i h_Oj (3)

h? h®

dh dx'dh h,—h,

Integrating, we find

- Sl (—1+h—°j+c
h,—h,\_ h ' 2n?

_ 3uul (ho—Zhj+C 4
h,—h, { h?

We now determine hy and C so that
p = 0 when h =h; and when h = h,
This gives

h, +h,

6uUl
(h, —hy)(h, +hy)
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_ 6uUl(h—hy)(h—hy)

and thus
h?(hs —h{)

6uUl (h, —h)(h—h,)
or = 5

This suggests that p > 0 if hy > h; i.e. the stream contracts in the direction of
motion. P > 0 vyields thrust rather than a suction. So we conclude that a
necessary condition for lubrication is that the relative motion should tend to
drag the fluid from the wider to narrower part of the intervening space i.e. the
stream should be convergent.

The total pressure (thrust)P is given by

b h, (dX
P= .[a pdx = h, p(dh)dh

| h, .
= — dh using (2
el | using (2)

_ 6uUI 2 h, (h,—h)(h—h,)
'(hf—h%)(hz—hl)J“ h? "

_ 6uul* J-hz (h—h)h—hy) o
(h,—h,)2’™  h2(h, +h,)

To find the integral in (6), we observe that

Ihz (h_hl)(h_hZ)dh:J'h2 1+ h1h2 _ﬂ_h_z dh
hy h? hy h

(6)

= [ hl:z —h, logh-h, Iogh}

= —2(h1—h2) + (hl + h2) |Og (:‘:—1}
2

dh=log(h,/h,)-2—=
= h,+h, I h2 g(hy/hy) h, +h,
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k-1
=logk-2| —= | k=hy/h,.
°d (k+1j v

Thus (6) becomes

=]
P h%(k—l)z{logk 2k+1 (7)

Now, the tangential stress (drag) at the section h is

(Cyx)yzh = % + gg | From (**x*) of previous article.

and thus the total frictional force experienced by the moving fluid is

b
F= ja (Oyx)y_n X

B b HU h h—ho .
_L [T+E6HU( = de | using (1)
h, (u 3h I .
—quf™ [ 2 2o dh using (2
_ u_=2 OMle
T 2Iogk—3(k—_1j (8)
h,(k—1) k+1

Comparing (7) and (8) we see that the ratio F/P of the total friction to the total
load is independent of both u and U, but proportional to h if the scale of h is
altered.

It has been found by Reynolds and Rayleigh that the value of k which makes P

2
WUIZ g 75U
h2 h,

a maximum is 2.2 (approx.) and that this makes P = 0.16

For this case, F/P = 4.7h|—2 )

By making h, small enough compared to I, we can ensure a small frictional
drag i.e. good lubrication.
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8. Steady Flow Through Tube of Uniform Circular Cross-section
(Poiseuille’s Flow or Hagen-Poiseuill’s Flow)

We consider a laminar flow, in the absence of body forces, through a long tube
of uniform circular cross-section with axial symmetry.

Let z-axis be taken along the axis of the tube and the flow be in the direction of
z-axis. Since the flow is along z-axis, the radial and transverse components of
velocity are absent.

1

3 z

Thus g, =qe=0 a=(4,.96.9;)

The continuity equation for a viscous incompressible fluid gives.

8;1_22 =0 =0;=0qAr) (1) |- axial symmetry i.e. independent of 6

The equations of motion in cylindrical co-ords are

2
; déqtr d J:p,xr —@w(vzqr _Q_r_iaQ_ej
r r

d 19 2
; %ﬂrrqej:p.xej_pw(vzqe+_6qr _er

—= ——+uv
dt z a }’l qZ
where E—§+q g+q lg+q g
dt &t "er Croe ‘oz
and X =(X;,Xq,X%,)

In the present case gz Oand gq;=gy=0, X=0
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Thus from the first two equations, we get

ap _p
F_r_0 = 2
o a0 0 =P=P@) )
The third equation gives.
0= =P, w2 g, = dri tant w.r.t. t
" uveq, | ~0g,=0,(r)andris constant w.r.t. t.
dp _ 2 d’q, 1dq,
or —=uV = - 3
o "V L{ a2 Troar 3)

L . 0> 186 1 8% 02
In cylindrical co-ordinates V?=— +-—+—— +——
(In-cy a2 ror r? op? azz)

since g, is a function of r only (from (1)) and p is a function of z only
(from (2)).

Equation (3) can be put as

d’q,  dg, |_dp
r —r-r
“( dr? T

i.e. E rd& :L@
dr{ dr u dz

Integrating, w.r.t. r, we get.

2
r d&;l(@jr__FA

d pldz)?2
i.e. di:i(%jwé
dr 2ul\dz r

Integrating again, we get

1(dp).
;= —| —1r"+Alogr+B 4
= - L)+ Agr @

where A and B are constants to be determined from the boundary conditions.
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The first boundary condition is obtained from the symmetry of the flow
such that

dqz:O onr=0 (5)
dr

and the second boundary condition is
g:=0,whenr=a (6)

where a is the radius of the tube. Using these conditions, we get

A:O, B :_i(%)az :i(_@jaz
4u\ dz 4u\ dz

Thus, the solution (4) becomes
1(-dp), 2 »
= —| — | @-r 7
0= o 2] @-r) @
This represents a paraboloid of revolution and thus the velocity profile is
parabolic.
(i) The Max x Average Velocity : For extreme values of g, we have

ddirz ~0 | - g, is a function of r only

From (7), it implies that r = 0 and thus

a’( dp
max. — ——| ——— 8
q 4H( ) ®

where % is a negative constant.
z

From (7) and (8), the velocity distribution, in non dimensional from, is given

by
2
4z :1_(LJ
0 max a

The average velocity is defined by

1 2n
Q0= — .[O Ij g, r dr do
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Using the value of g, we get

w- ()1,
°Taul dz) 2™

The average velocity is therefore half of the maximum velocity

The volume of fluid discharged over any section per unit time (i.e. volumetric
flow) is defined as

Q= Joa Qz. 2nrdr

Using (7), it is obtained to be

ma*( dp) 1 Lla’(-dp)| 1 ,
= — |- |=Zma?| S| —E || = Zna? (o 9
0 8u( dzj 27E 4}4[ dzj 2n Amax. ®

(i) Shearing Stress : The shearing stress in Poiseuille’s flow is given by

dq 1 (dp r dp)
7 = — 1z _ _— | == 2= ——| =&
© H H4M(d2j( " Z(dz

On the boundary of the tube, we have

a(dp) a(-dp) 2u
iZ)=a=—=| — |==| =7 | = — - Unax 1
(0r) Z(dzj 2( dz j a Q. (10)

The local frictional (skin) co-efficient C¢ for laminar flow through a circular
pipe is

Ci= (C12)r-a _Q 0 max
f= 2 jo 2
pas/2 apqs/2

a2, _Bul 16
pa qg pa qO Re

Where R = 2aqo/v is the Reynolds number. When R is less than the critical
Reynolds number, which is 2300 in this flow problem, the flow is laminar but
if Re > 2300, the flow ceases to be laminar and becomes turbulent. Thus, in
this problem, R, < 2300.
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4
8.1. Example. Establish the formula %%(pl—pz) for the rate of steady flow
il

of an incompressible liquid through a circular pipe of radius ‘a’, p; and p;
being the pressures at two sections of the pipe distant I-apart. Also find the
drag on the cylinder.

Solution. First we prove equation (9) and then we note that % is the change

in pressure per unit length and thus in the present case

dp P2 —Ps
dz |

Therefore, from equation (9), we get

_ P —P2
©F 8u( | j

Also, the drag on the cylinder is

F = 27Ca| (Grz)r:a

—ma’l dp
dz
= ma’ (p1—P2).

Hence the result.
9. Steady Flow Between co-axial Circular Cylinders

Let us consider the steady flow of a viscous fluid parallel to the axis in the
annular space between two co-axial cylinders of radii r; and ry(r;> ry). The
velocity for such flow is

qzzi(dpjr +Alogr+B Q)
dz

(from equation (4) of previous article) where A and B are constants to be
determined from the boundary conditions, %being the constant pressure
z

gradient.

The boundary conditions are
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g.=0atr=ryandr=r, (2

Applying (2) in (1), we get
A L (dpj ! (dp)(nz—l)rl2

- =] , N=ra/ry
logn

4u\dz Jlogr,/r,  4p\dz

and

2 2
B= i(@j (" =Dy’ logr, —r?
4u\ dz logn

Thus the velocity distribution in the annular space between two co-axial

cylinders is
1(dpY,, .o (n2=D)rf r
== WP (2 —r2) I gl T 3
f 4u(dzj{(rl )+ logn o9 I )

The volumetric flow in this case is

21 p)
Q= |, Irl g, r dr do
2n png 1 dp 2 2 (n2 —1)r12 r
= — === 2 -r))+~—LL Jog| — || rdrdo
J Iﬁ 4u(dzj{(l ) ogn r rr

2 4 2 _1\2(,2 2
=—_2ﬂ(@j LA A it Yl L
4u \ dz 2 4 logn 2 n) 4
- —_n(%J UL LA
2uldz) 2 2 4 4

2 4\,2 2.2 2
, (07D (Iogn—ljn o o
logn 2) 2 4

ng

n

4 B 2 _
= —ﬂ(@ 2n2 —2-n*+14 1 1{(2I09n—1)n2+1}
8u \ dz logn

_ 4 B 2 12
=™ (@ 2n? —n* —1+2n4—2n2—u
dz logn
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_ - (dp 4 _(nz -1)?
- W[Ej{(n D logn } )

The average velocity qo in the annulus is given by

— Q __r12 % 2 _n2 -1
o = r(nZ D7 Bu (dz}[(n +1) Iogn} 5)

The shearing stress on the inner and outer cylinders are

dg
(Grz)r=r1 = (H d_err:rl
2 2
:_ML(@j _or (0
4u\ dz r, logn

__r_l(@j (-1 _,
44z logn

and

= _r_l(%j 2n_w
4\ dz nlogn

10. Steady Flow Between Concentric Rotating Cylinders (Couette’s Flow)

We consider the flow between two concentric rotating cylinders with radii ry, r,
(r2 > r1) having viscous fluid in between them. We assume that the flow is
circular such that only the tangential component of velocity exists. Let w; and
w; be the angular velocity of the inner and outer cylinders respectively.

The continuity equation in cylindrical co-ordinates (r, 6, z) reduces to
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Now, the Navier-Stoke’s equations for viscous in compressible fluid in
cylindrical co-ordinates are

dqr qg ap 2 qr 2 8%
—r_ 1 =pX - VvV _r_~—=--1
p( rrairal e A

p(d&_i_qrqe :pxe_}@_'_u(vzqe_i_zaqr _%j
r oo r

dt r 200 2
dqz ap 2
=pX, ——+uv
p at PA; pe uv-q,

Here, dr =0, =0; X = (X, Xo, Xz) =0, o = qo(r)

From the last two equations, we have

op 1op 2 Qo
—=0,——— Ve, —— [=0 2
oz o0 M( o7z @
and the first equation gives
2

qs _ Op

A6 _ ¢ 3
P ror )

The L.H.S. of (3) is a function of r and thus p is a function of r only. i.e.
P _y
09

.. Equation (2) reduces to

o , 0% 10 1 0% &2
Vigo— 2 =0, VP=——+- 4+ ——+——
B~ or> ror r?00% oz2

d’q,  1dgy 0y _,
dr2 rdr r?
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. d°g, +£(q_ej:o 4

Integrating, we get

9o , 9o _»c,
dr r
d d
= r$+qe =201r:>a(rq9)=201r

Integrating, we get
C
FQo=CirP+Cy, = Qg=Ci I+ -2 (5)
r

which is the general solution, where c; and ¢, are constants to be determined
from the boundary conditions.

The boundary conditions are
Qo =r @1, Whenr=r;
and Qo =T w2, Whenr=r, (6)
-~ on the surface v = r% =VTro

1=r0 :ﬂ:r@ ieev=ro

dt dt
Using these in (5), we obtain
2 2 2.2
_ O —oyh (o —w,) )
ooz P 2p?
1 2 2 1

Thus the solution (5) in the present case is

1 r2r2 (o, — o
Qo= | (70, ~ o )r-+2—2— (e 1)} ®

o —h r

In particular, if the inner cylinder is at rest i.e. 1 =0, @y =w(say),rn=a, r, =
b, then the solution becomes
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ob? a’
Qo = b2 _ a2 (V—TJ )
The radial pressure, given by (3), is
d 2 c .
d_?:que:$[C12r2+r_§+zclch | using (5)

2
C 2¢,C
=p£Cfl’+—§ +—12 Zj
r r

Integrating w.r.t., we get

et e
p=p T—?+ C,C, logr |+c4 (10)

If p = py when r =ry, then

2.2 2
cirl ¢
pL=p| - ——5+2c,C, logn |+ cs
2 2
CZrZ 2
= C3=P1—p %——22+20ch logr,
2r;

Hence the pressure is given by

2 2 2
_ o T —rl CZ 1 1 r
= + C ——<| = ——|+2¢,C, log—
p pl p{ 1( 2 J 2 (rz G?J 1v2 gll}

where ¢; and c; are given by (7).

The formula for shearing stress is

_ 9% 9o |_ [, 9(%
Gre_u[dr AT
_ P{rg(clwcz/rﬂ

dr r
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_ —2uC, _ —2urfri (o, — o)
r’ r2(r; —rf)

The expressions for the shearing stress on the outer and the inner cylinder are

2u(w, —o)I
(Gre)r:r2 = 2 2
-1

2u(w, —oy)ry
(Gre)r:rl = 2 2
r; —n

11. Steady Flow in Tubes of Uniform Cross—Section

Here, we consider the incompressible unaccelerated flow through a tube of any
uniform cross-section. We neglect body forces. Thus, we have

99 _5,F=0,v.g=0 )

and the Navier-Stoke’s equations in vector form become

0= _@+Evzq
p P
ie. Vp = uv2g (2)

Let us work with fixed co-ordinate axis ox, oy, 0z with oz taken parallel to the
flow so that

q=wk, (3)
where q(u,v,w),u=0,v=0

ou ov ow

From equation of continuity — + — + —=0,
X oy oz
we get éﬂzo = w=w(,Y) (4)
Z

Thus from equation (2), (3) & (4), we obtain
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~ A A 2 2 A
@H@H@kzu ow oW
ox oy oz X% oy?
= @:O,@:O (5)
OX oy
2 2
and Pd_ 0w, oW (6)
az aXZ 6y2

Equations (5) show that p is a function of z only, therefore, we can write

dp o*w  o*w
d—“(ax—yj )

The L.H.S. of (7) is a function of z only while R.H.S. is a function of x, y only.
Thus each side is a constant, say —P, the negative sign being taken since p
decreases as z increases. Then the problem of solving the Navier-Stoke’s
equations reduces to the problem of solving the partial differential equation.

o’w é’°w P
ox® oy B

subject to the condition that w vanishes on the walls of the tube for a viscous
fluid.

To obtain the solutions of (8), we first establish a uniqueness theorem. A form
which is a little more general than that required here, is as follows :

11.1. Uniqueness Theorem. If

o*w  o*w
y“‘y =f(x,y)

at all points (x, y) of a region S in the plane ox, oy bounded by a closed curve ¢
and if f(x, y) is prescribed at each point (x, y) of S and w at each point of C,
then any solution w = w (X, y) satisfying these conditions is unique.

Proof. The given equation is

2 2
ZX—VZV+zy—V2V=f(x,y) ©)



FLUID DYNAMICS

287

Let w = w; (X, y) and w = wy(X, y) be two solutions satisfying equation (9) in
the region S together with the prescribed boundary conditions on C

ie. w;=woonC
We are to prove that w; =w; in S.
For this, we write

W = wi—W>

Then, + =
ox%  oy? ox?

W 0*°W [ d*w; o*w, ) (o%w,
_|_ —
x> 8y2
=f(x,y) - f(x,y) =0

2 2
. WL TW g ins
Also, on curve C, W =0,
Since w; =w; on C. C

Now, consider

-

I3 (5 oo
LEEERES
| using (11)

LECSE GRS

(10)
+ aZV\;Z j
oy
(11)
(12)
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= ff WMdy—W%dx , by Green’s Theorem.
OX oy

C

=0,asW=0onC.

2 2
Now, | =0 = E%) + % =0 in S which will be true only if M:o,
OX oy OX

W _ 0 at each point of S.
oy

= W = constant in S.
Since W =0 on C, we infer from the continuity of W that W = 0 throughout S.

Hence w; = w; in S which establishes the uniqueness of the solution. Under the
reference of the uniqueness theorem, we now find the solution of equation (8)
for tubes having different types of uniform cross-section.

11.2. Tube having Uniform Elliptic Cross-Section : Suppose that the elliptic
cross-section of the tube has the equation

X 2

2
=+
aZ

~1=0 (13)

%S

Then, we must solve
dw ow_ P "
aXZ 8y2 1
subject to the condition w = 0 on the cross section (13).
We first observe that the function
2 2

w:l{l—x—z—y—J (15)

a’ b?
satisfies the boundary condition, namely w = 0 on the elliptic cross-section.

Regarding k as constant and on substituting w into the partial differential
equation (14), we find

k(_—z—iJ :__P
a’? b? mn
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Pa’b?

— = ¢~ 16
2u(a® +b?) 10)
Thus from equation (15) & (16), we get
212 2 2
= Paz—bz 1-= -2 (17)
2u(a® +b9) a b

The uniqueness theorems shows that w, given in (17) is the required solution.

The volume discharged through the tube per unit time is

Q

[fw dx dy
S

Pa’b? [ 1 1
_ P o dv— L [Ixdxdy— L[] ZdXd}
@+ pd) YT s

Pa2h? | 1 .a2 1 . b?
2u@“+b%)| a 4 b 4

_ nP( a’b® ] (18)

" 4ul a2+ b2

Q _Q _P[a¥w
[[dxdy mab 4pla? +b?

Mean velocity =

11.3. Remark (circular cross-section). When b = a, then the cross-section of

the tube becomes a circle of radius a and, then
P 3% X2 y2

W = = — |1-——2_

¥ 2u 222 [ a® a’

P 2 2 2 P 2 2
— @ -x*-y)=—(@"-r9),
4 V)= g @)

ey =P

where P = —@
dz

289



FLUID DYNAMICS 290

nPa*

and Q = 4u[2a ]

Q

mean velocity = — = Pa?/8y.

These results have already been obtained.

11.4. Tube having Equilateral Triangular Cross-Section. Suppose that the
cross-section of the tube is the equilateral triangle bounded by the lines

X=ay=+ % (19)
If we take
2 1 2
w = Kk(x-a) [y _§X j (20)
X2
=k yz(X—a)—?(X—a)
then w = 0 on the boundary of the tube.
y
y=x/y35
- 50 30 x=a X
60
y=-x/+3
Substituting for w in
o’w  d*w P
S —t— Y _E (21)

we obtain

k[(— 2x+@j+(2x—2a)} :_—P
3 B



FLUID DYNAMICS

= k= — (22)
Thus, by the uniqueness theorem,

_3P 2 1.
w—4—ua(x a)(y 3xj (23)

is the unique solution

The volume discharged per unit time is

a x/V3
Q= [fwds=2[dx [wdy | due to symmetry
S 0 0

3P ., X3 ; X2
By —a) y?-2— 1
ZHan X £ (x )(y 3J y

Pa‘
60+/3u

11.5. Remark. If we take the cross-section to be

(x—a) (x£ J3y +2a)

th =L 9
o °% 0% 1 (~2a, 0)

| Replace a by 3a in the above example

12. Unsteady Flow Over a Flat Plate

So far we have discussed the examples of exact solutions of the Navier-Stokes

equations for steady flows. Here, we consider the case of unsteady flow.

The simplest unsteady flow is that which results due to the impulsive motion of
a flat plate in its own plane in an infinite mass of fluid which is otherwise at
rest. This flow was first studied by Stokes and is generally known as Stokes

first problem.
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Let x-axis be taken in the direction of motion of the plate, which is suddenly
accelerated from rest and moves with constant velocity Uy. Let y-axis be
perpendicular to the plate. The motion is two-dimensional and the only non-
zero component of velocity is u, where q = (u, v, w). Further, u is a function
of y and t only. i.e. u = u(y, t). The pressure in the whole space is constant.

The Navier-Stokes equations in the absence of body forces, for the present
case, become

ou_ d%u
—=v—0>r1,v=y/ 1
a Vo wp )
The initial and boundary conditions are

u=0whent=0forally 2
u=U,aty=0

o &Y }Whent>0 @3)
u=0aty=w

We observe that the partial differential equation (1) is the same as the equation
of heat conduction, diffusion etc. It can be reduced to an ordinary differential
equation if we make the following substitution (principle of similarity of flow)

u

U—0=f(n) (4)

=Y
where = " (5)
is the similarity parameter.
We have,

a_auon_ off -y

o amat T anl 4t

a_uon_ o Lj

&y ondy °énl2vt

a_zuzﬁ(@):ﬁ @]@:U ﬁ(i)

oy> oy\oy) emlay)oy ~°om?lau

Thus, in terms of the new variables, equation (1) reduces to
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of o°f
Z(=2n)=~1—
> (—2n) =—,

. d?f df
le. —+2n—=0 6
i an (6)

and the corresponding boundary conditions are
f(0) = 1 and f(0) = 0 (7

The second condition in (7) includes the initial condition (2).

%:—211 = log f'=—n?+log C,

The solution of (6) is =f'= Cle*"2

2
f(n) =Cy [ge™ dn+C, (8)

Using the boundary conditions (7) in (8), the constants of integration C; and C,
are obtained to be

szlandclz—;——i 9

ey Vr

The velocity distribution, from equation (4), is therefore given by

u 2 2
—=f(n)=1-—=[e"d
U, (m) \/EJ.O mn
= (1-erfn) (10)
the integral
2 2
erfn=—=(["ed 11
n \/EJO m (11)

is called the error function or the probability integral and tables for it are
readily available.

The velocity distribution (10) is tabulated as follows.
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n erfn

0 0
0.01 0.01128
0.05 0.05637
0.1 0.11246
0.2 0.22270
0.4 0.42839
0.6 0.60386
0.8 0.74210
1.0 0.84270
1.2 0.91031
1.4 0.95229
1.6 0.97635
1.8 0.98909
2.0 0.99532
2.4 0.99931
2.8 0.99992
0 1.00000

u
Uo

1
0.98872
0.94363
0.88754
0.77730
0.57161
0.39613
0.25790
0.15720
0.08969
0.04771
0.02365
0.01091
0.00468
0.00069
0.00008

0

294

We observe that the velocity decreases continuously and tends to its limiting
value zero as n tends to infinity. However, for all practical purposes, this value
is reached at about n = 2.0 and therefore the corresponding value of y, which

we shall denote by 5, from (5), is

&= 4\t

Thus distance is a measure of the extent to which the momentum has
penetrated the body of the fluid. It is proportional to the square root of the
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product of kinematic viscosity and time. If vt is small, then & will be small and
once again we shall have a boundary layer flow.

UNIT-V

1. Dynamical Similarity

We have observed that due to non-linear character of the fundamental
equations governing the flow of a viscous compressible fluid, there are no
known general methods for solving them. Only in few particular cases and that
too under restricted conditions, exact solutions of these equations, for all
ranges of viscosity, exist and a few of them have already been considered.
However, attempts have been made to simplify these equations for two
extreme cases of viscosity, very large and very small, and we have well
established theories for these cases which are respectively known as “Theory
of slow motion” and “Theory of boundary layers”. But the cases of moderate
viscosities cannot be interpreted from these two theories. Further, even in
these two extreme cases, we find great mathematical difficulties and therefore
most of the research on the behaviour of viscous fluids have been carried out
by experiments.

In practical cases, such as designing of ships, aircrafts, underwater projects etc,
it is usually necessary to carry out experiments on models and to relate their
behaviour to that of the actual object (prototype). In fact, the model and the
prototype should be what is called as dynamical similar. Mathematically
speaking, two physical systems are equivalent if the governing equations and
the boundary conditions of the two systems are the same. Such systems are
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called dynamically similar system. One obvious condition is that the model
should be geometrically similar to the prototype which means that we can
obtain the actual object from the model by enlarging or contracting its size in
every direction in the same proportion. This eliminates the consideration of
boundary conditions in the discussion of dynamical similarity and so we have
to consider only the governing equations. In short, we can say that two fluid
motions are dynamically similar if with geometrically similar boundaries, the
flow patterns are geometrically similar. Further, two geometrically similar
flows are dynamically similar if forces acting at every point are similar i.e. the
forces are acting in same direction having same ratio in magnitude.

We now discuss the conditions under which the fluid motions are dynamically
similar. In other words, we have to find out those parameters which
characterize a flow problem. There are two methods for finding out these
parameters (i) inspection analysis (ii) dimensional analysis. In the first case,
we reduce the fundamental equations to a non-dimensional form and obtain the
non-dimensional parameters from the resulting equations. This procedure
should always be used when the basic differential equations for a problem are
available. In the second case, we form non-dimensional parameters from the
physical quantities occurring in a problem, even when the knowledge of the
governing equations is missing. We discuss these two methods with particular
reference to the flow of a viscous compressible fluid.

1.1. Remark. (i) Some authors do not differentiate between the two methods
and study both of them under the head of dimensional analysis.

(i) In two dynamically similar systems, usually, all the non-dimensional
numbers cannot be matched and so strictly speaking, perfect dynamical
similarity is rare. So, many times we match only the important non-
dimensional numbers.

1.2. Inspection Analysis, Reynolds Number. We know that the Navier-
Stokes equation of motion of a viscous incompressible fluid in the x-direction

2 2 2
u_ U U 18p+\{6u+6‘u auj M

TN A 2 2 T2
ot oXx oy 0z p OX oX°® oy° oz

Suppose L, U, P denote a characteristic length, velocity and pressure
respectively. Then the length, velocities and pressure in (1) may be expressed
in terms of these standards. Thus, we write

x=Lx,y=Ly,z=LZ 2

u=Uu,v=Uv,w=Uw 3

p=Pp (4)
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where all primed quantities are pure numbers having no dimensions. Then,
since L/U is the characteristic time, we get

u_ auu) _utaw
ot a(LU’lt) Lot

o(Uu) _U? Lau

__(U )a(Lx) LUax©

1op _10(Pp) _ P op
pox po(Lx') pL ox'

2 2 2.
8u_6(Uu) U o“u et

aXZ 8(LX|) L2 axlz
Substituting these results in (1) and simplifying, we obtain

ou ou  ou ou' X P op
— U — 4V —+W—=——-—
ot X oy ar U? pu?ox

v (d%u' d%u ot
+ — + + (5)
UL ox2  oy? 6z

The L.H.S. of (5) is entirely dimensionless, so R.H.S. must be also
dimensionless. Thus, it follows that the three quantities

P LX
- = 6
NYERRNE (6)

v
UL
must be dimensionless quantities.

In order to produce a faithful model of a given incompressible viscous flow, it
is essential to keep these three numbers constant. Based on these numbers we
have the following definitions.

1.3. Reynolds Number. The first non-dimensional number in (6) ensures
dynamical similarity at corresponding points near the boundaries where
viscous effects supervene. Its reciprocal is called the Reynolds number and is
denoted by R, so that

Re:£
A%
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This is named after Osborne Reynolds who first introduced this number while
discussing boundary layer theory. This is most important of viscous force over
the inertia force. It can be easily seen from the equation of motion that the

inertia forces (tem‘s like pug—uj are of the order pU%L and the viscous
X

2
forces (terms like ua_l;j are of the order pU/L?.

oX
Therefore,

inertia forces _ pU?/L _pUL UL _
viscousforces puU/L?  p v

Re

Thus, Reynolds number is the ratio of the inertia force to the viscous force. It
is infact a parameter for viscosity. If R, is small, the viscous forces will be
predominant and the effect of viscosity will be felt in the whole flow field. On
the other hand, if Re is large the inertial forces will be predominant and in such
a case the effect of viscosity can be considered to be confined in thin layer,
known as boundary layer, adjacent to the solid boundary. When R, is
enormously large, the flow ceases to be laminar and becomes turbulent. The
Reynolds number at which the transition, from laminar to turbulent, takes place
is known as critical Reynolds number.

Further, we can write Re as R, = L/(v/U), where v/U represents the viscous
dissipation length. Thus, in other words, the Reynolds number is the ratio of
length of the body to the viscous dissipation length.

1.4. Pressure co-efficient. The second non-dimensional number in (6) ensures
dynamical similarity in two fluids at points where viscosity is unimportant.
Such points would occur at stations remote from the boundaries. This number

is called pressure co-efficient and is denoted by Cp. Thus Cp = % from the
p

equation of motion, we note that the pressure forces (terms like %) are of
X

order P/L. Thus, we can write

Pressureforces  P/L P

Inertia forces ~ pU? /L pU?

P

i.e. Cp gives the relative importance of the pressure force to the inertia force.
Usually, it is taken as unity.

1.5. Force Coefficient. The third non-dimensional number in (6) tells how to
scale body forces. This number is called force co-efficient, denoted by Cg
which is similar to Cp.
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body forces  pX LX

Thus Cr = = =—
"7 Inertia forces  pUZ/L  U?

If Cr is small, the body forces can be neglected as compared to the inertia
forces. Reciprocal of this number is rather more important and is called
Froude number, denoted by F;. Thus

2
U
C, LX

This number is particularly used in cases when body forces are the
gravitational forces. Thus,

_ inertia forces_ pU?/L _ U*
r gravity forces  pg gL

It is important only when there is a free surface, e.g. in an open channel
problem. In such cases too the force due to gravity may be neglected in
comparison to the inertia force if F; is large i.e. if

F._ inertia force _viscousforce viscousforce

= X =
R. gravity force intertia force gravity force

1.6. Dimensional Analysis. In the previous case, we reduced the governing
equations of a viscous compressible fluid to a non-dimensional form and
obtained the dimensionless parameters. An alternative method, with which the
non-dimensional parameters may be formed from the physical quantities
occurring in a flow problem is known as dimensional analysis. In dimensional
analysis of any problem, we write the dimensions of each physical quantity in
terms of fundamental units. Then, by dividing and rearranging the different
units, we get some non-dimensional (universal) numbers. Thus, dimensional
analysis can put the quantities influencing a physical phenomenon into a useful
form for the interpretation of data. It is not a tool for solving problems
explicitly but a powerful method for establishing and the grouping of the
relevant variables that are likely to appear if the analytic solution is at all
possible. The major advantage of the use of dimensional analysis is most
apparent where complete analytic solution of the physical problem is not
possible.

There are, generally, three accepted methods of dimensional analysis due to
Buckingham, Rayleigh and Bridgeman. We shall discuss Buckingham’s Pi-
theorem here as it is the simplest one among the three methods.

1.7. Buckingham =n-theorem. The =-theorem makes use of the following
assumptions
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(1) It is possible to select always m independent fundamental units in a physical
phenomenon (in mechanics, m = 3 i.e. length, time, mass or force)

(i) There exist quantities, say Qi, Qa,..., Qn involved in a physical
phenomenon whose dimensional formulae may be expressed in terms of m
fundamental units

(iii) There exists a functional relationship between the n dimensional quantities

Q1, Qa,..., Qn, say
$(Q1, Q2,...,Qn) =0 1)

(iv) Equation (1) is independent of the type of units chosen and is
dimensionally homogeneous i.e. the quantities occurring on both sides of the
equation must have the same dimensions.

Statement :- If Q1, Qa,..., Qn be n physical quantities involved in a physical
phenomenon and if there are m(< n) independent fundamental units in this
system, then a relation

(I)(Ql! QZ&" ) Qn) = 0
is equivalent to the relation
f(T[l, T2,y Tcnfr) = 01

where 7y, 7o,..., T are the dimensionless power products of Qi, Qz,..., Qn
taken r + 1 at a time, r being the rank of the dimensional matrix of the given
physical quantities.

Proof. Let Q1, Qa,..., Qn be n given physical quantities and let their dimensions
be expressed in terms of m fundamental units uy, Up,..., uy in the following
manner

[Ql] - luiuugzl__u?nmlJ
[QZ] - luilzugzz__ufrinmzj

[Qn] - I-uiln UZZn __u?nmn J

so that ajj is the exponent of u; in the dimension of Q; . The matrix of
dimensions i.e. the dimensional matrix of the given physical quantities is
written as
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Qu Q2 Qu
" A
Us: ail ap....... din
Uo: do1 dso...... aon
NI P P a

This mxn matrix is usually denoted by A.

Now, let us form a product = of powers of Qi, Qa,...... , Qn, say

— X1 X2 Xn
n_ 1 2 ------- n

then [=] =

[(uf“ugﬂ....u?nml Yl (ui‘“ugzz....uf‘nmz )xz .......... (uj‘l" usn ... .uém Y” ]

In order that the product = is dimensionless, the powers of uy, uy,..., un should

be zero i.e. M°, L%, T etc. Thus, we must have
Xy tap Xo+.o......... +a; X, =0
do1X1 T axpXot+........... +anX, =0
g+ Xy +a,oXo Feeees it Ay Xn =

This is a set of m homogeneous equations in n unknowns and in matrix form
can be written as

Now, from matrix algebra, we know the result that if there are m homogeneous
equations in n unknowns, then the number of independent solutions will be
n—r, where r is the rank of the matrix of co-efficients, and any other solution
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can be expressed as a linear combination of these linearly independent
solutions. Further there will be only r independent equations in the set of
equations.

Thus if r is the rank of the dimensional matrix A, then the number of linearly
independent solutions of the matrix equation AX = 0 are n-r. So,
corresponding to each independent solution of X, we will have a dimensionless
product = and therefore the number of dimensionless products in a complete
set will be n—r

Therefore, d(Q1, Qz,......... ,Qn) =0

= f(my, Moy , Tnr) =0
Hence the theorem.

1.8. Method for m-products. To find out the w-products in a complete set, we
adopt the following steps.

Q) Write down the dimensional matrix of n physical quantities, involving
in a physical phenomenon, having in independent fundamental units.

(i)  Find the rank of the dimensional matrix. If the rank is r(say), then the
number of t’s will be n—r.

(iii)  Select r gquantities out of the n physical quantities as base quantities,
keeping in view that these r quantities should have different dimensions
and the dimension of any of the fundamental unit should not be zero in
all of them.

(iv)  Express m, mo,...., m-r & power products of these r quantities raised to
arbitrary integer exponents and one of the excluded, but different in
different n’s, (n—r) quantities.

(V) Equate to zero the total dimension of each fundamental unit in each r-
product to get the integer exponents.

Thus, the Pi-theorem allows us to take n quantities and find the
minimum number of non-dimensional parameters m, m,...., T,r as associated
with these n quantities.

1.9. Application of n-theorem to Viscous Compressible Fluid Flow. We
now follow the above mentioned fire steps to find out w-products and see the
application of n-theorem and see the application of n-theorem to the simple
case of viscous compressible fluid flow. Suppose that in the considered fluid
flow, the physical quantities involved are
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L1 vaa Xa P)H

and the fundamental units in which the dimensions of all these quantities can
be expressed are mass [M], length [L] and time [T]. The above six quantities
have dimensions as follows

Quantity Dimensions

L-length [L]

U-velocity LT

p-density [ML™]

X-force per unit mass LT — force [MLT ]

P-pressure force per unit area) [ML™ T4

p-viscosity ML T
(1) The dimensional matrix for the present problem is
L U e X P D
M:] O 0 1 0 1 1
L: 1 1 -3 1 -1 -1

T: Q -1 0 -2 -2 —y

(i) The rank of the above matrix is 3, so the number of independent
dimensionless products will be 6-3 = 3.

(iii) Let us take L, U, p as base quantities.

m, = LeU*2p*sX
(iv) Let m, = L“USpXeP
my =L 7U%p*p

(V) Now,
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[m]=[(L) (LT 2 (ML) (LT 2)]

— [LX1+X2—3X3+1 M X3 T—X2—2 ]

[rg]=[(L)* (LT ) (ML2) s (ML'T2)]

— [Lx4+x5 -3xg-1 M X6 +1-|-—x5—2 ]

[ns]=[(L)*7 (LT )™ (ML) (MLAT )]
—[LX s ~3Xg=1pg %o T —xg—l]
If 71, 7, 73 are dimensionless, then we must have
X1+Xp =3X3+1 =0 Xa+X5-3Xg—1=0| X7+Xg—3Xo—1=0
X3=0 X+l =0 Xo+t1 =0
—X—2=0 —X5—2 =0 —Xg—1=0

Solving these equations, we get

X1=1 ‘X4:0 X7=-1
Xp = -2 X5 = —2 Xg=-1
X3=0 Xe = -1 Xg=-1
Thus, we get
_ LX
n1=L1U2pOX=F
RZZLOU_Zp_1P:—P2
pU
L tutlyty= B/ p__VvV
™ PETU T

which are the same dimensionless quantities obtained in equation (6) of the
inspection analysis

1.10. Remark. If we include the energy equation and equation of state in our
study, then, in the general case of viscous compressible fluid dynamics, there
are 9 physical quantities and the fundamental units in which the dimensions of
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all these quantities can be expressed are length, mass, time and temperature (Q)
and thus there are 9—4 = 5 non-dimensional numbers.

2. Prandtl’s Boundary Layer (case of small viscosity)

The simple problems of fluid motion which can be considered are divided into
two classes according as the corresponding Reynolds number is small or large.
In the case of small Reynolds number, viscosity is predominant and the inertia
terms in the equations may be regarded as negligible. The case of large
Reynolds number in which the frictional terms are small and inertia forces are
predominant, was investigated by the German Scientist Ludwig Prandtl in
1904. He made an hypothesis that for fluids with very small viscosity i.e. large
Reynolds number, the flow about a solid boundary can be divided into the
following two regions.

(i) A thin layer in the neighbourhood of the body, known as the boundary
layer, in which the viscous effect may be considered to be confined. The
smaller the viscosity i.e. the larger the Reynolds number, the thinner is this
layer. Its thickness is denoted by &. In such layer, the velocity gradient normal
to the wall of the body is very large.

(i) The region outside this layer where the viscous effect may be considered as
negligible and the fluid is regarded as non-viscous.

On the basis of this hypothesis, Prandtl simplified the Navier-Stokes equations
to a mathematical tractable form which are termed as Prandtl boundary layer
equations and thus he succeeded in giving a physically penetrating explanation
of the importance of viscosity in the assessment of frictional drag. The theory
was first developed for laminar flow of viscous incompressible fluids but was,
later on, extended to include compressible fluids and turbulent flow. However,
we shall consider only the case of incompressible fluids.

In the discussion of unsteady flow over a flat plate, we had obtained that

S~ 4wt

i.e. the boundary layer thickness is proportional to the square root of kinematic
viscosity. The thickness is very small compared with a linear dimension L of
the body i.e. & << L.

2.1. Boundary Layer equation in Two-dimensions. The viscosity of water,
air etc is very small. The Reynolds number for such fluids is large. This led
Prandtl to introduce the concept of the boundary layer. We now discuss the
mathematical procedure for reducing Navier-Stokes equations to boundary
layer equations. The procedure is known as order of magnitude approach.

Let us consider a flow around a wedge submerged in a fluid of very small
viscosity as shown in the figure
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At the stagnation point O, the thickness of the boundary layer is zero and it
increases slowly towards the rear of the wedge. The velocity distribution and
the pattern of streamlines deviate only slightly from those in the potential flow.
We take the x-axis along the wall of the wedge and y-axis perpendicular to it,
so that the flow is two-dimensional in the xy-plane. Within a very thin
boundary layer of thickness 3, a very large velocity gradient exists i.e. the
velocity u parallel to the wall in the boundary layer increases rapidly from a
value zero at the wall to a value U of the main stream at the edge of the
boundary layer.

The Navier—Stokes equations, in the absence of body forces, for two
dimensional flow, are

du au ou -1op (d%u dlu
—4+U—4+V—=—"T—+V —+— Q)
ot ox oy pox  (ox? o ooy?

v, v, v 1o [PV v

—+U—+V—=—"—""+4V — 2
ot ox oy poy ox%  oy?

The equation of continuity is
a—u+@:0 (3
ox oy

In studying the unsteady flow over a flat plate, we found that the thickness of
the boundary layer & is proportional to the square root of the kinematic
viscosity v which is indeed very small. For this reason 6 < < x except near the
stagnation point 0 where the boundary layer begins. In order to compare the
order of magnitude of the individual terms in the above equations, we put them
in non-dimensional form by introducing the non-dimensional notations
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=@

where |, 8, U, V and p., are certain reference values of the corresponding
quantities x, y, u, v and p respectively. The non-dimensional quantities are all
of order unity. The continuity equation in non-dimensional form is

U au* Vov*
%7 == ®)
| ox* & 8y
Integrating, we get
Ut vl
= = - —d 0
R o 5! Y=
or —=——j aLdy* where (V*)yxq =1 (6)

Since the integral in (6) is of the order of unity, the ratio % is of order I§
Therefore V < < U.

We now obtain the non-dimensional form of (1) using (4) such that

2 * 2 * * * 2 % 2 22, %
U>au* U Lau* UV au*_—p, op +g(au ! auj

- — 4
| at* | X * S 8}/* Pl X * |2 ax*z 52 8y*2
or
* * * * 2, % 2 A2, %
8L+ K OU™ +X lv*au __ Py Op +L o°u +I_8 u 0
o> ox* U § ay* pU2 ox* Re aX*2 82 3y*2
1 1 81 1 & 1 L
)
The order of the terms involved are indicated.
9] 1 v _ 2 . . 12
Reynolds number, Re = — :R—:m— 0(8)” as & is proportional to v
v e

Similarly, the non-dimensional form of (2) is

UVovs UV  avx V2 v

—_—
I at* | ox* 8  oy*
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308

pSW‘

Vavr V. oavr VAL ov*

__Poop* [V azv*+ V 9%y *
p3 oy 12 x| o2 oy

or ——+ —+——V*¥—
Uat* U ox* U2sé oy*
S S 82 1
S
_—p, L op*  wI [o%v* 126%v*
- zg * 127112 *2+ 2 A, %2
puU“ 8 0y™ 19U ox 5oy

_ =P lop*, 1 V(v
pU2 30y* R, U

§ 5 1

OX *2 i

12 9%y*
52 oy

52 (8)

We neglect the terms of the order of & and higher as & is small. We then revert

back to the dimensional variables to obtain

ou eu eu  1lop o%u
—+tU—+V—=———"+V—
ot ox oy  pox  oy?
op
— =0 =p=pX)
oy

and 8_u+@20
oxX oy

(9)

(10)

(11)

Equations (9—11) are known as Prandtl’s boundary layer equations with

boundary conditions

u=v=0, y=0
u=U(xt),y >

(12)

Since p is independent of y, for given x, p has the same value through the
boundary layer fromy =0to y = 8. Thus, in boundary layer theory, there are
only two variable terms u and v instead of three u, v and p in the Navier-Stokes

equations.
equations.

This is a great simplification in the solution of the differential
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Now, U is the velocity outside the boundary layer. The Euler’s equation in the
main stream (potential flow of non-viscous fluid) is obtained from (9) by
taking v=0 and

v=0, @:Oforyzs
oy

Thus, we get

8_U+U8_U:_1@ (13)
ot OX p dx

From (9) and (13), we obtain

2
@+u@+v@:@+uﬁ+vﬂ (14)
ot oXx oy ot X oy?

ou ov
_t — =
ox oy

Although these equations are obtained for a rectilinear flow but they hold for
curved flow if the curvature of the boundary is small in comparison to the
boundary layer thickness.

and 0 (15)

The integration of (14) and (15) can be simplified if we can reduce the number
of variables by introducing the stream function .

u :@, _v (16)

V=

oy ox

The continuity equation is automatically satisfied. The boundary layer
equation (14) in terms of y is
2 2 2 3
aw+@aw_@a_‘v:va_w+U@+@ (17)
ooy oy oxoy  OXx oy? oy® ox ot

The boundary conditions (12) reduce to

v _ov gy
ox oy
%:U(x,t),y—m;

where

(18)

The exact solution of (17) was given by H. Blasius in 1908, for the case of
steady flow (6/0t = 0) past a flat plate (U = constant).
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3. The Boundary Layer Along a Flat Plate (Blasius Solution or Blasius —
Topfer for Solution)

Let us consider the steady flow of an incompressible viscous fluid past a thin
semi-infinite flat plate which is placed in the direction of a uniform velocity
U.. The motion is two-dimensional and can be analysed by using the Prandtl
boundary layer equations. We choose the origin of the co-ordinates at the
leading edge of the plate, x-axis along the direction of the uniformal stream
and y-axis normal to the plate. The Prandtl boundary layer equations, for this
case, are

au ou  d%u
Uu—+v—=v——r 1)
ox oy  oy?
o + N _ 0 (2)
ox oy
where u, v are the velocity components and v is the kinematic viscosity.
y
U
% Uoo — H
d
u

O X
The boundary conditions are

u=v=0 wheny =0
} ®)

u=U, wheny — oo

In this problem, the parameters in which the results are to be obtained, are U.,,
Vv, X, Y. So, we may take

u
—=F(X,y, v, Us) = F(n) (4)
Further, according to the exact solution of the unsteady motion of a flat plate,
we have

5 ~/vt ~ LVJ—X )

o0

where X is the distance travelled in time t with velocity U... Hence the non-
dimensional distance parameter may be expressed as
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(6)

Thus, it can be seen that n in (4) is a function of X, y, v, U, as in (6)

The stream function v is given by

_ _oy __ oy
v =ludy u= ' v=—"
= U, F) Yan
dn
LVJ—XJFm) dn=wxU, f(n) (7)

The velocity components in terms of 1 are (dash denotes derivative w.r.t. n)

_ Oy _9dyon Us sy 1) 57
u= o ay—\/\’XUw \/V—jf (M) =Uf'(n) (8)

1 |vU, 1
= 2 P 0+ o oy (5
R v=-2 [P 4y = )
X 27 X
= {,/”—w yf'(n)—f(n)J
X vX

1 [vU
= o\ (f )= f() ©)
Also,
u_ oty BN
67_@_ o | (ﬂ)&

1 . U, 1
:_Euoof ).y T)@T
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1U

——E—nf ‘() (10)
ou 0 U
—:Uoo— fll — UOO [oe] .I:ll 11
Y ay( ) ,/—VX () (11)
o%u U2
o e (12)

Using these values of u, v and their derivatives in (1), we obtain

2

or

or

or

(—lu—nf (n)}—

U, F'(m)

= (f'(m) -TM)U,, \/7 f(n)

UZ
=v —=f""(n)
VX
2 2 2
—U—nf f' +ﬁ(nf—f)f = U°°f
2X
_nfrfu+nf!fu_ffH:2f!N
2" +£f7=0
3 2
T T g (13)
dn3 an

The boundary conditions (3) in terms of f and r are obtained as follows

and

Therefore,

Therefore,

u=0wheny=0implies f'(n) =0whenn =0

v=0 =nf'(n)-fn)=0 =1fn)=0

f(n) =f'(m) =0whenn =0
(14)

u = U, when y—oo implies that U, f'(n) = U, when n—o

312



FLUID DYNAMICS

f'(n) =1when n > (15)

Thus we have reduced the partial differential equation (1) to ordinary
differential equation (13), known as Blasius equation, where n is the similarity
parameter.

The third order non-linear differential equation (13) has no closed form
solution, however, Blasius obtained the solution in the form of power series
expansion about n = 0.

Let us consider

c c
f(n) =co+cm + énz +E§n3+ ....... (16)
C C
frl)=citen+ 2n>+ 20+ (17)
2 13
c c
frm)=cotean+ 2+ 20+ . (18)
2 |3
c c
frm)=cs+em+ 2n*+2n'+ . (19)
2 I3

The constants ¢;’s are determined from the boundary conditions (14), (15) and
the differential equation (13). From (14), we get

o= =0

From (13), we have

0= (2c3 + 2c4n + Csn’ +.....) + (Co + €11 +2 n?+....) (ca +C3 n+CE4n2 +...)
2 2

i.e. (2c3 + co o) + (2c4 + Co €3 + €1 Co)1

2
CoC C

+ (C5 +M+C1C3 +—2Jn2+:0
2 2

2
i.e. 2C3+2c4m + (c5+%2}n2+....:0
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Equating the co-efficients to zero, we get

C3=C4=C=C7=Cg=C0=0

=2 o M o 875 4
5 |—2’ 8 4 2 11 8 2
The solution (16) is
2.5 8 11
c c 11 375
fn)= 2n2 -2 223N 904l o (20)
2 215 4718 8 “ |1

The constant c; is determined by the condition (15) i.e.

df
—=1asn—-w
dn
We write (20) as
f(n) =
v ©°m? 1¥®° 11E¥®n)® 375 ()t
L2 25 4 8 8 U

c

= ¢ °F(ci°n) (21)
Therefore,
f'(n) = c5*F(ci*n)
1/3

Thus, lim c¢3/3F (c¥%n) = lim f'(n) =1
n—® n—®

Therefore,

3/2

1
G=|— T 22
27 lim £ (22)
N—>0

314

where ¢, is determined numerically by Howarth (1938) as 0.33206. Thus f(n)
in (20) is completely obtained which helps in finding u and v from (8) and (9).

Hence the Blasius solution.

The shearing stress 1o on the surface of the plate can be calculated from the

results of the Blasius solution. Thus, we have
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8y y=0 VX/Uoo

_aUiCo 0332
“\/VX/UOO JRe,

where R, =xU . /v is the Reynolds number.

(23)

The frictional drag coefficients or local skin friction coefficients Cs is

T _ 0.664

1pro R

2

Ct = (24)

The total frictional force F per unit width for one side of the plate of length I is
given by

|
F= j 1,d, =0.664 pU2 J—' (25)
0

0

Equation (25) shows that frictional force is proportional to the 3/2th power of
the free stream velocity U, .

The average skin-friction co-efficient of the drag co-efficient is obtained as

2
o 0664PUL iG, 1328

Ce= (26)
Louz Lpuz JRe
2 2
Where R, = |U—°°
A%

3.1. Characteristic Boundary Layer Parameters : (i) Boundary Layer
Thickness. The boundary layer is the region adjacent to a solid surface in
which viscous forces are important. According to the boundary conditions (3),
the velocity u in the boundary layer does not reach the value U, of the free
stream until y—oo, because the influence of viscosity in the boundary layer
decreases asymptotically outwards. Hence it is difficult to define an exact
thickness of the boundary layer. However, at certain finite value of n, the
velocity in the boundary layer asymptotically blends into the free stream
velocity of the potential flow. If an arbitrary limit of the boundary layer at
u =0.9975 U, is considered, the thickness of the boundary layer is found to be
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5=564 | VX - 56 (27)
VU, R,

X

(ii) Displacement Thickness : The boundary layer thickness being somewhat
arbitrary so more physically meaningful thickness is introduced. This
thickness is known as displacement thickness, which is defined as

U.81= ] (Un-u)dy (28)
y=0

where the right-hand size signifies the decrease in total flow caused by the
influence of the friction and the left-hand side represents the potential flow that
has been displaced from the wall. Hence the displacement thickness 5, is that
distance by which the external potential field of flow is displaced outwards due
to the decrease in velocity in the boundary layer.

0

ie. 51 = T(l—ULde (29)

o0

Using the expressions for UL and y from (8) and (6) respectively, we find 5,

0

for the flow on a flat plate, as

5= [ @)

o0 0
ux ..
= w/u_ lim [n —f(n)]
o M®
— 17208 vx  1.7208x (30)

(ili) Momentum Thickness : Analogous to the displacement thickness,
another thickness, known as momentum thickness (5;), may be defined in
accordance with the momentum law. This is obtained by equating the loss of
momentum flow as a consequence of the wall friction in the boundary layer to
the momentum flow in the absence of the boundary layer. Thus

pd, UZ =p féJ(Uw —u)dy
y=
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=7 _u
or 82—({ OO( UOojdy (31)

Again, using (8) and (6), we obtain &, for the case of the flow on a flat plate, as

—_— VX K ! [
8 = /U_oo;[ f'(1-f") dn
-ogea |VX - 0064X (32)
U. R,

Comparison among various thicknesses of the boundary layer is shown in the
figure. We note that

y

Uoo
82<981<9. .

0.9975 U,,

L—> Uco—U
(Velocity deficit)
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4. Integral Methods for the Approximate Solution of Boundary Layer Equations
(Karman Integral Conditions)

We have observed that the solution of the steady boundary layer equations is
very difficult. The solution obtained in the previous case is also a very special
case. For engineering problems, it is often acceptable if an approximate
solution can be obtained. One of the most useful methods is the Von Karman-
Pohlhausen method based on the integral theorem. The basic concept of this
method is that the solutions satisfy the differential equations only on the
average, i.e., it is not anticipated that the solution satisfies the boundary layer
equations at every point (X, y) but the momentum integral equation and the
boundary conditions must be satisfied. The momentum integral equation is
obtained by integrating the boundary layer equations with respect to y over the
boundary layer thickness or by the momentum law.

4.1. Momentum Integral Equation for the Boundary Layer (Von Karman Integral
Relation). The Prandtl’s boundary layer equations are

ou ou ou 1dp

—+U—+V—=-——4+V— (1)
o tox oy pax ay2
ou ov

and —+—=0 2)
ox oy

Integrating (1) w.r.t. y fromy = 0 to y = 5(X), the outer edge of the boundary layer, we get

5 6u 5d
—j udy+j u—dy+f =——jo dzd “j —dy(3)

Let us simplify the third term on L.H.S. of (3). We have

Ia ou jaa(uv)

_dy_ 0 ay

oV
v dy—jou—dy

=f§d(uv)—j§u%dy
:[uv]g—jju%dy

= Uj N gy - j u—dy @)

whereu=Uaty=3.

ov ou
Replacing @ by — &, from the continuity equation, we get



319
FLUID DYNAMICS

jSVa—ud :—UJ'Bau dy+j6ua—udy (5)

Using (5) in (3), we find

_I udy+ [ U—dy uf; U fﬁua—udy———f —dy+“fsaz

S Sloudyr2fpu Zay-ufy S =“j§ e {WL

e Yo By e k(Y] (1)
_%% (pjy_a_(gjy_o

ou
wheret=p—=0aty=35.
oy

=taty=0
i.e. 1o is the shear stress on the wall.

Let us further simplify the second and third terms on the L.H.S. of (6). For this we use the
Leibnitz rule according to which

d b b(x) Of
_.[ f(X’y)dy Ia(x)ax

dx“a)

db
dy— f(ay) +1’(b,y)—OI
X

jf’ﬁd =ij5u2dy—U2®

0 ox dx
8 OU 2d8
d —dy —U udy—U“—
an J' I y-U*
Thus, equation (6) reduces to
0 3 d s, d s ddp T,
= [Pudy+— [‘uldy—U—[udy=-2=F_0 7
8tI° y+de° y dxIO y pdx p "

This is one form of the Von Karman integral relation and is also called the momentum integral
equation of the boundary layer.
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4.2. Von Karman Integral Relation by Momentum Law. The Von Karman integral
equation of the boundary layer represents the relation between the overall rate of flux of
momentum across a section of the boundary and the surface forces due to the wall shearing
stress and the pressure gradient. The Von Karman integral equation which we just obtained,
can be derived from the momentum theorem of fluid mechanics.

Let us consider an element of the boundary layer, ABCDA of unit length perpendicular to the
xy-plane as shown in the figure.

<« pd+ % (pd)Ax

po—> -

A
O X A Aec D . X .

Let AD = Ax be the small length of the element in the Xx-direction and & be the thickness of the

boundary layer at a distance x from the leading edge of the plate. We assume that the velocity

of the boundary layer flow at the outer edge of the boundary layer is the same as that of the

potential flow, i.e.,u=Uaty=3.

The rate of mass flow across AB into the element is

[ ooy

The corresponding rate of mass flow across DC out of the element is
5 0 ha ]
-[0 pudy+& OpUdy AX
The net rate of flow across AB and DC is
d UB pu dyJ AX (1)
dx YO

Since there is no flow across the surface of the plate AD, so by continuity
equation, the rate of mass flow out of the element across BC must be

—(f—x Uj pu dyJ AX (2)

Similarly, the net rate of change of momentum across AB and DC of the
element, in the x-direction, becomes

dd—X“(?puzdyJAx 3)
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The rate of change of momentum across BC is

-u dd_x |.[05 pu dyJ AX 4)

where U is the velocity across BC in the x-direction. Total outward flux of momentum
becomes

[ d d
&j(fpuzdy—u&jjpudy} AX (5)

The time rate of increase of momentum within the element is

[0 (s
= [, pu dy} AX 6)
The forces acting on the fluid due to the shearing stress at the wall is

ou
—u| — AX = —1¢ AX, in the x-direction @)
ou Jy_g

and due to the difference of pressure along AB and CD is

d 1dp do dp
5—| PO +—(PO)AX |+|p+=——AX [AX— =—0—A 8
P {p dx(p) }[p 2 dx } dx dxX ®
where we have neglected terms of order AXAS.
Now, according to the momentum law, we have
Rate of change of momentum in x-direction. = Total force in x-direction
0 3 d s > d s
- {EIO pudy}Ax{&jopu dy—U&J'0 pudy} AX
do
= -8 — AX — 19 AX 9)
dx
Dividing both sides of (9) by pAx, we get
0 38 d s » d s ddp 1
— | udy+—| udy-U—| udy=———-— 10
Gt'[o y dXJ.0 y de0 y pdx p (10

which is the required Von Karman integral equation, being the same as obtained by integrating
Prandtl’s boundary layer.

4.3. Other Forms of the Von Karman Integral Equation. It is often convenient to have the
integral equation in terms of displacement and momentum thicknesses. The momentum
integral equation of the boundary layer is
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0 5 d s > d s ddp T

ajOUdy—i_d_XJ.Ou dy—Ud—XIO Udy:—E&—F (1)
Also, the Euler’s equation in the main stream is

U _ _1dp o

+
ot OX p dx

d
where U is the velocity of the potential flow, d_p is the pressure gradient, p is the density
X

, 0 is the thickness of the boundary layer and t is the shearing stress at the wall. For
a steady flow, we obtain from (1) and (2)

d 2 du To
d U dy-8U—=—
dx 0 u y= I ey dx p
or
3 o du
— | u“dy——| Uud d U dy=—-—
o utdy= L[ Uy s & uay U [Tay =7
or
d s du ;s To
&J‘O U(U—U)dy+&IO(U—U) :F 3)

The displacement and momentum thicknesses are defined by

5 = jg’(l—%de =Ud; = jg’( —%)dy 4)

and

8, = ju(l—Ujdy :>U252_f6u(U—u)dy )

Thus, equation (3) reduces to

—(u 5,)+ Uusl_
p

or

0 B2 4 oys, Y s, Y T
dx dx dx p
or
ds, 1 du _ 7o
=2 1 = (25,+8 6
dx u( 2% 1)dx pU? ©
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This is the Von Karman momentum integral equation in terms of displacement and momentum
thicknesses.

4.4. Application of the Momentum Integral Equation to Boundary Layers (Von Karman
Pohlhausen Method). Pohlhausen introduced a fourth degree polynomial for the velocity in
terms of a non-dimensional parameter 1 = y/3, 0 < 1 < 1 such that

%=f(n)=an+bn2 +cn’ +dn* (1)

The constants a, b, ¢ d are to be determined from the boundary conditions

2
u:O,v:O,a—gzlﬁz—Ed—U,aty:O 2
oys undx v dx

2
u:U,@=O,a—l;=O, aty=3§ (3)
oy

The first two conditions in (2) and the first condition in (3) are satisfied by all exact solutions
of the boundary layer equations. The second condition in (3) is meant for continuous flow on
the outer boundary of the layer. The third condition in (2) is obtained from Prandtl’s boundary
layer equation i.e.

du ou ou  ldp é%u
—tU_—+V_—=———T+V—
o ox oy pdx oy
When the flow is steady and u=0=vony =0, then
o°u_1dp 1dp_ UdU
oy? vpdx pdx  vdx
2u
The point where 7 = 0 is called a point of inflexion of the velocity profile in the boundary

layer. From (1), we get

o°u_1d°u_U ) ) -
_8y2 _5_2_dn2 _8_2(2 +6cn+12dn°) =0
= 6dn?+3cn+b=0

This gives two values of . One of the points is near the wall and other is in the upper region
of the boundary layer. For this reason, the boundary condition.

2
u ..
— = 0 aty =5 is imposed.
Let us now use the conditions (2) and (3) in (1) to find out

o’y Udu 2bU  UdU
n:Ov_z___ _

oy? v dx 38_2_ v dx
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§%dU_ &, _8%du
2v dx 2' v dx

A
n=Lu=U =a-—+c+d=1

ou
n=1—U=0 =a-i+3c+ad=0 (4)

o%u

n=1— =0=-1+6c+12d=0

Solving (4), we get

a:2+&,b=_—7“, c=—2+&,d=1—& )
6 2 2 6

Therefore, the velocity in (1) has the expression

u A A 2 A 3 A 4
T (m) ( +6jn oM +( +2}n +( 6}1

2 3 4
=om2nPeqtea |2 T
e (6 22 6
=Fmn) + 2 GM) (6)
where F() = 2n-2n°+n°

G(n) =g(1—3n+3n2 T %(1—11)3
82 du
= —

v dx (M

The velocity profile expressed in terms of n in (6) constitute a one-parameter family of curves
with a dimensionless parameter A which depends mainly on the pressure gradient of the flow.
A may be written as

}L:ﬁd_uz_@ L
v dx dx{uu/d

which can be interpreted physically as the ratio of the pressure force to viscous force. This is
known as the shape factor.

We shall now calculate the limits of . From (6), we get
3 4 }\’ 3
f(n) = (@n-2n") + 6 n(1-n)

Therefore,
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df A
— =(2-61" + 4n°) + — [(1-)° - 3n(1-1)7]
dn 6

= (2-6n° + 4n°) +% (1-un) (1-n)°

d*f A
and F = (1— T])|:12(6 —:IJT] — }\.j|
when n=0, ﬁ =2+ 2
dn J, 6

(ﬁj =0 =r=-12
dn J,

This is taken as lower limit of A. The upper limit of A can be determined from the condition of

o dAf o NN _
zero curvature of the velocity, i.e. —— =0 which givesn = — /| ——11. Itis seen that
dnz 12 6
for A <12, n > 1.0 and for A > 12, n < 1.0. Hence for A > 12, the point of inflexion occurs
within n = 1.0 i.e. the velocity profile in the boundary layer becomes greater than the velocity
in the potential flow. This is not justified physically. Therefore, we take A <12. So, the limits
of Aare -12 <A <12

For A =0, the velocity profile corresponds to the Blasius solution.

With the aid of the approximate Pohlhausen’s velocity profile (6), we find the displacement
and momentum thicknesses. These are defined by

[(+-5)
1 : U
Su u
S=]—|1——|d 9
!U( ij ©)

Using (6) and n = =, we have

[EEN

5
5 [ [-Fm) -2 6] dn

o

1
= | [1—2n+2n3 -7’ —%n(l—n)g}dn
0

1

{ > ' _n° %(1—n)5+&(l—n)4}

2 5 6 5 6 4 |
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3 A
= — - (10)
10 120
and
6 1
72 _ _F(n)—
5 I [F(n)+A G(n)] [1-F(n)-AG(n)]dn
0
37 x N
= - - (12)
315 945 9072
The shearing stress 1o at the wall is given by
Tp = u(a—uj = E(Z + &J (12)
)y O 6
Let us multiply each side of the momentum integral equation i.e.
&4_1(262 +81)d_U :T_O
dx U dx pU?
us,
by to find out
\%
2
%di_k 2+i Sld_uzﬁ (13)
v dx S, ) v dx U
To simplify (13), we use the parameters
2
2 2 2
2% Kus_d_us_k_[ﬁ_j . ”
v v dx v §2 )
With the help of (10), (11) and (12), we have
2 2 2
k:8—2k= 37—K—k A (15)
) 315 945 9072
3_*
flg= L% 8 10 120 16)

5, 88, 37 A N
315 945 9072
Tg O, _uU(X+12j6_2

folk) = — > —2 = "—
A9 nU wl 6 Ju
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—(7‘”2)8—2—(“12) 37 x W an
6 )3 6 315 945 9072

. _ _ d,dd, 1ldz
Using the values of z, k, f;(k), f,(K) in (13), and noting that — —= = ——, the momentum
v dx 2dx
integral equation takes the form
U dz
— — + (2+fy(K)) k = fo(k
> dx (2+,(K)) k = (k)
dx U
where F(K) = 2f,(k) — 2 (2+f1(k)) k (19)

Equation (18) is a non-linear differential equation of the first order for z.

dz
At the stagnation point x = 0 and U = 0. At this point d—cannot be infinite and so F(k) = 0.
X

This gives the value of A at the stagnation point. Thus, we have
2f2(K) — 2(2 +f,(K)) k=0 (20)

Using the values from (15), (16) and (17), it is obtained that initial value A, of A at the
stagnation point is Ao = 7-052.

Further, we can determine F(k), in (19), numerically for different values of A.
5. Separation of Boundary Layer

5.1. Physical Approach : The decelerated fluid particles in the boundary layer do not remain
in the thin layer which adheres to the body along the whole wetted length of the wall. In some
cases the thickness of the boundary layer increases considerably in the downstream direction
and the flow in the boundary layer become reversed. The decelerated fluid particles then no
longer remain in the boundary layer but forced outwards, which means that the boundary layer
separates from the wall. Such phenomenon is known as boundary layer separation and the
point at which the boundary layer separates is known as point of separation.

The phenomenon of boundary layer separation is primarily connected with the pressure
distribution in the boundary layer and is very common in the flows about blunt bodies, such as
circular and elliptic cylinders or spheres. The fluid flow in the boundary layer is determined
by the following three factors.

Q) It is retarted due to viscosity because of no-slip condition at the wall.

(i) It is pulled forward by the free stream velocity above the boundary layer

(iii) It is affected by the pressure gradient.

We have already observed that the pressure in the boundary layer is the same as it is outside
the boundary layer. Let us consider a curved surface as shown in the figure
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o%u — >0 '

- — - 2 - -
Upstream of the highest mt?h% stream lines of the @{er flow converge, resulting in an
increase of the free stream velocity U(x) and a consequent fall of pressure with

dp

x(d— < Oj i.e. favourable pressure gradient. Downstream of the highest point the stream
X

d
lines diverge, resulting in a decrease of U(x) and a rise of pressure with x (d_p >0]. Inthe
X

d : i
region with rising pressure , (d—p >0 i.e. adverse pressure grad |ent.j along the wall, the
X

retarded fluid particles with small momentum and energy cannot penetrate too far. Thus, the
forward flow is brought to rest and thereafter a back flow sets in the direction of the pressure
gradient. This causes a boundary layer separation and the point at which the forward flow is
brought to rest is called the point of separation.

5.2. Analytical Approach. In this approach, the separation phenomenon may be explained by
applying the Prandtl’s boundary layer equations both outside the boundary layer and at the
wall. Outside the boundary layer, the equation is

LdU__1dp o
dx p dx
and at the wall, i.e. at y = 0, we have u = v = 0, the equation is
d%u) dp
Z 2| =2 2
L{ o7 jo X )

au 2y
It may be noted that at the outer edge of the boundary layer both 5 and —Ztend to zero,

au 2u
8_ from the positive side whereas — from the negative side, as at the outer edge the

maximum value of u i.e. U should occur and the boundary layer flow merges smoothly with
the potential flow.

Since it is clear from equation (1) that the curvature of the velocity
profiles in the immediate neighbourhood of the wall depends only on the
pressure gradient, we consider the following three cases :
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d
Q) d—p: 0 i.e. zero pressure gradient i.e. constant pressure :
X

2

_ o°u . _ou .
In this case — | = 0 and hence the velocity gradient 8_ decreases steadily from a
y
0

positive value at the wall to zero at the outer edge of the boundary layer. The velocity profile
must therefore have a steadily decreasing form (figure 1).

y
y y

au . 0’u
! o oy ° ¥
Figure 1

o _ d%u d*u _
The point of inflexion occurs on the wall since 3| = 0 but — |* 0, which can
0

easily be verified by differentiating the boundary layer equation w.r.t. y and evaluating the
value at y = 0. The fluid particles continue to move forward and therefore separation of
boundary layer does not occur.

d
(i) d—p < 0 i.e. favourable pressure gradient :
X

2

u
For this case, from equation (2), we conclude that (_Zj < 0 and therefore it increases
0

steadily to the value zero at the outer edge (y = 8) of the boundary layer. The velocity gradient
ou

8_ again decreases steadily from a positive value at the wall to the value zero at the outer
edge of the boundary layer. The velocity profile does not have any point of inflexion (figure 2)

and has a form similar to the case of zero pressure gradient. In this case also, the fluid particles
continue to move forward and so there is no boundary layer separation.

<
<

dp>

2
0 ieadverse pressdjre gradient]: ou o°u
Figure 2

(iii)

&
O
<
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2 2

. u . o . . u
In this case (—2] will be a positive quantity. In order to have a positive value of — at
0

ou
y = 0, the slope of the velocity gradient a—at y = 0 must be positive. But the boundary
y

ou
condition requires 8_: 0 aty = 8. Therefore, the slope of the velocity gradient must change

signs from positive to negative in the boundary layer which results in point of inflexion of the
velocity profile in the boundary layer (fig. 3). The velocity gradient at the wall is much
smaller compared to the case of zero pressure gradient.

y

P.1.

u 2
o) 0 a0 d 0

oy oy

Figure 3.

As the adverse pressure gradient increases further, the velocity profile may become

ou
increasingly distorted until the velocity gradient at the wall [— is zero, as shown in figure
0
3. At this point, separation of flow from the wall begins. Further downstream, a back flow in
the direction of the pressure gradient sets in.

It should be noted here that the type of velocity profile shown in figure 3 is naturally unstable
and it frequently happens that the transition to turbulent flow in the boundary layer will take
place before laminar separation can occur. Under such circumstances, the turbulent boundary
layer will be maintained and separation of flow from the wall will be delayed.

Further, the point of separation is defined as the limit between forward and reverse flow in the
layer in immediate neighbourhood of the boundary wall. In other words, the point of

ou
separation is the point at which (—] =0ie 1=0.
0



