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Unit-1

Primes In Certain Arithmetical
Progressions and System of Congruences

Primes in certain arithmetical progressions.

Peano Axioms are

(1) 1eN where N is the set of natural numbers

(2) For every natural number n there exists its successor number (n+1)eN
(3) 1is not the successor of any natural number i.e. 0 ¢ N.

(4) Principle of mathematical Induction : If p(n) is a mathematical statement
which is true for n = 1 and p(n) is true for n = m + 1 whenever it is true for
n =m then p(n) is true for all natural numbers.

Law of well ordering :- Every subset of N has a least element.
Theorem 1.1 Every natural number n > 1 has a prime divisor (factor)
Proof :- We shall prove the lemma by induction on n.

Forn =2, lemmais true (" 2 > 1, 2 has a prime divisor 2)

Suppose lemma is true for all natural number <n. Now consider n. If n is
prime. Then the lemma is true because it has a prime divisor n itself. So
assume ‘n’ to be composite. Then n has a positive divisor n3, 1 <n, < n such
that n = ny.n, where 1 <n, <n

Since n; < n by induction hypothesis n; has a prime divisor say p. Then p | n;
and ny|n

= p | n. This proves the theorem.
Theorem 1.2 (Euclid) :- The number of primes are infinite

Proof :- If possible, suppose number of primes are finite. Let these be p,
p2,...pr.
Consider N = p; pz...pr +1

Now N > 1, by above theorem N has a prime divisor say p>1. But only
primes are ps, P,...,pr SO p = p; for some i

Thenp | p1 p2...pr, Alsop | N = p | (N — p1. p2...pr) Or p | 1, which is a
contradiction.

Hence number of primes are infinite

Note :- LetP ={2,3,5,7, 11, 13,...} be the set of all primes and let S = {3, 5,
7,...} be the set of odd primes. Then S can be divided into two mutually
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disjoint subsets having primes of the form 4n+1, 4n+3 and the set {5, 7, 11,
13; 17,...} can also be divided into two subsets having prime numbers of the
form 6n+1 and 6n+5,n=0, 1, 2,...

Theorem 1.3 The primes of the form (4n+3) are infinite in number.

Proof :- If possible, suppose primes of the form 4n+3 are finite and let they be
P1. P2,...pr

Consider N =4 p;.p2...p—1. ThenN>1
So N can be written as the product of primes. Now N is odd, N = 2.

Thus N can be written as a product of odd primes, so N can be written as a
product of primes of the form (4n+1) and (4n+3). But if N were divisible by
primes of the form (4n+1) then N would also be of the form (4n+1). But N is
of the form (4n+3), so N is divisible by atleast one prime of the form (4n+3)
say p. But only primes of form (4n+3) are pi1, p2,..., p» Then p = p; for
some i

Nowp|Nandp|pi...pr = p | [4(p1- p2...pr) — N] = p | 1, which is a
contradiction

Hence, Number of primes of the form (4n+3) are infinite in number.

Theorem 1.4 The number of primes of the form (6n+5) are infinite in
number.

Proof :- If possible, let number of primes of the form (6n+5) are finite and let
these be p1, p2...pr

Let N =6(p1...pr) —1. Then N >1so N can be written as a product of primes.

.. N can be written as a product of primes of the form (6n+1) and (6n+5). If
N were divisible by primes of the form (6n+1) only, then N would be of the
form (6n+1), so N is divisible by atleast one prime of the form (6n+5) say p.

But only primes of the form (6n+5) are ps, p2,..., pr, SO p = p; for some i

Now p | N and p | pi p2...pr, SO P | [6(p1- P2...pr) — N] = p |1, whichis a
contradiction

Hence number of primes of the form (6n+5) are infinite in number.

Note :- If gcd(a, b) = 1 Then every odd prime factor of a? + b? must be of the
form 4n + 1.

For example gcd (4, 3) = 1, 4% + 3% = 25 has an odd prime factor say 5 of the
form 4n+1

Theorem 1.5 Primes of the type (4n+1) are infinite in number.
Proof :- If possible let ps, po,...pr be the only primes of the type (4n+1).
Consider N = (2p; pa...p)°+1
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Now N is of the type a?+ b and gcd(a, b) = 1. Also N is odd so 24 N and all
the prime factors of N are odd, so all the odd prime factors of N must be of the
form (4n+1) Let p | N. Then p will be of the form (4n+1) But the only primes
of the form (4n+1) are p1, p2.....pr, P = p; for some i

Then p | N and p | (2p1...py)° i.e. p | 1, which is a contradiction. Hence
number of primes of the form (4n+1) are infinite in number.

Theorem 1.6 Primes of the type 8n+5 are infinite in number
Proof :- If possible, let p1, p2...., pr be the only primes of the form (8n+5)
Consider N = (p1 pa2...pr)* +4 = (p1 pa...pr)° + 22

Then N is of the form a® + b? and 2}, py- p,...pr implies g.c.d(a, b) = 1. Also N
is odd, every prime factor of N must be of the form 4n+1. Now we know that
square of every odd number is of the type 8n+1. Since (2n+1)® = 4n’ + 4n+1
=4n(n+1)+1 =8k + 1, and so N is of the form 8k +5.

Now if every prime factor of N is of the type 8n+1 then their product N will
also be of the form 8n+1 since [(8ny + 1) (8n,+1) = 64nin, + 8(ny + ny) +1=
8[8niny + (Np+ny)]+1=8k+1

But N is of the form 8n+5 and so atleast one factor of N must be of the type
8n+5 say p. Therefore  p = p; for some i. Now p | N and p | (p1-p2...P; )

= p|IN- (prpa-.. pr)]
= pl4d=p<4.

But the smallest prime of the form 8n+5. So this is a contradiction and
therefore primes of the type 8n+5 are infinite in number.

Fermat numbers

n
A French mathematician Fermat conjectured that Fn = 22 +1
represents primes for all values of n > 0

0
Note that Fo=2%2 +1=3
ol 22
Fi= 22 +41=5  Fp=22+1=17

F, = 2241 = 257, F, = 65537 are all primes. These
numbers are called Fermat numbers. A Fermat number which is a prime is
called a Fermat prime. However no Fermat primes are known beyond F4. In
1732, Euler proved that Fs is composite. However his proof was very
complicated. We give an easy proof due to Burmet.

5
Theorem 1.7 Fs = 22 +1 is composite
Proof :- Leta=2'=128and b =5

then a=b>+3o0rabh®=3
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Now 1 +ab -b* = 1+b(a-b°)
=1+3b=16=2*
2® 23,22 814
and Fs=2° +1=(2° )" +1=(2")" +1

=t 2)"+1=(2a)* +1=16a*+1=(1+ab-bY a* +1
= (1+ab) a* + (1-a* b%

= (1+ab) a* + (1 +ab) (1-ab) (1+a’b?

= (1 +ab) [a* + (1-ab) (1+a° b?)]

Thus 1 + ab = 1+128-5 = 641 is a divisor of Fs. Clearly fs > 641 and so Fs is
composite.

Remark :- We have not been able to find any Fermat prime number beyond
F4 and research is still on. However it is conjectured that F,, is not a prime for
n > 4. But Fermat’s number have very interesting properties.

Theorem 1.8 All Fermat numbers are relatively prime to each other i.e.,
gcd(Fm, Fr) =1 form=n
Proof :- W. L. O. G., we assume that m > n

Letm=n+kwherek>1

k k
Now Fmn = Frek = 22" +1=(22n)2 +1
Set X = 22n
ok
Then Fn=(X)" +1
k
Now Fn—2 (x)2 +1-2
F,  x+1
k
x2 -1
xX+1
k-1 k-1
_ (74t -
x+1
k-1 k-2 k-3
_ (x +1)(x +1)(x +1)...k-D(x+1)
X+1
= Fn| (Fm—2)

Let gcd (Fm, Fn) =d, thend | F, d | Fy and Fy | (Fu—2)
= d| (Fm—2) and therefore d | [F, — (Fn—2)] i.e.,d |2
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= d=1or2. Butd =2 since all Fermat’s number are odd.
Hence d =1 and this proves the theorem.
Corollary 1 (Euclid) :- The number of primes is infinite.

Proof :- Let n be any natural number. Consider Fy, F,,...F,. Each of Fj > 1
and so each F; has a prime factor. Let p1 | F1, p2| Fo,...pn | Fn, Where py,
P2...pn are primes.

Since all Fermat numbers are relatively prime i.e., (Fi, Fj) = 1 so p; # pi
fori#j

So all the p;’s are distinct primes. Thus given any natural number n, there
exists at least n different primes and so the number of primes is infinite.

n
Corollary 2 :- pps < 22 +1 = F,, where p; denotes the i th prime in
ascending order

Proof :- Since each F; is divisible by a different prime and F1 < F; < F3 <...<
Fn, S0 there exists at least n primes < F.

But all Fermat numbers are odd and prime 2 is less than all odd primes so at
least (n+1) primes are less than Fy, i.e., pn+1 < Fn

Example :- Prove that forn > 2, 10 | F,—7
or Fn=7 (mod 10)
Solution :- We shall prove the exercise by induction on n.

Forn=2,F,= 2% +1=17
and 10| (17-7)
exercise is true forn =2
Assume that exercise is true for n = k

ie., 10 | (Fi=7)
ic. 10] (2% +1-7)
k
ie., 10| (2% -6)
. ok
ie., 2 —6=10r, forrez
(1)

k+1 k

Now 22" _(22°)2= (10r + 6)?

=100 r? + 120r + 36.

=10(10r* + 12r + 3) + 6
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=10r' + 6 where r* = 10r® + 12r + 3
K+l K+l
22" g=10r =10((22  -6)

2k+1
= 10([22 +1-T7]
= 10 | (Fks1 —T7)

Thus by mathematical induction exercise is true for all natural numbers n.
Mersenne Numbers

Let p be any prime then number of the form

M, = 2°-1 are called Mersenne numbers. A Mersenne number which
is also a prime is called a Mersenne prime.

Theorem 1.9 Let a > 2 and n > 2 be natural number. Let a1 be a prime.
Thena=2and n = p for some prime number p or Any prime number of the
type a"-1 must be a Mersenne prime

Proof :- Since a"-1 = r is a prime so it cannot have any factor ¢ such that 1 <
q<r

Now a"-1 = (a-1) (@"* +a" 2 +...+ a®+ a +1)
ie., (a-1) | (@a"-1)
Buta>2,n>2
If a> 2 then a -1 >1 is a factor of a"-1 giving a contradiction
— a=2
Again suppose n is composite
—=> there exists p, g with 1 <p <n, 1 <q < nsuch that n = pq
Now a—-1=a"-1=_@%"-1"
= @-1) [@)" + @)%+ ...+ at])
Nowsincea=2,1<q<n
. 1<a™1<a"1, isafactor of a"-1

This implies that a"-1 is composite which is a contradiction. So n must be
prime.

Remark :- Converse of above theorem need not be true
For example.

211 is not a prime. So 2°~1 need not be a prime for all
primes p
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Remark :- In 1644, Mersenne conjectured that M, is prime for
p=235,713,17,19, 31, 67, 127, 257
and composite for all other primes up to 257

Later on it was discovered that he has made some mistakes. In fact,
today, we know that M, is prime for

p=2357,13, 17, 19, 31, 61, 89, 107, 257, 521, 607, 1279,
2281.

as and so on and composite for all other primes < 2281

Thus he had made five mistakes i.e., for
p =61, 67, 89, 107 and 257, i.e., M, is prime for
61, 89, 107 but composite for
p =67, 257.

Theorem 1.10 If a>2 and n > 2 and a" + 1 is a prime, then n = 2 for some k
>1and ais even.

Proof :- If ais odd thena>2 = a > 3 and so a" +1 is an even number which
is greater than or equal to 4 and so can not be a prime number. So fora" + 1 to
be a prime, a must be even.

Next we claim that no odd prime divides n, if possible, let an odd prime p
divides n, then n = pg where 1 < g < n and p is an odd prime. Therefore a"+1
=a™ +1 = (a")° +1".

= (@%1) @® P -aP? +...-1)
Also 1<a%+1<a"+1,sothata’ +1 is a proper divisor of a" +1
= a" + 1 can not be a prime which is a contradiction.
. n must be a power of 2. [no odd prime dividesn =>only2|n =n=24
Theorem 1.11 Let n >1 be a natural number, then n is composite iff n
contains a prime factor p<n
Proof :- Let n be composite and p be the smallest prime divisor of n where n
=pqg. Thenq > p Therefore n = pq > p?
[ a=p]

=N pP’<n = p=/n

Thus to determine whether n is a prime number or not, it is sufficient

to find out all primes < ~/n and check whether any one of these primes
divides n or not. If there is no divisor among these primes then n must be a

prime number itself. In this sieve it is essential to find out all primes < Jn.

11



ANALYTICAL NUMBER THEORY

Farey Series

Let n > 1 be any natural number. For every n, the set of fractions h/k such that
0 <h/k < 1,1 <k < nwritten in ascending order of magnitude is called Farey
series of order n and will be denoted by Fn.

Construction of Farey Series :-

0 1
F _ —
g 1
0 1 1
1 2 1
0 1 1 2 1
F - - = £ -
1 3 2 3 1
01 1 1 2 3 1
E - - - = £ 2 =
14 3 2 3 4 1

Theorem 1.12 If E% are two consecutive members of Fn then

@ (k+k)>n

(b) kzk'ifn>1

Proof :- W.L.O.G. we assume that

h K

k k'

h < h+h' < h'

k k+k' K

..(1)

E< EJJ:E < hk' <kh o E<E

and the last inequality is true by assumption. In a similar way,
heh' _h
k+k' K

so that the inequalities (1) are satisfied.

Proof (a) :- If possible, let (k + k') <n.Sinceh<kandh' <k’ < h+h <k+
k!

. [h+hjan

We claim

Now

k+Kk'



PRIMES IN CERTAIN ARITHMETICAL PROGRESSIONS AND SYSTEM OF CONGRUENCES

lies between two consecutive fractionsE,% of Fn

= A fraction

k+k'
which is a contradiction
So (k+k)>n

Proof (b) :- If possible, let k = k’ where h/k and h'/k’" are two consecutive
fractions of Fn for some n. We note that % and % are the only two fractions

with denominator 1.
h h' h'
Then —#1l# —=—
k k' k
~ h<h <k
But h, h', kare integers,soh+1<h'<k-1<k
...(D)

Now we claim

e e L
K k-1~ Kk "k
(11D
To prove this we note h < h and h+1 < E are clear
k k-1 k k
So it remains to prove that —h < —h +1
k-1 k
or hk < (h+1) (k-1)
or hk < hk + k-h-1
e, (k=h-1) > 0. i.e., k > h +1 which is true by (1)

All the inequality in (111) are proved thus we have a fraction kLl in

Fn which lies between two consecutive fractions E and % which is a

contradiction. So, we can nothavek=k'ifn>1

Theorem 1.13 Let h/k and h’/k’ be two successive members of F,
h h
— < R

k Kk
Then h'k-—hk' =1 ..(D

Proof :- Since h/k < h'/lk’ = E is not the last function of fn

13
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= 0< E <1 ...(I)
Also g.cd.(h,k)=1
= Jintegers x & y such that

kx —hy=1 ...(IID)

Now let (Xo, Yo) be a solution of (I1l). Then clearly (xo + rh, yo + rk) is also a
solution of (I1) for every integer r. Then taking different values of r, the
entire real line is divided into intervals of length k each

York Yo K Yo Yotk ygtrk

Choose a value of r such that

0<n-k<y=yp+rk<n ..(IV)
and such that

(X =Xo + rh, y = yo + rk) is a solution of (I1)
Now dividing (I11) by k, we get

X = l+Dysothat0<l <X <14y

k k

Thus l<x<y<n
Further from (111), g.c.d (X, y) = 1 so that

5e Fn

y
Now dividing by ky in (111), we get

x h 1 h

y k ky k

o InFy, goccur after h/k

We claim, X :E
y K

Suppose it is not true. Then x/y must occur after h’/k’, as h/k and h'/k’
are consecutive fraction of F,. So that we must have x/y > h'/k’ > h/k

Now x_h_Kx-hy 1 (V)
y kK Ky Ky
as x/y > h'/k" and so the numerator must be positive
h'k—-hk' 1
>
Kk’ Kk’

Similarly, h'/k’ — h/k = (VD)
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Adding (V) & (VI) we get
X h> 1 1 k+y n

x h 1 1_ _n By (IV
y K Ky K¢ Ky  Kk'y [By (V)]
1
> — okl <
Ky ( n)

But by (I11), 5—E:i, which is a contradiction
y k ky

So, we must have X_ i
y K
Sincey >0, k" >0, gcd(x,y) =1,gcd (h', k) =1
So, we must have
x=h.y=k
But (x, y) satisfies (I11). So we must have k h” — hk’ = 1, which proves (1)

Remark :- 1. The chice of r gives us an actual method to find next fraction
h'/k’ of F,, if fraction h/k is given

2.h/k <h'/k & 1-h'/k" < 1-h/k

Further h/k and h'/k’ are consecutive fraction of F,. So 1-h'/k’ and 1-h/k are
also consecutive fraction of F,, in reverse order.

Theorem 1.14 Let E,%be two consecutive terms of F, such that E,%,%be
consecutive terms of F, such thatr > n. Then

E B h+h'

kn - k+ k'
Proof :- Since Pan are consecutive terms of F, with K < e and so

h”"k —hk'” =1 ..(D
Also —,— are consecutive terms of F,and — < —

K" K ' K" K

andsoh’k” -h"k'=1 ...(ID

From (1) and (11), we get
huk _ hku — hrku _ hukr
— h!!(k + k!) = k!!(h + h!)

15
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h"  h+h'
7K kK
Now consider (h + h)k — (k + k)h = hk + h’k — kh — k’h

=h'k-kh=1 ...(IID)
From (111) we conclude that gcd(h+ h", k+ k') =1

hll
Also gcd(h”, k") =1as P € Frand so

e b andk = K4k
— VV: Van VV: V.
K kik

Theorem 1.15 Let Eand%be two consecutive Farey fractions with h <%,

" is the unique fraction with the smallest denominator among all

h h'
fractions between EandE.

h h +
en
K+

Proof :- Let § be any fraction such that

h x h

k y kK
Then E_E= E_f 4 i_h

k' k \k' vy y k

h'y —k'x N kx —hy
K'y Ky
Since §<% ,(%—5}0 and so (h'y — k'x) > 1 as h', k', x, y are all integers.
y

Similarly (kx — hy) >1
h*h 1 1 k+k

_ Z _—t — = ...(1)
k' kK Ky ky Kkk'y
But h_h = hk —K'h = L , since E andD are consecutive Farey
k' k kk' kk' k' k
fractions, ...(2)

From (1) and (2)
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1 k+Kk'
>
kk'  Kkk'y
Since we know
n<h+k'<ﬂ
k k+k' k'

= y>(k+K) ..(3)

SO

there exist a fraction lying with E and % whose denominator is k + k’

So if x/y is a fraction lying between E and E we should not have y > (k+k’).

So we must have, y = k + k" in (3). But the equality in (3) will hold only when
equality holds in (1) through out. = We have
h'y—-k'’x=1 and kx-hy=1
or h'y —k'x=kx —hy = (k+Kk)x=(h +h")y
= y=k+kK

Theorem 1.16 If F,= a—l,a—z,...,ﬂ
b, b, b,

Then (i) r=1+3 ¢()
=

.. r a; _l n .

(ii) %" 2( +j221(p(1)] and
r-1

(iii) Y (bjx b)) =1

)=

Proof - (i) r=1+3 &)
i1

We shall prove the result by induction on n and we know that % and % are the

only terms in F; so that the result is true for n = 1. Assume that the result is
true for all natural number <n.

Consider F,. Now F, contains all terms of F,_; plus those fractions h/k such
that gcd(h,n)=1,

.. By definition the number of extra terms is ¢(n)

.. Total number of terms on F, = the number of terms in F_1 + ¢(n)

17
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=1+3, 60)+ 400

=1+ ()
=1

N roa 1,0
(ii) .221 b_i_z{ +j:21cp(1)}

We know Ee Fne [1—2) e Fq

. a; . .
So, we write the terms b—' (i=1,2,...,r) in a row
i

a; a, az 4,

T v T ey T and
b; by bz b
al 3.2 ar . . ai ai
1- =,1-—%,.,1-— in the second row, we write 1-— underneath —
b; by b, b; b

a; a; )
As —L runs over terms of F,, 1—b—' must also run over terms of F, in the
i i

opposite order. Now adding the two rows horizontally.

. r a; 1 1 n. /.
Soif S=3 —Lthen2S=r=S=>r = =1+ 3¢())
i=1 i 2 2 j=1

1
(iii) We know that the last term of function is 1 and the first term is % so that

But we know that if E P are consecutive terms with E <%, then h’
k—hk' =1
Let us calculate,
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aj _ajy _aibjiy —aj4b;
bi by bibi 4
1
bibi

= (bi big)

a

-1
Therefore, 1= rz (b; bj+1)‘1 +

e

Definition :- Let E &E be two consecutive Farey fractions of function such

kl
h h
that — <—
kK
h+h'. .
Then K is called a mediant of order n.
+

Note thatg.cd. (h+h,k+k’)=1land (k+k')>n+1
so the mediant of order n does not belong to F,.
Further, we know
D<h+H<E
k k+k' k'
The mediant —1 = —0+1 lying between 9 and 1 is called the first mediant
n+l 1+n 1

of order n and the mediant

n (h-D+1
n+tl  n+l

lying betweennT_1 &%

is called the last mediant of order n. If we represent all Farey fractions of
order n on the unit circle, the totally of all these points on the unit circle is
called Farey Dissection of the unit circle of order n.

Definition :- The arc of the unit circle bounded by mediant of order n of next
mediant of order n is called a Farey arc of order n.
A a; a3 a4

Remark :- Let —,—, —, — be consecutive Farey fractions of order n.
by by, by by

19
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a a; +a a d-, +a a dq +a a
Then _1<1—2<_2<u<_3< M<_4
bl bl + b2 b2 b2 + b3 b3 b3 + b4 b4

a1+a2 &az +3.3

Then the Farey arc bounded b
Y Y b +b, " by+b,

contains a Farey fraction

3.2 az +a3 3.3 +a4
—= and the Farey arc bounded b &
b, Y Y b, +bs  by+by

contains the Farey

_a
fraction b—3and S0 on.
3

Thus each Farey arc contains one & only one Farey fraction.
The Farey arc bounded by the last mediant n/n+1 and the first mediant 1/n+1

contains by convention the Farey fraction %

Theorem 1.17 Let x :E eFr(n>1)

Let x be represented by the point P4 on the unit circle. Suppose Py lies on the
Farey arc bounded by the points P, P,, where p and p' are the mediants.
Then the length of each of the arcs Pu Px and Py’ Px lies between
1 & 1
k(2n-1) k(n+1)

Proof :- We shall distinguish two cases

Case |l :- ngor}
1 1
Then x lies on the Farey are bounded by n &i. and the length of
n+l1 n+l

P. Px -1 - length of Py P,
n+1

Case Il x;t% &x;t}

1

Then x = E is neither the first fraction nor the last fraction of F,. So 3 Farey

. h h
fractions — & —2 such that
1 2
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Then E lies on the Farey arc bounded by

_hy+h and h+h, -

Tk T Kk,

h hy+h  h(k; +k)—k(hy +h)
k ky+k k(ky +K)
_hky—-kh; 1

k(k; +k)  k(ky+k)

Thus PuPx =

. h ) . ) )
Since k—l&E are consecutive fraction of function with
1

hy h
— <—and k = k.
K, < ” and k =
= maximum value of k + ky is2n-1and (k + k) >n+1
1 < PuPx < !
k(2n-1) k(n+1)
Similarly, # <PxPu < 1 .
k(2n-1) k(n+1)

Remark :- We have already proved that given any real number o« and an
integer t > 1, there exists integers x & y such that

|ocX—y|<%&0<X£t.

Theorem 1.18 Given any real number ¢ and an integer t > 1, 3 integers X & y
such that 0 < x <tand |ax -y| < 1/t+1

Proof :- Theorem is obvious if t_ll > |ox-y]
+

= |(atn)x — (nx+y)|
So if theorem is true for o, the above expression shows that it is also true for
all real number o + n, where n is any integer.

So w.l.o.g. assume 0 < o < 1. i.e., we shall consider only the fractional part of
o if 0 < o < 1 is not satisfied. Since t > 1, we consider Farey series F.. For
t = 1, theorem is obvious.

21
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: : h h
Now assume t > 1. Since 0 < o < 1, there are two Farey fractions k—l & 2

1 ko
hy h, . .
such that —= <o <=, and 3 mediants y such that either o € P, P, or
1 2 ki
o€ Py Py,
k2

where P, Phl, th

kg ko

represent the points on the unit circle respectively

1
If P.. Py, then P, P, < and 1 <k; <t
O €y Fu MRS (D) '
k1 k1
. hy . .
Since o is a Farey fraction of order t.
1
Then oc—ﬁ < 1
kl kl(t-l-l)
1
or ok —hy| < —
focka = t+1

Similarly, if o € PuPy,, , we can show
ko
1
aky—hy < —
ke = +1
Hence the theorem.
Approximation of Irrational numbers by rationals.

Pigeon hole Principle :- This principle states that if (n+1) objects are to be
divided into n classes (may be empty) then at least one class will contain at
least two objects

Definition :- Let o be any real number. Then we define
{a} = Fractional part of o
= o — [o]
where [a] is greatest integer < o. . Then by definition
0<{a}<1 vV a

Theorem 1.19 Let o be any given real number, then for every integer t > 0,
there exists integer X, y such that
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lox—y| < % and0<x<t

Proof :- Take the interval [0, 1). Divide this interval into t subintervals i.e.

{O%) E%j{%l} All these subintervals are mutually

disjoint.
Consider the real numbers,

{0-a}, {1, a},... {t-a} (%)

These are (t +1) real numbers and we have only t sub-intervals. So at
least one sub-interval consists at least two of (t + 1) real nos given in (*)

So there exists two distinct integers i & j such that
I{j-o}—{i-o}<ltand O<i<j<t

Now by definition {j -o} = j oo —y; for some integer y; and {i - o} = it — y»
for some integer y,

%>|{| oy —{i- o} =] o—y1) — (ia—-yo)|
=G — )o— (y1 - ¥2)|

Setx=j—iandy=y;-y, Since0<i<j<t,so0<j-i<tie.0<x<t
and
lax —y| < 1/t

Remark :- Given real oo and integer t > 0, we can find integers x & y such that
lox—y| < 1/t, g.cd (X,y)=1&0<x<t

Proof :- By the theorem, we can find integers x; & y; such that
o X1 —y1| < % and0<x; <t

If g cd (X1, y1) =1, we are through, so let gcd (X1, y1) =d>1and let x; =dx
&y, =dy

Then ged (X,y)=1

23



24

ANALYTICAL NUMBER THEORY

Now lox—y| = % |ax; —yq |< % <1h.

Combining above theorem with remarks, we have

Theorem 1.20 Let o be any given real number and t > 0 be any given integer.
Then there exists integers x and y such that gcd (x,y) =1,0<x <tand

lax-y| < 1/t
Corollary :- Given any >0, however small, there exists integers x and y
such that x >0

and o—L|< e

(i.e. real number s are dense in rationals)

Proof :- Since € > 0 is given choose an integer t such that t > 1/c Now there
exists integers X & y, x> 0 such that

lox —y|<llt< e

y

o—=|<eflx<e
X

Theorem 1.21 Given a > 0, there exists integers x and y such that

y

o— =
X

<i2&gcd(x,y)=1
X

Proof :- We know that we can find integers x and y such that gcd(x, y) =1, 0
< x <t (where t >0 is any integer) and

lox—y| < 1/t
Then a—X<igisincexgt
X tx X2

Theorem 1.22 Let o be any rational number then 3 only a finite number of
pairs of integers (X, y) such that

x>0, gcd(x,y) = 1.
y

o— =
X

and < 1/%?

Proof :- Since « is rational, let o = h/k where k > 0 & gcd (h, k) = 1 then
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0 = Joak—h | < 1/x*
Thus there exists at least one pair (h, k) satisfying the given condition.

Let a—% <1/x*suchthatx >0 & (x,y) = 1
(1)
Then lox—y| < 1/x
= ocx—£<y<ocx+1/x
X

o . 2 .
Here y lies in an interval of length —< 2, and so given X, y can take at most 3
X

values.

Further, setting o = E in (1) we get

1
—2>

X k kx

E_X‘:M

If hx —ky =0, then |hx — ky| > 1

i>i =k>x
kx

N
Also, x>0
— O<x<k

and so x can take at most (k—1) values.
Thus the pair (x, y) can take at most 3(k—1) values

Theorem 1.23 Let o be any irrational number. Then 3 infinitely many pairs
(x, y) satisfying

y

a__

. <i2,x>0andgcd(x,y)=1 (D

X

Proof :- We know that there exists at least one pair (X, y) satisfying (1)

If possible, let there be only a finite number of pairs (X, y) satisfying (1) Let
these pairs be

(X11 yl)! (XZ’ y2),---,(Xr1 yf)

Let €i > |oXi — Vil i=1,2,...,r)

25
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Then each €; > 0 since o is irrational. Let € < min (€1, €,...€;). Take t >
1/e. Then there exists integers X, y such that

O<x<tged(X,y)=1&|ax-y|<1llt<e

Also < —<— (- 0<x<t)

.. This pair (X, y) also satisfies (1) But |ox — y| < € and so this pair (X, y) #
(xi, yi) for any i which is a contradiction

Combining all these results we get the following theorem
Theorem 1.24 Let o be any given real number then

(1) Given integer t > 0, there exists a pair of integers (X, y) such that 0 < x <t,
ged(x,y)=1and

lox —y| < 1/t
(2) Let o be any given real no. then 3 pairs (X, y) such that x > 0, gcd (X, y) =
1& a—% < 1/x%. Further the number of above pairs is finite if o i rational

and the number of pairs is infinite if o is irrational.
Hurwitz’s Theorem

Theorem 1.25 Given any irrational number &, there exist infinitely many
pairs (h, k) of integers such that

h 1
< (I
MU O
. h 1 nk+h 1
Proof :- Since | —— |<——, & +Nn)-— <
; k| /Bk? ‘@ ) ( K j‘ J5k?

So w.l.o.g. we assume that 0 < & < 1. Further & is irrational, so & = 0, so we
assume0<g<1

Let neN. Consider Farey series of order n.

Since & is irrational, 3 two consecutive Farey fraction % &g of order n such

that

a C
b<5<4q

a+cC

Then either & <
b+d
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a+cC

or > -
: b+d

First we shall prove that in either case at least one fraction out of a/b, % &
atc satisfy (1)
b+c

Suppose none of these fraction satisfy (1). Now to prove Hurtwitz
theorem, we first prove a Lemma.

Lemma :- If x and y are positive integers then the following two inequalities

1 1( 1 1
5] o
1 111 1
d > —
an X(X +Y) - \/§£X2 i (x+y)2] ©)

can not hold simultaneously.
Proof of Lemma :- If possible, let both the inequalities (2) and (3) hold.
Then, we get

VB xy > X% +y? ..(4)
and VB X(X +Y) = X% +(X +Y)? ..(5)
Adding (4) and (5) we get

VB (6 +2xy) = 3x% + 2y + 2xy
or (3-5)x2+2y? —2(-1+/5)xy <0
Multiplying by 2, we get

(6-2+/5) x? + 4y? —4(~\/5-1)xy < 0
= ((+//5-1) x-2y)* <0

But a square quantity can not be less than zero i.e.

= ((\5-1)x -2y’ =0
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=N (+/5-1)x —2y =0

= /5 is a rational number which is not so. Thus (2) and (3) can
not hold simultaneously. Hence the lemma.

Now to prove the theorem, we shall distinguish two cases

Case | E¢,<ﬂ
b+d
Then we get 2;—3‘>i
bl /Bb?
a a a 1
But — ——|=&-—=> ..(6
u b<§ 2‘& b b Jap? (6)
Also i<a+c a+c a+c . 1 ™
b+d = " bxd| bed " VBord)?
c c| ¢ 1
d hd =2 ...(8

Adding (6) and (8) we get
1(1 1] c a bc-ad 1

J5

b2 g2

b _a_he-ad 1 .9

(- E&Eare consecutive
b d
Farey fractions)
Adding (6) and (7) we get
1 (1 1 j a+c a b(a+c)—a(b+d)

R < —_ =
52 T +d)? ) b+d b b(b+d)
bc-—ad 1

~bb+d) b(b+d) -(10)

But we have already proved that not both of the inequalities

1,121
xy /5| x? y? '

and 1 ZLLJF 1
X(x+Y) " VB x?  (x+y)?
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can hold simultaneously. So (9) and (10) violate the above Lemma and so in

this case at least one of — aca+c must satisfy (1)
b'd b+d

Case Il ﬂ<EJ
b+d

Since % <E< E So (6), (8) and (9) also holds in this case

a+c
However —— < &, so
b+d

a+c a+c 1
= (11
‘& b+d 5" b+d \/§(b+d) (an
Adding (8) and (11) we get
(1, 1 ) _c a+c
J5(d? (b+d)?) d b+d
_ C(b+d)—d(a+c) bc-—ad
d(b+d) ~d(b+d)
1
= 46 (12

Now (9) and (12) violate the condition of the Lemma, so at least one

aca+c
of —,— Ld must satisfy (1) in this case also.

b'd'b

Thus 3 at least one fraction E satisfying (1) and E is either equal to

. a C
Since —<&<—, SO
b 5 d

‘a_h<g_§_ E_a+c)+ a+c_§)
k| |d b| |\d b+d b+d b
=E_ﬁ a+c al_ 1 N 1
d b+d| |b+d b| d(b+d) b(b+d)

: a,c . .
But (b + d) > n +1, since b & d are consecutive Farey fractions.
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1 1 2

< < wbh>1,d>1
a0 bneD) nel )

h
-4
Now to establish that (1) is satisfied by infinitely many rationals E suppose

there are only a finite number of E satisfying (1)

Let € = min

i_E" where minimum ranges over the finitely many

rational numbers satisfying (1). Since £ is irrational this minimum must be
bigger than zero, i.e. € > 0. Choose a rational number n such that

(n+1) > 2 :
€

: : h o
For this number n, as shown above 3 a rational number k—l satisfying (1) such
1

that

h . - .
and so k—l must be different from the finitely many rational number

1
considered above, which is a contradiction and so there must exist infinitely
many rational number h/k satisfying (1)

This proves Hurwitz’s theorem.

Theorem 1.26 Prove that /5 occurring in the statement of Hurwitz’s theorem

is best possible in the sense that if /5 is replaced by any larger real number
say m then 3 an irrational number & such that

h 1
-——|<— .1
A R~ (1)
does not hold for infinitely many rational number h/k.
Proof :- Take & = 1+2\/§

then £ > 1 and E:#:&—\@
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1+x/§

We shall prove that if m is any real number with & = >

and (1) is

satisfied by infinitely many rational numbers E them <+/5

So we assume that (1) is satisfied by infinitely many rational numbers E

Now (X&) (x—&) = (x-£) (x=£+/5) = x*—x —1 .(2)

Now for all integers h, k, k>0

h h B h? h
LIS [ 5|l=|———-1
‘k §Hk ot ‘ 2 K

1
zk—z | h? —hk-K?|

Now, since any rational number h/k is not a root of x>-x—1 = 0 so |h? — hk —k?|
>1

h h 1

Since 3 infinitely many rational numbers E satisfying (1), 3 sequence

of rational numbers satisfying (1)

Then ‘m—é < 12
ki mki
1
or hi — & ki| <
g ki<
But we know

X-a|<e =>a—-ex<a+teg
1 1

ki——<hi< ki+—
< mK ; < k

Then for each value of k;, there exists a finite number of h;’s

Since (1) is satisfied by all %s S0 Kj —o0 as i—»co.
i

1

Further 5
Ki

h; hi
fi el [j-ees

31
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“feel i

1
< ——+5
mk2£mk2 ]

(- % satisfy (1))

+I‘

Multiply by mk;?

= m < 5, for all i large enough.

mk;
Theorem 1.27 e is irrational
Proof :- By definition
e=1 +l+i+£+.....

L2 I3

If possible let e be rational and let e = %, b>0adg.cd. (a b)=1. Now

: 1 1 1
consider |ble-|1+-+—+. .+ ||Fa
172" b
then o is an integer since, e = a/b is rational

Also by definition of e, a > 0.

L{ S }
b+1 b+2

1 1
= + +
b+1 (b+1(b+2)

1 1
< +

b+l (b+1)°

b+1) 1
:]/( ‘;-):B<1 [’.'bZl]
b+l

Thus 0 < o <1 is a contradiction since no integer lies between 0 and 1, so e is
irrational.
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Theorem 1.28 7 is irrational
Let us first prove the following lemma
x"@1-x)"

AL

Lemma :- Let f(x) =

then (0), f(1) and f"(0), f(1) are all integers for all i > 0. Also 0 < f(x) <
1/|n whenever xe(0, 1).

Proof of Lemma :- Clearly f(0) = f(1) = 0 (By definition of f(x))
We can rewrite f(x) as

fx) = 1(2n i
(x) = E(igcixj

Leti>1. Now in f9(x), for i < n, we do not have any constant degree term
and so

f90)=0fori<n
Further f(x) is of degree 2n, so
f9(x) = 0 for i > 2n

So let n<i<?2n

Then f9(0) = Zzn Qci
i=n [N

which is an integer since n <i < 2n
£9(0) is an integer for all integers i > 0
Also by definition,  f(x) = f(1—x)

f0(1 is also an integer i > 0.

Proof of Theorem :- To prove the theorem, it is enough to prove that =° is
irrational for if = is irrational then 7 can not be rational. If possible, let n* =

% where g.c.d. (a,b)=1,b>0

Define a function
G(x) = b"{n™" f(x) — n*" f(x) + " FV(x) +..+ (1) FO(x)}
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Then by lemma f"(0) & f™(1) are integers Vv m > 0, so G(0) and G(1) are
integers. Now consider

dd_x (G'(x) sin T x—x G(X) cos mx)

= G"(x) sin 7x + 1t G'(X) cos nX, — TG'(X) cos 7 X + 1> G(X) sin 7x

= (G"(X) + n G(X)) sin X (D
Now
G”(X) — bn {TcZn fu(x) _n2n—2 f(lV)(X) + n2n—4 f(Vl)(X) + 4+ (_1)n f(2n+2)(X))

Also
7°G(X) = b"{r®™? f(x) " £/(x) + 122 fV(x) +...+(=1)" 7 FeV(x)}
Adding we get

GN(X) + Tc2 G(X) — bn {7‘52n+2 f(X) + (_1)n f(2n+2)(X)}

But f(x) is of degree 2n, so f*™?(x) = 0 and so

G"(x) + T°G(x) = *"*? b" f(X) (2
a
But =2
T

= ™2 h" = a" n? ..(3)

. From (1), (2) and (3) we get
dd—X(G'(x) sin nx — 1 G(X) cos 7 X)
= a" 7 f(x) sin nx
1
'’ | f(x)sin nx dx
0
= [G/(x) sin X — nG(x) cos X

=nG(1) cos T+ G(0) cos 0
=-n(G(0) + G(1))

G(0) +G(1) = na”} f(X) sin 7x dx (4
0

Now
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sin ©tx is positive in (0, 1) and 0 < f(x) <]/|_n in (0, 1)

So by First mean value theorem of integral calculus, we have
1 . a"nl |
O<a'n|f(x) sin ix <—=[sinmx dx
0 [N o

an
= [~ cos nx]}

n

. o g" .
for n large enough since 3 — converges to e® and to its nth term must tend
n=0 |N
to zero. But L.H.S. of (4) is an integer and so we get contradiction. .. © must
be irrational.

Fibonacci Sequence

Definition :- A sequence in which first two terms are unity and then each
term is the sum of the two that immediately precede it, is called Fibonacci
sequence. Mathematically, this sequence can be formulated as

Uy =Uy=1;U,=Uy1+ U, for>3. Some initial terms of this
sequence are

1,1,2,3,5,8,13,21,.cccccviinnnn....
Lucas Sequence

Definition :- A sequence in which first two terms are 1 and 3 respectively
and then each term is the sum of the two that immediately precede it, is called
Lucas sequence. Mathematically, this sequence may be formulated as :

Li=1L,=3,Ly=Ly1+tLyoforn>3
i.e. Lucus sequence is,
1,3,4,7,11,18,29,47,...........
Note 1. Fibonacci numbers are sometimes denoted by F, instead of u, etc.

Note 2. Some authors use the term Fibonacci series and Lucas series in place
of Fibonacci sequence and Lucas sequence. One should not get confused in
two.

Some identities on Fibonacci and Lucas sequences :-

Q) Up + U3+ Us+... tuz-1 = Uz

(||) U + Ug + Ug +... &+ usp = Upper—1

35
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(M) Li+Lp+Lg+.+Ly=Lwo-3,n>1

(|V) Li+ls+Ls+...+Lon1=Lopp—-2,n>1

(V) Lo+Ls + Leg+...+ Lopn=Lon1 -1,n>1

(VI) Ln = Un+1 + Un_l = Un + ZUn_]_, n Z 2

(V”) Ln = UH+2 - Un_z, n Z 3

Proof :- (1) We have

U1 = Uz (both are 1)
Also, U3 = Ug—Up (s ug=uz+uy
Similarly, Us = Ug — Uy

U7 = Ug — Ug

Uzn-3 = U2n-2 — U2n—4
Uzn-1 = Uz2n — Uz2n-2
Adding all these equations, we get

Up + Ug + Us +...+ upzn-1 = Uz (all other terms cancel)

(1) We have

Uz = U
Also, Us = Us — U3 (- us =ug + Ug)
Similarly, Us = U7 — Us

Ug = Ug — U7y

U2n-2 = Uzp-1 — U2n-3

U2n = Uz2n+1 — U2p-1

Adding all these equation, we get
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Up + Ug + Ug +...&+ uppn = Upt U3z + Uzn+t
= Up+Usg+Ug+...+ uogn =1 -2 + Upnst

= Ugn+1 —1.

(111) We shall prove the result by induction on n. Forn =1,
LHS. =L;=1

and RHS. =L;-3=4-3=1

Thus, the identity holds for n = 1.
Let us assume that, the identity holds forn =k i.e.

Li+Ly+.. .+ L= Ly -3 (%)
Now for n =k + 1, we have

Ly + Ly +...# L + Lisr = Liso—3 + Lyt [By ()]
or Li + Lo +...+ Lg+ L = Lysz—3
or Ly + Lo +...+ Lg + Lies = Lirn)+2—3

Thus, the identity holds for n = k + 1. Hence by Principle of mathematical

induction, the identity holds for all natural numbers n.

(V) We have

Li=L;
Also, Ls=Ls— Ly (v La=Lz+Ly)
Similarly, Ls=Ls— L4

Ly=Ls—Ls

Lon3 = Lan-2 — Lon-a
Lon-1 = Lan — Lon—

Adding all these equations we get

Li+Lls+Ls+...+ Lon1 =Ly — Lo + Loy

37
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=Ly -2
(V)Wehave L,=1L,
Also, Ls=Ls—Ls (v Ls=Ls+Ly)
Similarly, Ls =L;— Ls
Ls=Lo—- L7

Lon—2 = Lon-1 — Lons

Lon = Lon+t1 — Lona
Adding all these equations, we get

Lo+ Ls+...+Loyn=Ly— L+ Lonst

= 3_4 + L2n+1 = L2n+1 _1

(V1) we shall prove the identity by induction on n.
Forn=2, L.HS=L=3

and R.H.S. =us+u;=2+1=3

Thus, the identity holds forn =2
Let us assume that the identity holds for all natural numbers k < n

i.e. Lx = Ug+r + Ug VK<n

Now consider,

Ln=Ln1+ Lno (by definition)

= (Un + Un—2) + (Un—l + Un—3)

(by induction hypothesis for n — 1 and n -2)

= L, = (Un + Un—l) + (Un—2 + Un—3)

= Up+1 + Un1 = (Un + Un-1) + Up—1 = Un + 2 Up_1
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Hence the identity is established.
(VI1) We shall prove the identity by induction on n.
Forn=3,L.H.S.=L3=4

R. H.S.:U5—U1:5—1:4

Thus, the identity holds forn =3

Let us assume, that the identity holds for all natural numbers k < n.
ie. Lk = U2 — U2 V K <n

Now, consider,

Lh=Ln1+ Lho= (Un+1 - Un—3) + (Un - un—4)

(by induction hypothesis, forn —1, n - 2)

= (Un+1 + Un) - (Un—3 + Un—4)

ZUn+2_Un_2

Hence the identity is established.

Theorem 1.29. Prove that for the Fibonacci sequence,
gcd (Un, Uns1) =1 foreveryn>1
Proof :- Let, if possible, gcd (un, Ups1) =d>1

= d|un, d|uns = d ] (Unss — Un)

=d|Uups

Again, d | up, d | up-1 = d | (Un— Un-1)

:> d | Un—2

Continuing like this, we can show that

d | Up-3, d | Un-s,... and finally d | uz

But u; = 1 which is certainly not divisible by any d > 1.

39



40

ANALYTICAL NUMBER THEORY

Thus d = 1 and the proof is completed.
Lemma :- Prove that

Um+n = Um-1 Un + Um Un+1
(D)
Proof :- For fixed m, we shall prove the result (1) by induction on n.
Forn =1, (1) becomes, Un+1 = Up-1 U1 + Uy Uy
= Um-1 + Uy (cur=ux=1)

which is true by definition and the result is true for n = 1. Let us assume that
result is true forn =1, 2,..., k and now we shall prove it forn=k + 1.

By induction hypothesis, we have
Um+k = Um-1 Uk + Um Uk+1
and Um +(k-1) = Um-1 U1 + Um Uk
Adding these two, we get.
Um+k  Um + (k-1) = Um-1 (Uk + Uk-1) + Um (U1 + U)
= Um-1 Uk+1 + U Uks2
So that the result holds forn =k + 1

Hence by induction principle the result is true for all the integers n. Now by
changing m and by the above discussion, we conclude that the result (1) holds
for all positive integers m and n.

Remark 1. If b | c, then gcd (a +c, b) = ged (a, b)
Remark 2. If gcd (a, ¢) = 1, then gcd (a, b ¢) = ged (a, b)
Theorem 1.30 Prove that form > 1, n > 1, uyy is divisible by up.

Proof :- We shall prove the result by induction on n. The result is trivial for n
= 1. Let us assume, that the result is true forn =1, 2,..., k i.e. upy is divisible
by up, for n=1,2,...k. Now we shall prove that umg1) is divisible by um.

We have,

Um (k+1) = Umk+m = Umk-1 Um + Umk Um+1 (1)

Now, by induction hypothesis, un is divisible by uy, so that R.H.S. of (1) and
hence L.H.S. of (1) is divisible by up i.€. Umu+1) is divisible by un. The proof
is thus completed using principle of mathematical induction.

Lemma :- If m = gn+r, then prove that
gcd (um, un) =gcd (uy, un)
Proof :- We have

gcd(Um, Un) = ged (Ugne+r, Un)
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= gcd(Ugn-1 Ur + Ugn Urs1, Up)
(D)
Now by above theorem un | Ugn => Un | Ugn Ur+1,
so that by remark 1 stated above, we have
gcd(Ugn-1 Ur + Ugn Ur+1, Un) = gcd(Ugn-1 Ur, Un)
So that (1) becomes :

gcd (Um, Un) = gcd (Ugn-1 Ur, Un)

...(2)
Now, we claim that,
gcd(ugn-1, Un) =1.
Let gcd (Ugn-1, Un) =d = d | Ugn-1 and d | uy

Now, d | un and un | Ugn = d | ugn i.€. d is @ common divisor of two successive
Fibonacci numbers namely, uqn and ug,—1 but successive Fibonacci number are
coprime. So d = 1, the claim is thus completed. Hence using remark (2) stated
above, we have

gcd(Ugn-1 Uy, Un) = gcd (Ur, Up)
So that (2) becomes :

gcd(um, Un) = ged (ur, up) and proof is completed.
Theorem 1.31 The greatest common divisor of two Fibonacci numbers is
again a Fibonacci number. More specifically,

gcd(Um, Un) = Ug Where d = gcd(m, n)

Proof :- W.L.O.G let us assume that m > n. Applying the division algorithm
to m and n, we get the following system of equations.

m=qin+n 0<ry<n
N=0xr +r; 0<r<n
=0zl +rs 0<r3<n
h—2=0nlfh1th 0<rh<rpi

-1=0n+1 M t 0
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Now, by above lemma, we have

gcd(Um, Un) = ged (u,,,u,) =ged,,,uy,)

co=ged(Ue U ) (D

Now from the last equation of above system, we have

M| fn-1 i.€. I'nq is an integral multiple of r, and henceu, , is
divisible by u, ~(we have proved the theorem that um, is divisible by un vV m
>1,n>1)

Hence ged (U, .U, ) = U,
So that (1) implies that gcd(um, Un) = U, ...(2)
But it should be noted that in above system of equations r,, is the last non zero
remainder in the division algorithm for m and n so that
gcd(m, n) =r,

Hence (2) provides that gcd(Um, Un) = Uged(m, n)
This completes the proof.

Corollary (1) :- Prove that if gcd(m, n) = 1, then gcd (Um, U,) =1
Proof :- Taking d = 1 in the above theorem and noting that

u; = 1, we get the result.
Corollary (2) :- In the Fibonacci sequence, um | U, if and only if m | n.

Proof :- Firstly, let m | n, then n = mk for any integers k. But we know that
Um|Unk = Um]| Upn.

Conversely, let uy | u, then ged(um, Un) = um. But by above theorem, gcd(upm,
Un) = Ugcd(m, n)

= gcd(m,n)=m=m|n.

Theorem 1.32 Prove that every positive integer can be represented as a finite
sum of Fibonacci numbers, none used more than once. Or Prove that every
positive integer can be written as a sum of distinct Fibonacci numbers.

Proof :- Clearly, we have
1=u;;2=u3;3=1+2=u; + uzetc.
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To prove the result for every natural number, we shall show that each of the
integers 1, 2, 3,..., uy —1 is a sum of numbers from the set {us, u,...., uy—2} and
we shall prove this by induction on n.

Let us assume that the result holds for n = k i.e. each of the integers 1,
2, 3,..., uk1 is @ sum of numbers from the set {us, uy... uk-2} Now choose N
such that

uk_l <N< Uk+1

From this, we have N — Ux_1 < Uk+1 — Uk-1 = Uk

= N — Ug-1 < Uk

— N - U <ug-1

So by induction hypothesis N — ux_; is representable as a sum of distinct
numbers from the set {uy, Up,..., uk2}. This implies that N is representable as
a sum of distinct numbers from the set {uy, U,,..., uk—2}. This implies that N
is representable as a sum of distinct numbers from the set {us, uy,..., Uk,
Uk-1}. Consequently each of the integers 1, 2, 3,... uk+1 —1 can be expressed
as a sum of numbers from the set {us, Uy, ..., uk-2, Uk-1}. This completes the
induction step and hence the theorem.

System of Linear Congruences

Definition :- Let m be a fixed positive integer. Two integers a and b are said
to be congruent modulo m denoted by a = b (mod m) if m divides a—b i.e. a —
b = km for some integer k.

Theorem 1.33 Let a, b, ¢, d, m be integers (m > 0), then
Q) If a=b (mod m), b = c(mod m), then a = c(mod m)
(i) If a=b (mod m), c =d(mod m), thena+c=b +d (mod m)
(iii)  Ifa=b (mod m), ¢ = d(mod m), then ac = bd (mod m)
(iv) Ifa=b(modm),d|m(d>0),thena=b (modd)
(V) If a = b(mod m), then ac = bc(mod cm), c >0
Proof :- (i) Given that a = b(mod m) = m | (a—b)

b=c(modm) = m| (b—c)
= m | [(a-b) + (b—c)] = m | (a—c)

= a=c(mod m)
(i) a=b(mod m) = m | (a-b)
c=d(modm) = m|(c—d)

= m|[@@Db)+ (c-d)] = m|[(at+c) - (b+d)]
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= (@+c)=(b+d)(modm)
(i)  a=b(modm) = m]|(a-b)
c=d(mod m) = m|(c-d)
= a— b =mk and c—d = mk’ for some integers k, k’
= a=b+mkandc=d+ mk’
Multiplying these two,

ac = bd + bm k* + dmk + m? kk’

= ac = bd + m(bk’ + dk + mkk’)

= ac — bd = mk’ where k” = bk’ + dk + mkk'’ is an integer.
= m | (ac — bd)

= ac = bd(mod m)

(iv) a=b(modm) = m|(a-b)

Alsod|mand m|(a-b) = d|(a-b)

Hence a = b(mod d)

(V) a = b(mod m)

= m | (a-b) = mc | (a—b) ¢ = mc | (ac-bc)
= ac = bc(mod mc)

Theorem 1.34 Let f(x) be a polynomial with integral coefficients and a = b
(mod m), then

f(a) = f(b) (mod m)

Proof :- Let f(x) = ap X" + a; X" +...+ a.x, where ag, a,..., a, are integers.

Since a=b(mod m), so we must have (D)
a’ = b%(mod m) ..(2)
a® = b%(mod m) ..3)

a" = b"(mod m)
...(n)

Multiplying equation (1) by a,-1, (2) by an—,..., (n) by ap we get
an-1 @ = an-1 b(mod m)

ans @ = anp b*(Mod m)
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an3 a = a3 b’ (mod m) (%)

aga" =ag b" (mod m)
Also, we know that

an = ap(mod m)
Adding this with all the congruences in (), we get

an+an1a+..+aa =ay,+a,1b+...+a9b" (modm)
= f(a) = f(b) (mod m)
Theorem 1.35 Prove that
Q) ax=ay(modm) < x=ymod (Lj

gcd@, m)

(i) If ax = ay(mod m) and (a, m) = 1 then x =y (mod m)
@) x=y(modm;) fori=1,2,..., riff, x=y(mod [m1, my,..., m])
where [my, my,..., m;] denotes the / cm of my, my,..., my.

Proof :- (i) Given that, ax = ay (mod m) = m | (ax—ay)

= ax — ay = mz for some integer z
_(x-y) 2
j— _— — e —
gcd@, m) y gcd@, m)
So that, we get that
m a (x—y) .
gcd@, m) | gcd@, m) - (1)
a m
But we know that, gcd , =1
gcd@,m) gcd@,m)
. (1) implies that,
m
— | (x- Using the result that if a | bc and
sodam <Y (Using the result that if a |
(a,b)=1thena|c)
m
= x=ymod| ———
(gcd(a,m)j
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Conversely, let x = y(mOdﬁj
m
= m| =y
. m | ged(a, m) (x-y)
= m | a(x-y) (- ged(a, m) [a)
N ax = ay(mOd m)

(1) This is a special case of part (i), by taking gcd(a, m) = 1, we get the result
(iii) Let x = y(mod m;) fori=1,2,...,r
= mi| (x-=y) fori=1,2,...,r

I.e., Xx=y is a common multiple of my, my,..., m; but [my, my,..., m/] is least

common multiple of my, my,.., m; so by definition of /cm, [my, m,,..., m/] is a
divisor of (x-y)

i.e.  xX=y(mod [m1, my,..., m{])
Conversely, let x =y (mod [m1, my,..., m])
Now m;j|[my, my,..., m{]

So X = y(mod m;)

This completes the proof.

Definition :- (Complete Residue System)

A set {ai, a,,..., am} of integers is said to be complete residue system
mod m if

Q) ai # aj(mod m) for i #]
(i) For each integer n, there exists a unique a; such that n = a; (mod m)
For example,

The set {1, 2,..., m—1, m} is a complete residue system mod m.
Definition :- (Reduced Residue System)

A set {by, bo,..., b} of integers is said to be reduced residue system
mod m if

)  (b,m=1,i=1,2,...k
(i) bi = by (mod m) for i # j

(iii)  If nis any integer which is coprime to m, then there exists a unique b;
such that n = bj(mod m)
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Remark :- It is clear from the two definitions that a reduced residue system
mod m can be obtained by deleting those members from a complete residue
system mod m which are not relatively prime to m.

Theorem 1.36 Let {ry, ry,..., rn} be a complete (or reduced) residue system
mod m and let (a, m) = 1 then (ary, aro,..., arn} is a complete (or reduced)
residue system mod m.

Proof :- If (rj, m) =1, then (arj, m) =1

Clearly, the number of ary, ary,..., ar, and of ry ro,..., 1, is same. Thus, we
need only to show that ar; # arj (mod m) if i = j.

Let, if possible, ar; = ar; (mod m), i #j
then ri=rj(mod m), i+#j (- (a,m)=1)

a contradiction, since {ry, ro,..., r,} is a complete (or reduced) residue system.
This completes the proof

Remark :- In the case of complete residue system, we also have the following
result.

Let {ry, ro,..., rp} be a complete residue system mod m and let (a, m) =
1, then for any integer b, the set {ar; + b, ar, + b,..., arp+b} is also a completes
residue system. This result does not hold in case of reduced residue system.

Definition :- (Euler’s ¢-Function)
Let m be any positive integer, then Euler’s ¢ function is defined as :
d(1)=1and

d(m) = number of natural number less than m which are relatively
prime to m.

For example,
d(2) =1, d(3) =2, ¢(4) = 2, $(10) = 4 etc.

Remark :- From the definitions of Euler’s ¢-function and reduced residue
system, it is clear that reduced residue system mod m contains always ¢(m)
elements.

Theorem 1.37 (Euler’s theorem) Prove thatif (a, m) =1
then a’™ =1 (mod m)

Proof :- Let ry, ry,..., rym) be reduced residue system mod m. Since (a, m) =
1. So ary, ary,..., arym) IS also a reduced residue system mod m. Hence, by
definition, corresponding to each ri, there is one and only one ar; such that

ri = arj(mod m)

Further, different r; will have different corresponding arj. This implies that the
numbers ary, ara,..., arym) are just the residue modulo m of ry, ro,..., ryem) but
not necessarily in the same order. Thus multiplying these, we obtain :
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d(m) $(m)

[T (arp)=1I ri(modm)
j=1 i=1

This implies that

o(m) o(m)

ri=11 rj(modm)
j=1 j=1
Now (r;, m) = 1, so cancelling rj, we get
a*™ =1 (mod m)
This completes the proof.

Corollary (Fermat’s theorem) :- Let p be a prime such that p } a, then prove
that,

a" = 1(mod p)

Proof :- Since p is prime, so every natural number less than p is coprime to p
so that ¢(p) = p—1. Now giventhatpisprimeandp|a = (p,a) =1

Hence by Euler’s theorem,

a*® = 1(mod p)
= a" =1 (mod p)
This completes the proof

Remark :- Some time Fermat’s theorem is stated as “Let p be a prime such
that p} a, then a” = a (mod p)” which is a trivial conclusion of above.

Theorem 1.38 If (a, m) = 1, then there is an x such that

ax = 1 (mod m) and conversely. Further this x is unique upto congruence i.e.
any two such x are congruent (mod m).

Proof :- If (a, m) = 1, then there exists x and y such that
ax+my=1 = m|(ax-1) = ax = 1(mod m)

Conversely, let ax = 1(mod m), the there is a y such that ax + my = 1 so that
(@am)=1

Now let ax; = 1(mod m) and ax, = 1(mod m)
= ax; = axz(mod m)
But (a, m) = 1, so it follows that
X1 = Xo(mod m)
This completes the proof.

Theorem 1.39 (The Chinese Remainder Theorem). Let mj, ma,..., m,
denote r positive integers that are relatively prime in pairs i.e. (m;, m)) =1, i #
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j and let a;, a,..., a, denote any r integers. Consider the following
congruences :

X = a; (mod m;)
X = az(mod my)
(%)

X = a(mod m,)

then the congruences in (*) have a common solution. Further if X, and x; are
two common solutions then Xo = x3(mod m) where m = m; m,...m, or we can
say that if Xo and x; are two common solutions, then x; = Xo + km for some
integer k.

Proof :-Let m=m; my...m,

m . _ m
then clearly, —is an integerand | —,m; | =1
m; m;

m
Also, we observe that — is divisible by m; fori = j

m;

m
Now, since {m_’mj]: 1. So by last theorem, for each j there exists an
i

integer b;
m
such that —bj = 1(mod my)
m;
m
- — bj & = aj(mod my) (1)

]

m
Also, since — is divisibly by m; (i # J), so we must have
i

{ﬂ] b; = 0 (mod my) for i # | (2)
m;

r-m
Now, PutXo = ¥, —bjaj

J=l mJ

m m m
=—b1a]_+—b2a2+...+_brar
m, m, m,

then clearly we must have
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m
Xo = — by a;(mod my) ...3)
m,

(- all other terms of X, are

divisible by m; by (2)
Putting j=1in (1),
m
—Dby a3 = a;(mod my) - (4)
m,

Combining (3) and (4), we get that
Xo = ai(mod my) i.e. Xo is the solution of first congruence in (*)
Again, we must have
m
Xo = — by ax(mod my) ...(5
m,

(- all other terms of X, ax
divisible by m; by (2))

Putting j = 2 in (1) and combining with (5), we get
Xo = az(mod my) i.e. Xo is the solution of second congruence in (*)
Continuing like this, we obtain that
Xo=ai(mod m;) fori=1,2,..,r.

So that X is common solution of congruences in (*). Now, let X, and x; be
two solutions of congruences in (x), then,

Xo = aj(mod m;) fori=1,2,...,r
and X1 = ai(mod m;) fori=1,2,....r
combining,  Xo = x3(mod m;)
= my | (Xo—X1), Mz | (Xo—X1),..., m¢| (Xo—X1)

But (m;, m;) =1 fori=jso

my My...m;| (Xo— X1) [~ Ifa|c,b|cand (a b)
=1thenab|c]
= m | (Xo—X1)
= Xo = X1(mod m)

This completes the proof.
Remark :- Converse of Fermat’s theorem need not be true.

The converse of Fermat’s theorem is not true i.e. if m a and a{”_l =1(mod m),
the m is not necessarily a prime.
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For example, let m = 561 = 3.11.17 so m is not a prime. Now, let a be any
integer such that gcd (a, 561) =1

= ged (a, 3) =1, ged(a, 11) =1, ged(a, 13) =1
ie. 3,{’a. 11)( a. 13)( a, so by Fermat’s theorem,

a® = 1(mod 3) (- $(3) =2)
= (@)% = 3> = 1 (mod 3)
Similarly, a'° = 1(mod 11) (- ¢(11) = 10)
= a°® =1 (mod 11)
and a'® =1 (mod 17)
= a°® =1 (mod 17)

using Chinese Remainder Theorem
A>®® =1 (mod 561)

Thus, the converse of Fermat’s theorem is not true. In this regard, we prove
the following theorem.

Theorem 1.40 For every odd a > 1, there exists infinitely many composite m
satisfying,

a™ =1 (mod m)

Proof :- Let a > 1 be given odd number, choose an odd prime which does not
divide a(a®~1) [we note that there are many such primes]

a®*_-1 aP-1aP+1

Take, m = == .
a’ -1 a-1 a+1

So that m is clearly composite.

a® -1 a®? —a?
Now, m-1=— -1=—

a“ -1 a“ -1
= (a%-1) (m-1) =a®® —a? = a(@" '-1) (a" + a)

(1)

Since a and a” are both odd so a” + a is even.
Also, p| (@ *-1) (by Fermat’s theorem)
and a’~1 | (a"*-1) (- p—1iseven)
Further, by choice of p, ged (p, a®~1) = 1
—p (@1 | @ *-1) = 2p(a®-1)| (@ *-1) (@ +a) (- @ +ais even)

= 2p (a°-1) | (a*-1) (m-1) [By (1)]
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= 2p | (m-1) = 3 an integer p such thatm =1 + 2p u. Now from (1),
we have

a® = (a>-1) (m-1) + a*

= (@*-1)m - (a>-1) + a°

=1 (mod m)
= a®™ =1 (mod m)
= a™ =1 (mod m)

This is true for every choice of p and hence theorem is proved.

Remark :- The following theorem gives the correct converse of Fermat
theorem., and is known as “Limited Converse of Fermat theorem”, or
“Modified Converse of Fermat theorem”. But before that, we make a
definition.

Definition (order of a mod m)

Let m > 2 be an integer and let (a, m) = 1, then by Euler’s theorem we have
a*™ =1 (mod m).

Now, let S = {neN, a" = 1(mod m)}, then S = ¢, since ¢(m) €S. So by Law
of well ordering S has a smallest element, say d. Then we say d is the order of

amod m and we write ord% = d.
Theorem 1.41 (Limit converse or Modified converse of Fermat theorem)

Ifm>2 a™" =1 (mod m)and @ # 1 (mod m) for any proper divisor x of
m-1, then m is prime.

Proof :- Sincea™ = 1(modm) = (a, m)=1
Now, let ord% =d, thend | (m-1) and a’ = 1(mod m). But no proper divisor x
of m-1 satisfiesa*=1(modm) = d=m-1
Also, by Euler theorem, a*™ = 1 (mod m)
= d|¢(m) = (m-1)[¢(m) = m-1<¢(m)
Also form > 2, ¢(m) <m-1
= d(m) =m-1 = m s a prime.
Here, we give some examples based on Chinese Remainder Theorem
Example :- Find the least positive integer x such that
X =5(mod 7), x = 7(mod 11), x = 3 (mod 13)
Solution :- We have by comparing with Chinese remainder theorem
aa=5a=7a=3
mp=7,mp;=11,m;=13
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Clearly my, my, m3 are pairwise coprime and
m=7.11.13 = 1001
Now, we find the values of b, by, bz using

m
—bj = 1(mod m;)
m;

m
Forj=1, —b; = 1(mod my)
m,
1001
= - b; =1(mod 7)
= 143 by = 1(mod 7)
= 3b; =1(mod 7)

which gives b; =5

m
Forj=2, — by =1(mod my)
m,

= 91 b, =1(mod 11)
= 3 b, =1(mod 11)
which gives b, =4

) m
Forj=3, — b3 = 1(mod m3)

ms

= 77 bz = 1(mod 13)
= —b3; =1 (mod 13)

which gives bz =12
Hence the common solution is
m m m
Xo = m—lblal +m—2b28.2 +m_3 b3 as
=143.55+91.4.7 +77.12.3 = 8895
If x is another solution of given system of congruences then we must have :
x = 8895(mod 1001)

Also 8895 = 887(mod 1001)

This gives x = 887 (mod 1001)
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Hence the required solution is 887.

Remark :- 1. In the Chinese Remainder Theorem, the hypothesis that m;’s
should be pairwise coprime is absolutely essential. When this hypothesis
fails, the existence of a solution x of the simultaneous system is no longer
guaranteed. Further if such an x does exist, then it is unique modulo [m;,

my,..., m;] and not modulo m, where [my, m,,..., m;] denotes the fcm of my,
my,..., m; 2. In case of no solution of given system, we call the system is
inconsistent.

Example :- Show that there is no x for which both
X = 29(mod 52) and x = 19(mod 72) hold simultaneously.

Solution :- We have that, 52 = /cm [13, 4]

Thus the congruence x = 29(mod 52) is equivalent to the simultaneous
congruences,

X =29(mod 4) and x = 29(mod 13)
which reduces to : x = 1(mod 4) and x = 3 (mod 13)

Also, we have that, 72 = /cm [9, 8]
Thus the congruence x = 19 (mod 72) is equivalent to
x = 19(mod 9) and x = 19(mod 8)

By the Chinese Remainder theorem, we know that the constraints (mod 13)
and (mod 9) are independent of those (mod 8), since 8, 9, 13 are pairwise
coprime. We observe that there is no x for which both x = 1(mod 4) and x =
3(mod 8) holds. Thus the given system is inconsistent.

Example :- Determine whether the system
x =3 (mod 10), x = 8(mod 15), x = 5(mod 84)
has a solution and find the solution if exists.
Solution :- We have that the congruence, x = 3 (mod 10) is equivalent to
X = 3(mod 5) and x = 3 (mod 2)
which give  x=3 (mod 5) and x = 1(mod 2) ..(D)
Again, the congruence, x = 8(mod 15) is equivalent to
x =8 (mod 5) and x = 8(mod 3)
which give :  x=3(mod 5) and x = 2(mod 3) ...(2)
Also we have that the congreunce x = 5 (mod 84) is equivalent to
x=5(mod 4), x =5 (mod 3), x = 5(mod 7)
which give  x=1(mod 4), x = 2(mod 3), x=5 (mod 7) ...3)
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Thus, the given system is equivalent to a system of seven congruences given
by (1), (2) and (3).

Now, we observe that the congruence x = 1 (mod 2) in (1) and the
congruence x = 1(mod 4) in (3) are consistent but the second one implies the
first so that the first one may be dropped. Further, we see that the congruence
x = 3 (mod 5) is common in (1) and (2) and the congruence x = 2 (mod 3) is
common in (2) and (3) so we take them once

Hence, we conclude that the system of seven congruences reduces to system
of four congruences given by

x=1(mod 4), x=2(mod 3)
x =3(mod5), x=5(mod 7) (%)

Since the moduli 3, 4, 5, 7 are pairwise coprime so by Chinese Remainder
theorem the given system is consistent. The solution is calculated as follows :

From (*), wehave a1=1, ag=2,a3=3, &4=5
m=4,my=3, m3=5ms=7

Som=4.3.5.7=420

Now, we find the values of by, b,, bs, bs as under.

m
We know that m—bj = 1(mod my)
j

= mﬂbl =1 (mod m;) = 105 Db, =1 (mod 4)

1
or b; =1 (mod 4)
which gives by =5
Again mﬂ b, =1 (mod m;) = 140 b, =1 (mod 3)

2
= 2Dby=1 (mod 3)
which gives, b, =2
Similarly we find b3 =4, by =2
Hence the solution is
m m m m
Xo = m—lblal +m—2b2a2 +m—3b3a3 +m—4 baas

=105.5.1 + 140.2.2 + 84.4.3 + 60.2.5 = 2693

Let x be the another solution then

X = 2693 (mod 420)
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which gives x =173
This completes the solution.
Congruences with prime power moduli

Theorem 1.42 Let f be a polynomial with integer coefficients, let my, mo,...,
m, be positive integers relatively prime in pairs, and let m = mym,...m;.

Then the congruence

f(x) = 0 (mod m) ..(D)
has a solution if, and only if, each of the congruences
f(x) =0 (mod m;) i=1,2,...,r) ..(2)

has a solution. Moreover, if v(m) and v(m;) denote the number of solutions of
(1) and (2), respectively, then

v(m) = v(mz) v(my)...v(my). ...(3)

Proof :- If f(a) = 0 (mod m) then f(a) = 0 (mod m;) for each i. Hence every
solution of (1) is also a solution of (2).

Conversely, let a; be a solution of (2). Then by the Chinese remainder
theorem there exists an integer a such that

a=aj(modm;) fori=1,2,...,r ...(4)
SO
f(a) = f(a;) = 0 (mod my;).

Since the moduli are relatively prime in pairs we also have f(a) = 0 (mod m).
Therefore if each of the congruences in (2) gives rise to a unique integer a
mod m satisfying (4). As each a; runs through the v(m;) solutions of (2) the
number of integers a which satisfy (4) and hence (2) is v(mj)...v(m,). This
proves the theorem.

Theorem 1.42 shows that the problem of solving a polynomial congruence
f(x) = 0(mod m)
can be reduced to that of solving a system of congruences

f(x) =0 (modp;*) i=1,2,..,1),

where m = p®..p7". Now we show that the problem can be further reduced
to congruences with prime moduli plus a set of linear congruences.

Let f be a polynomial with integer coefficients, and suppose that for some
prime p and some o > 2 the congruence

f(x) = 0(mod p“) ..()
has a solution, say x = a, where a is chosen so that it lies in the interval
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O<a<p®

This solution also satisfies each of the congruences f(x) = 0 (mod p*) for each
B <a. Inparticular, a satisfies the congruence

f(x) = 0 (mod p* ™). (2
Now divide a by p“~* and write
a=qp“t+r, where0<r<p*’ ..(3)

The remainder r determined by (3) is said to be generated by a. Sincer =a
(mod p**) the number r is also a solution of (2). In other words, every
solution a of congruence (1) in the interval 0 < a < p* generates a solution r of
congruence (2) in the interval 0 <r < p* ™,

Now suppose we start with a solution r of (2) in the interval 0 <r < p** and
ask whether there is a solution a of (1) in the interval 0 < a < p* which
generates r. If so, we say that r can be lifted from p*™ to p*. The next
theorem shows that the possibility of r being lifted depends on f(r) mod p“ on
the derivative f '(r) mod p.

Theorem 1.43 Assume o > 2 and let r be a solution of the congruence
f(x) = 0 (mod p* ) (4
lying in the interval 0 < r < p“™.

(a) Assume f'(r) # 0 (mod p). Then r can be lifted in a unique way from p**

to p*. That is, there is a unique a in the interval 0 < a < p* which generates r
and which satisfies the congruence

f(x) = 0 (mod p*). ...(5)
(b) Assume f'(r) = 0 (mod p). Then we have two possibilities :
If f(r) = 0 (mod p), r can be lifted from p®~* to p* in p distinct ways.
If f(r) £ 0 (mod p“), r cannot be lifted from p*~* to p“.
Proof :- If n is the degree of f we have the identity (Taylor’s formula)

" (n)
f(x + h) = f(x) + F(x)h + f—(lx)h2 +...+¥h” .

> ..(6)

for every x and h. We note that each polynomial f¥(x)/k ! has integer
coefficients. Now take x = r in (6), where r is a solution of (4) in the interval O
<r<p*? and let h = qp“* where q is an integer to be specified presently.
Since o > 2 the terms in (6) involving h? and higher powers of h are integer
multiples of p“. Therefore (6) gives us the congruence

f(r + qp®t) = f(r) + f(r) gp®* (mod p%).
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Since r satisfies (4) we can write f(r) = kp®™* for some integer k, and the last
congruence becomes

f(r +ap™™) = {qf'(r) + k}p*"* (mod p“).
Now let

a=r+qgp* (7
Then a satisfies congruence (5) if, and only if, q satisfies the linear
congruence

gf’ (r) + k=0 (mod p). ...(8)

If f'(r) # 0 (mod p) this congruence has a unique solution g mod p, and if we
choose q in the interval 0 < g < p then the number a given by (7) will satisfy
(5) and will lie in the interval 0 <a < p“.

On the other hand, if f '(r) = 0 (mod p) then (8) has a solution q if, and only if,
plk, that is, if and only if f(r) = 0 (mod p”). If p} k there is no choice of q to
make a satisfy (5). But if p | k then the p values q =0, 1..., p — 1 give p

solutions a of (5) which generate r and lie in the interval 0 < a < p® This
completes the proof.
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Unit-2

Quadratic Residues and Non-Residues

Definition :- Let p be an odd prime and let (a, p) = 1. Then a is said to be a

quadratic residue (mod p) if 3 an integer x such that

x? =a (mod p)
otherwise we say that a is a quadratic non-residue (mod p).

Remark :- If a is a quadratic residue (mod p) 3 x (1 < x < p—1) such that x*=
a(mod p)

Definition :- (Legendre symbol)

The Legendre Symbol denoted by (i), where (a, p) = 1 is defined as
p

(gj = 1if ais a quadratic residue (mod p) and
p

(gj = -1, if ais a quadratic non-residue (mod p).
p

Remark :- If a=b (mod p), clearly (%j = (gj provided (a, b) =1

Theorem 2.1 Let p be an odd prime and let gcd (a, p) = 1 then

AR
|p—1:—B .a (mod p)

Proof :- Let S= {1, 2,..., p—1} is a reduced set of residues (mod p).
Consider any x such that
1 <x<p-1then
xS = {x, 2x,..., (p—1)x}
is also a reduced set of residues (mod p)
So there exists y in S such that xy = a (mod p)
Now distinguish two cases



60

ANALYTICAL NUMBER THEORY

Casel :- (Ej: 1 then 3 x such that 1 < x < p—1 such that
p

x? =a (mod p)
Let us find out all the solutions of the quadratic congruence

X?=a (mod p)
(D)
Then (1) has at least one solution X = x. We know two solutions x;

and x; are said to be same if x; = X, (mod p). Let x; & X, be two solutions of
(1) then

x:? = a (mod p)

and X,? = a (mod p)

= X1 = X2? (mod p)

= p divides (X1 — X,°)

= P (X1 +Xz) (X2 —X2)

Then p|(X1+X2) orp|(X1—X2) (v pisaprime)

= either x; + X, =0 (mod p)

or X1 — X2 = 0 (mod p)
Further X2 = —X1 = p—X1 (Mod p)
or X2 = X1 (mOd p)

Thus x and p—x are two solutions of (1) (mod p) since x is a solutions
of (1) (mod p)

Further X # p—X
| - pisodd
So (1) has exactly two solutions (mod p)
Let us take y; in S such that y; # X & y1 # (p—X)

Now consider the set y3 S. Then y; S is also a reduced residue system
(mod p). So 3y, in S such that

y1 Y2 =a(mod p)
and further y; # y, since otherwise y; will also be a solution of (1). Thus for

Y1 # X, Y1 # p—X, the remaining (p—3) elements in S can be divided into pT—B

pairs (yi, y2) such that

y1 Y2 = a(mod p)
So
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12300, (p-1) = X. (p—X) (Y1, Y2)
p-3

=—x% a 2 (mod p)

20
__ a2 (mod p) (- x* = a(mod p))

(2] ()

Case Il (gj: -1
p

Then the congruence (1) has no solutions. So if we take y1 €S, we know 3y,

e S such that
y1 Y2 =a(mod p) amd y; # Y,

Thus we divide S into (p—1)/2 pairs (y1, Y2) such that y; y, = a(mod p)

p-1 p-1
(p-1) =a2 (modp) = —[%jaZ(mod p) ( (%j = _1j

Thus theorem is proved completely.
Wilson’s Theorem

Theorem 2.2 If p is any prime, then | p—1 = —-1(mod p)

Proof :- If p =2 or p = 3; theorem is clearly true.

So let p > 5. Taking a = 1 in the last theorem we note (Ej =1 for all
P

prime p.
Then we get
p-1=-1(mod p)

Converse of Wilson’s Theorem :- The converse of Wilson’s theorem is also
true. Given that |[n—1=-1 (mod n), they must be a prime.

Proof :- If possible, suppose n is not a prime. Then there exists a divisor d of
n such that

1<d<n, then d||n-1
n—-1 =0 (mod d)
On the other hand
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|n—1=-1(mod n)

= n-1=-1(mod d)
= -1=0(mod d) = d| 1 which contradicts that d>1.

So n must be a prime number.

Theorem 2.3 (Euler’s Criterion) :- Let p be an odd prime and let gcd (a, p) =

1. Then
[Ej= 7(p ) (mod p).
p

Proof :- We know

a %(p—l)
|p—1z—B a (mod p)

We also know | (p—1) = -1 (mod p)
— _1__£pj 7(p )(mod 9)]

Multiplying by (%j we get

2 1
a a f(p—l) f(p—l)
—|=|—=| a2 (mod p)
[pj [pj

Theorem 2.4 -1 is a quad reside of primes of the form 4k + 1 & a quad non-
residue of primes of the form 4 k + 3.

Proof :- By Euler’s Criterion

[ j 92 (o

[[hew

The value of the quantity in brackets is either 0 or —2. But p is an odd prime
and it divides the quantity in brackets, so we must have
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_ [‘ 1 j . 1);@—1)
p
1 4k
When p = 4k+1, [—Bj =(-1) 2 =(-n* =1
and when p = 4k + 3,
1 4k+2
[‘B] =(-D) 2 =(-p**=-1

Theorem 2.5 Let a & b be integers such that gcd (ab, p) =1, then
5-GIG)
p PP
Proof :- By Euler’s criterian,

ab ORI R CRY
F = (ab) =a b (mod p) (D)

Butgcd (ab,p)=1 = pf(ab)
= bjaandp/b.

= gcd(a p)=1=ged(b, p)

By Euler’s criterion,

(%j = a2 (mod p) (2)
b (-0
and B =b2 (mod p) ...(3)

From (2), (3), we get

HERCI
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U

)
SN

Corollary :- The product of two quadratic residues (mod p) or two quadratic
non-residues (mod p) is a quadratic residues (mod p) where as the product of a
quadratic residue (mod p) and a quadratic non-residue (mod p) is quadratic
non-residue (mod p)

Theorem 2.6 Let p be an odd prime and let p does not divide product ab

2
where a & b are integers. Then [%] = [%j

Proof :- Sincepjab =bja&pfb

=N p | b%
(SH6I5,

p pA P
_ (E
p

Theorem 2.7 Given any odd prime p, there are %(p—l)quadratic residue &

[ (+1)7=1

% (p—1) quadratic non-residues.

Proof :- Let a be any quadratic residue then 3 x (1 < x < p-1) such that

x? =a (mod p)
But x? = (p—x)? (mod p)
Therefore 1% = (p-1)* (mod p)

2° = (p-2)* (mod p)
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2 2 2
p-1) p-1 p+1
[T] - [p‘T] - [7] (mod p)
Thus there are a maximum of pT_lquadratic residue (mod p)

Butforlsi,jspT_l,i;tj

i L j? (mod p)
since if i?=j? (mod p) = p | (i*-j%)

= p I (i+)(i-)) =p|(i+) orp](i-j)

1
which is not possible under the given condition. So there are exactly 3 (p-1)

quadratic residues.

The remaining o numbers must be quadratic non-residues

Theorem 2.8 Given any prime p of the for 4k+1, 3 x and on integers m such
that

1+x°=mpwherel<m<p

Proof :- Since —1 is a quadratic residue of primes of the form 4k+1, 3 x such
that

x? = -1 (mod p)
p-1
2. W.L.O.G,wecanassume 1 < x < T.

Then 3 an integer m such that

12
mp:x2+1sl+[p7_j <p?

= m<p
Clearly m>0
= l1<m<p

Theorem 2.9 Given any prime p, there exist x >0,y >0and m (1 <m < p)
such that 1 + x2 + y* = mp
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Proof :- If p = 2, theorem is trivially true
w1+1%=2=1.2
So let p be an odd prime.

Consider S = {—xz;x:o,l,Z, ........ , p—l}

T= {1+ y2:y=012,.... pT_l}
Here elements of S are mutually incongruent (mod p).

+1
Similarly elements of T are mutually incongruent. S contains DT elements

o p+1
and T also contain > elements.

.. SUT contains p + 1 district element . But there are only p residue classes
(mod p)

Therefore at least two elements of SUT must be congruent to each other
(mod p). However, no element of S is congruent to another element of S and
no element of T is congruent to another element of T. So atleast one element
of S must be congruent to an element of T i.e.,

dx,ysuchthat 0 <x <p-1/2 and 0<y<p-1/2such that
—x?=1+y? (mod p)
or 1+x?+y*=0 (mod p)

So, 3 an integer m such that

1+x°+y =mp
Clearly m > p
2 2
Now mp:1+x2+y231+p—_l L(p=t
2 2
2 42
<1+ P P2

4 4

= m<p and so 1 <m < p which proves the theorem

Definition :- Let m > 2 be any given integer and let gcd (a, m) = 1 for some
integer a. Then by Euler Fermat theorem,

2™ =1 (mod m)
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Now take S = {neN; a" = 1 (mod m)}

then S = ¢ since ¢(m)<S. So by L. W. O., S has a smallest element say ‘d’.
Then we say d is the order of a (mod m) and we write d = ord?, (order a mod
m)

Theorem 2.10 Let ord3, =d then
a" =1 (mod m)

& d|n. Inparticular d | ¢p(m)

Proof :- Since a’ = 1 (mod m), so if d | n, then
a"=1 (mod m)

Now let " = 1 (mod m). By division algorithm theorem, write
n=dg+r, 0<r<d

then

dg+r r

l=a"=a™" =% _ 3
=@M, a
=a" (mod m) (- a®=1 (mod m))

So if r # 0, then we get a number r < d such that a" = 1 (mod m) which
contradicts the definition of d

= r=0=djn
Theorem 2.11 Let ord3 = d. Then for any positive integer k,

ak d

ordy, = ——
M gedd, k)

k
Proof :- Let gcd (d, k) =gand ord%, =r

Then 1=@%"=a“" (mod m)

- d | kr

16
= —[l —|r
gi\9
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But gcd (95]: 1

gg

d :

= —|r = asr. Now since gcd (d, k) = q
= qld qlk
Let k = gk

d
Now (ak)a :(aqkl)d/q _ghd _ (ad)kl

=1 (mod m)

— r< % [By definition of order]
So d =Tr

d
or r=—

q

Hence the theorem.
Gauss’s Lemma 2.12 Let p be an odd prime and let gcd (a, p) = 1.

Let S= {12"—‘1}
2

Let u be the number of elements in the set S such that least positive residue of
as > p/2.

Then (ﬁ): =
p

Proof :- Consider any integer n where gcd (n, p) = 1 Apply division algorithm
ton&p,3g&rsuchthatn=qgp+rwhere0<r<(p-1). Sinceged (n,p)=1
=>pfn=>r=0

= 1<r<p-1

Since p is odd, p/2 is not an integer. So either r <p/2 or r > p/2. If r <p/2, we
leave itasitis Ifr>p/2, write r = p—r' where 1 <r' <p/2,

Thus n=gp + (p-r) = (q+1) p—r' = -r' (mod p).
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Now we consider least positive residues of every element of aS. We are given
that p of those elements have least positive residues > p/2. Let k be the
elements of aS with least positive residues < p/2.

Then k+u:p7—1

If the least positive residues <p/2 are ry, r»,..., rx and the least positive residues

. ‘ . -1
>p/2 are —1;, —rg,...,—rH suchthatl<r, spT then

I’i,...,rk,—rl —rz,...,—r”

are the residues of elements of aS in some order such that

1srsp—_1 andlsr'sp—_l.
2 2

Since S is a subset of a reduced residue set {1, 2,..., p—1} and gcd (a, p) = 1,
so {a, 2a,..., (p—1)a} is also a reduced residue set. Then first of all

ri ;z:rji fori=]j
If possible, let r; = r; for some pair (i, j)
Then 3 x; €S and X; €S such that
ax; = I (mod p) & ax; = —r; (mod p)

But r= rj

= axi = — ax; (mod p)

This means a(x; + X;) = 0(mod p)

= p [a(xi + x;)
But ged(a, p)=1
= p I (Xi+Xj)
But 1<xi< p-1
2
and 1<x5< pT—l

= 2<Xi+x<p-1

69



ANALYTICAL NUMBER THEORY

= pI (Xi+Xj)

which is a contradiction and so {ry, ro,..., 1, Iy, rz,...,ru} are all distinct.

_p-1
But +k="—=—
: 2
p-1 .. .. . p-1
So there are o distinct numbers lying between 1 & -
So Moo Tio Ty
p-1

are the natural numbers 1 to o in some order. Therefore

P—1=r 1, (mod p)
2

Then by definition of ry,..., 1, ...,

p-1_, 2a...pT_1. a(~1)" (mod p)

p-1

= (- [p_—l]aZ (mod p)
| 2

But gcd[p_l,pjzl

= (—1)“a(Zj =1 (mod p)

But by Euler’s criterion,

- (—1)*‘(%] =1(mod p)

- (%jz (~1)* (mod p)
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But the value of (Ej— (-1)"is either 2 or 0 or —2 and p is an odd prime
P

- e
p

Application of Gauss’s Lemma :-

Theorem 2.13 For every odd prime p,

(zj = (L1) M4+
p

where [X] means greatest integer
Proof :- Let S = {1,2,..., pT—l}
Then 2S=1{2,4,...,p-1}

Let xeS, then the number of elements of 2S with least positive value <g IS X

p

<—.
4

But x is an integer = x =[p/4]

-1
.. The number of elements of 2S with least positive value > p/2 is pT{ﬂ

(i) If p is of the form 4k+1, then
_(P=1)_|pP
g [ 2 j M

_ 4k+1-1 4k +1]
2 4

4

1] 1
=2k-k=k= |:p_ :|:p;:|

(i) If p is of the form, 4k + 3 then

_p-1 [p} 4k+3-1 [4k+3}
S Y B

4 2 4
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=2k +1-k=k+1= {%}

Thus in both cases, = [ 2

(p+1)}

So by Gauss’s Lemma

(gj =(D" = (—1){‘1‘(“1)}
p

Corollary :- 2 is a quadratic residue of primes of the form 8k + 1 and
quadratic non residues of primes of the form 8k + 3.

Proof :- Letp=8k +1

1 1 -
Then {Z(kﬂ)}:[i Gkiljlj = 2k

Therefore, in these two cases

p+l
[gj(l){( 4 ﬂ = (-1)*=1
p

Let p =8kt 3
Then B(erl)} _ B (8k + 4)} - 2k+1
and if p = 8k-3
Th 1 1 ! 8k -3+1

en {Z(FH )}={Z( -3+ }

_ |1 _
= [Z 8k — 2)} = 2k-1

Therefore in these two cases
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-

Therefore 2 is a quadratic non—residue.
Corollary 2:- For every odd prime p

-

Proof :- We know 2 is a quadratic residue of primes of the form 8k =1 & a
quadratic non-residue of primes of the form 8k + 3.

Let p=8k+1
p?-1 (Bk+1)?-1 64k?+16k+1-1
Then = = = =
8 8 8
= 8k? + 2k
= an even number
2
po-
= (1) 8 —1:(3]
p
Let p=-8k+3
2 2
Then p —1:(8k4_rB) -1

8 8

64k2 +48k +9—1
8

64k? + 48K +8
8

=8k*+6k +1

= An odd number.
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pe ,
Therefore (<) &8 =-1= (Ej

Thus in all cases

p2-1
o
p

Quadratic Law of Reciprocity :- For Legendre Symbols
Statement :- Let p & g be distinct odd primes then

[Ej[ﬂj — (_ngl qT_l = (-1) pq’
q,\p

h p-1 . 9-1
where = , Q'=
P 2 q 2

Alternative statements :-

(i) Let p or q be a prime of the form 4k + 1. Then either p’ is even or g’ is
even

= p'q’ is even

WG =()-G)

(ii) If both p & q are of the form 4k + 3 then both p’ & q' are odd.

e (B
- B

So sometimes Quadratic Law of Reciprocity is also asked in the following
form.

Theorem 2.14 Let p & q be two distinct odd primes. Then
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(Ej = (ﬂj if either of p & q is of the form 4k + 1

q p
and (gj = —(%j if both of p & q are of the form 4k + 3.

Proof :- By Gauss’s Lemma

q
o\
(p] (1)

where v is the number of integers x [lg X < pT_lj such that

gx = py + r where —% <r<o0

Sinceq>0,x>0andr<0

= (Py)>0 =y=1
Further
_ p-1_ p p
=X -r<—g+-<~— (q+1
py=ax-r<=— q+2<2(q )
g+1
< =
= y 5
q-1
< 2=
= y < 5

Similarly (Ej = (-1)" where p is the number of integers y [1 <y< qT_lj
q

such that py = gqx + s where —%< s<0
Therefore (Ej(gj = (-1 (1)
AN

-1
where p + v is the number of pairs of integers (X, y) such that 1 < x < DT
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g-1
l1<y< *—=
y 2

and —E<r:qx—py:—s<9
2 2

Now, let us consider the following sets of pairs of integers (X, y)

p-1 g-1
S= (x,y):lsxsT;lgysT

Si1= {(x,y) € S;gx—py) < —g}
S, = {(x,y) S S;—% <gX—-py< %}

S = {(x, y) € S,(gx —py) > %}

Then #(S) = #(S1) + #(S2) + #(Sy) ...
Consider a mapping 6 from S defined by

_(p+1 _ g+l j

o((x, y)) = | 22— x, =

= (Batox 0ty

Since 1sxsp—_1&1sysq—_l

2 2

= 1< Pl Pl
2 2
and 1sq+1—ysq_1
2 2

So that 6 is a mapping from Sto S. Now, let (X,y) € S;
Then, by definition

p+l

o = %

—x,qT*l—y]= () (say)
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Now

This means

Now, let

then

1 1
qX'—py'=q[p%—XJ—p[q;—yj

X,y)e S

#(S1) <#(Sy) ...(10D)

X y) €S

1 1
qX'—py'=q[p%—XJ—p[q;—yj

<2_F_1 [ (XY)eS
=-—p/2
(X" y') S Sl

#(S)) <#(Sy) ..(IV)

From (I11) & (IV) we get
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#(S1) = #(Sy) (V)
Therefore from (1) & (V) we get
#(S) =#(S2) (mod 2)
But #S)=p'.q
= #(S2)=p+v
=p’q (mod 2)
. From (I); (Ej(ﬂj = (1)
a/p
Example :- Evaluate
=)
257
or Determine whether 202 is a quadratic residue of 257 or not? or

Determine

x? = 202 (mod 257) is solvable or not.

Solution ;- 202 =2x101

202)_ 2 j 101
257 )\ 257 )\ 257

Lj =1 since
[257

257 =1 (mod 8)
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202)_ 1o1j_ 257)
257 ) \257 ) 101

But ij: 1()_1): }jzl
101 5
and [Ej[@j [
101 1
By Reciprocity law
_ (zj
11
=-1
=)
257

(7 )z)%)
&)= -E) (=)
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20
25

2 ]
S Fwenm=-

_ 650 26 \( 25
Example :- =
401 401 )\ 401

ANALYTICAL NUMBER THEORY

Theorem 2.15 If p is an odd prime & gcd (a, 2p) =1

then (Ej: (-1)
p
where t= pil {B}
=P
p%-1
2 LS
Also =D 8
o)

Proof :- Let S :{1,2,..., pT—l}

Let r,..., r; and ...
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be the least positive remainders of the elements of the set aS, which are < p/2
and > p/2 respectively.

Then as shown in the proof of Gauss’s Lemma
M,..., Ty, P— rl,...,p—ru
are all distinct.

- p-1

Since A+ . Therefore ry,..., 15, p— rll..p—rpll are the integers

1,2,..., %1 in some order so that

p-1
2 . i .
> ) =ntrtotn+t Y (p-r1p)
=L s=1
A no
=up+_2ri—_2rj (I)
i=1 =1
Further by definition of ry, ... 13, rlrFl
P p-l
2 . 2 ia A [T
> (Jay=2 p{’—}zrwzn (1T
j=1 =1 p i=1 j=1
Subtracting (1) from (1), we get
p-1 p-1
2 . TR 2 |ja
(a-1) X J=pt+23 rj—pp wheret= > {—} ...(ITD)
j=1 j=1 =P
i~ 2
But % j= p” -1
i1 8
p2 -1 L
(a-1) 3 :p(t—p)+2_21rj ...(IV)
J:

Since g.c.d. (a, 2p) =1
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= ais odd.

p° -
= (a-1) iseven. Also

is an integers as p is odd

. From (1V), we get
t—u=0(mod 2)aspisodd
= u=t(mod 2)

By Gauss’s Lemma

-
P

Therefore (%j =(-1)"

Now seta =2 in (II) Since forj =1, 2,..., DT—l
] . 3
—|=0foralj =>t=0
p

b1

. From (l11), e get % jJ+tup=2
=1

ne
]
j -1

J

p-1

% j=-up (mod2) 2\RHS .. 2\LHS
-1

But p=-1(mod 2)
i 2
2 . -1
u= Z ]= p— (mOd 2)
i1 8

.. By Gauss’s Lemma

2
Sl ()t = (-1
[pj D" =(-2)

p?-1
2
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The Jacobi Symbol :- Let Q > 1 be an odd integer and Q = g1 Qp...qs Its
prime factorization where gy, 0a,..., gs are odd primes, not necessarily distinct.

P
Then the Jacobi symbol, denoted by (6] , Is defined as :

i) @
Q) 1lai) \a Mgz ) \as
where (3] is the Legendre symbol.

aj

Remarks 1. If Q itself is an odd prime then the Jacob symbol and Legendre
symbol are same

P
(2) If gcd(P, Q) > 1, then (6] =0
For, gcd(P,Q)>1 = q;|Pforsomei(l<i<j)
. P P
The corresponding Legendre symbol | — | = 0 and hence 6 =0
i
P
(3) If gcd(P, Q) =1, then (6] =+1
(4) If P is a quadratic residue mod Q, then P is a quadratic residue mod each
P P
prime g; dividing Q, so that [q_] =1 for each j and hence (6] =1
i

P
However (5] = 1 does not imply that P is a quadratic residue of Q.

Theorem 2.16 Let Q and Q’ be odd and positive, then
PY(P P

»(a)la)-{a0)
Q)\Q QQ

@ [ake)-(e)
Q)lQ) \Q
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p? P
(3) If gcd(P, Q) =1, then 6 = [—2] =1

Q
(4) If gcd(PP’, QQ") =1, then PP’ —[E]
o oo Tle

(5) P"=P (mod Q) = (E]—[E]
- Q) (Q

Proof :- (1) Since Q and Q' are odd, so QQ’isodd. Let Q =q; gz...qrand Q’
=01 9'2...q's where g1, 02..., qr, 91..., q's are all odd primes, not necessarily
distinction then, we have,

QQ =0102...9r 02" 92".... G5
Hence, by definition

GHIRHE

e
Enas
E——

ol T
N
I
7N
QD
_O|cr
N
N~
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(3) We have

CEHEE e

o (2} {eJ3)

(4) we have
P1P2 Pl P2
{QlQZ J ) [QlQZ J{QlQZ J [Bypart )
Pl Pl P2 P2
ot [? [E {? [By part (1)]
PLY P )PP PY P
ol ol ot oz loz) teyPat@l
P’ pt
= aj.l.l.l.l: @ [By part (3)]
(5) We have
P'=P (mod Q) and Q =q1 42...qr
= PP=P(modq)Vi=1,2,..,1

But in the case of Legendre symbol, we know that
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. a b
if a=b (mod p), then (—j = (_j
p p
P’ P _
Hence, (—]: —] fori=1,2,...,r
i of

- ) =)

This completes the proof.

Theorem 2.17 If Q is positive and odd, then

(1) —;21] = (-1)@Y2 and
2 2

2 Lz @

@) Q] (-1

Proof :- We have

L__l]_ﬁ -1 (1)
o) llg

where Q =01 Q2...qs,  Qi’S are prime, not necessarily distinct.

Now in the case of Legendre’s symbol, we had proved that,

= (_1)(p—1)/2
p
-1 @j-D/2 .
= o =(-n™ 1<i<s
i

Hence, (1) becomes:

S
Y @j-/2

1\ s . :
[5] =11 DO = e



PRIMES IN CERTAIN ARITHMETICAL PROGRESSIONS AND SYSTEM OF CONGRUENCES

Now, if a and b are odd, then

ab-1 [a-1 b-1| (a-1)(b-2
2 _[ 2 "2 } 2

Since a and b are odd, so (a—1) and (b—1) are even, hence

multiple of 2. This implies that

ab—l_ a-1 b-1 (mod 2)
2 T2 T2

Applying this repeatedly, we obtain

0,-1 g,-1 Os -1 0405..05 -1
+ + ot =

mod 2
2 2 2 ( )
=——(mod 2
= El 5 > ( )
=X i1 Q- + 2 A for some integer A.
=1 2 2

This proves part (1)

B
Q) m g

But in the case of Legendre’s symbol, we had proved that

(Ej — (_1)(P2—1)/8

(2) we have

p

2 2_
= {q—]:(—l)(qJ 1)/8 1<j<s
j

(@-1(b-1) i< 3
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so that (1) becomes :

S 2 i(qz—l)IS
[éj:g N = Q)

Now, if a and b are odd, then

a’h?-1 |a’-1 b*-1| @*-D(b’-1) (@-D@+H(b-1(b+1)
g | 8 8 | 8 - 8

Since a, b are odd, so a-1, a + 1, b-1, b + 1 are all even and hence

(a® -1)(b? -1)
8

is a multiple of 2

a’ -1 b%?-1 a%h?-1
= + = (mod 2)
8 8 8

Applying this repeatedly, we obtain

2 2.2 2
T =1 .gs -1
i 8 8
2.1 Q%-1
= o 40 Q (mod 2)
i1 8
2 2
21 Q%1
= 5 99 =L, 2 for some integer A.

i 8

Hence, (2) yields :

Q%1 Q%1
2 — == )
[6] =(-1 8 =(-1) & and the proof is completed.
Theorem 2.18 If P and Q are odd and positive and if gcd(P, Q) = 1, then :

P\(0 Piot
22
&7

(This is quadratic law of reciprocity for Jacobi symbol)
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Proof :- Writing P = f[ p;and Q = f[ qg; , we have
i=1 =1

Lij_ﬁ o e (M)
Q _j=1 qJ _j=1i=1 qJ

By quadratic Law of reciprocity for Legendre Symbol we have

[&][&](1)("21][‘]21]

q; )\ Pi

R [&][m](n[p‘zl}[q‘é?

q; Pi

Putting this value in (1), we have :

(3] gl (&]@1)(“21](‘“21]

Q il oi=l i
-2 ey "

But, we have

i_l g;-1 r i—ls i_l
316 S &

=1 i<l 2

and we had earlier proved

——=——(mo
L2 T3
s q;-1 Q-1
d L "= " (mod?2
an El 5 5 (mod 2)
p;-1 P-1

which yields that 3 —— =+ 23,
i1 2 2
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and i ' = + 20\

For some integers A and A’

Putting these in (2), we obtain :

= Q P10t
GFl
or we can write

P-1Q-1
g

This completes the proof

42
Example :- Find the value of (—a] or

Check whether —42 is a quadratic residue or quadratic no-residue mod 61.
Solution :- We have

SRR -

Now, we have

1 60

[ [?1](1;’;}
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pP-1
[3] “(pe
P
3 61 (212)(60/2)
&)z}

p) (q),
“-by Lawof quadraticreciprociy.[aj :[Ej(—l) 22 J

and il (611]{671](_1)(2}(?]
(75576
RS
(s

j(1)8 =1

Putting all these in (*), we have
421 DED@OD D=1
(—aj—()(— ) (D) (-1)=

Hence —42 is quadratic residue mod 61.

Alternatively,
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(o) )-le)

Since 19 and 61 are odd primes and 61 is of the form 4k + 1, so by quadratic
Law of recipricity,

o) (- )

22y A s
(33

—42
Hence (Hj =1, so —42 is quadratic residue mod 61.

The arithmetic in Z,

We know that a linear congruence ax = b mod (n) has a unique solution mod
(n) if gcd(a, n) = 1. Now if nis a prime p, then gcd(a, n) = ged (a, p) is either
1 or p; in the first case, we have a unique solution mod (p), while in the
second case (where p | a), either every x is a solution (when p | b) or no x is a
solution (when p f b).

One can view this elementary result as saying that if the polynomial ax — b
has degree d = 1 over Z,, (that is, if a0 mod (p)), then it has at most one root
in Z,. Now in algebra we learn that a non-trivial polynomial of degree d, with
real or complex coefficients, has at most d distinct roots in R or C; it is
reasonable to ask whether this is also true for the number system Z,, since we
have just seen that it is true when d = 1. Our first main theorem, due to
Lagrange, states that this is indeed the case.

Theorem 2.19 Let p be prime, and let f(x) = agx? +..+ aix + ap be a
polynomial with integer coefficients, where a; = 0 mod (p) for some i. Then
the congruence f(x) = 0 mod (p) is satisfied by at most d congruence classes
[X] € Z,.

Proof :-We use induction on d. If d = 0 then f(x) = ag with p not dividing ao,
so there are no solutions of f(x) = 0, as required. For the inductive step, we
now assume that d > 1, and that all polynomials g¢x) = bq_y x*™ +...+ by with
some b; = 0 have at most d-1 roots [X] € Z,,.
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If the congruence f(x) = 0 has no solutions, there is nothing left to
prove, so suppose that [a] is a solution; thus f(a) = 0, so p divides f(a). Now

f0)-f@) = Yax —Yaa = ¥a(x—a)=ya(x —a).
i=0 i=0 i=0 i=0

Foreachi=1,..., d we can put
X —a'=(x—a) (Xt +ax "+, +a " x+a),
so that by taking out the common factor x—a we have

f(x) - f(a) = (x-a)g(x)

for some polynomial g(x) with integer coefficients, of degree at most d-1.
Now p cannot divide all the coefficients of g(x) : if it did, then since it also
divides f(a), it would have to divide all the coefficients of f(x) = f(a) + (x-a)
g(x), against our assumption. We may therefore apply the induction
hypothesis to g(x), so that at most d—1 classes [x] satisfy g(x) = 0. We now
count classes [x] satisfying f(x) = 0 : if any class [x] = [b] satisfies f(b) = O,
then p divides both f(a) and f(b), so it divides f(b) — f(a) = (b—a) g(b); since p
is prime, Lemma 2.1(b) implies that p divides b—a or g(b), so either [b] = [a]
or g(b) = 0. There are at most d—1 classes [b] satisfying g(b) = 0, and hence at
most 1 + (d—1) = d satisfying f(b) = 0, as required.

Remarks :-

1. Note that this theorem allows the possibility that aq = 0, so that f(x) has
degree less than d; if so, then by deleting a;x” we see that there are strictly
fewer than d classes [x] satisfying f(x) = 0. The same argument applies if
we merely have ag = 0 mod (p).

2. Even if ag # 0, f(x) may still have fewer than d roots in Z, : for instance
f(x) = x*> + 1 has only one root in Z,, namely the class [1], and it has no
roots in Zs.

3. The condition that a; # O for some i ensures that f(x) yields a non-trivial
polynomial when we reduce it mod (p). If aj = 0 for all i then all p classes
[X] € Z, satisfy f(x) = 0, so the result will fail if d < p.

4. In the theorem, it is essential to assume that the modulus is prime : for
example, the polynomial f(x) = x* — 1, of degree d = 2, has four roots in
Zg, namely the classes [1], [3], [5] and [7].

A useful equivalent version of Lagrange’s Theorem is the contrapositive :

Let f(x) = agx® +...+ a;x + ay be a polynomial with integer coefficients, and let
p be prime. If f(x) has more than d roots in Z,, then p divides each of its
coefficients a;.
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Lagrange’s Theorem tells us nothing new about polynomials f(x) of degree d
> p : there are only p classes in Zp, so it is trivial that at most d classes satisfy
f(x) = 0. The following result, useful in studying polynomials of high degree,
is known as Fermat’s Little Theorem though it was also known to Leibniz,
and the first published proof was given by Euler.

Theorem 2.20 If p is prime and a = 0 mod (p), then a** = 1 (mod p).

Proof :- The integers 1, 2,..., p—1 form a complete set of non-zero residues
(mod p).

If a £ 0 (mod p) then xa = ya implies X = y, so that the integers a, 2a,...,
(p—21)a lie in distinct classes (mod p). None of these integers is divisible by p,
so they also form a complete set of non-zero residues. It follows that a, 2a,...,
(p—21)a are congruent to 1, 2,..., p—1 in some order. (For instance, if p =5 and
a = 3 then multiplying the residues 1, 2, 3, 4 by 3 we get 3, 6, 9, 12, which are
respectively congruent to 3, 1, 4, 2.) The products of these two sets of
integers must therefore lie in the same class, that is,

1x2x...x(p-1)=ax2ax...x(p—1)a (mod p),
or equivalently

(p-1)! = (p-1)! &"* (mod p).

Since (p—1)! is coprime to p, divide through by (p—1)! and deduce that a** = 1
mod (p).

This theorem states that all the classes in Z, except [0] are roots of the
polynomial x** —1. For a polynomial satisfied by all the classes in Z,, we
simply multiply by x, to get xP—x :

Corollary :- It p is prime then a° = a mod(p) for every integer a.

Proof :- If a # 0 then by above theorem a”* = 1, so multiplying each side by
a gives the result. 1f a= 0 then a” = 0 also, so the result is again true.

Note :- This corollary shows that if f(x) is any polynomial of degree d > p,
then by repeatedly replacing any occurrence of x” with x we can find a
polynomial g(x) of degree less than p with the property that f(x) = g(x) for all
integers x. In other words, when considering polynomials (mod p), it is
sufficient to restrict attention to those of degree d < p. Similarly, the
coefficients can also be simplified by reducing them (mod p).

These two results are very useful in dealing with large powers of integers.

Example :- Let us find the least non-negative residue of 2% (mod 19). Since
19 is prime and 2 is not divisible by 19, we have p = 19 and a = 2, so that 2*
=1 (mod 19). Now 68 = 18 x 3 + 14, so

2% = (2% x 21 = 13 x 21 = 2* (mod 19).
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Since 2* = 16 = -3 (mod 19), we can write 14 = 4 x 3 + 2 and deduce that

24 = (2 x 22= (3P x22=27Tx4=-8x4=-32=6
mod(19), so that 2°® = 6 (mod 19).

Example :- We will show that a®® — a is divisible by 30 for every integer a.
By factorising 30, we see that it is sufficient to prove that a®° — a is divisible
by each of the primes p = 2, 3 and 5. Let us deal with p = 5 first, applying
abve Corollary twice, we have

a®=(@)’=a=a(mod5),
s0 5 divides a®® — a for all a. Similarly a® = a (mod 3), so
a?®=(@%%a=aa=a’=(a%®°=a’=a(mod 3),
as required. Forp=2a’=a(mod 2)

a®=@)"%a=a"a=()"a=a’a=(a%"%

Example :- Let us find all the roots of the congruence
f(x) = x'" + 6x* + 2x° + 1 =0 (mod 5).

Here p = 5, so b%/ replacing x> with x we can replace the leading term x'” =
(x°)® x? with x*x* = x°, and hence with x. Similarly x** is replaced with x*,
and x° with x, so giving the polynomial x + 6x* + 2x + 1. Reducing the
coefficients (mod 5) gives x* + 3x + 1. Thus f(x) = 0 is equivalent to the
much simpler congruence

g(x) = x*+3x + 1 =0 (mod 5).
Here we can simply try all five classes [X] € Zs, or else note that g(x) =

(x—1)% either way, we find that [x] = [1] is the only root of g(x) = 0, so this
class is the only root of f(x) = 0.

As another application of Fermat’s Little Theorem, we prove a result known
as Wilson’s Theorem, though it was first proved by Lagrange in 1770 :

Corollary :- An integer n is prime if and only if (n—1)! = -1 (mod n)

Proof :- Suppose that n is a prime p. If p =2 then (p—1)! =1 = -1 (mod p), as
required, so we may assume that p is odd. Define
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f(X) = (1-X) (2=x)...(p-1-x) + 1 —xP?,

a polynomial with integer coefficients. This has degree d < p —1, since when
the product is expanded, the two terms in f(x) involving x"* cancel. Ifa =1,
2, ..., p—1 then f(a) = 0 mod (p): the product (1-a) (2—a)...(p—1-a) vanishes
since it has a factor equal to 0, and 1-a"* = 0 by Fermat’s Little Theorem.
Thus f(x) has more than d roots (mod p), so its coefficients are all divisible by
p. In particular, p divides the constant term (p—1)! + 1, so (p-1)! = -1.

For the converse, suppose that (n—1)! = -1 (mod n). We then have (n—-1)! =
—1 (mod m) for any factor m of n. If m < n then m appears as a factor of
(n-1)!, so (n—1)! = 0 (mod m) and hence —1= 0 (mod m). This implies that m
=1, so we conclude that n has no proper factors and is therefore prime.

Theorem 2.21 Let p be an odd prime. Then the quadratic congruence x* + 1 =
0 (mod p) has a solution if and only if p =1 (mod 4).

Proof :- Suppose that p is an odd prime, and let k = (p—1)/2. In the product
(P-1)!'=1x2x...xkx (k+1)x...x(p-2) x (p-1),

we have p-1=-1,p-2=-2,....k+1=p - k=-k (mod p), so by replacing
each of the k factors p—iwith—ifori=1, ..., k we see that

(p-1)! = (-1)*.(k")? (mod p).

Now Wilson’s Theorem gives (p—1)! = —1, so (=1)* (k!)? = —1 and hence (k!)?
= (1)<, If p = 1 (mod 4) then k is even, so (k!)* = -1 and
hence x = k! is a solution of x* + 1 = 0 (mod p).

On the other hand, suppose that p = 3 (mod p), so that k = (p—1)/2 is odd. If x
is any solution of x* + 1 = 0 (mod p), then x is coprime to p, so Fermat’s Little
Theorem gives X’ = 1 (mod p). Thus 1 = (x3)* = (1) = -1 (mod p), which
is impossible since p is odd, so there can be no solution.

Units in Z,

Definition :- A multiplicative inverse for a class [a] € Z, is a class [b] € Z,
such that [a] [b] = [1]. A class [a] € Z, is a unit if it has a multiplicative
inverse in Z,. (In this case, we sometimes say that the integer a is a unit (mod
n), meaning that ab = 1 (mod n) for some integer b.)

Lemma :-[a] is a unit in Z, if and only if gcd(a, n) = 1.

Proof :- If [a] is a unit then ab = 1 + gn for some integers b and g; any
common factor of a and n would therefore divide 1, so gcd(a, n) = 1.
Conversely, if gcd(a, n) = 1 then 1 = au + nv for some u and v, so [u] is a
multiplicative inverse of [a].

Example :- The units in Zg are [1], [3], [5] and [7] : in fact [1] [1] = [3] [3] =
[5] [5] = [7]1 [7] = [1], so each of these units is its own multiplicative inverse.
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In Zy, the units are [1], [2], [4], [5], [7] and [8]: for instance [2] [5] = [1], sO
[2] and [5] are inverses of each other.

The group of units of U,

Theorem 2.22 For each integer n > 1, the set U, forms a group under
multiplication mod (n), with identity element [1].

Proof :- We have to show that U, satisfies the group axioms, namely closure,
associativity, existence of an identity and of inverses. To prove closure, we
have to show that the product [a] [b] = [ab] of two units [a] and [b] is also a
unit. If [a] and [b] are units, they have inverses [u] and [v] such that [a] [u] =
[au] = [1] and [b] [v] = [bv] = [1]; then [ab] [uv] = [aubv] = [au] [bv] = [1]* =
[1], so [ab] has inverse [uv], and is therefor a unit. This proves closure.
Associativity asserts that [a] ([b][c]) = ([a] [b]) [c] for all units [a], [b] and [c];
the left-and right-hand sides are the classes [a(bc)] and [(ab)c], so this follows
from the associativity property a(bc) = (ab)c in Z. The identity element of U,
is [1], since [a][1] = [a] = [1][a] for all [a] € U,. Finally, if [a] € U, then by
definition there exists [u] € Z, such that [a] [u] = [1]; nhow [u] € U, (because
the class [a] satisfies [u][a] = [1]), so [u] is the inverse of [a] in Up.

Definition :- We say that a group G is abelian if its elements commute, that is,
gh=hgforallg, h € G.
Lemma :- U, is an abelian group under multiplication mod (n).

Proof of Lemma :-Let [a], [b] €Z,, then we have to prove that [a] [b] = [b]
[a]
Now [a] [b]=[ab]=[b a] (by commutativity in Z)

= [b] [a]

Definition :- If G is a finite group with an identity element e, the order of an
element geG is the least integer k > 0 such that g« = e; then the integers | such
that g' = e are the multiples of k.

Example :- In Us the element 2 has order 4: its powers are 2* = 2, 22 = 4, 2°
3 and 2* = 1 (mod 5), so k = 4 is the least positive exponent such that 2%
1(the identity element) in Us. Similarly, the element 1 has order 1, while the
elements 3 and 4 have orders 4 and 2 respectively.

Example :- In Ug, the elements, 1, 3, 5, 7 have orders 1, 2, 2, 2 respectively.

Lemma :- If | and m are coprime positive integers, then 2'— 1 and 2™ -1 are
coprime.

Proof :- Let n be the highest common factor of 2' -1 and 2™ ~1. Clearly n is
odd, so 2 is a unit (mod n). Let k be the order of the element 2 in the group
Un. Since n divides 2' —1 we have 2' = 1 in Uy, so k divides I. Similarly k
divides m, so k divides gcd(l, m) = 1. Thus k =1, so the element 2 has order 1
in U,. This means that 2* = 1 mod(n), so n = 1, as required.
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Corollary :- Distinct Mersenne numbers are coprime.

Proof :- In above lemma if we take | and m to be distinct primes we see that
M, =2'-1 and M, = 2™—1 are coprime.

Primitive roots

Definition :- If U, is cyclic then any generator g for U, is called a primitive
root (mod n). This means that g has order equal to the order ¢(n) of Uy, so
that the powers of g yield all the elements of U,. For instance, 2 and 3 are
primitive roots (mod 5), but there are no primitive roots (mod 8) since Usg is
not cyclic.

Finding primitive roots in U, (if they exist) is a non-trivial problem, and there
is no simple solution. One obvious but tedious method is to try each of then
¢(n) units a € U, in turn, each time computing powers a' (mod n) to find the
order of a in Up; if we find an element a of order ¢(n) then we know that this
must be a primitive root. The following result is a rather more efficient test
for primitive roots :

Theorem 2.23 An element a € U, is a primitive root if and only if a®™9 = 1 in
U, for each prime q dividing ¢(n).

Proof :- If a is a primitive root, then it has order |U,| = ¢(n), so a' = 1 for all i
such that 1 <i < ¢(n); in particular, this applies to i = ¢(n)/q for each prime g
dividing n.

Conversly, if a is not a primitive root, then its order k must be a proper factor
of ¢(n), so ¢p(n)/k > 1. If g is any prime factor of ¢(n)/k, then k divides ¢(n)/q,
so that a*™" = 1 in U, against our hypothesis. Thus a must be a primitive
root.

Example :- Let n = 11, and let us see whether a = 2 is a primitive root (mod
11). Now ¢(11) = 11-1 = 10, which is divisible by the primes g =2 and q = 5,
so we take ¢(n)/q to be 5 and 2 respectively. Now 2°, 2% = 1 (mod 11), so
above theorem implies that 2 is a primitive root (mod 11). To verify this, note
that in Uy; we have

21=222=422=8,2*=5 2°=10,
2°=9,2"=7,2°=3,2°=6,2"°=1;

thus 2 has order 10, and its powers give all the elements of Uj;. If we apply
above theorem with a = 3, however, we find that 3° = 243 = 1 (mod 11), so 3
is not a primitive root (mod 11): its powers are 3, 9, 5, 4 and 1.

Example :- Let us find a primitive root (mod 17). We have ¢(17) = 16, which
has only q = 2 as a prime factor. Above theorem therefore implies that an
element a € Uy is a primitive root if and only if a® = 1 in Uy, Tryinga =2
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first, we have 28 = 256 = 1 (mod 17), s0 2 is not a primitive root. However, 3°
= (3%? = (-4)* = 16 1 (mod 17), so 3 is a primitive root.

Example :- To demonstrate the above theorem also applies when n is
composite, let us take n = 9. We have ¢(9) = 6, which is divisible by the
primes g =2 and q = 3, so that ¢(n)/q is 3 and 2 respectively. Thus an element
a € Ug is a primitive root if and only if a%, a®> # 1 in Us. Since 2%, 2° = 1
(mod 9), we see that 2 is a primitive root.

Theorem 2.24 If p is prime, then the group U, has ¢(d) elements of order d
for each d dividing p—1. Before proving this, we deduce.

Proof of the Theorem :- For each d dividing p—1 let us define
Qq = {a € Up| a has order d} and o(d) = |Qql,
the number of elements of order d in U,. Our aim is to prove that o (d) = ¢(d)

for all such d. The order of each element of U, divides p—1, so the sets Qg
form a partition of U, and hence

o(d) = p-1.
99
Also Y () =p-1,
d|p-1
so D (#(d) - o(d) =0,
d|p-1

If we can show that o(d) < ¢(d) for all d dividing p—1, then each summand in
this expression is non-negative; since their sum is 0, the summands must all be
0, so o(d) = ¢(d), as required.

The inequality w(d) < ¢(d) is obvious if Qg is empty, so assume that Qy
contains an element a. By the definition of Qq, the powers a'=a al..., (=
1) are all distinct, and they satisfy (a')OI =1, so they are d distinct roots of the
polynomial f(x) = x® -1 in Z,; But f(x) has at most deg(f) = d roots in Z,, so
these are a complete set of roots of f(x). We shall show that €y consists of
those roots a' with gcd(i, d) = 1. If b € Qq then b is a root of f(x). so b = a' for
somei=1,2,...,d. If weletjdenote gcd(i, d), then

bd/j — aid/j — (ad)i/j — 1i/j =1

in Up; but d is the order of b, so no lower positive power of b than b® can be
equal to 1, and hence j = 1. Thus every element b of order d has the form a'
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where 1 <i<dandiis coprime to d. The number of such integers i is ¢(d), so
the number o (d) of such elements b is at most ¢(d), and the proof is complete.
Corollary :- If p is prime then the group U, is cyclic.

Proof :- Putting d = p —1 in above therorem we see that there are ¢(p—1)
elements of order p—1 in U,. Since ¢(p—1) > 1, the group contains at least one
element of this order. Now U, has order ¢(p) = p—1, so such an element is a
generator for Uy, and hence this group is cyclic.

Example :- Letp=7,s0 Uy = U;={1, 2 3, 4,5, 6}. The divisors of p-1=16
ared =1, 2, 3and 6, and the sets of elements of order d in U; are respectively
{1}, {6}, {2, 4} and {3, 5}, thus the numbers of elements of orderd are 1, 1, 2
and 2 respectively, agreeing with the values of ¢(d). To verify that 3 is a
generator, note that

31=3,32=23%=6,3"=4,3"=5,3°=1

in Uy, so every element of U7 is a power of 3.

The group Upe , Where p is an odd prime
Theorem 2.25 If p is an odd prime, then Upe is cyclic for all e > 1.

Proof :- We have already proved the case e = 1, so we may assume that e > 2.

We use the following strategy to find a primitive root mod p®:

(a) first we pick a primitive root g (mod p)

(b) next we show that either g or g + p is a primitive root mod (p°);

(c) finally we show that if h is any primitive root mod p? then h is a primitive
root mod p° forall e>2.

Since p is prime, so we have a primitive root g (mod p). Thus g°*=1 (mod

p), but g' #1 (mod p) for 1 <i<p—1. We now proceed to step (b).

Since ged(g, p) = 1 we have ged (g, p?) = 1, so we can consider g as an
element of UID2 . If d denotes the order of g (mod p?), then Euler’s theorem

implies that d divides ¢(p®) = p(p—1). By definition of d, we have g® = 1 (mod
p%), so g = 1 (mod p); but g has order p—1 (mod p), so p—1 divides d. Since p
is prime, these two facts imply that either d = p(p-1) ord = p -1. If d =
p(p-1) then g is a primitive root (mod p?), as required, so assume that d = p
-1. Let h=g+q. Since h =g (mod p), h is a primitive root (mod p), so
arguing as before we see that h has order p(p—1) or p—1 in Up2 . Since g** =

1 (mod p?), the Binomial Theorem gives
W= (g+p) ' =¢""+(p-1) ¢"*p +... = 1-pg”* (mod p°),
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where the dots represent terms divisible by p?. Since g is coprime to p, we
have pg’2 # 0 (mod p?) and hence h** =1 (mod p?). Thus h does not have
ordap-1inU 22 so it must have order p(p—1) and is therefore a primitive

root. This completes step (b).

Now we consider step (c). Let h be any primitive root (mod p?). We will
show, by induction on e, that h is a primitive root mod (p°) for all e > 2.
Suppose, then, that h is a primitive root mod (p®) for some e > 2, and let d be
the order of h (mod p**). An argument similar to that at the beginning of step
(b) shows that d divides ¢(p***) = p® ((p-1) and is divisible by ¢(p%) = p*™*
(p-1), so d = p® (p-1) or d = p** (p-1). In the first case, h is a primitive root
(mod p®*h), as required, so it is sufficient to eliminate the second case by

showing that h**~® % 1 (mod p**Y).
Since h is a primitive root mod (p®), it has order &(p%) = p** (p-1) in UIDe , SO

-2 -2
hP" "D+ 1 (mod p®). However p=2 (p-1) = ¢(p¢Y), so h? D=1 (mod
p®™1) by Euler’s Theorem. Combining these two results, we see that

2
hP D=1 + kp®* where k is coprime to p, so the Binomial Theorem gives

hpe—l(p,]_) — (1 + kpe—l)p

=1+ § kot + & (kpT

1
=1+kp®+ > K> p**t (p-1) +...

The dots here represent terms divisible by (p* )% and hence by p***, since 3(e
-1)>e+1fore>2,s0

- 1
hpe 1(p,l) =1+ kp3 + E k2p29—l (p—l) (mOd pe+1).

Now p is odd, so the third term k? p**(p—1)/2 is also divisible by p***, since
2e—1>e+1fore>2. Thus

hP "D _ 1 + kp® mod (p°*%).

Since p does not divide k, we therefore have hpe_l(p‘l) £ 1 mod (p**1), so step
(c) is complete. (Notice where we need p to be od: if p = 2 then the third term
k% p Y (p-1)/2 = k*2°* % is not divisible by 2¢** when e = 2, so the first step of
the induction argument fails.)

Example :- Let p = 5. We have seen that g = 2 is a primitive root (mod 5),
since it has order ¢(5) = 4 as an element of Us. If we regard g = 2 as an
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element of UIO2 = Uss, then by the above argument its order d in U,s must be

either p(p—1) = 20 or p—1 = 4. Now 2* =16 £1 (mod 25), so d # 4 and hence
d =20. Thus g = 2 is a primitive root (mod 25). (One can check this directly
by computing the powers 2, 22,..., 2°° (mod 25), using 2'° = 1024 = -1 (mod
25) to simplify the calculations.) Suppose instead that we had chosen g = 7;
this is also a primitive root (mod 5), since 7 = 2 (mod 5), but it is not a
primitive root (mod 25): we have 72 = 49 = —1 (mod 25), so 7* = 1 and hence
7 has order 4 in Uys. Step (b) guarantees that in this case, g + p = 12 must be a
primitive root.

The group U26
Theorem 2.26 The group Uze iscyclicifandonlyife=1ore=2.
Proof :- The groups U, = {1} and U, = {1, 3} are cyclic, generated by 1 and
by 3, so it is sufficient to show that UZe has no elements of order ¢(2°) = 2°*
by showing that

a2 = 1 (mod 2%

...(2)
for all odd a. We prove this by induction on e. For the lowest value e = 3, by
(1) we have that a’ =1 (mod 8) for all odd a, and this is true since if

a = 2b + 1 then a® = 4b(b+1) +1 =1 (mod 8). If we assume (1) for some
exponent e > 3, then for each odd a we have

a2 =1+ 2%
for some integer k. Squaring, we get

a2 (14 2P =14 27 K+ 22K = 14 27Nk + 2L KD)

=1 (mod 2°*Y),

which is the required form of (1) for exponent e + 1. Thus (1) is true for all
integers e > 3, and the proof is complete.

Lemma:-  2™2|(52 -1)foralln>0.

Proof :- We use induction on n. The result is trivial for n = 0. Suppose it is
true for some n > 0. Now

2n+1

57" 1= (52")2_1=(52" )52 +1),
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with 22 | (52" 1) by the induction hypothesis, and with 2 | (52" + 1) since

52" = 1 (mod 4). Combining the powers of 2 we get 2"3 | (52n+1—1) as
required.

Theorem 2.27 If e >3 then U . = {7 50<i<2%.

Proof :- Let m be the order of the element 5 in Uze. By Euler’s Theorem, m

divides $(2°) = 2°%, so m = 2 for some k < e —1. Above theorem implies that
UZe has no elements of order 2°* so k < n-2. Putting n = e-3 in the above

- 3
theorem we see that 25 | (52"~ —1), so 52~ = 1 (mod 2°) and hence k > e-
3. Thusk =e -2, s0o m = 2°2. This means that 5 has 2° distinct powers 5' (0
<i<2°%in Uze. Since 5 =1 (mod 4), these are all represented by integers

congruent to 1 mod (4). This accounts for exactly half of the 2 elements 1,
3,5,..., 2°-1of U2e , and the other half, represented by integers congruent to

—1 (mod 4), must be the elements of the form —5'. This shows that every
element has the form + 5' for some i =0, 1,..., 2°°-1, as required.

The existence of primitive roots

Lemma :- If n = rs where r and s are coprime and are both greater than 2, then
U, is not cyclic.

Proof of Lemma :- Since gecd(r, s) = 1 we have ¢(n) = ¢(r) ¢(s) . Sincer, s>
2, both ¢(r) and ¢(s) are even. So ¢(n) is divisible by 4. It follows that the
integer e = ¢(n)/2 is divisible by both ¢(r) and ¢(s). If ais a unit (mod n), then
a is a unit (mod r) and also a unit (mod s), so a*®” = 1 (mod r) and a*® =1
(mod s) by Euler’s Theorem. Since ¢(r) and ¢(s) divide e, we therefore have
a° =1 (mod r), that is a® = 1 (mod s). Since r and s are coprime, this implies
that a® = 1 (mod rs), that is a° = 1 (mod n). Thus every element of U, has

order dividing e, and since e < ¢(n), this means that there is no primitive root
(mod n).

Theorem 2.28 The group U, is cyclic if and only if

n=1,2,4,p°or2p°
where p is an odd prime.

Proof :- The cases n = 1, 2 and 4 are trivial, and we have dealt with the odd
prime-powers, so we may assume that n = 2p® where p is an odd prime. Now
d(n) = d(2) d(p°) = d(p®). Therefore there is a primitive root g (mod p°). Then
g + p°is also a primitive root (mod p°), and one of g and g + p° is odd, so there
is an odd primitive root h (mod p®). We will show that h is a primitive root
(mod 2p°). By its construction, h is coprime to both 2 and p®, so h is a unit
(mod 2p°). If h' = 1 (mod 2p®), then certainly h' = 1 (mod p®); since h is a
primitive root (mod p°®), this implies that ¢(p°) divides i. Since ¢(p°) = ¢(2p°),
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this shows that ¢(2p°) divides i, so h has order $(2p°) in U2|De and is therefore
a primitive root.

Conversely, if n =1, 2, 4, p° or 2p°, then either

(@) n=2°wheree >3, or

(b) n=2°p'wheree >2, f>1and p is an odd prime, or

(c) nis divisible by at least two odd primes.

We have already proved that in case (a), U, is not cyclic.

In case (b), in the above lemma, we can take r = 2¢ and s = p', while in
case (c) we can take r = p®| n for some odd prime p dividing n, and s =n/r. In
either case, n = rs where r and s are coprime and greater than 2, so above
lemma shows that Uy, is not cyclic.

Example :- We know that g = 2 is a primitive root (mod 5°) for all e > 1.
Now g is even, so h =2 + 5% is an odd primitive root (mod 5°). Using the
above theorem we see that h is also a primitive root (mod 2.5%). For instance,
7 is a primitive root (mod 10), and 27 is a primitive root (mod 50).

The group of quadratic residues

Definition :- An element a € U, is a quadratic residue (mod n) if a = s? for
some s € Uy, the set of such quadratic residues is denoted by Q.. For small n
one can determine Q, simply by squaring all the elements s € U,,.

Example 7.1 Q7 = {1, 2, 4} < U7, while Qg = {1} < Us.

Theorem 2.29 Let n = n;...nx Where the integers n; are mutually coprime, and
let f(x) be a polynomaial with integer coefficients. Supose that for each i =
1,..., k there are N; congruence classes x € Z,, such f(x) = 0 (mod n;). Then
there are N = Nj...Ny classes X € Z, such that f(x) = 0 (mod n).

Proof :- Since the moduli n; are mutually coprime, we have f(x) = 0 (mod n) if
and only if f(x) = 0 (mod n;) for all i. Thus each class of solutions x € Z, of
f(x) = 0 (mod n) determines a class of solutions x = x; € Z, of f(xi) =0 (mod

ni) for each i. Conversely, if for each i we have a cass of solutions x; € Z,. of

f(xi;) = 0 (mod n;), then by the Chinese Remainder Theorem there is a unique
class x € Z, satisfying x = x; (mod n;) for all i, and this class satisfies f(x) = 0
(mod n). Thus there is a one-to-one correspondence between classes x € Z,
satisfying f(x) = 0 (mod n), and k-tuples of classes X; € L satisfying

f(xi) = 0 (mod n;) for all i. For each i there are N; choices for the class x;
Z,. . so there are N;...Nic such k-tuples and hence this is the number of classes

X € Z, satisfying f(x) = 0 (mod n).

Example :- Putting f(x) = x*~1, let us find the number N of classes x € Z,
satisfying x* = 1 (mod n). We first count solutions of x? = 1 (mod p®), where p
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is prime. If p is odd, then there are just two classes of solutions: clearly the
classes x = + 1 both satisfy x* = 1, and conversely if x* = 1 then p® divides
x? — 1 = (x=1) (x+1) and hence (since p > 2) it divides x —1 or x+1, giving
x = +1. If p® = 2 or 4 then there are easily seen to be one or two classes of
solutions, but if p® = 2° > 8 then a similar argument shows that there are four,
given by x = + 1 and x = 2°™ +1; for any solution X, one of the factors x + 1
must be congruent to 2 (mod 4), so the other factor must be divisible by 2°°*.

Now in general let n have prime-power factorization n;...nx, where nj = p/
and each e; > 1. We have just seen that for each odd p; there are N; = 2 classes
in Z, of solutions of x* = 1 (mod n;) whereas if p; =2 we may have N; =1,
2, or 4, depending on e;. By above theorem there are N = Nj...N classes in
Z, of solutions of x> = 1 (mod n), found by solving the simultaneous

congruences x* = 1 (mod n;). Substiutiting the values we have obtained for N;,
we therefore have

251 if n =0 mod (8),
N={2' if n=2mod ¢ _
2K otherwise

where Kk is the number of distinct primes dividing n. For instance, if n = 60 =
22.3.5 then k = 3 and there are 2¥ = 8 classes of solutions, namely x = + 1, +11,
+19, £29 (mod 60).

Theorem 2.30 Let k denote the number of distinct primes dividing n. If a
Qn, then the number N of elements t € U, such that t* = a is given by

2%t if n =0 mod (8),
N={2*' if n=2mod ¢ _
2K otherwise

Proof :- If a € Q, then s> = a for some s € U,. Any elementt € U, has the
form t = sx for some unique x € Uy, and we have t* = a if and only if x¥* =1 in
Un. Thus N is the number of solutions of x*> = 1 in U,, the above example
gives the required formula for N.

Theorem 2.31 Q, is a subgroup of U.

Proof :- We need to show that Q, contains the identity element of Uy, and is
closed under taking products and inverses. Firstly, 1 € Q, since 1 = 1> with 1
e U, Ifa b e Q,thena=s*and b =t*for somes, t € Uy, so ab = (st)* with
st € U,, giving ab € Q. Finally, if a € Q, then a = s> for some s € U, since
a and s are units (mod n) they have inverses a* and s in U, and
at=(sH%othata™ € Q.
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Theorem 2.32 Let n > 2, and suppose that there is a primitive root g (mod n);
then Q, is a cyclic group of order ¢(n)/2, generated by g?, consisting of the
even powers of g.

Proof :- Since n > 2, ¢(n) is even. The elements a € U, are the powers g' for i
= 1,..., ¢(n), with g*™ = 1. If i is even, then a = g' = (¢"%)° € Qn. Conversely,
if a € Q, then a = (¢)? for some j, so i = 2j (mod ¢(n)) for some j; since ¢(n) is
even, this implies that i is even. Thus Q. consists of the even powers of g, so
it is the cyclic group of order ¢(n)/2 generated by g®.

Quadratic residues for prime-power moduli

Theorem 2.33 Let p be an odd prime, lete > 1,and leta € Z. Thena ¢ QIoe if

and only if a € Q.

Proof :- We know that there is a primitive root g (mod p®), so with n = p® we
see that Qpe consists of the even powers of g. Now g, regarded as an element

of Uy, is also a primitive root (mod p), and with n = p we know that Q, also
consists of the even powers of g. Thus a ¢ Qpe ifand only if a ¢ QIOe . This

completes the proof.

Note :- For odd primes p, we can find square roots in Upe for e > 2 by

applying the iterative method to the polynomial f(x) = x* — a: we use a square
root of a mod (p') to find the square roots mod (p™**). Suppose that a e Qp,
and r is a square root of a mod (p) for some i > 1; thus = a mod (p?, say _r2
=a+pg. Ifweputs=r+p'k, where k is as yet unknown, then s* = r* +2rp'k
+p?k® = a+ (q + 2rk) p' mod (p™*), since 2i > i + 1. Now gcd (2r, p) = 1, s0
we can choose K to satisfy the linear congruence q + 2rk = 0 (mod p), giving 52
= a (mod p™?!) as required. An element a € Qpi+l has just two square roots in

Upi+1 for odd p, so these must be £s. It follows that if we have a square root

for a in Up, then we can iterate this process to find its square roots in UIoe for

all e.

Example :- Let us take a = 6 and p® = 5°. In Us we have a =1 = 1% s0 we can
take r = 1 as a square root (mod 5). Thenr?=1=6+5.(-1), so q =—1 and we
need to solve the linear congruence —1 + 2k = 0 (mod 5). This has solution k
= 3 (mod 5), so we take s =r + p'k = 1 + 5.3 = 16, and the square roots of 6 in
252 are given by +16, or equivalently £9 (mod 5%). If we want the square

roots of 6 in 253 we repeat the process: we can take r = 9 as a square root

(mod 52), with r> = 81 = 6 + 52.3, s0 g = 3; solving 3 + 18k = 0 (mod 5) we
have k = -1, s0s =9 + 5%, (1) = —16, giving square roots +16 (mod 5°).
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Theorem 2.34 Let a be an odd integer. Then

(@) aeQy

(b) a € Qs ifand only if a= 1 (mod 4);

(c) ife>3,thena e Q2e if and only ifa=1 (mod 8).

Proof :- Parts (a) and (b) are obvious: squaring the elements of U, = {1} c Z,

and of Uy = {1, 3} < Zy4, we see that Q2 = {1} and Q, = {1}. For part (c) we
use the theorem which states that the elements of U2e all have the form £5'

for some i; squaring, we see that the quadratic residues are the even powers of
5. Since 5° = 1 (mod 8), these are all represented by integers a = 1 (mod 8).
Now both the even powers of 5 and the elements a = 1 (mod 8) account for
exactly one quarter of the classes in Q2e ; since the first set is contained in the

second, these two sets are equal.

Example :- Qg = {1}, Q16 = {1, 9}, Q32 ={1, 9, 17, 25}, and so on.

Note :- One can find square roots in Qze by adapting the iterative algorithm
given earlier for odd prime-powers. Suppose that a € in for some i > 3, say

rP=a+2g. Ifweputs=r+27k, then s? =r? + 2'rk + 2207Dk? = a + (q + rk)
2' (mod 2™, since 2(i-1) > i + 1. Now r is odd, so we can choose k = 0 or 1
to make g + rk even, giving s* = a (mod 2'*Y). Thus s is a square root of a in
U There are four square roots of a in U2i+1 , and these have the form t =

sx, where x = +1 or 2' + 1 is a square root of 1. Since a = 1 (mod 8), we can
start with a square root r = 1 for a in U23, and then by iterating this process

2i+1 '

we can find the square roots of a in U2e for any e.

Example :- Let us find the square roots of a = 17 (mod 2°); these exist since
17 = 1 (mod 8). First we find a square root (mod 2*). Taking r = 1 we have r?
=12=17+ 2% (-2), s0 q = —2; taking k = 0 makes q + rk = —2 even, sos =r +
2%k = 1 is a square root of 17 (mod 2%). Now we repeat this process, using r =
1 as a square root (mod 2% to find a square root s (mod 2°). We have r> =1 =
17 + 2*. (1), so now q = —1; taking k = 1 makes q + rk = 0 even, so s = r +
2%k = 9 is a square root of 17 mod (2°). The remaining square roots t are
found by multiplying s = 9 by —1 and by 2* + 1 = + 15, so we have +7, +9 as
the complete set of square roots of 17 (mod 2°).

Quadratic residues for arbitrary moduli
Theorem 2.35 Let n = nyn,...n, where the integers n; are mutually coprime.
Thena e Qqifandonlyifa e Q, foreachi.

Proof :- If a € Q, then a = s* (mod n) for some s € U,. Clearly a = s? (mod
n;) for each i, with s coprime to n;, so a € Q... Conversely, ifa € Q,. for
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each i then there exist elements sj € U, such thata = = sZ(mod n;). By the

Chinese Remainder Theorem there is an element s € Z, such that s = s;
(mod n;) for all i. Thens?= s? =a (mod n;) for all i, and hence s? = a (mod n)
since the moduli n; are comprime, so a € Q.

We can now answer the questionof whether a € Q, for arbitrary moduli n:
Theorem 2.36 Leta € U,. Thena < Q, if and only if

(1) a € Qp for each odd prime p dividing n, and

(2) a=1 (mod 4) if 22| n, and a = 1 (mod 8) if 2% | n.

(Note that condition (2) is relevant only when n is divisible by 4; in all other
cases we can ignore it.)

Proof :- By Theorem 2.36, a € Q, if and only if a ¢ Qpe for each prime-

power p° in the factorisation of n. For odd primes p this is equivalent to
a € Qp, by Theorem 2.33, giving condition (1); for p = 2 it is equivalent to
condition (2), by Theorem 2.34.

Example :- Let n = 144 = 2*.3%. An element a € Uy is a quadratic residue if
and only if a € Qz and a = 1 (mod 8); since Qs = {1} < Zs, this is equivalent
toa=1 (mOd 24), SO Q144 = {1, 25, 49, 73, 97, 121} c Uqsa. Any a e Q144
must have N = 8 square roots. To find these, we first find its four square roots
(mod 2% and its two square roots (mod 3%) by the methods described earlier,
and then we use the Chinese Remainder Theorem to covert each of these eight
pairs of roots into a square root (mod 144). For instance, leta=73;thena=9
(mod 2%), with square roots s = +3, +5 (mod 2*), and similarly a = 1 (mod 3?),
with square roots s = + 1 (mod 3%); solving these eight pairs of simultaneous
congruences for s, we get the square roots s = +19, £35, £37, +53 (mod 144).
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Unit-3

Riemann Zeta Function and Dirichlet’s Series

Riemann Zeta Function &(s) and its convergence

Definition :- The Riemann zeta function denoted by &(s), is defined as

Es)= 3

=1 +—+is+.... where s > 1.

Theorem 3.1 Prove that the function

1 1 1
—=1 +2—S+—+..... ..(D)

(s) = =

s

n

converges for all real s > 1 and diverges for all real s < 1.

Proof :- Suppose first that s > 1. We group the terms together in blocks of
length, 1, 2, 4, §,..., giving

_ 1 1 1 1 1 1
EQ) =1+ —+—|[+| =+t — |+| — ..+ — | +...
2> 3 4° 7° 8° 15°

Now iJrigiJri:E:ZH,
25 3 28 28 28

i+...+i§i+_"+:i:i:(21—3)21

4° 78 s g8
iJr"'“LiSi*"'*:i=§=(21_s)3,andsoon.
8° 15°  8° g g

So we can compare (1) with the geometric series

2
1+27°+ 2792+ 27) +. e, 1+2is+3is+... <1427 4209
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This converges since 0 < 2" < 1 and hence so does (1) by the comparison
test. In fact, this argument shows that 1 <&(s) < f(s) for all s > 1, where

1
1_ 21—5 ’

fl9)= > (279" =
n=0

If s — +oo then 21°—>0 and so f(s) — 1, giving lim &(s) = 1.
S—>+w0

We now show that (1) diverges for s < 1. This is obvious if s <0, since than

is—>0 as n—oo, so let us assume that s > 0. By grouping the terms of (1) in
n

blocks of length 1, 1, 2, 4,..., we have
E(s)=1+ 2—1S+(3is+4—lsj+[5is+...+8isj+...

Ifs<1,then —>—, I

, and so on, so (1) diverges by

comparison with the divergent series 1 + %+ %+ In particular, by taking s

=1, we see that the harmonic series
1 ..

2. — diverges.
n

Application to prime numbers.

Theorem 3.2 Using Riemann zeta function, prove that are infinitely many
primes.

Proof :- Suppose there are only finitely many primes, say pi, pz,...pk. For

each prime p = p;, we have < 1, so there is a convergent geometric series

1 1 1 1
I+ —+—5+—+.= =
P p™ p 1-p

If follows that if we multiply these k different series together, their product

k 1 1 k 1
I+—+—+..1|= ...(1
Ei*pﬁps* ] El{l_pi—l] M
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is finite. Now there convergent series all consist of positive terms, so they are
absolutely convergent. It follows that we can multiply out the series in (1)
and rearrange the terms, without changing the product. If we take a typical

term iefrom the first series, Le from the 2" series, and so on, where
pyt P2
each e; > 0, then their product

1 1 1 1

P P2 Pk ptp,®2py K

will represent a typical term in the expansion of (1). By the fundamental
theorem of arithmetic, every integer n > 1 has a unique expansion n =
P po%2..p, % (ei > 0) as a product of powers of the primes p;. Since we are

assuming that these are the only primes; notice that we allow e; = 0, in case n
is not divisible by a particular prime p;. This uniqueness implies that each n

: 1 .
contributes exactly one term — to (1), so the expansion takes the form
n

15[£1+i+i2+...] =

1
i=1 Pi  p; n

18

.2

n=1

The right hand side is the harmonic series, which is divergent. However the
LHS is finite, so this contradiction proves that there must be infinitely many
primes.

E(s) as Euler’s product
Theorem 3.3 If s> 1, then

EGS) = 1 [1%] where the product is over all primes p.
P

This is, infact, representation of Riemann zeta function as Euler’s product.

Proof :- The method is to consider the product pk(s) of the factors

corresponding to the first k primes, and to show that Py(s) — &(S) as k—oo.

Let ps1, p2...pk be the first k primes. Now if s > 0 (so that the geometric series

all converge) then

k 1 k 1 1
Pk(s) = g [1_ pi_s ] = g[l‘i‘p_ls“rﬁ +]
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If we expand this product, the general term in the resulting series is

1
P where n = pitp,*2..ppk and each e; > 0. The Fundamental Theorem of

Arithmetic implies that each such n contributes just one term to Py(s), so

P(s)= X is

neAk N

where A = m:n=pip,?..pik,e, >0 is the set of integers n whose
prime factor are among p1, p2...pk- Each n ¢ Ag is divisible by same prime p >
Pk, and so n > py. It follows that if s> 1 Then

PO -E@I= T o< 3 S=ge)- T

ngAk N n>pkx N n<py N

. . . 1 .
Since s > 1, the partial sum of the series Z—S converges to &(s), so in
n

particular 3 %—)&(s) as k—ow. Thus |Pk(s) — &(s)|>0 as x—w, SO
n<pk N

Pk(s)—€(s) as required.

Evaluation of £(2) and £(2k).

2
Theorem 3.4 If £(s) is Riemann zeta function, then &(2) = %

Proof :- We know that the function sin z can be expanded as

2
sinz=z]] Kl—ij:zl‘[ [1— z 2] ..(1)

n0 nmw n>1 n-mw

The first product in (1) is over all non zero integers n, and the second product
is obtained from the first by pairing the factors corresponding to £n.

Also the Taylor series expansion of sin z is
_ AR S
sinz=z——+—... ...(2)

3 15

Comparing the coefficients of z* in (1) and (2), we see that
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Multiplying by —=%, we get

7[2

e@= "

Theorem 3.5 If £(s) is a Riemann zeta function, then evaluate &(2k) where k

>1.
Proof :- We know that sin z can be written as

. z*
sinz=z]] (1—nz—2j ..(1)

n=1 T

Taking log . of (1), we have

2
logsinz=1logz+ Y log [1—%]
n>1 nm

and differentiating term by term

-1
1 27 72
cotz=—- 1- )
. & n2n2£ n 2]

2z 22 Y 2z 22\
Now 2 2 1- 2 2 =72 2_2
n°m n°m N°w* k>0 \ N1
2kl 2k-1
y4 y4
S p2ke2 2ke2 S K

and then collect powers of z, we get

1 ZZk—l 1 é(zk)ZZK—l
cotz=~—-2 —_ =2 —_— .2
T S T T 2)

which is the Laurent series for cot z

113
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We will now compare (2) with a second expansion of cot z. The exponential

series

2 43
e=1+t+l 4L
2 |3

implies that
el -1 t t?
=1l+—+—+
t2 3

and the reciprocal of this has a Taylor series expansion which can be written
in the form

) 1
t l+i+t—+... =3 %tm -(3)
et 1 12 |3 mz0 | M

for certain constants By, B;... known as the Bernoulli numbers.

t t/2 | -t/2

Now t :£e+1_1 :le +e 1

et 71 2 et 71 2 et/27e—t/2

t t t(. it . . .
= E[COthE_ljzi['COtE_lj wherei= +/-1. Putting z = it/2, we get
t z )
: =zCc0tz——=1zcotz+iz.
e -1 I

Dividing by z and using (3), we have

m
cotz:—i+1 D B—mtm =—i+ ¥ B—mﬁgj zmt
Zm>0 |M m>0 | M\ I

By comparing the coefficients of (2), we see that if m = 2k > 2,

&2k) _ B (2)*
then _ZnT_@(ij
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(_1) k—122k—ln2k sz

so that E(2k) = 2K ...(4)
Thus £(2) = By, £(4) = — n'By , £(6) = 2n°By and so on.
We know that Bp =1, By = _—2 B, :%, B, =0

Bs= %, B; =0, Bq :4—12 and so on.
Thus £(2) = % E(4) = %, E(6) = %etc.

Dirichlet’s Series with simple properties :-

Definition :- If f is an arithmetic function, then its Dirichlet series is the series

Fo =5 10

n=1 n°
_ _ _ouin) 1 _
Example :- If f(n) = u(n), then F(s) = X — =X—= &(s) where u(n) =1
n n
Vv neN is the unit function.
Example :- If f(n) = N(n) then F(s) = Z&Sn): le :Z% =E(s-1)
n n n
where N(n) = n for all n.
Example :- If f(n) = u(n), then
F(s) = Z@ = 1 where p(n) is Mobius function.
n®  &@s)

Notation. Following Riemann, we let s be a complex variable and write

S = o+it,

g

where o and tare real. Then n®=¢*'9" = e©*"'" = This shows that [n°|=n
since | €| = 1 forreal 6.

The set of points s = & + it such that ¢ > a is called a half-plane. We will show that for each
Dirichlet series there is a half-plane ¢ > o, in which the series converges, and another half-
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plane ¢ > o, in which it converges absolutely. We will also show that in the half-plane of
convergence the series represents an analytic function of the complex variable s.

The half-plane of absolute convergence of a Dirichlet series

First we note that if ¢ >a we have |n°| = n° > n® hence

fln) _ (M|
n®|  n*

Therefore, if a Dirichlet series X f(n)n™ converges absolutely for s = a + ib, then by the
comparison test it also converges absolutely for all s with ¢ > a.

Theorem 3.6 Suppose the series X | f(n)n™ | does not converge for all s or diverge for all s.
Then there exists a real number o,, called the abscissa of absolute convergence, such that the
series X f(n)n™* converges absolutely if ¢ > o, but does not converge absolutely if ¢ < &, .

Proof. Let D be the set of all real & such that 2 [f(n)n™* | diverges. D is not empty because the
series does not converge for all s, and D is bounded above because the series does not diverge
for all s. Therefore D has a least upper bound which we call 5, . If o6 <c,thenc € D,
otherwise o would be an upper bound for D smaller than the least upper bound. If ¢ > o, then
o & D since o, is an upper bound for D . This proves the theorem.

Note : If 2 [f(n)n™® | converges everywhere we define o, = —oo . If the series X | f(n)n™ |
converges nowhere we define 6, = + .

o)
Example. Riemann zeta function. The Dirichlet series ZH_S converges absolutely for o
n=1
> 1. When s =1 the series diverges, so o, = 1. The sum of this series is denoted by (s) and
is called the Riemann zeta function.

Example. If fis bounded, say | f(n) | <M for all n > 1, then X f(n)n™> converges absolutely
for c>1, sooc,<1. Inparticular if y is a Dirichlet character the L-series L(s, ) = £
%(n)n~® converges absolutely for ¢ > 1 .

Example. The series X n"n™° diverges for every s so ¢, = + o .
Example. The series X n™" n™° converges absolutely for every s so ¢, = —.
The Function Defined by a Dirichlet series

Assume that X f(n)n™> converges absolutely for ¢ > &, and let F(s) denote the sum function

f(n)

o
F(S)= Z_S forec>o0,.
n=l N

This section derives some properties of F(s). First we prove the following lemma :

Lemmal. IfN>1ando >c> o, we have

¢}
<N > | f(n)|n°.
n=N

Sf(n)n~
n=N

Proof. We have
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Sl 2 )T = X |f(n)|ncn O
n=N n=N n=N

<N S |f(n)|n° .
n=N

The next theorem describes the behaviour of F(s) as 6 — + « .

= f(n)

Theorem 3.7 If F(s) = Z— for 6 > o, then
n=1 n°

lim F(o +it) = (1)

G—>+w

uniformly for —o <t< + o0,

@

Proof. Since F(s) =f(1) + > f(n)n"° we need only prove that the second term tends to 0 as
n=2

o —> +w. Choose c >o,. Then for s >c the lemma implies

$ T

n2n

<279 f(n)| n°= A
Z [f(n)! 2o

where A is independent of o and t . Since A/2° — 0 as a ¢ — + oo this proves the theorem.
Examples. L (c+it) > landL(o +it, ) >1lasc > +x.
We prove next that all the coefficients are uniquely determined by the sum function.

Theorem 3.8 Uniqueness theorem. Given two Dirichlet series

o= 3 W = 390

n-1 n® n-1 n°
both absolutely convergent for o > o, . If F(s) = G(s) for each s in an infinite sequence {sy}
such that 6, — + « as k >« , then f(n) = g(n) for every n.

Proof. Leth(n) = f(n) —g(n) and let H(s) = F(s) — G(s). Then H(sy) = 0 for each k. To
prove that h(n) = 0 for all n we assume that h(n) = 0 for some no and obtain a contradiction.

Let N be the smallest integer for which h(n) #0. Then

= h(n) _ h(N) | = h(n)

n=N n° NS n=N+1 n°

Hence

g hn)

h(N) = N°H(s) — N®
n=N+ n°

117
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Putting s = s, we have H(s,) =0 hence

h(N) = - N° fh(n)n‘Sk :

n=N+1

Choose k so that o, > ¢ where ¢ > 5, . Then Lemma 1 implies

w Sk
Ih) < N°K (N+2)7k™ 53| h(n)[n° = lj A
n=N+1 N+1

where A is independent of k. Letting k — o we find (N/(N +21))* — 0soh(N) =0, a
contradiction.

The uniqueness theorem implies the existence of a half-plane in which a Dirichlet series does
not vanish (unless, of course, the series vanishes identically).

Theorem 3.9 Let F(s) = X f(n)n™* and assume that F(s) = 0 for some s with ¢ >c,. Then
there is a half-plane ¢ > ¢ = g, in which F(s) is never zero.

Proof. Assume no such half-plane exists. Then for every k = 1,2,... there is a point sy with
ok > k such that F(sy) =0 . Since oy — + o as k — o« the uniqueness theorem shows that f(n)
=0 for all n, contradicting the hypothesis that F(s) = 0 for some s .

The half-plane of convergence of a Dirichlet series

To prove the existence of a half-plane of convergence we use the following lemma :

Lemma 2. Let sy = 6 + ity and assume that the Dirichlet series Z f(n) N~ has bounded
partial sums, say

<M

> f(nn~0

n<x

forall x> 1. Then for each s with ¢ > 55 we have

Sf(N)n~°| <2ma®0° (1+wj (D)

a<n<x

6 —0Cyp

Proof. Leta(n)= f(n)n~0 and let A(x) = Sa(n). Then f(n)n= a(n) N*°" so we can

n<x
apply Abel’s identity (to be proved in unit v) : For any arithmetical function a(n) and let
AX) = 2 a(n),
n<x

Where A(x) = 0 if x < 1. Assume f has a continuous derivative on the interval [y, x], where 0
<y<Xx. Then we have

> a()f(n) = AKX) f(x) - Aly) fiy) - [ A(t) £/t
y

y<n<x
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sg-s

Theorem (with f(x) = X ) to obtain

b
Zf (n)n—s = A(b) pS0-S ~AQ@) q%0~s (5-0) J-A(t)tso—s—l dt .
a

a<n<b

Since | A(X)| £ M this gives us

b
<Mb®7® +Ma®0 +js—s|M [t°0°T gt
a

>f(nn~

a<n<b

pho0—° _ aco—c—l

<2Ma®0 ™% + s — 5| M
Gy —O

<2MQa°0~° 1_,_@ .
6 —0Cyp

—S

Examples. If the partial sums > f(n) are bounded, above Lemma 2 implies that £ f(n)n
n<x

converges for 6 > 0. In fact, if we take sy =6, =01in (1) we obtain, forc >0,

Sf(n)n™| < Ka™®

a<n<b

where K is independent of a . Let a — +oo we find that = f(n)n™ converges if > 0. In
particular, this shows that the Dirichlet series

= (=1)"
=1 n°

<1.

> (-D)"

n<x

converges for ¢ >0 since

Theorem 3.10 If the series X f(n)n™ converges for s = o + ity then it also converges for all s
with c >0y . Ifitdiverges fors = oq + ity then it diverges for all s with c < 5 .

Proof :- The second statement follows from the first. To prove the first statement, choose
any s with ¢ > 5o.Above Lemma shows that

> f(nn™| < Ka®0™”’

a<n<b

119
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where K is independent of a. Since a’® °— 0 as a — + , the Cauchy
condition shows that Y. f(n) n° converges.

Theorem 3.11 If the series >, f(n)n™ does not converge every where or
diverge everywhere, then there exists a real number o, called the abscissa of
convergence, such that the series converges for all s in the half-plane ¢ > o
and diverges for all s in the half-plane ¢ < &..

Proof :- We argue as in the proof of Theorem 3.6, taking o to be the least
upper bound of all c for which 3 f(n)n™® diverges.

Note. If the series converges everywhere we define o, = —oo, and if it
converges nowhere we define o, = + .

Theorem 3.12 For any Dirichlet series with o, finite we have
O0<o,—oc<1.

Proof :- It suffices to show that if 3 f(n)n™C converges for some sy then it
converges absolutely for all s with ¢ > 6o + 1. Let A be an upper bound for

the number | f(n) n~°|. Then

f(n)|_|f(n)

n® no

1

s-sQ

A
- n 6—6(

n

so Y | f(n)n™* | converges by comparison with Y, n°0~
Example The series

= ()"
MR

n

converges if ¢ > 0, but the convergence is absolute only if ¢ > 1. Therefore in
this example 6. =0 and 5, = 1.

Definition :- If f and g are arithmetic functions, then their Dirichlet product or
convolution, is the arithmetic function f * g given by

From)= ¥ f(d)g[gj;
d/n

. : n
equivalently, putting e :a, we have

(fxg)(n)= P2 f(d) g(e)l.

e=n

Theorem 3.13 Suppose that
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F(s) = 3 l';) G(s) = Z 9(n) and

n=l N n=1 n°
H(s) = h(n) where h = f % g. Then H(s) = F(s)-G(s) for all s such that F(s)
_1 n®

and G(s) both average absolutely.

Proof :- If F(s) and G(s) both converge absolutely, then we can multiply these
series and re arrange their terms to give

1
8
-
—~
>
~
P18
«Q
—~
>
~

F(9) G(s)

RS (WO 00
m=L n=L (Mn) k=1 mn=k Kk

_ 2 (fxo)k) _ = h(k)
B kZ::1 kS _kZ::1 kS =HE)

Example :- If we take f = u, g = u, then

h=f*g=p=*u=1 wherel =identity function and 1(1) = 1,
I(nN)=0Vvn>1.

Now I(1)=1and I(n)=0foralln>1

S0 H(s) = Zl(n) =1 for all s.

We have F(s) = Z“(n) and

G(s) = u(n) Z— = £(s), both absolutely convergent for s
n®
> 1.

Using above theorem, we have

“( )i(s) 1, so that

_1 n®
i“’(n)- ! forall s > 1.
=1 n®  &(S)

Example :- Let f = ¢ and g = u. Then G(s) = £(s) is absolutely convergent for
s> 1. Now 1 < ¢(n) <n forall n, so F(s)=2$?) IS
n
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absolutely convergent by comparison with ZLS =¢(s-1) fors—-1>1, thatis,
n
fors>2

Also ¢ *u=N,so

0

Z"’(”)a(s) ZN(”) PIERECE

n=1

and hence Z &?) = % for all s > 2.

Analytic properties of Dircichlet series

Convergence properties of Dirichlet series can be compared with those of
power series. Every power series has a disk of convergence, whereas every
Dirichlet series has a half-plane of convergence. For power series the interior
of the disk of convergence is also the domain of absolute convergence. For
Dirichlet series the domain of absolute convergence may be a proper subset of
the domain of convergence. A power series represents an analytic function
inside its disk of convergence. We show next that a Dirichlet series represents
an analytic function inside its half-plane of convergence.

Analytic properties of Dirichlet series will be deduced from the following
general theorem of complex function theory which we state as a lemma.

Lemma 3. Let {f,} be a sequence of functions analytic on an open subset S of
the complex plane, and assume that {f,} converges uniformly on every
compact subset of S to a limit function f. Then f is analytic on S and the
sequence of derivatives {f ',} converges uniformly on every compact subset
of S to be derivative f .

Proof :- Since f;, is analytic on S we have Cauchy’s integral formula

ij Mdz

2niJdD z—a

fu(a) =

where D is any compact disk in S, @D is its positively oriented boundary, and
a is any interior point of D. Because of uniform convergence we can pass to
the limit under the integral sign and obtain

fa) =2 | 1@ 4

2niJd 7 — a

which implies that f is analytic inside D. For the derivatives we have



PRIMES IN CERTAIN ARITHMETICAL PROGRESSIONS AND SYSTEM OF CONGRUENCES

fr;(a):ij '@ 47 and

2mi J0 (z—a)?
. 1 f(2)
f (a):z—nijaD oy dz

from which it follows easily that f,(a) — f'(a) uniformly on every compact
subset of S as n—o.

To apply the lemma to Dirichlet series we show first that we have
uniform convergence on compact subsets of the half-plane of convergence.

Theorem 3.14 A Dirichlet series > f(n)n™ converges uniformly on every
compact subset lying interior to the half plane of convergence o > c..

Proof: It is suffice to show that Y, f(n)n™° converges uniformly on every

compact rectangle R = [, B] x [c, d] with o > 6. To do this we use the
estimate ,
f -s cQ—0 | S _SO |
> f(n)n™| <2Ma 1+—— (D)
a<n<b 0 —0p

where sp = Gp + ity IS any point in the half-plane ¢ > o and s is any point with
o > 6. We choose Sp = 6o Where 6. < g < a..

Then if s € R we have 6 —69 > a0 — og and |sp — S| < C, where C is a constant
depending on sp and R but not on's. Then (1) implies

C

O —0p

> f(mn=

a<n<b

sZMaGO_“(1+ ] =Ba 0™

cp—o

where B is independent of s. Since o
condition for uniform convergence is satisfied.

— 0 as a — +oo the Cauchy

Theorem 3.15 The sum function F(s) = Xf(n)n™° of a Dirichlet series is
analytic in its half-plane of convergence ¢ > o, and its derivative F '(s) is
represented in this half-plane by the Dirichlet series

ACESILLEA )

obtained by differentiating term by term.

Proof :- We apply above theorem 3.14 and Lemma 3 to the sequence of
partial sums.

Notes :- The derived series in (1) has the same abscissa of convergence and
the same abscissa of absolute convergence as the series for F(s).
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Applying Theorem 3.15 repeatedly we find that the kth derivative is
given by

w k
F(k)(s) - (_1)k 5 M for ¢ > c..
n=1 n

Examples For ¢ > 1 we have

C(=- 5 on )
n=1 N
and
g(s) & A
£(s) _nz=:1 ns - ...(3)

Equation (2) follows by differentiating the series for the zeta function term by
term, and (3) is obtained by multiplying the two Dirichlet series > A(n) n™°
and > n”* and using the identity >4 n A(d) = log n.

Dirichlet series with nonnegative coefficients

Some functions which are defined by Dirichlet series in their half-plane
of convergence G > o can be continued analytically beyond the line ¢ =
oc.. For example, Riemann zeta function £(s) can be continued analytically
beyond the line ¢ = 1 to a function which is analytic for all s except for a
simple pole at s = 1. The singularity for the zeta function is explained by the
following theorem of Landau which deals with Dirichlet series having
nonnegative coefficients.

Theorem 3.16 Let F(s) be represented in the half-plane ¢ > ¢ by the Dirichlet
series
© f(n
F(s)= > (S : (D)

n=1 N

where c is finite, and assume that f(n) > 0 for all n > no. If F(s) is analytic in
some disk about the point s = c, then the Dirichlet series converges in the half-
plane ¢ > ¢ — ¢ for some € > 0. Consequently, if the Dirichlet series has a
finite abscissa of convergence o, then F(s) has a singularity on the real axis at
the point s = o.

Proof :- Leta =1 + c. Since F is analytic at a it can be represented by an
absolutely convergent power series expansion about a,

_ 2 Y
I:(S)_kgo k!

(s—a)", (2



PRIMES IN CERTAIN ARITHMETICAL PROGRESSIONS AND SYSTEM OF CONGRUENCES

and the radius of convergence of this power series exceeds 1 since F is
analytic at c, (see the figure 3.1 below). By theorem 3.16 the derivatives
F®(a) can be determined by repeated differentiation of (1). This gives us

F¥) = (- = f(n) (log n)* ™,
n=1

So (2) can be rewritten as

© © _ k
Fo)= > 5 @9 0y (log ) .3)

k=0 n=1 k!

Since the radius of convergence exceeds 1, this formula is valid for some real
s =c — ¢ where € > 0 (see figure below). Then a —s = 1 + ¢ for this s and the
double series in (3) has nonnegative terms for n > no. Therefore we can
interchange the order of summation to obtain

F(C—g):% f(f:) $ {(+¢)logn}¥

— % f(n) e(1+s)|ogn -
1 n% K=o k! n=1 N

a

In other words, the Dirchlet series . f(n)n™ converges for s = ¢ — ¢, hence it
also converges in the half-plane ¢ > ¢ —&.

Figure 3.1

Definition :- An arithmetic function f is called multiplicative if f(mn) = f(m)
f(n) where ged (m, n) = 1.

Definition :- An arithmetic function f is completely multiplicative if f(mn) =
f(m) f(n) for all positive integers m and n.

Euler Products
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The product expansions of a function in which the factors are indexed by the

primes are called Euler products. For example &(s) = 1‘[[1 ! g ]V s> 1,
P

where the product is over all primes.

Theorem 3.17 (a) If f(n) is multiplicative and gf(n) is absolutely

n=1
convergent, then

réf(n):rp[(1+f(p)+f(p2)+....)

(b) If f(n) is completely multiplicative, and gf(n) is absolutely convergent,
n=1
then

) 1
L= g[l—f(p)}

Proof :- (a) Let p1, p2...., pk be the first k primes, and let

=TT (1+ f(py) + F(p) +...)

i=1
The general term in the expansion of Py(s) is

f(pt)..f(ppk) =f(pi.. pgk), because f(n) is multiplicative

Thus Pc= >f(n)
neAg

where Ac={n:n=pl.pX,e >0}

We have P —>f(n)|=| SFM)|< SIf(n)]
n=1 neAk neAk

< Y| f(n)|, since n > py for each n ¢ Ax.
n>pk

Now §| f(n)| converges, so as k—w we have 3| f(n)|—0 and hence
n=1 n>p

P — SF(n)
n=1

—0; thus Py — if(n) as k—»oo.
n=l1
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(b) If f(n) is completely multiplicative, then
f(p®) = f(p)°® for each prime power p°, so part (a) gives

§1f (n) = [T (1 +f(p) +f(p) +...)
n= p
=1 @+fp) +f(p)>...)
p

B 1
H(l f(p)j

Applying Theorem 3.17, to absolutely convergent Dirichlet series we immediately obtain :

Theorem 3.18 Assume X f(n)n~* converges absolutely for ¢ > c,. If f is multiplicative we

have
w 2
10l 10 100, 1o, 0
_1 n® p p p
and if f is completely multiplicative we have
3 1(n) =11 ! ife>a, . .2
n-1 n® p 1-f(p)p~*

It should be noted that the general term of the product in (1) is the Bells series fy(x) of the
function f with x = p~*.

Examples. Taking f(n) = 1, p(n), ¢(n), c.(n), respectively, we obtain the following Euler
products :

L) = é%—]}ﬁ ifo>1.

@é“é?) = 1;[(1—p‘5) ifo>1.

C(:(;)l) ér(]n) 1;[11:51: ifo>2.
(@t = $2 = e madL

1+ Re(a)}
Example :- The mobius function u(n) is multiplicative, with u(p) = -1 and

n(p®) =0 foralle> 2, so
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w 2
% 1 H[1+@+M+”_ S 11 (@) = - foralls > 1.
p

7 : )
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Unit-1VvV

Diophantine Equations and Quadratic Fields

Diophantine equations

Definition :- A Diaphantine equation is an equation in more than one
variables and with integral coefficients such as

ax+by=c, x*+y*=2% x*+y’=7°
Our problem is to find all the integral solutions of a given Diophantine
equation.
To find solutions of diaphantine equation

X2 +y* =7 (D

Let x = 0, then the equation becomes y* =7 =>y=+7z

Similarly if y =0, thenx? = z?and x =+ z. Letz=0 = x*+y*=0 =x=0
=y

Thus all the solutions are known if either x =00ory=00rz=0

So we assume neither of x, y, z is equal to zero.

Further if (x, y, z) is a solution of (1), (£ x, £y, £ z) is also a solution
of (1) for all combinations. So we assume x >0,y >0, z>0. Again if (X, Y,
z) is a solution of (1), (dx, dy, dz) is also a solution of (1) for all d. So W. L.
0. G.weassumeged (X,y,2)=1

Let gcd(x,y)=d>1

then d|x,dly =d*|x% d®|y?
— d?|x*+y? =d*| 22 =d|z
= ged (X, y,2)>d>1

Similarly if gcd (X, z) = d > 1 then gcd(x, y, z) > d > 1 and same holds if gcd
(x,2)>1

So to consider solutions where gcd(x, y, z) = 1, it is enough to assume that
ged(x,y) =1

Now since gcd(x, y) =1, so both of x & y can not be even.

Let both X & y be odd, then

129
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x? =1 (mod 8), y*= 1 (mod 8)
- 7 = x* +y* =2 (mod 8)
But there is no integer z with

z° =2 (mod 8)

So if (x, y, z) satisfies (1) and gcd(X, y) = 1 then one of X & y must be odd and
other must be even.

W. L. O. G. we assume that x is even and y is odd

Definition :- A solution (X, vy, z) satisfying a Diaphantine equation is called a
primitive solution if gcd(x,y, z) =1

Theorem 4.1 All the positive primitive solutions of

X2 +y* =7 (D
where X is even, y is odd, is given
by X =2ab,y=a’—b? z=a*+b? (2
where a > b >0 and a and b are of opposite parity and gcd (a, b ) =1

Proof :- Suppose (X, y, z) are given by (2) where a & b satisfy given
conditions. Then we shall prove x, y, z are positive primitive solutions of (1)

Clearlyx>0,y>0,z>0sincea>b>0

Setting x = 2ab, y = a® — b? we get
X2 + y2 — (2ab)2 + (a2_b2)2 — (a2 + b2)2 — 22
Thus (X, y, z) satisfy (1)

To prove gcd (X, y, z) = 1, it is enough to prove that gcd (y, z) =1 wherey &

z are given by (2). Let d = gcd (8% — b?, a% + b?)
Then d|(a®-b%) &d| (@ +b?)
= d|(a®+ b + (a® - b?)

= d|2a® &d|2b°
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= d | ged (222, 2b%)
= d|2 ged (%, b%)

Butgcd(a, b)=1 =gcd 8% b?)=1 = d|2 =d=1lor2

Since a & b are of opposite parity, both of a® — b® & a® + b? are odd
=>d#2 = d=1

Thus if (X, y, z) are given by (2) (X, Y, z) is a primitive solution of (1)
Now let (X, y, z) be any positive primitive solution of (1). Then we know

ged(x, y) =1 ged(y, z) =1 and ged (x,z) =1
Now from (1), X* =22 -y*=(z+Yy) (z-Y) ..3)

Since, x is even, y is odd, so from (1) z is also odd

= z +y & z-y are both even

ZtY g2y

> are natural numbers. (Note that z > y)

Writing (3) as

ORGIes

Now we claim gcd[Zij Z_yj:dzl

2 2
z z— z z—
Now d er&d y:>d +y+ Y
2 2 2 2
= d|z&d|y =d=1sincegcd(y,z)=1

. . X . .
Since x iseven = E IS a Integer

So from (4) we see that product of two coprime natural numbers % &

% is the square of an integer.
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= Both of izy & % are squares uof integers.

Let %:az&z;zyzb2 wherea>0&b>0  ...(5)

Sincey>0 =a>b>0

Also gcd [%%j =1 =gcd (@%b =1

— gcd(a, b) =1
Now from (5) we get z = a* + b* & y = a’-b? ...(6)

Substituting these values in (1) and noting that x > 0, we get x = 2ab.
Since y is odd so from (6) we get a & b are of opposite parity.
This proves the theorem.

Example :- Find all the solutions of

x? +y® = 7% where 0<z<30 ()

Solution :- First we assume x >0,y >0,z >0, gcd(x,y) =1and 2 | X

then we know that all the solution of (1) are given by

x=2ab,y=a’-b% z=a’+b’ ...(ID)

where a>b >0, gcd(a, b) =1 and a & b are of opposite parity

Now consider
0<a®+b*<30
Then a = 1 is not possible sincea>hb >0. Leta=2, Thenb =1, since a>b>0
Then x=4,y=3,z=5I.e. (4, 3, 5) is the solution
Leta=3thenb =2sincea>b>0anda & b are of opposite parity
Then x=232=12, y=5
Thenz =13 i.e., (12, 5, 13) is the solution
Leta=4thenb=1or3,thenforb=1,x=8,y=15z=17

So (8, 15, 7) is the required solution
Now a=4,b=3

Then Xx=24,y=7,2=25
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i.e. (24, 7, 25) is the solution

Now, take a =5 then b = 2 since a > b, 0, a & b are of opposite parity

and (a® +b% <30

Therefore x=20,y=21,z=29i.e., .. (20, 21, 29) is a solution

So, all solutions with x >0,y >0,z >0, X, even and gcd (x, y) = 1 are
(4, 3,5), (12,5, 13), (8, 15, 17), (24, 7, 25), (20, 21, 29)

So all solutions of the required type are

(£4,+£3,5),(£12,+5,13), (£8, £ 15, 17), (£ 24, £ 17, 25), (£
20, £21, 29), (£3, £4, 5), (5, £12, 13), (£15, £8, 17), (£7, 24, 25), (+21,
+20, 29), (£16, 8, 10), (#8, £16, 10), (9, £12, 15), (£12, £9, 15), (12, £16,
20), (£16, £12, 20), (£15, £20, 25), (£20, +15, 25), (+18, +24, 30), (24, +18,
30), (24, £10, 26), (+10, +24, 26)

Example :- Prove that if x, y, z satisfy

X2 + yZ - Z2
then (i) xyz = 0 (mod 60) ...(D
(ii) xy (x* — y?) = 0(mod 84) ...(ID)

Solution :- W. L. O. G., we assume
x>0,y>0,z2>0;gcd (x,y)=1and 2 |x
Then we assume know
x=2ab,y=a’-b%z=a’+b’
where a>b>0;gcd (a, b) =1 & a, b are opposite parity
Then setting x = 2ab, y = a® — b?, we get
Xy = 2ab(a’ - b?) ...(IID)

Since a & b are of opposite parity, one of a & b must be even and other must be odd
Therefore xy =0 (mod 4) {from (11} ...(AV)
If 3| aor3|bthen from (I1)
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xy = 0(mod 3)
So, assume 3 faand 3| b
Then by Fermat’s theorem
a’=1=b’(mod 3)
= a’ - b%=0 (mod 3)
So in this case also xy = 0 (mod 3) So in all cases,
xy =0 (mod 3)
From (IV) & (V), we get
xy =0 (mod 12)
in all cases

Now xyz = 2ab (a% - b?) (a® + b?)
=2ab (a* - b*
If 5/a or 5/b then from (V1)
xyz =0 (mod 5)

Then from (V1) & (VIII), we get
xyz = 0 (mod 60) in this case
So let 5xa and 5xb

By Fermat’s theorem

a*=1=b*mod 5)
From (VII)  xyz = 0(mod 5)
and in this case also from (V1) and (1X)

xyz = 0(mod 60)
This proves (i)
(ii) xy(x* - y?) = 0(mod 84)

As in (i), take x = 2ab, y = a’ - b?
xy = 0(mod 12)

Now xy(x*-y) = 2ab (a® - b®) ((2ab)? - (a° - b%)?)

ANALYTICAL NUMBER THEORY

(V)

...(VI)

...(VID)

...(VII)

.(IX)
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= 2ab (a® - b?) (4a’h? — a* — b* + 2a%b?)
= 2ab (a*-b?) (62’ b* —a* - b%
= 2ab (a% - b%) (-a’ b? — a* — b*)(mod 7)
= —2ab(a? - b?) (a* + b* + a’ b?) (mod 7)
= — 2ab(a° — b®) = 2ab (b® - a°) (mod 7) (%)
If 7]aor7|b, thus from (xx*) and (*)
xy(x? — y?) = 0(mod 84)
If 7 Jaand 7 | b then by Fermat’s theorem
b® = a° = 1(mod 7)
and again from (xx),

xy(x* — y?) = 0 (mod 84)

Hence the result

Fermat’s Last Theorem :- This states that x" + y" = z" (n > 3) has no
solutions for which (x,y,z) =0

We shall give the proof of the result that

X4 + y4 — Z4
has no solution for which (x, y, z) # 0. In fact we shall prove a little more we
shall prove

Theorem 4.2 x*+y* = u? has no non-trivial solutions. (D
Proof :- If possible suppose the given equation has solutions.
W.L.O.Gassumex>0,y>0,u>0

Let S ={ueN; x* + y* = u? for x, yeN}

Then by assumption S = ¢. So by law of well ordering, S has a least element.
Let ug be the least element of S.

Then I X0 € N, yoeN, such that x¢* + yo* = ug® (2

Then first we claim that gcd(Xo, Yo, Uo =1
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Let gcd(Xo, Yo, Up) =d >1. Thend|Xo &d | Yo
= d*|xo* & d*| yo' = d*|xo* + yo'
= d*| up®> = d?| ug

o VA y VAR
Th 20 0 120
o (dj{dj (aZJ
i.e., X—O,&,u—o satisfies (1) and so u—oeS
y d d? d?
Ug 2
— —ZZUO =1>d
d

= d=1. Sogcd(Xo, Yo, Ug) =1

Then X, Yo can not be both even, since then ug is also even & gcd (Xo, Yo, Ug) =
2.

But Xo & Yo can not be both odd either since in that case

U02 = Xo4 + y04E 1+ 1=2(mod 8)

which has no solution. So one of Xo, Yo is odd & other is even. W.L.O.G.
assume Xo is even. Then y, must be odd. Also

(X5)* +(¥5)* =ug and ged (x§, 5, Uo) = 1
Then by previous theorem there exists positive integers a & b such that
X2 —2ab, y2=a’ - b% up=a?+b?wherea>b >0, gcd(a, by =1. ...(3)
and a & b are of opposite parity.

If possible let a be even then b must be odd.
Then from (3)

y2 =a®— b®=—1 (mod 4)

but there does not exist any integer n such that n® = —1 (mod 4)
Then a must be odd & b must be even. Let b =2c. Then from (3)
Xo

x3 =2ab=4ac =~ =ac

2
= (X—ZOJ =ac ...(4)
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Since gcd(@, b)=1&b=2c
— gcd(a, c) =1
Now (4) gives us that square of an integer is equal to product of two positive

integer where both are relatively prime So both a & ¢ must be square of
integers.

Let a=fP&c=¢°

Since ged(a, b) =1 = ged (%, 2g%) = 1. Again from (3)

yg — aZ . b2 — a2 . 4C2 — (f2)2 . 4(92)2 — f4 . 4g4

= y5+4g* = (5
But ged(f?, 2g) = 1
= ged(yo, 29°) = 1

because a & b are of opposite parity, then from (3), yo must be odd.
Now (5) can be written as

(v5)? + (20)* = ()’
where gcd(29?, Vo) = 1, Yo is odd, 2g? is even. They by previous theorem,
there exists integer r, s, such that 29> = 2rs, yo = r* — s* 2 = r* + ¢

...(6)

where r >s >0, gcd(r, s) =1 & r, s are of opposite parity
Now from (6), 2g°=2rs = g’ =rs
But gcd(r, s) = 1, so we have product of two relatively prime integers is the
square of an integer. = r & s must themselves be squares.
Letr=v? &s=w?wherev>0,w>0

Now from (6), f* = r* + s = (V?)? + W2 = v* + w”.

Then (v, w, )0 is a solution of (1). So feS.

= f>up

But f<f =ax<a’<a’+ b?=upwhich is a contradiction and
contradiction arose because we assume (1) has a solution. So (1) has no
solution.

The represent of number by two or four squares.
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Theorem 4.3 Let n be a natural number of the form 4k+3, then n cannot be
written as a sum of 2 squares.

Proof :- If possible let n = x* + y>. Then
x? =0 or 1(mod 4) and y* = 0 or 1 (mod 4)
Thenn=x%*+y?=0or 1 or 2(mod 4)

Thus if n = 3(mod 4), it cannot be written as a sum of two squares.

Theorem 4.4 Let n = x* + y*. Then primes of the type 4k + 3 can occur in the
prime factorization of n to an even degree only.

In other words if a prime of the type 4k + 3 occurs to an odd degree in the
prime factorization of a natural number n then n can not be written as a sum of
squares of 2 numbers.

Proof :- Let p be a prime of the type 4k + 3.
2k+1

Let n=p~""n, where k > 0 and gcd(ns, p) =1
and let n=p**n = x +y?
Then n=x?+y?=0 (mod p)

Let phx. Thengcd (p, x) =1
Now ged(p, x) =1

— J an integer q such that x g = 1(mod p)

Now y? = —x*(mod p)

=S o y* =—q° x* = ~1(mod p)

= (ay)? =-1(mod p)

= -1 is a quadratic residues of p.

But p is a prime of the type 4k + 3 and so —1 must be a quadratic non-residue
of p, which is a contradiction. So p must divide x. Then p must also divide vy,
since x* + y? = 0(mod p)

Let X=pX1 &Y =pyr

Then n=x*+y* =p? (x° + y1?) \=p** my
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2 2 _ ~2k-1
=>X1 "ty =p ng
If p | X1, we have contradiction as before.

Soif Xi = pXz, Y1 = Py2, then x3 +y3=p?3 n; proceeding as before.
Proceeding like this and decreasing the power of p by 2 at a time, we get
xﬁ +yﬁ = pn; for some positive integers Xk & Yk

Also gcd(ny, p) = 1, proceeding as before we get p?| pn;

= p | ny, which contradicts gcd(p, ny) =1
Thus n can not be written as a sum of 2 squares.

Theorem 4.5 If all primes of the type 4k + 3 occur to an even degree in the
prime factorization of a natural number n, then n can be written as a sum of 2
squares.

To prove Theorem, we first shall prove the following lemmas

Lemma 1 :- If n; & n; are representable as a sum of 2 squares, then ny n is
also representable as a sum of 2 squares.

Proof :- Let n;=a’+b%andn, =c?+d?
Then Ny n, = (@2 + b?) (¢ + d?)
= (ac + bd)? + (ad — bc)?

and this proves Lemma 1

Lemma 2 :- Given any prime p of the type 4k + 1, 3 natural numbers X & m
such that

x*+1=mpwhere0<m<p

Proof :- Since p is a prime of the type 4k + 1, —1 is a quadratic residue of p.

So 3 a natural number x such that x> = -1 (mod p) W. L. O. G. we may
assume 0 < X < p. If p/2 x < p, we note (p—x)? = x> = -1 (mod p)
and 0 <p —x<p/2. SoW. L. O. G. we assume 0<x<p/2. Then 3 an
integer msuchthat m>0

2
and mp:x2+1<1+(g) <p’, = m < p.

Proof of Theorem :- Let m be the least positive integer such that, a® + b? =
mp for some positive integer a & b.
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By Lemma 2, suchan mexists & 0<m<p. Ifm=1,
Then p can be written as a sum of 2 squares. Now we can write n as

N =pP1P2...pk m2

where each p; is a prime of the form 4k + 1 and m is a product of primes of the
type 4k + 3. If each p; can be written as a sum of 2 squares, then theorem
follows from Lemma 1. So assume 3 at least one prime p of the form 4k + 1,
such that p can not be written as a sum of 2 squares.

Then 3 integers m, X, y such that x> + y* = mp
We take 2 <m < p and m is the least positive integer
Now mp = x? + y? = 0(mod m)

Take integers u & v such that

X = U (mod m), y = v(mod m) ..(1)
and lul <m/2, |v| < m/2
Then u?+v2 =x*+y? =0 (mod m) (2
Let mr:u2+v23mZerZ:mZ<m2

4 4 2

Then mr<m’ =0<r<m
Letr=0. Thenu’+v*=0 =  u=0,v=0
Then x=U=0 (mod m)

y=Vv =0 (modm)
= m|x, m|y. Then m?|x% m?|y?
= m?| (xX*+y%) = m?|mp = m|p.
But2 <m<p, som|pis not possible
= r-0

Now mp=x>+y*and  mr=u*+V?
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= m? rp = (6 + y?) (U2 + Vv2) = (xu + yv)? + (xv — yu)? ...(3)
Now XU+ yv = Uu? + v> =mr = 0 (mod m)

and XV —yu=uv—uv=0(modm).

= m | (xu +yv) and m | (xv — yu)

XU+Yyv o, XV-yu .
= y & y are integers
m m

Dividing on both sides by m? in (3) we get

2 2
D= (xu;yvj +(xvr;yuj

i.e., rp can be written as a sum of 2 squares.

But 0 <r < m and this contradicts the minimality of m. So 2 <m < p is not
possible

= m=1.
i.e., every prime of the form 4k + 1 can be written as a sum of 2 squares.

Remark :- Combining Theorem 1 with Theorem 2 we get that a natural
number n can be written as a sum of 2 square iff all the primes of the type 4k
+ 3 occur to an even degree in the prime factorization of n.

Theorem 4.6 If a prime p = x> + y?, then apart from changes of signs and
interchange of x &y, this representation of p as sum of two squares is unique.

Proof :- If p = 2, then 2 = (+ 1)? + (+ 1) is the only representation of 2 as sum
of two squares.

Let p be an odd prime. Since no number of the form 4k + 3 can be written as
sum of 2 squares sop=3(mod4). Sop=1(mod4)

Let P=X’+y* &p=X*+Y?

Since p is of the form 4k + 1, —1 is a quadratic residue of p.

So 3 an integer h such that h* = —1 (mod p)

Now p = x* +y? = x?+y?=0 (mod p)

= x? = —y? (mod p)
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Since h?=—1 (mod p) = x?=h? y? (mod p)
= X =+ hy (mod p)

By changing the signs of y if necessary, we can assume

x = hy (mod p)
Similarly we assume X =hY (mod p)
Now p?= (X" +y°) (X* +Y?)
= (XX + yY)? + (XY — yX)? (D
Now XY —yX = hyY-yhY =0 (mod p)
= p | (xXY=yX). Then from (1), p | (xX + yY)

Dividing both sides of (1) by p?, we get

2 2
1:£xX+ij J{xY—ij Q)
p p

The only representation of (2) as sum of two squares are

1= (#1)>+0*=0% + (+ 1)°

So from (2) either xX +yY =0 ..(3)
or XY —yX=0 ...(4)
Case | XY -yX=0

- XY =yX ..(5)

Nowp=x*+y* =gcd(x,y)=1, and p=X?+Y? =gcd (X,Y)=1
From (5), x | (yX), butged (x,y) =1 = x| X ...(6)
Again from (5), X | (xY), butged (X, Y) =1 = X|Xx (7

Using (6) and (7)

X=X
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Butx®+y*=X*+Y?=p

2 _ 2 -
= y'=Y"=>y=£Y
So in this case theorem is true.

Case Il xX+yY =0

In this case, we check that

XX =-vyY
= X|-yY =>x|Y
and Y|xX =Y|-x
= X=xY
Similarlyy =+ X.

Four Square Theorem

Theorem 4.7 Every natural number n can be written as a sum of four squares.
Proof :- If n = 1, then 1 = 12+ 0% + 0% + 0°
Soletn>1

Let n=p;po2..ppK ..(1)

be the prime factorization of n.

If every prime p can be written as a sum of four squares then the above
theorem will follow from (1), if we are able to prove

Lemma 1 :- Product of two numbers, which can be written as sum of 4
squares, is also repreentable as sum of 4 squares.

Proof :- Let

n, =a’+b?+c?+d?

and N, =x2+y* + 22+ u?
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The niny = (@% + b? + ¢? + d%) (X% + y? + 22 + u%) = (ax + by + cz + du)?
+ (bx—ay +cu —dz)? + (cx + dy — az — bu)?
+ (dx — cy + bz — au)?

Thus after Lemma 1, it is enough to prove

Lemma 2 :- If p is an odd prime then 3 integers X, y, m such that
1+x*+y*=mpwherel<m<p.

Proof of Lemma 2:- Let

S= {1+ x2: X =012, pT_l}

and T:{—yz,y:OLZ,...,pT_l}

Then each of S & T contains pTJrlelements. First we claim that elements of S

are mutually incongruent (mod p)

If possible, let
1+ x2 =1+x5 (mod p)
where 0<X <X < pT—l
Then x% —xl2 =0 (mod p)
= p|0G-x) = Pl +x) (ax0)
But 1<x3+x2<(p-1)
and 1<Xy—X12> pT—l

= Pf(X1+Xz2) and pf (X2—X1)
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So p does not divide x% —xf. So elements of S are mutually incongruent

(mod p)
Similarly elements of T are mutually incongruent (mod p).

Now consider SUT. SUT contains (p+1) distinct elements. But there are only
(p—1) residue classes (mod p). So two elements of SUT must be congruent to
each other (mod p). Since elements of S as well as elements of T are mutually
incongruent (mod p), so there must exist an element of S which is congruent
to an element of T

p-1

i.e. dintegers X, y; 0 < x < o 0<y< pT—l such that

1+ x? = —y*(mod p)

ie. 1+x?+y*=0 (mod p) i.e. there exists an integer m such that
1+x*+y* =mp
2 2
Then mp:1+x2+y2s1+(p2_1j J{p;lj <p
= m < p.

Proof of Theorem :- Every prime can be written as four squares.
If p=2, then 2 = 1% + 12 + 0° + 0% and we are through.

By Lemma 2, given any odd prime p, 3 integers a, b, ¢, d, m such that a® + b?
+c?+d°=mpwherel<m<p, forwecantakea=1,b=x;c=y,d=0.

Let m be the smallest positive integers such that
a2 +b’+c?+d’=mp (D

Then a® + b? + ¢ + d* = 0(mod m)

Now choose X, y, z, u such that

X = a(mod m)
y = b(mod m)
z = ¢(mod m)

u =d(mod m)

m m
where - —<X Y, Z,us—
2 2
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Then X2+ Y2+ 22+ u?=a? + b? + c? + d? = 0(mod m)
This is 3 an integer r such that
XC+y* +Z22+u?=mr .(2)
2222mzmzmzmz
Now mr=x"+y +z°+u S(E) J{EJ J{E) J{E)
=m® =>r<m
Let r=0
= XC+y +72+u4=0
= X=y=z=u=0

Then mp = & + b? + ¢? + d* = 0 (mod m?), since m/a, m/b, m/c and m/d

= m?|mp = m|p
— eitherm=1orm=p

Now m #p, since m<p. If m=1, then

a> + b? + ¢+ d®> = pand p is representable as a sum of 4
squares. So we assume r =0

Then I<r<mandl<m<p
Let r=m
Then X+y+ 22+ ui=mi e
. m m
Since -—<X,¥,Z, U< —
2 2
: . : m
(3) is possibleonlyifx=y=z=u= ER
Then azm,bzm,cEm,dzm (mod m)
2 2 2 2
= 3 integers a; a,, as, a4 such that
m m m m
a= E) +am,b=— +aym,c= E) +asm,d= E) +asm

Now mp = a% + b? + ¢® + d?
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(M am) [ Maam) +(™aam) (™ eam)
2 1 2 72 2 73 2 o4

m2 2 2.2 mz 2 2.2
:T-i-alm +a1m +T+a2m +a2m

2 2
m 2 2.~2 m 2 22
+—+azm? +aim?+—+a,m?+azm
4 4
=m?(l+a, +ay+as+a,+a’ +a3 +a3 +az)
=0 (mod m?)
= m?|mp = m|p

which is not possible since 1 <m < p.
Now multiplying (1) & (2) we get

mlrp = (2% + b? + &2 + d2) (2 + Y2 + 22 + 1)
= (ax + by + cz + du)®+ (bx — ay + cu —dz)?

+ (cx + dy — az — bu)®

+ (dx — cy + bz — au)® (By Lemma 1) (4
But ax + by + cz + du=a?+ b’ +c? + d?= 0 (mod m)

bx —ay + cu —dz =ba —ab + cd — dc =0 (mod m)

cx + dy —az — bu = ca +db — ac — bd = 0(mod m)

dx —cy + bz —au = da —cb + bc — ad = 0(mod m)
. Dividing (4) by m? we get

= (ax+by+cz+duj2 +(bx-ay+cu-dzj2
m m

) 2
. (Cx+dy_az—buj +(dX—CY+bZ_aUJ ...(5)

m m

where the expression in the R.H.S. of (5) are integers.
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So we can write rp as a sum of 4 squares.
But 1 <r < m and this contradicts the minimality of m.

So m > 1 is impossible
= m=1

Hence the theorem
(It is called Langranges theorem)

Waring Problem :- Waring problem is about the representation of a natural
numbers as a sum of fixed number of squares or cubes, or 4-th powers and so
on.

In 1970, Waring stated without proof that a natural number can be written as a
sum of 4 squares, 9 cubes, 19 biquradratics & 37 5-th powers & on. In 1909,
Hilbert proved that given any natural number n and k > 2, 3 a fixed number
s(k) = s(say) such that n can be written as sum of s k-th powers.

The Waring problem has been established for all k = 5
The numbers g(k) and G(k)

Connected with Waring problem we define natural nos g(k) & G(k) in the
following way:

g(k) : is defined as the smallest nos such that every natural number can be
written as the sum of g(k) k-th power.

G(k) : is defined to be as the smallest natural number such that every natural
number (except a finite number) can be written as a sum of G(k) k-th powers.

Theorem 4.8 g(2) =4

Proof ;- By Lagrange Theorem, g(2) <4

Now the most economical representation of 4 as a sum of 4 squares is
4=12+1*+1%+1°

= 02)>4 =9(2)=4

Hence the theorem

Theorem4.9G(2) =4

Proof :- We know
G(2)<g(2) =4 ..(D

By definition G(k) is the smallest natural numbers except a finite number that

can be written as a sum of G(k) k-th powers. So to prove G(2) = 4, it is

enough to prove that an infinite number of natural numbers can not be written
as a sum of 3 squares.
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For this, we shall prove that no natural number of the form 8k + 7 can be
written as a sum of 3 square.

Let n=a’+b?+c? ...(ID)

Then we distinguish following cases
(@) All the natural numbers a, b, c, are even then
a® = 0 or 4(mod 8)

b= 0 or 4(mod 8)
and ¢® =0 or 4(mod 8)
n=a’+b?+c?=0or4 (mod 8)

(b) Two of the numbers a, b, ¢ are even and one is odd. To be specific leta &
b be even and c be odd.

Then a’ =0 or 4 (mod 8)
b% =0 or 4(mod 8)
¢’ =1 (mod 8)
n=a’+b?+c’=1or5(mod 8)
(c) Two of a, b, ¢ are odd and third is even
Let ‘a’ be even and b, ¢ be odd.
then a® =0 or 4(mod 8), b” = 1 = ¢? (mod 8)
s n=a’+b?+c?=2or6(mod 8)
(d) All of a, b, c are odd
then a’ = b%*=c? = 1(mod 8)
n=a’+b?+c?=3(mod 8)
Therefore, for no choice of a, b, ¢
n = 7(mod 8)
.. No number of the form 8k + 7 can be written as a sum of 3 square

- G(2) >3 .11

149
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= G(2)=4

From (1) & (111) we get G(2) =4
Remarks:- It is clear from the proof that
if n=0 (mod 4) and

n=a’+b%+c? ,thena, b, c must be all even.

Example :- Prove that no number of the form 4™ (8k + 7); (m = 0), (k = 0) can be written as a
sum of 3-squares.

Proof:- First we prove, no number of form 8k +7 can be written as a sum of 3 squares.

We shall prove the result by induction on m.

Ifm=0,thenn=4" (8k + 7) = 8k + 7 and we have proved that no number of the form 8k+7
can be written as a sum of 3- squares. So assume that no number of the form 4™* (8k + 7) (m
> 1) can be written as a sum of 3 squares

Now let n=4™ (8k + 7) whenm > 1

Then n=0 (mod 4)

If possible, let 3 numbers a, b, ¢ such that n = a® + b? + c? then by the remark made earlier a,
b, ¢, must be all even.

Therefore — =t —+—
4

(a 2 . b)2 . c)2
2 2 2
. N .
i.e. Z can also be written as a sum of 3-squares.

n m-1
But S 4™ (8K +7)

and this contradicts the assumption that no number of the form 4™*(8k + 7) can be written as
a sum of 3-squares which proves the exercise.

Lower bounds for g(k) and G(k)

k
3
Theorem 4.10 g(k) > [Ej +2K-2

3 k
Proof :- Letq = [Ej
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Let N = 2“ g-1, then by definition, N < 3%,

So if we want to represent N as a sum of kth powers, the 3 cannot occur in
this representation. Further N < 2Xg. So for the most economical
representation of N as a sum of kth powers we must take g—1 powers of 2% in
its representation.

N=2g-1=2Kqg-1+2"— 2%
= 2Xg-1) + 2 -1
= (g-1) 2% + (2%-1). 1¥

Thus we need exactly -1 + 2“-1 = q + 2*-2 kth powers to represent N as a
sum of k-th powers in the most economical representation.

k
gk) >q+2“-2= [[g] ]+2k _2

Theorem 4.11 G(k) >k +1
Proof :- To prove the theorem we first prove a lemma.

Lemma :- For every integerk >1and r > 1

%(a+1)(a+2)...@+r—1) _ b+)b+2)...0+r1)

B et E

Proof :- We shall prove the lemma by induction on b. However first we note
that (|n) divides the product of n consecutive integers. So fractions

appearing on both sides of (1) are integers.
Take b =1, then L.H.S. of (1) for b =1, is equal to

r=1+r r-1 r r+1
L L L L L
|r—1 |r—1 |r—1 [T

(1)

So assume that (1) holds for (b—1), where b > 2 and we shall prove its for b.
Now L.H.S. of (1) is equal to

b (@a+1)@+2)...a+r-1)
& |-t

151



152

ANALYTICAL NUMBER THEORY

b-1@+)@+2)...a+r-1) (b+)b+2)...0+r-2)
> +

SIS =
_b(b+D..0+r-) (b+DH(b+2)...0+r-1)
I T T
_ (b+1)(b+2)..é)+r—1)(b+r) — RH.S. of (1)

Thus lemma is true for b.
So by induction principle, lemma is true for every b > 1.

Proof of theorem :- For any given natural number N, let A(N) be the number
of those natural numbers n such that 0 < n < N and n can be written as sum of
k k-th powers i.e. A(N) is the number of natural numbers n such that

n=x+.+xKand0<n<N (D

is solvable

By interchanging X, Xa,..., xk If necessary, we assume 0 < x; < X <...< X
and x, < N** (2

Since n < N, then to every solution of (1), we must have a solution of (2), so
that

A(N) < B(N) ..(3)

where B(N) is the number of solutions of (2). Now, we have
N/ K
Xk X4 X3 X2
BN= > 3 ..X ¥ >1
Xk=0 Xk—1=0 x3=0x2=0x1=0
[Nl/k
Xk X4 X3
= Y Y .3 Y (et
Xk=0 Xk-1=0 x3=0x2=0
Now applying the above lemma witha = x,, b=xzand r =2,

N1/ K

BN) =" 5 ’%(: % (X3 +D (X3 +2)

Xk=0 xk—1=0 x3=0 |_2
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Again, applying the Lemma with a = X3, b = X4, r = 3 and then continuing like
this we obtain

IV x4 D) +2)n b+ k1)

B(N) =
( ) xkz=:0 k—l
ENl/k]-Fl;ENl/k]-i-2;.EN1IK]+k )

= K - (4

Now, if possible, let G(k) <k, so that all but a finite number can be written as
a sum of k kth powers, so there exists a finite number C such that

A(N) > N-C
But we have
A(N) <B(N)
Combining, we have
A-C <A(N) <B(N) ..(5)
Now we know that
NYK_1 < [Nllk] < NV
So that, we have from (4),

1k (LK Uk | 1/k 1/k 1/k
N S(NYE +1)...(N7* +k 1)§B(N)§(N +D(N"* +2)...N"" +K)

K Lk

(6)
Then, we observe that for large N, L.H.S and R.H.S. of (6) tend to N/|k.
Hence for large N, B(N) ~ N/| k. Thus it follows that from (5), we have for
sufficiently large N,

N<N /|_k, a contradiction for k > 2.

Thus, our assumption that G(l) < k is not possible and hence, we must have :
G(k) > k + 1.

Theorem 4.12 Prove that,

G(2%) =22 foro > 2
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Proof :- Firstly, let 6 = 2, then we have to show that
G(4) > 16
Let x be any integer, then
x* =0 or 1(mod 16) (1)

Thus, if we consider the numbers of the form 16m + 15, then any such number
require at least 15 biquadrates. It follows that,

G(4) > 15

From (1), it follows that if 16n is the sum of 15 or fewer biquadrates, then
each biquadrate must be a multiple of 16. Hence, we can write :

15 4 15 4
16n=3Y X;" =3 (2y;)
i=1 i=1
so that
15
n=>x yi'
i=1
Hence, if 16n is the sum of 15 or fewer biquadrates, so is n. But, we observe

that 31 is not the sum of 15 or fewer biquadrates. In fact the most economical
representation contains 16 biquadrates given by, 31 = 2% + 15.1%,

So we must have

G(4) > 16
Now, let 8 > 2, then we have k =2°> 6 + 2
20 yz6

If x is even, then x2 = (2y)26 =2

Since, 6 + 2 < 2°, 50 292| 22’

So that we must have
x2"= 0 (mod 2°*2).
If x is odd, then x2 = (2m +1)2°
N x? = (@4 2m)? = 1+ 2% m + 29 (2° _1) m?
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=1-2""m(m-1) =1 (mod 2°*%)
Thus, we have obtained that,

x2"= 0 or 1(mod 2°*?) Q)

Now, let n be any odd number and suppose that 2°*? n is written as a sum of
2°*1_1 or fewer k th powers where k = 2

042 N = K 4 . K k
27 ON=X + X+t Xoov2 ;-

then from (2), we get that each x; must be even and hence divisible by 2.
Hence, we obtain that 22| n which implies that n is even, a contradiction.

Hence, we must have
G(2%) = 22 for 6 > 2.

This completes the proof
Theorem 4.13 Let p be a prime such that p > 2 (i.e. p is an odd prime), then

G[p’ (p-1)] =p™"
Proof :- Let k = p°(p-1).

Sincep>2,sowe have 6 +1 <3<k
Hence, if p | x, then we have

X = 0(mod p**Y)

and if p} x, then we have

x<= xP"®P-D_ 1 (mod p°*Y)
[Using the fact that ¢(p®**) = p®(p—1) and applying Euler’s theorem]

Thus we obtain that
x* =0 or 1(mod p*%)

0+1

Let n be a natural number such that (p, n) = 1 and suppose that p""".n is the

sum of p”**-1 or fewer kth powers i.e.

0+1 . _ k k k
p-.n=X1 +Xo +”'+Xpe+l—l

then each x; must be divisible by p and hence each factor on R.H.S. must be
divisible by p* which implies that
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0+1
n,

p“Ip
a contradiction, since k>0 + 1and (p,n) =1
Hence, we must have

G(K) > pe+1

ie.  G(p'(p-1)=p™*

This completes the proof.

Theorem 4.14 Let p be a prime such that p > 2 and 6 > 0 then
1 1
Gi=p’(p-D == (p** -1
{2'0 (p )} 2(|O )
Proof :- Let
k=2 “(p-1)
= 2I0 p

1
then we have 6 + 1 < p’ < > p®(p—1) = k (except in the trivial case, p=3, 6 =
Oand k=1)

Hence we must have if p/x, then x* = 0 (mod p°*%)

and if p,{/ X, then we have

X2 =P (P-D_ 1 (mod p”*!) (By Euler’s theorem)
Hence, P’ (x*-1)
= p%*H [ (X+1) (X-1).

Since p > 2, s0 p can not divide both x +1 and x“~1 and so one of x*~1 and
x“+1 is divisible by p°**. Thus, we have :

x“=0, 1 or -1(mod p°*)

0+1

1
If follows that number of the form p®'m + E(p ~1), requires at least

1 0+1
3 (p"" 1) k th powers

1
= G(Kk) > > (p***-1) and the proof is completed.

Theorem 4.15 If 6 > 2, the n,
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G(3.2°%) = 2°*
Proof :- We have that, G(3.2%) > G(2°)

> 2%*2 (proved earlier)

This completes the proof.
Algebraic Number and integers
Definition :- (Rational Integers)

The numbers ..., -3, -2, -1, 0, 1, 2, 3,... are called the “rational integers” or
simply the “integers”. The set of rational integers {..., -3, -2, -1, 0, 1, 2,
3,...} is denoted by Q(1).

Definition :- An algebraic number is a number x which satisfies an algebraic
equation, i.e. an equation

ao X" +a1 X" +...+a,=0, a, =0, where a, ai,..., are integers
a . . . .
If x = b’ then bx — a = 0, so that any rational x is algebraic. Any quadratic

surd is algebraic; thus i = +/—1 is algebraic.

Definition :- If ap = 1 in the above definition, then x is called an algebraic
integer .

Definition (Gaussian Integers)

Gaussian integer (or complex integer) is the number of the form, & = a + bi,
where a and b are rational integers. The set of Gaussian integers, namely

{a + bi : a, b are rational integers}
is denoted by Q(i) and Gaussian integers are also called as integers of Q(i)
Definition :- (Divisibility in Q(i))
An Gaussian integer & is said to be divisible by an Gaussian integer n(= 0) if

there exists an Gaussian integer ¢ such that £ = n o. Then, we say that n is a
divisor of € and write n | €.

Remark :- 1. Any Gaussian integer £ has eight trivial divisors namely, 1, -1,
I, -, & —€, 1€ and —I€&.

2. Basic properties of divisibility are satisfied in k(i), such as
B, Bly =aly
o |y, o V2., o] yn = o | (Brys + Bayz2 +...+ Bryn) for all Gaussian integers.
Definition :- (Unity)
The integer < in Q(i) is said to be unity of Q(i) if < | £ for every & of Q(i)
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Alternatively, we may define a unity of Q(i) as any Gaussian integer which is
a divisor of 1. The two definitions are equivalent, since 1 is a divisor of every
Gaussian integerand €|1, 1| = €| &.

Definition (Norm of an Gaussian integer)
Let £ =a+ ib is an Gaussian integer. The norm of & is defined as :
N(£) = N(a + ib) = a® + b?
Remark :- It can be easily verified that N(§) N(n) = N(&n) for all Gaussian
integers & and n.

Theorem 4.16 In Q(i), the norm of a unity is 1 and any integer whose norm is
1 is a unity.

Proof :- If € is a unity, then, by definition, € | 1

= there exists an Gaussian integer n such that

l=en
= N(1) = N(en) = N(&) N(n)
= 1=N(e)N(m) = N(e)|1 =N(e)=1
On the other hand,
Let N(a+ib)=1
= a’+b*=1 = (a+ib) (a-ib) =1
= (a+ib)|1
= a + ib is a unity and proof is completed.

Theorem 4.17 The unities of Q(i) are e =i*where $=0,1,2,3 or

Show that + 1 and + i are the only unities of Q(i).

Proof :- Let € = a + ib be a unity of Q(i), then by above theorem,
N(e)=a?+b*=1

But the only solutions of a* + b? = 1 are

a=+1b=0anda=0,b=x1

So that, only choices of € are 1, -1, i, —i
Hence the unities of Q(i) are of the form i* (s =0, 1, 2, 3)
Definition (Associate)
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Let & be any Gaussian integer and € be unity of Q(i), then €& is said to be
associate of &, or we say that & is associated with .

Remark :- (I) By above theorem, it is clear that the associates of & are &, i,
_E.n _IE;

(1) The associates of 1 are the unities.

Definition (Primes in Q(i))

An integer in Q(i), neither zero nor unity, is said to be a prime in Q(i) if it is
divisible only by associates of itself or by associates of | i.e. if  is a prime in
Q(i), then it has no divisors except the eight trivial divisors 1, -1, i, —i, =, i=,
—im, -m.

Theorem 4.18 A Gaussian integer whose norm is a rational prime (2, 3, 5, 7,
11...)is a prime in Q(i).

Proof :- Let & be any Gaussian integer such that

N(E) = p where p is any rational prime. We have to show that € is a prime in
Q(i).
Let & =moc wheren,c € Q(i) then N(nc) =N() =p

= N(n) N(c) =p
But p is a prime so either N(n) = 1 or N(n) = 1. Hence either n or G is a unity
and therefore & is a prime in Q(i).

Remark :- Converse of above theorem is not true i.e. norm of a prime of Q(i)
may not be a rational prime. For example, 3 =3 + 0i, k(i) such that N(3) =9
i.e. Norm of 3 is not a rational prime, but we show that 3 is a prime of Q(i)

Let 3 = (a + bi) (c + id)
= N(3) = N(a + bi) N(c + id)
= 9=(a’+b?) (¢ + d)

But, it is impossible that, a® + b? = ¢? + d = 3 (since 31 is not the sum of two
squares) and hence either a> + b> = 1 or c? + d* = 1 i.e. either a + ib or ¢ + id is
a unity. It follows that 3 is a prime of Q(i).

Theorem 4.19 Any Gaussian integer, neither zero nor unity, is divisible by a
prime of Q(i)

Proof :- Let & be any Gaussian integer which is not equal to zero or unity. If
€ is a prime in Q(i), we have nothing to prove.

Let £ be not a prime, then we must have & = o131 for some oy 31 € Q(i) such
that, N (o) > 1 and N(B1) > 1 and so we have
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1 <N (o) <N(&) (1)
If oy (Or B1) is a prime, the proof is completed. If oz is not a prime, then
o = oz B2 for some o, B2 € Q(i) such that,

N(o) >1an N(B2) > 1
then we have
1 < N(o2) < N(ot1) ...(ID

Combining (1) and (I1), we obtain
1 <N(o2) < N(ou) < N(E).

We may continue this process as long as o is not a prime. Since, N(§) >
N(o) > N(owp)... is a decreasing sequence of positive rational integers, we
must come to a prime o, and then we have

E=ouPr=02B2P1=... = PBr...p1

Thus, oy is a divisors of € and « is a prime in Q(i).

Theorem 4.20 Any Gaussian integer, neither zero nor unity, can be written as
product of finite number of primes of Q(i)

Proof :- Let & be any Gaussian integer, not equal to zero or unity. If & itself is
a prime, then the result is true.

We shall prove the result by induction on norm. We assume that result is true
for all Gaussian integers (neither zero nor unity) with norm < N(§).

Now, if € is not a prime, then, by last theorem, there exists a prime = such that
Tl

or & = no. for some ave Q(i) (1)
and we have N(a) < N(€)

Now if N(a) = 1, then o is a unity and hence € is an associate of a prime = and
hence, itself, is a prime, a contradiction. So N(o) > 1, i.e. we have obtained
N(o) < N(§) and o is neither zero nor unity. So by induction hypothesis, o
can be written as a, product of primes of Q(i), say m, mo,..., 7.

i.e. o =T To... T
Hence, from (1), we obtain

€ = M1 ... Where wT, My, To,..., T are primes of Q(i)
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Theorem 4.21 Given any two integers v, y1 (y1 # 0) of Q(i), there exists
integers p and v, such that

¥ = py1 v2 where N(y2) < N(y1)

Proof :- Since y; = 0, we have :

R R + Si where R and S are real (in fact R and S are

11
rational). Then, we can find two rational integers x and y such that

N -

1
|R—x|< > and [S-y| <

and then we have

l—(x+iy)‘ =|R+1iS) - x +iy|
Y1

1

=] (R-x) +i(S -y)| = [(R-x)* + (S-y)]"* < 7

Now, if we take
p=x+iyandy,=y-py

Thus, we have

Y
— P
Y1

ly — pyil = Ival

<1||
_\/EY1

This implies that

N(y2) =Ny — py) = |7 — pyaf’ < %Ivll2 = % N(y2) < N(y1)
Thus, we have obtained that
Y=py1t (v —pva)
= pv1+v2 where N(y2) <N(v2)

Remark :- (I) The above theorem is known as “Division Algorithm in Q(i)”.
(1) Like the rational integers, the following result holds in Q(i).

“Let B and y be Gaussian integers and & be prime of Q(i) such that = | By, then
w|Borm|y.
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The Fundamental Theorem of Arithmetic in Q(i)

Theorem 4.22 Every Gaussian integer (neither zero nor unity) is expressible
as a product of finite numbers of primes of Q(i). This representation is unique
apart from the order of the primes, the presence of unities and ambiguities
between associated primes.

Proof :- Let € be any Gaussian integer, then & can be expressed as product of
finite number of primes of Q(i).

Let & = w1 mo... T = V1 V2...Ys ...(1)
be two representations of £ where my, w,..., 7, Y1, Y2,..., ¥s are all primes of

Q(i).
Now, by (1), we have

T | Y1 Y2...Ys

Since m; is a prime element of Q(i), so =, must divide some v; (1 <i < 3).
Since v; is also a prime of Q(i), so we can say that w; and y; are associates of
each other

vi = €11 for some unity €; € Q(i)

Thus, (1) becomes :
T To. .. T = V1 Y2...Yi-1 (€1 T1) Vie1...Vs

which implies that
71 (... T — Y1 Y2...Yie1 €1 Vi+1...Ys) =0

But wty is a prime, so w; # 0

= T2... T = €1Y1Y2...Yi-1 Vi+l...¥s

Let, if possible, r <'s, then continuing like above r times, we get :
1=e1 er.eryjtvjo-- i

Since ;i is a prime and we get ;i | 1 which is a contradiction. Thus our
supposition r < s iswrong. Thus r« s. Similarly, we can prove that s« r. So
we have r=s

By the process, we adopted, it also follows that m; is associate of some y; and
conversely.

Integers and fundamental Theorem in Q(w) where w® = 1.
Definition :-
The number of the form

& = a + bw where a and b are rational integers and w is given
by
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2 T
ri 2 2r  —1+/3i
w=ed =cos—n+isin—n=+—
3 2
are called integers of Q(w).

2
Remark :- (1) If w = egnI =c0s 27n/3 + i sin 27/3

—1+\/§
2

then, we have

1
L

W
() w+w?=-1andww’ =1
ie. 1+w+w?=0andw®=1

Definition :- (Norm in Q(w)).
Let £ = a + bw be any integer in Q(w), then norm of & is defined as :
N(€) = (a + bw) (a + bw?) = a® — ab + b?

2 2 b ‘ 3 2
Note (1) we have N(§) =a“—ab +b" = a—E +Zb
= N(E) = 0 for & =0 and N(€) > 0 otherwise

(1) We have:
N(a + bw) = a* —ab + b® = |a + bw]?

(1) 1t can be easily verified that
N(aB) = N(o) N(B)

Forall a, B € Q(w).

Remark :- Definitions of divisor, unity, associate and prime in Q(w) are same

as those in k(i).
Theorem 4.23 The unities of Q(w) are given by +1, +w, w?
Proof :- Let a + bw be any unity of Q(w), hen

N(a+bw)=1

— a—ab+b®=1

= (2a-h)? + 3b* =4
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The only solutions of this equation are
a=x1,b=0;a=0,b=41;a=1,b=1,a=-1,b=-1

so that the unities are
+1,tw, £(1+w)
or +1, +w, +W
Theorem 4.24 (1) The norm of a unity in Q(w) is 1 and any integer of Q(w)
whose norm is 1 is unity.
(2) An integer whose norm is a rational prime is a prime in Q(w).
(3) Any integer in Q(w), not zero or a unity s divisible by a prime of Q(w).
(4) Any integer in Q(w), not zero or a unity, is a product of primes in Q(w).

Proof :- The proofs of these theorems are same as those given in the case of
k(i), except for the difference in the form of the norm.

Remark :- Consider 1-w €Q(w)
then by definition of norm, N(1-w) =3
So by theorem (2) given above, 1-w is a prime of Q(w)

2. Converse of theorem (2) may not be true i.e. norm of a prime of Q(w) may
not be rational prime. For example, consider 2 =2 + 0.w € Q(w) then N(2) =
3 which is not a rational prime.

But, we show that 2 is a prime of Q(w)
Let 2=(a+bw)(c+dw)

= N(a + bw). N(c + dw) =4
Let, if possible
N@+bw)=+2
= a?—ab+b’= +2 = (2a—b)*+3b*=+8
which is impossible i.e N(a + bw) = + 2
Similarly N(c + dw) = £2

Hence one of these must be 1 and other is 4 i.e. one of (a + bw) and (c + dw)
is unity and hence 2 is a prime of Q(w).

Theorem 4.25 Given any two integers vy, y; of Q(w) and y; = 0, there exists
two integers K and v, in Q(w) such that
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v = Ky1 + y2 where N(y2) < N(y1)

(This is known as Division Algorith in Q(w))

Proof :- Let y=a + bw and y; = ¢ + dw then consider,

vy a+bw (a+bw)(c+dw?)

v1 C+dw  (c+dw)(c+dw?)

_ac+bd-ad+ (bc—-ad)w

=R+Sw(s &
c? —cd+d? S&Y)

ac+bd-ad bc—ad
where, R ———— and S =
c“—cd+d c“—cd+d

— R and S are rational numbers.

We can find two rational integers x and y such that
|R—X| < %2 and |S—y| < Y2

and then, we have

2
yl_ (X+yw)| =](R-x) + (S-y)w[]
1

= N[(R-x) + (s-y) w]
3

= (R-%)’ - (R—x) (S-y) + (S-¥)"< 2

Hence, if we take
K=x+ywandy,=y-Kwy;
then we obtain

v =Kyt 72
3
where N(y2) = N (y — K y1) < 7 N(v1) < N(v1)

This completes the proof.

Fundamental Theorem of arithmetic in Q(w) :- The integer of Q(w) can be
expressed as a product of primes of Q(w) and this expression is unique apart
from the order of the primes, the presence of unities and ambiguities between

associated primes.
Proof :- Same as given in the case of k(i)

Theorem 4.26 Show that A = 1-w is a prime and 3 is associated with A2
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Proof :- It has been already proved (in a remark) that A = 1-w is a prime of
Qw).

Now A2 = (1-w)? = 1-2w + w?
=1-2w + (-1 -w)
=-3w

Hence 3 is associated with A2,
Algebraic fields
An algebraic field is the aggregate of al numbers

R(9) = %

Where § is a given algebraic number, P(8) and P’(38) are polynomials in 3
with rational coefficients, and P’'(8) = 0. We denote this field by Q(8). It is
plain that sums and products of numbers of Q(8) belong to Q(8) and that o/
belongs to Q(8) if o and {3 belong to Q(8) and B = 0.

We defined an algebraic number & as any root of an algebraic equation
aoX"+a X"+, +a,=0,

where ag, ai,... are rational integers, not all zero. If & satisfies an algebraic
equation of degree n, but none of lower degree, we say that & is of degree n.

If n =1, then € is rational and Q(€) is the aggregate of rationals. Hence, for
every rational &, Q(&) denotes the same aggregate, the field of rationals, which
we denote by Q(1). This field is part of every algebraic field.

If n =2, we say that € is ‘quadratic’. Then & is a root of a quadratic equation
agxX’+a x+a;=0

and so g:w, \/m:C&b_a

for some rational integers a, b, ¢, m. Without loss of generality we may take
m to have no squared factor. It is then easily verified that the field Q(&) is the
same aggregate as Q (¥m). Hence it will be enough for us to consider the

quadratic fields Q(¥m) for every rational integer m, positive or negative
(apart from m = 1).

Any member & of Q(v¥m) has the form
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= POUm) t+uvm (t+uvm)(v-wym) a+bvm
P(m)  vewvm vZ —w’m - c

for rational integers t, u, v, w, a, b, c. We have (c& —a)> = mb? and so £ is a
root of

c®x? — 2acx + a® — mb?* = 0. (1)
Hence & is either rational or quadratic; i.e. every member of a quadratic field

is either a rational or a quadratic number.

The field Q(¥m) includes a sub-class formed by all the algebraic integers of
the field. We defined an algebraic integer as any root of an equation

X+ X+ ¢=0, 2)

where cy,...,cj are rational integers. We appear then to have a choice in
defining the integers of Q(Nm). We may say that a number & of Q(Nm) is an
integer of Q(¥m) (i) if £ satisfies an equation of the form (2) for some j, or (ii)
if ¢ satisfies an equation of the form (2) with j = 2.

Primitive polynomials
We say that the integral polynomial

f(x) =ap X" +a; X" +...+ a,
is a primitive polynomial if
ap >0, gcd(ag, az,...,an) =1

Theorem 4.27 An algebraic number & of degree n satisfies a unique primitive
equation of degree n. If £ is an algebraic integer, the coefficient of x" in this
primitive equation is unity.

We first prove the following theorem :

Theorem 4.28 Let & be an algebraic number of degree n and let f(x) = 0 be a
primitive equation of degree n satisfied by &. Let g(x) = 0 be any primitive
equation satisfied by &. Then g(x) = f(x) h(x) for some primitive polynomial
h(x) and all x.

By the definition of & and n there must be at least one polynomial f(x) of
degree n such that f(¢) = 0. We may clearly suppose f(x) primitive. Again the
degree of g(x) cannot be less than n. Hence we can divide g(x) by f(x) by
means of the division algorithm of elementary algebra and obtain a quotient
H(x) and a remainder K(x), such that

g(x) = f(x) H(x) + K(x), ..(D)
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H(x) and K(x) are polynomials with rational coefficients, and K(x) is of
degree less than n.

If we put x =& in (1), we have K(€) = 0. But this is impossible, since & is of
degree n, unless K(x) has all its coefficients zero. Hence

g(x) = f(x) H(x).
If we multiply this throughout by an appropriate rational integer, we obtain

cg(x) = f(x)h(x), .(2)

where c is a positive integer and h(x) is an integral polynomial. Let d be the
highest common divisor of the coefficients of h(x). Since g is primitive, we
must have d | c. Hence, if d > 1, we may remove the factor d; that is, we may
take h(x) primitive in (2). Now suppose that p | c, where p is prime. It
follows that f(x) h(x) = 0(mod p) and so, either f(x) = 0 or h(x) = 0 (mod p).
Both are impossible for primitive f and h and so ¢ = 1. This proves the
theorem.

Proof of the theorem 4.27 The proof of Theorem 4.27 is now simple. If g(x)
= 0 is a primitive equation of degree n satisfied by &, then h(x) is a primitive
polynomial of degree 0; i.e. h(x) = 1 and g(x) = f(x) for all x. Hence f(x) is
unique.

If € is an algebraic integer, then & satisfies an equation of the form

X+ X+ +¢=0, (D

where c; Cy...cj are rational integers, for some j > n. We write g(x) for the
left-hand side of (1) and, by Theorem 4.28, we have

g(x) = f(x) h(x),

where h(x) is of degree j—n. If f(x) = ag X" +... and h(x) = ho X" + ..., we
have 1 = ag hg, and so ap = 1. This completes the proof of Theorem 4.27.

Definition :- A complex number « is called an algebraic number if 3 integers ay, a;,...a, (a, #
0) such that o satisfies a polynomial of the form

f(X) = an X" + an g X"+ aX + ag

Further if a, = 1 in above, then « is called on algebraic integer

Definition :- A monic polynomial p(x) in Q[X] is called a minimal polynomial of o if p(x) is a
polynomial of minimal degree which is satisfied by a.
Remark :- In modern algebra we have proved that if o is an algebraic integer then Q[a] =

Q(or) where Qo] is the set of all polynomials in o with coefficient, from Q and Q(«) is the
smallest field containing Q & o.

Remark :- We know Q(a) is a vector space over Q and degree [Q(a). Q] is the degree of
minimal polynomial satisfied by a.



PRIMES IN CERTAIN ARITHMETICAL PROGRESSIONS AND SYSTEM OF CONGRUENCES 169

Theorem 4.29 Given an algebraic number o, 3 a non-zero integer t such that t « is an
algebraic integer.

Proof :- Since o is an algebraic number, 3 integers a,, a, 1,..., a1, 8, &, # 0 such that

o +a, "+ ta a+ay=0 ..(D
Multiplying (1) by aﬂ‘l, we get

ala" +a, 0"l +..+a,aal ™ +agal ™ =0
Then (a, o) satisfies

fx)=x"+a, 1 X" +..+a; aR_ZX +ay aﬂ‘l

= (an ) is an algebraic integer. If we take t = a,,, we get the result.
The general quadratic field
Definition :- A field k of complex number is called a quadratic field if

[ K:Q]=2and K is a vector space over Q.

Theorem 4.30 If K is a quadratic field, 3 a non-zero square free integer m such that
K=0Q(v/m)

Proof :- Since [K : Q] = 2, take any ¢ €K, ¢ ¢ Q. Now consider 1, ¢, c>. These are three
elements of K, so these must be linearly dependent over Q. So. 3 ao, a1, &, in Q, not all zero,
such that

ayc’+ac+a=0

Now a, can not be equal to zero since otherwise ceQ

a a
= ¢+ —10 + 22 0
do  Qdp
a a
= 24 Lo=_22
o ap
Completing squares we get
2 2 2
ey B, 8 a3 _aj —43agdy
ap  4a> 4a3 ag 4a}
2 2
a a; —4a,a
Then C+ L 1 20 2

Taking the square root we get

adq

[.2
ar —4apa
c+ :i 1 092

2a 2a,
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“ag+q/af —4apa,

i.e. c=

2ao
2
—a; £4/a; —4apa
Then Q) =Q ! ! 072
2a
But 23, €Q

Q(c) = Q(-a, +v/a% —4apa, )
=Q (a2 —4aga, )
=Q(ya? —4aga, )

=Q(bvm) = Q(Wm)
where m is a square free integer.
Now we claim K = Q (+m ) = Q(c)
Suppose K = Q (vm)

Then3a €K, ag Q (\/E) Then 1, \/E a are linearly dependent over Q since [K: Q] =2
and so aeQ (\/E ).
Remark :- Since m is square free

m=0 (mod 4)

So eitherm=1 (mod 4) or m= 2 (mod 4)
or m = 3(mod 4).

Theorem 4.31 Let K = Q (/M) be a quadratic field and let aeK. Then o is an algebraic
integer of K.

<> o can be written as

a=a+br

where abeZ

and r=\/ﬁifm520r3(mod4)
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1+vm
and T= 5 if m=1(mod 4)
Proof :- Let o« = a + bt, where 1 is given as above
Let m =2 or 3(mod 4)
Then a=a+h \/ﬁ
= oa—a=bh \/ﬁ
- (a—a)* = b*m
= a?—2a0+a’-b'm=0
= o satisfies x* — 2ax + @’ —b?m =0

- o is an algebraic integer by definition. Now let m = 1(mod 4). Then

a:a+b[l+m]

2
b bJm
l.e a=a+—+
2 2

Squaring, we get

2 b2
o?—a(2a+h) +a’+ab+— = —m
4 4
2
or a? —(2a +b)a + a° + ab s (m-1)=0
Thus o satisfies
2

x*—x(2a +h) + a® + ab vy (m-1)=0

m-1
el

which has integral coefficients since

= o Is a algebraic integer.
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Conversely, let o be an algebraic integer. Since c.eK = Q(~/ M ) then we can write

_a+bVym
C

o ,Wherea,b,ceZ,c#0

W. L. O. G. we assume
c>0andgcd(a, b,c)=1

_a+b\/ﬁ

c

= C(x—a:b\/m

Squaring we get

Now o

(ca—a)? = b?m

c?o? — 2aca + a2 —b’m=0

, 2a_ a’-b’m
- I el LB
C c

Then o satisfies

X —2—x+—=0 ..(1)

Since a is an algebraic integer, so the coefficient in (1) must be integers. Then
(i) c|2aand ¢?| (a@>~b*m) .(2)

Ifb=0thenc?|a’ =c]a

In this case (1) becomes

2a_ a’
X Zx+=5=0
C c
2
a a
= X——| =0 =>x=—
C
i.e o =alc
a . .
But c|a = — isaninteger
C

a+0+/m

c

a
Then oo = — and it is of the required form. i.e. o =
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So let b=0

let gcd(a, c) =d

Then dla,d|c = d?|a% d?|c?

But ¢?| (a>~b?m) and d?| c?

= d?| (a® - b*m)

But d?|a® = d*|b’m

= d?| b? (- mis square free)
= d|b

Alsod|a,d|b,d|c =d|gcd(a b, c)=1

= d=1
= ged(a, c) =1
But c|(2a) =c|2 =c=1o0r2

Ifc= 1,thenoc:a+b\/m where a, b €Z.
m=2orm=23(mod 4)
Then « is of the required form

Now let c =2

_ a+byvym
2

Then o

Sinceged (a,c)=1&c=2

= a must be odd.

From (2), ¢?| (a* - b?m)

= a® — b?m = 0(mod 4)

Then a’ =b’m (mod 4) ..3)
Butais odd and m =1 (mod 4)

= b” =1 (mod 4)

= b is odd.

The b can not be even.
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= d=1

= bdc (a,c) =1

Butc/(2a) >c/l2=>c=10r2
Ifc:1,thencx:a+b\/m wherea, b e Z
and m=2orm=3(mod 4)

Then o of the required form

Now let ¢ =2

_a+bVym
2

Then o
Since gcd(a, ¢)=1&c=2

= a must be odd.

From (2), c¢?/c*~b’m)

= a® — b% = 0(mod 4)

Then a%=b?m (mod 4) (4
But ais odd and m = 1(mod 4)

= b? = 1(mod 4)

= b is odd.

Then b can not be even.

a+bvm 1+vm | a-b
NOW o= :b +
2 2 2
: Jvm+1  a-b
Then o is of the form x +y t where X,y eZ & t = since is an integer.

Hence, this proves the theorem

Remark :- If m = 1(mod 4), then « is an algebraic integer of Q (\/E)

_a+bvm
2

Proof of remark :- If both a & b are even then

& o , Where a, b € Z and of same parity.

(x:x+y\/m where x, yeZ
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_ [1+x/5]
=2y 5 +X-Y,

and if both a & b are odd,

a+bvm b(1+\/m)+a—b
o= =
2 2 2

and in either case, they can be written as a + bt, where a, b are integers and so
they are algebraic integers

Conversely, if o is an algebraic integer

1++/m
2

Let oc:a+b1::a+b[

_ (2a+b)+bJm
2

Then b & 2a + b are of the same parity and this prove the result.

Theorem 4.32 The algebraic integers of a quadratic field form a ring.

To prove this we shall prove that the product of two algebraic integers is an algebraic integer.
Proof :- If m=2 (mod 4) or m = 3 (mod 4), the result is trivially true.

So letm =1 (mod 4).

Let Xi=a;+bitandx,=a,+ byt
vm+1
where =
2
Now X1 Xp = (a1 + b, 'C) (az + b, 'C)

=a;a +t(a b, +a,by)

+b1b2'€2
Jm +1 1 Jm
But T= S>T1-—=—
2 2
1 m ) m-1
= T1Tt —=— =T =1+
4 4

Thenx; X, =a; a, + 'C(al b, + azbl)
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+b b r+m—_1
12 4

=1(a1 by + @ by + biby)

-1
4

+a.a, + b1b2

which is of the form x + y T where x, yeZ.
= X X, is an algebraic integer.

Definition :- Let o and 3 be two algebraic integers, B = 0. We say p | o if 3 an algebraic
integer y such that o = By

Definition :- An algebraic integer o # 0 is said to be a unity if o |1 i.e. if 3 an algebraic
integer B such that a3 = 1.

Theorem 4.33 The product of two unities is a unity

Proof :- Let o, and a, be two unities, then 3 algebraic integers 3; & B, such that o, B; = o, 3,
=1 Then (01 B1) (o2 B2) =1 ie. (g ) (P1B2) =1

Also B B, is an algebraic integer (since B, & B, are algebraic integer)
= oy O IS a unity

Theorem 4.34 The inverse of a unity is a unity

Proof ;- af =1 = Ba=1 = Bisalso a unity

Remark :- The above two theorems prove that the unities of a quadratic field form a
multiplicative group.

Definition :- Let o = x + y /M eK = Q(v/m).

Then X,y €Q.

We define norm of o as N(o) = N(x + y\/a) =x2—my?

Clearly if m < 0; (x* — my?) >0

Remark :- Also N(o) , = 0 if(x, y) #(0, 0), i.e.if a#0

Proof :- If possible, let N(o) =0

= X2 —my?=0

= X2 = my? (D)

If (X, y) # (0, 0) then (1) is not possible since m is square free.
Theorem 4.35 Norm is multiplicative i.e. if o, BeK; N(af) = N(a) - N(B)
Proof :- Let o, B eK

Letcx:x1+y1\/ﬁ andB:x2+y2\/ﬁ
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Then N(a) = x12 -m y12 and N(B) = X% - my%
Now (xB:(X1+Y1\/E)(Xz+YZ\/E)
= (Xy X+ My, Y, + \/ﬁ (X1 Y2 + X2 y1)) and
N(atB) = (X1 Xz + My; y2)° = M(X1 Y2 + X Y1)°
= X2x3 +m2y2 Y5 +2MX X y1 Yo - m X2 y5-mX3 yZ

—2M X1 X2 Y1 Y2

U222 2.2.2 2.2 2.2
=X Xo+M7 Y1y, —mMXg Yo —MX3 Yg

2 2
= (X —my7)(x5 —my3) = N(@: N(B)
Theorem 4.36 The norm of a algebraic integer is an integer

Proof :- To prove this we have to distinguish two cases when K =Q(~'M)

Case | :-m=2orm=3(mod 4)

Let o be an algebraic integer of K. Then 3 integers x & y such that o = x + y\/m
Then N(x) = x> —my? is clearly an integer since x, y, m are integers
Case Il :- m = 1(mod 4)

If o is an algebraic integer, then 3 integers x and y such that

- 1+vm
a=X+y >

m-1

) m-1 o _ )
=x2+xy -y T which is clearly an integer since e”Z

Theorem 4.37 The norm of a unity is £ 1

Proof :- Let o be a unity. Then 3 an algebraic integer 8 such that 1 = o3
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Then 1= N(1) = N(o B) = N(ot) N(B)
But N(c) and N(B) are integers = N(a) |1
= N(a) =+ 1.

Definition :- Let o & B be algebraic integers. We say « is an associate of  if 3 a unity € of
Ksuch that B = €a..

Remark :- We can check that the relation of associate ship is an equivalence relation in the
set of all algebraic integers.

Definition :- An algebraic integer « is a said to be a prime of K if only divisor of o are
associates of a.

Theorem 4.38 If [N(«)| = p where p is a prime no, then « is a prime of K.

Proof :- If possible let o be not a prime element of K. Then 3 algebraic integers 3, y such
that o = By and f3, y are not unities of K.

Now N(ar) = N(By) = N(B) - N(v)
S P =IN(@)[ = IN(B) - NI = INB)I - IN(Y)I
But both of 3 & v are not unities of K.

Then IN(B)I > 1, IN(v)| > 1

But only positive divisorsof pare 1 & p

= IN(B)I=p=IN(y)] = p=p-p = p =1, which is not possible, since p is a prime number
= Either 3 or y must be a unity = Divisors of o are associates of o.. =

o is a prime element of K.
Theorem 4.39 If |[N(a)| = 1; then o must be a unity.

Proof :- We know if o = x + y\/m

Then N(oc):xz—myzz((x+y\/a)(x—y\/a):cxﬁ
where o denotes the algebraic conjugate of c.

Note that if o is an algebraic integer then o is also an algebraic integer since o & Ol are roots
of same polynomial.

Now |[N(x)]=1 = N(x)==x1,then £1=N(x)=a0 =o|l
= o is a unity .

Theorem 4.40 Every non-zero non-unity algebraic integer of K can be written as product of
prime elements of K.

Proof :- Let « be a non-zero, non-unity algebraic integer of K. Then [N(a)| > 1
Now we shall prove the theorem by induction of |[N(a)|
If IN(o)| = 2, then |[N(c)| is a prime number and so o is a prime number of K.

Now assume the theorem is true for all o where [N(a)] <n wheren eN, n> 2.
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Now let [N(a)| = n. If o is a prime element of K, we are through.

So let o be not a prime element of K
Then 3 algebraic integer B & v of K such that. o = By where 3 & y are not

unities of K.
Then [N(B)| > 1, [N(y)| > 1. But [N(c)| = [N(B)[ - IN(¥)] =IN(B)] < [N(a)| = .
and IN()| < IN(e)| =n

Then by induction hypothesis, both B & y can be written as product of prime
elements of K.

= o = By can be written as product of prime elements of K.

Theorem 4.41 Prove that the unities of the field K = Q( \/5) are +e "(n=0,
1,2,...)and € = l+\/§.

Proof :- Let € be a unity of K = Q( \/E ). Now the algebraic integers of K are of the form x +
y\/E where X,y €Z

Since e isaunity of K, N(€) =+ 1, i.e. xX*—2y?=+1 ()

Now by inspection, x =1, y = 1 is a solution of (1)

i.e., € =1++/2 isa solution of (1). Since product of two unities is a unity and inverse of a
unity is a unity and negative of a unity is a unity, so = € "(n=0, 1, 2,...) are all unities of K.

Let n be any unity of K. By taking —n, if necessary , we assume n > 0. Further by taking n 7,
if necessary, we assume n > 1.

Then we first find all unities of K, which are bigger than 1.

First we shall prove that there exists no unity n of K such that

1<n<1++2
Let n=x+y\/§, then -1 <x*—2y?<1
But 1<x+y/2 <1+4/2 .2

So “1<x-ya2 <1 .3)

Adding (2) & (3), we get

0<2x<2+ \/E

1
= 0<x<1l+—<2 =>x=1

V2

Now from (2), 1 <1+ y\/E <1l+ \/E and this has no solutions in y.
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Sodnounitynsuchthatl<n <1+ \/E . Thus if ) is any unity such that n > 1, thenn > €.

Letn = €" for any n. Since €"—o0 as n—oo, 3 a unique natural number n such that
e"<n<e™ = 1<en<e .4

Since ¢ is a unity & m is a unity, € ™ is also a unity.

Thus we have a unity of K lying between 1 & €, which is a contradiction. So we must have

n = <" for some < n.
By taking negative or inverse we see that all unities of K are of the form £¢™"
Remark :- Similarly we can proves that unities of Q( \/§) are infinite in number.

4.42 Fields in which the fundamental theorem is false. The fundamental
theorem of arithmetic is true in Q(1), Q(i),Q(p), and in Q(\/2). It is important
to show by examples, that it is not true in every Q(¥m). The simplest
examples are m = -5 and (among real fields) m = 10.

(i) Since -5 = 3(mod 4), the integers of Q{\(-5)} are a + b V(-5).
Now the four numbers
2,3, 1+(=5), 1-V(-5)

are prime. Thus
1 +(=5) = {a + bV(-5)} {c + dV(-5)}
implies 6 = (a® + 5b%) (c® + 5d°);

and a + 5b? must be 2 or 3, if neither factor is a unity. Since neither 2 nor 3 is
of this form, 1 + (=5) is prime; and the other numbers may be
proved prime similar. But

6 = 2.3 = {1+V(-5)} {1-V(-5)},

and 6 has two distinct decompositions into primes.

(i) Since 10 = 2 (mod 4), the integers of Q(V10) are a + bV10. In this case
6 = 2.3 = (4+V10) (4— V10),

and it is again easy to prove that all four factors are prime. Thus, for example,
2 = (a+b V10) (c + dV10)

implies 4 = (a® —10b%)(c*~10d?),

and a® — 10b? must be + 2 if neither factor is a unity. This is impossible
because neither of +2 is a quadratic residue of 10.

Real and complex Euclidean fields
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Let us find the unities of a quadratic field.

Theorem 4.43 Let K = Q( \/a) be a quadratic field & let m < 0. Then the number of unities
of K is

4 ifm=-1
4 ifm=-3
2 ifm=-1, m=-3.

Proof :- we shall distinguish two cases

Case | :- m=2orm=23(mod 4)

Let € be any unity of K. Then e is also an algebraic integer of K. So € = x + y~m for
some integers x and y.

Since m < 0, norm of every norm-zero element of K is positive.

Since € isa unity, so N(€) =1, or 1= N(e) = N(x + y\/ﬁ) =x-my’® ...(1)

Let m=-1
Then |-my]=2ify=0
So for (1) to hold we musthavey =0 = x*=1= x=+1
e=Xx+ y\/m ==+1
So form = -1, m=2 or 3(mod 4), + 1 are the only unities of K.
Now let m = —1. Then from (1), x* +y*=1

But its only solutionsarex =11, y=0&x =0,y = %1

So for m=-1, +1 & +/—1 = £ i are the only unities of K.

Case Il :- m = 1(mod 4)
Let € be any unity of K. Then as above N(g) =1
Also, 3 integers x & y such that

[1+ﬁ] y y\/ﬁ
E=X+Yy 5 =X+Z+—F

2 2

y  yJm
2" 2

TheanN(E):N[X-‘r—-‘r
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yY  my?
= | X4+= | ——— Q2
(+2) 4 2
Sincem<0andm= 1(mod4) = m=-3,-7,-11,......

2
For m< -3,

>1fory+0

So for (2) to hold, we must have y = 0 and then as before
x=%x1
2 2
3
Now let m = -3 Then (2) becomes 1 = (X + %j + % ...(3)

2
If y|=2, % > 3, so for (3) to hold, we must have

ly| < 1.

If y =0, then as before x = +1
2
1\ 3,
If y =1, then from (3),1 = X+§ +Z:X +x+1

= X*+x=0 =>x=00r-1 ..
If y = -1, then from (3), xX*~x=0 =x=0o0r1 ..(5)
Thus in this case there are six unities of K
1+4-3 -1-v-3 1+J-3 1--3
2 2 2 2

These unities are + 1,

-1++/-3
2

Then these unities are +1, + w, + w?

If we set w=

In all the cases the unities form a cyclic group.

Remark :- The above theorem shows that the number of unities in all complex quadratic
fields is finite. However this is not true for real quadratic fields. In fact the number of unities
in each real quadratic field is infinite.

Definition :- A quadratic field is called a simple quadratic field if every algebraic integer can
be expressed as a product of prime element uniquely up to change of order and multiplication
by units.

Definition :- We say Euclidean Algorithm holds in a quadratic field K if given o, B in K, 8 #
0, 3 integers y and & such that

o =Py +3 where either 3 =0 or |N(3)| < N(B)]
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Definition :- Let «, B be algebraic integers of a quadratic field K and (o, B) = (0,
0),

an algebraic integer vy is said to be greatest common divisor of o and B if
(i) vl y|pinK
(i) If y;| ccand y¢ | B in K then v, |y in K where vy, is any algebraic integer of K.

Theorem 4.44 If Euclidean algorithm holds in a quadratic field K then it must be a simple
field.

Proof :- To prove the theorem, we first prove

Lemma 1 :- If € is greatest common divisor of two algebraic integer y and v,
then 3 algebraic integers n and n; such that

E=ym+ymi; (v, v2) = (0, 0)
where y and y; are algebraic integers of quadratic field in which Euclidean algorithm holds.

Proof :- W. L. O. G. take y; # 0. Givenyand vy, eK and y; # 0 and Euclidean algorithm holds
in K, there exists algebraic integers k; and vy, such that

¥ =Ky v1 + 72 where either y, = 0 or |N(v,)| < [N(y1)]

Ify,=0,Y =Kk; v, and y; is ged of y and y;
If v, # 0 we apply Euclidean condition to y; and y, and we get

1=K v2 + 73

for some algebraic integers k, and v; and either y3 =0 or
IN(v3)| < IN(v2)l

If v3 # 0, we continue as before and get a decreasing sequence

IN(va)l < IN(ys)| <...< IN(yo)l

But we can not get an infinite bounded sequence of positive integers and so the sequence of
¥’s must stop at some point say yn.; = 1. Then as in the corresponding proof for natural
numbers, we can show that vy, is the gcd of y and v,.

Proof of Theorem :- Proceeding in the some manner as for natural numbers we can establish
that the decomposition as a product of prime elements of K is unique up to change of order
and multiplication by unities.

Theorem 4.45 The Euclidean algorithm is equivalent to the following hypothesis. Given any
element 3 of Q( \/ﬁ), there is an algebraic integer k of Q( \/E) such that

ING-K)| < 1

Proof :- Suppose, given hypothesis hold’s i.e. let v and v, be two algebraic integers of

Q(+v/m)and let y; 0. Take 5eQ (Vm)
Then by hypothesis 3 an algebraic integer k such that
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—v.k
552
Y1 Y1

Multiply both sides by |N(y1)|, then
<IN(v)l

N[Y_Y1kj
Y1

But norm is multiplicative and so, |N(y — y1K)| < [N(y1)|

<lie., <1

INCy2)|

Take, mn =7v -7k, then y=mn + v,k where [N(n)| < |[N(y,)| and so Euclidean algorithm
holds.

Now conversely suppose Euclidean algorithm holds. Let 5 be any element of Q( \/E). If &
=0, take k = 0 and we are through. So let & = 0 then we know that 8 is an algebraic number

of Q(~/M). Then 3 a non-zero integer t such that t 3 is an algebraic integer.

Now t 5 and t are two algebraic integers of Q( \/E) wheret=0
By Euclidean algorithm, 3 an algebraic integer k & v such that
td =tk +y wherey =0 or [N(y)] < |N(t)|

Then N[—] | N[ = IN(Y)| < ING)|

Now t6:tk+y,6:k+% :S—k:%

NI
t
Remark :- Thus to prove that a quadratic field is a simple field it is enough to prove that
given any element 5 of the field 3 an algebraic integer k such that
IN(B-K) | <1
Theorem 4.46. Euclidean algorithm holds in the quadratic field K=

Q(\/E ) where
m=-1,-2,-3,-7,-11, 2, 3, 5, 13.

and IN(®—K)| = < 1, this proves equivalence.

Proof. Now any element 3 of K = (+/M ) can be written as
d=r+s ~/M wherereQ, seQ.

Let m #1 (mod 4). Then any algebraic integer of K = Q( \/a) can be written as x + y\/ﬁ
where X, yeZ
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Now given s as above, select integers X & y such that | r — x| < % , |s—y| < %
Let k=x+ y\/m
Then d—k=(r—x)+(s-y) \/ﬁ
N (3-K) = (r=x)* + (-m) (s-y)?
Firstletm=-1orm=-2
Now (r—x)’< 1 (s-y)’ < 1
4’ 4
Then IN(S—K)| < 1. Now if m = 2 or 3, again we have, [N(6-k)| <1

Now let m =1(mod 4)

Then we know that algebraic integers of K can be written as a + b t where a, b
el

_\/E+1
2

In this case select y such that

and T

1
25—yl < =
I y| >

Having selected y, select an integer x such that

1

r—iy—x —
2

2

<

Now considerk =x +y + %y(\/ﬁ—l)

1 1
=x+ Zy+>yJm
2 Y 2 y
Then k is an algebraic integer of K and

§—k= [r—x—%yjﬂ/ﬁ[s—%yj

y 2 1 2
[r—x-ij +(—m)£s-§yj

im
416

For m<0, IN(S-K)| =

< <1, form=-3, -3, 11,
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form >0, IN(S-K)| < <1form=5and 13.

Remark :- There are exactly nine imaginary quadratic fields in which
Euclidean algorithm holds

(m=-1,-2,-3,-7,-11, 19, -43, -67 and —163)

Theorem 4.47 The number of real Euclidean fields Q(~/m ) where m = 2 or m
= 3 (mod 4) is finite.

Proof :- Let us suppose that Q(~/m ) is Euclidean and let m = 2 or 3(mod 4).
The algebraic integers of K are of the form x + y\/ﬁ where X, yeZ

Take care, o= % Jm, then a.eQ(/m)

Since the field is Euclidean, there exists

k =x +y+/m such that [N(a—K)| < 1

But o—k =—x +[i—yj Jm
m
t 2
IN(o—K)| <1 = x2—m(y—ﬁj <1
2
= [x? —% <l = |mx’—(my-t)’|<m, = |[(my—t)*—mx’|<m

But  (my —t)> — mx?=t*(mod m),
So J integers x & z such that

7% — mx® = t* (mod m) (D
and lZZ-mx)<m (2
Now let m = 3 (mod 4).

It possible suppose 3 infinitely many reals quadratic fields for which
Euclidean algorithm holds in K.

Now select an odd integer t such that 5m < t* < 6m, such a choice if t
is possible.

But 2% — mx? = t(mod m)
and Iz - mx¥ <m
= Either |22 — mx?| - t* = -5m

or 722 - mx® - t>=-6m
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=N t? —5m = 2> — mx?
or t? — 6m = 2> — mx?
= t? — 22 = m(5-x%) ..3)
or t? — 2= m(6-x°) (4

But tis odd = t* = 1 (mod 8) and x> = 0 or 1 or 4(mod 8) and z>= 0 or 1 or
4(mod 8)

= t?—z*=0or 1or5 (mod 8)

and 5-x*=1or 4 or 5 (mod 8)

and 6-x>=2 or 5 or 6 (mod 8)

m(5-x%) = 3 or 4 or 7(mod 8) (-
m = 3(mod 8)

and m(6-x?) = 2 or 6 or 7 (mod 8)

.. Neither (3) nor (4) can hold.

Now let m = 2(mod 4). If possible suppose there are infinitely many
real quadratic fields for which Euclidean algorithm holds. In this case, choose
an odd integer t such that 2m < t* < 3m

Then t%=1(mod 8) and m = 2 or 6(mod 8)

Further t? —2m = 2% — mx? ...(5)
or t? - 3m = 2> - mx? ...(6)
ie. t? — 22 = m(2-x°) or t* — 2> = m(3-x%)

Now m(2-x%) = 2 or 4 or 6(mod 8)

and m(3-x%) = 2 or 4 or 6(mod 8)

whereas t?—z°=0o0r 1or5(mod 8)

so neither (5) or (6) can hold

Theorem 4.48 Let K = Q(</m) be a simple field and let & be a prime of K
then & divides one and only one rational prime

Proof :- Let |N(n)]=n = N(x)=+n
But N(n) == ® where 7 denotes the algebraic conjugate of r.

Since wis a prime = n > 1. Letn =p; p,...pr be the decomposition of n into
primes.

Then nw =+ p1 p2...pr

But K is a simple field and so = must occur when we decompose n into prime
elements of K and so = must divide at least one of ps, p2,..., pr.
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If possible let =t divides two different rational primes say p and g. Now in Z,
ged (p, ) =1

= Jintegers x & y such that

px+aqy=1
But 7| p and ©/q in K.
= 7| 1in K = misaunit which contradicts that = is a prime so

n divides exactly one of p & q.

Theorem 4.49 The primes in Q(i) = K can be divided into 3 classes
(1) The prime 1 + i and its associates

(2) The rational primes of the form 4n+3 and their associates

(3) The prime factors a + bi of the rational primes of the form 4n+1 and their
associates.

Proof :- Let = be any prime element of K. Then = divides exactly one
rational prime say =« | p.

Then we distinguish the following cases
Case I. p=2

We know 2 = (1 +1) (1-i)
Further we know 1, —1, i, —i are unities of K and

(1-1) =—i(1+i) and 1 + i is not a unity of K
So  2=-i(1+i)?

Since we know that every rational prime can decomposed into at least
of most 2 primes of a quadratic field and so 1 + i must be a prime number. So
we get = 1+i or an associate of 1 + i

Case Il :- p = 3(mod 4)

Since m is an element of K so &t is an algebraic integer of Ki.e. t = x +
yi for some integers x and y.

Now = divides p = p = (X + yi)a. for some algebraic integer o of K.
i.e. p = (x +yi) (a + bi) for some integers a & b.
Further gcd (a, b) =1 =gcd (x,y)
But the product of two complex numbers is a real number

= at+tbi=x-vyi
= p = (x +yi) (x-yi) =x° +y*
But p = 3(mod 4)

= X2 + y* = 3(mod 4)
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which is not possible as no number of the form 4n + 3 can be written as a sum
of 2 squares.

So either = p or & is an associate of p.
Case Il :-p=1(mod 4)

Now we know —1 is a quadratic residue of primes of the form 4n +1,
so J an integer x such that

x? = —1(mod p) or p | (X + 1)

If possible, let & be an associate of p. Then p is also a prime element
of K.

Butx?+1 = (x + i) (x—i) and both x + i and x—i are algebraic integers of K.
Now K is asimple fieldand p | (x +1) or p|(X—1)

X 1. x 1. . L
= —+—1 or——=i must be on algebraic integer of K, which is not so

PP P p
since algebraic integers of K are of the form a + bi where a, b €Z.

So p can not be a prime element of K and so & must be a divisor of p. This
gives rise to 3 classes of primes in K according to the nature of rational prime
which they divide.

Definition :- Let o B, v be algebraic integer in Q(\/ﬁ), where m is square
free. Then we say

o= B(mod ) if y | (a—B) in Q(v/m)

Fermat’s theorem in the ring of Gaussian integers Q(i).

Theorem 4.50 Let = be a prime in Q(i) such that = is not an associate of 1 + i.
Let o be an algebraic integer of Q(i) such that gcd(o, ) = 1, Then

o’™ =1 (mod 7)
Proof :- since & is not an associate of 1 + i so either =t | p, where p is a rational
prime of the form
4n + 1 or = = g where q is a rational prime of the form 4n + 3.
Since a is an algebraic integer of Q(i),
o=/ +im,where / €Z, meZ.
Now suppose &t | p

Then (¢ +im)P = /° + (i m)° (mod p)
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=/ + i’ m(mod p)
But P=@)"™ =i"i=@""i=i

Therefore, (¢ +im)? = (¢ + im)(mod p)

= o = a(mod p) in Q(i)
But n|lp = o =a(mod )
But Q(i) is a simple field and gcd(o, ) =1
=N o™ t=1(mod ), i.e., o’™ =1(mod =) in this case
Let n =g, then ¢(x) = ¢(a) | (g™-1)
Now a’= (0 +im)? =79+ i"m%mod q)
But AETNSET ST

a’=/-im(mod q) =a

2 _

Then ol =@ =(a)? = (@)= a(mod q)

But gcd (o, ) =1 & Q(i) is a simple field, = aq 1= = 1(mod q)

ie., o’™ = 1(mod ) in this are also
Remark :- Q (v/-3) = Q(w) since w = _1% /=3 and the algebraic integers

of Q(+/—3) are of the form a + bw since a, b €Z the units of Q(v) are +1, +o,
+o°.

Note :- —3 is a quadratic residue of primes of the form 6n + 1 and quadratic
non-residue of primes of the form 6n-1

Theorem 4.51 The primes of Q(w) can be decomposed into 3 classes.

(1) 1 — w and its associates

(2) The rational primes of the form 3n + 2 and their associates.

(3) The prime factor of the rational primes of the form 3n + 1 and their
associates.

Proof :- Let &t be prime of Q(w)

Since Q(w) = Q(~/3) is a simple field, = divides exactly one rational prime
(say p)
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Then we distinguish the following cases

Casel :- p=3

Now we know 1 +w +w? =0

So 3= (1-w) (1-w?) = (1-w — w? + W)
But w®=1and -w-w’ =1, s0

3= (1-w) (1-wd)
= (1 +w) (1-w)*
= —w? (1-w)?

Since Q(w) is a simple field, every rational prime can be decomposed
into at most two primes of Q(w)

Now —w? is a unity and (1-w) is not a unity. So (1-w) must be prime
of Q(w).
Case Il :- p =2(mod 3)
If possible, let p be not a prime of Q(w)
Since every rational prime in Q(w) can be decomposed into atmost two primes

in Q(w).
3 primes 1 & n of Q(w) such that

p=mn
Then p*=N(p) = N(n )
= N(r) N(n)

Consider N(r)

Now, only positive factor of p? are 1, p, p°
= N(r) = 1 or p or p?

If N(r) = 1 then = is a unity of Q(w), contradicting = is a prime of
Q(w)

If N(r) = p® then N(n) = 1, then n is a unity of Q(w), contradicting 1
is a prime of Q(w). So we must have

N(r) =p

Let n:a+bw:a+b£

J-3-1
2
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(25

Then p=N(n) = (a —gjz +3%

= 4p = (2a — b)? + 3b® = (2a —b)?(mod 3) (D
Since p =2(mod 3)

= 4p = 2(mod 3)

But (2a —b)?= 0 or 1(mod 3)

So (1) is not possible for any value of a and b, which is a contradiction. So p
must be prime of Q(w).

Case lll :-  p=1(mod 3)

Here we claim that p can not be a prime of Q(w). If possible let p be a prime
of Q(w)

Let p=3n+l

If nis odd then p becomes an even number, greater than equal to 4.

p can not be a prime
So n must be even

= p=6m+1forsomem>0, meZ
Then -3 is a quadratic residue of p.
= Jan integer x such that

x? = -3(mod p)

or p|(x*+3)

But in Q(w), X2+ 3 — (X +/3) (x=/—3)

= pl(x+=3) (x-v=3) in QW)
But Q(w) is a simple field

= p|(x+\/—_3)or(x—\/—_3)inQ(w)
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— Either §+1\/—_3 ori—lx/—_i%
p p p p

must be an algebraic integer of Q(w), which is not so. So p can not be a prime
of Q(w). So p must be divisible by a prime of Q(w).

Primes of Q(+/2)
Theorem 4.52 The prime of Q(\/E) can be divided into 3 classes
(1)  Theprime /2 and its associates

2) The rational primes of the form 8n + 3 and their associates

3) The prime factor a + h /2 of the rational primes of the form 8n + 1 and
their associates.

Proof :- Let & be any prime of Q(+/2). Since, Q(~/2) is a simple field, =
divides exactly one prime say p.

Now we distinguish the three classes
Casel :- p=2
Now 2 = (+/2)% and ~/2 is an algebraic integer of Q(~/2). But +/2 is not a
unity of Q(~/2) and every rational prime can be decomposed into at most 2
primes of Q(~/2)

So +/2 must be a prime of Q(+/2).

Case Il :- p is a rational prime of the form 8n + 3. Then we claim that p must
also be a prime of Q(ﬁ). If possible, let p be not a prime of Q(ﬁ), then
we know that there exists a prime = of Q(\/E) such that

N(m) = p

Since x is a prime of Q(~/2), it is also an algebraic integer of Q(~/2)

So n=a+b~/2, for some integera,b € Z

Then p=N(r) =N(@a+b+2)=a? - 2p? (D
Now a’ =0 or 1 or 4(mod 8)

and b= 0 or 1 or 4(mod 8)

p=0orlor2or4or6or7(mod8)

But p =3 or 5(mod 8)

So (1) does not hold for any value of a and b. So p must be a prime of Q(\/E)
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Case |11 :- pis a rational prime of the form 8n £1.

We know 2 is a quadratic residue of primes of the form 8n + 1. So there
exists an integer x such that

x? = 2(mod p)
ie. Pl (Xx2=2), orp|(X—+2) (x +~/2)
If p were a prime of Q(+/2), then since Q(~/2) is a simple field, p
would divide either X —~2 orx ++/2.
.. either %—%\/5 or %4‘% 2 must be an algebraic integer of Q(\/E),
which is a contradiction\/s_ince algebraic integer of Q(\/E) are of the form
5-1

atbp wherea,b €Z, p = >

Theorem 4.53 5 is a quadratic residue of prime of the form 5n + 1 & a
quadratic non-residue of primes of the form 5n + 2.

Proof :-Letp=5n+1. Then |—|=|=|=| — | =1
p 5 5

If p =5n + 2 then S =[E):(i_2)=[g):—l
p 5 5 5

Prime in Q(~/5)

Theorem 4.54 The primes of Q(\/g) can be divided into three classes
1) /5 and its associates

(2)  The rational primes of the form 5n + 2 & their associates

3) The prime factors a + h ¢ of rational primes of the form 5n + 1.

Proof :- Let x be a prime of Q(~/5). Since Q(~/5) is a simple field, = divides
exactly one prime of Q( \/3) say p. Then we distinguish three cases

Casel :- p=5

Now 5 = (\/g)2 and /5 is algebraic integer of Q(\/g) and it is not a unity of

Q(\/g). But every rational prime can be written as a product of at most two
primes of Q(\/g) s0 /5 must be a prime of Q(\/g)

Case :- p=5n+2
If possible, suppose p is not a prime of Q(\/g)
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Then there must exist a prime

n=a+blofQ(~5),ab ez

such that p = N(x) = N(a + b/)

= N[a+b\/§2+1] =a’+ab-b?
Then 4p = 4a® + 4ab — 4b?
= (2a + b)® — 5b = (2a + b)? (mod 5) (D
But p=5n+2
= 4p = £3(mod 5)

where as (2a + b)?> = 0 or 1 or 4(mod 5) So (1) is not possible for any value a
and b.

- p must be a prime of Q(~/5).

Caselll:- p=5n+1.

Then proceeding as in the last theorem, we can check that p is not a prime of
Q(~/5) and so its factors a + b ¢ must be primes of Q(/5).

Notation :- Let p denote a rational primes of the form 5n + 1 and q denote a
rational prime of the form 5n + 2.

Let 7 be any prime of Q(~/5) such that r is not an associate of /5.
Then d(m) =p-1 ifxn|p

and d(n)=q°-1 ift=q

Theorem 4.55 Let p and q be as denoted. Let = be any prime of Q(\/g), 7T IS

not an associate of /5 and let o be any algebra integer of Q(\/E) such that
gcd(oe ) = 1. Then

o™ = 1(mod ) (D
o =1 (modr)ifx|p ..(2)
o = N(o) (mod q) ...(3)

Further if 7 denotes the conjugate of = and
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g.c.d. (o, ) = 1 then o * = 1(mod p) (4
Proof :- Since o is a algebraic integer of Q(~/5),
_c+dy5
T

let

where ¢ & d are integers of the same parity.

Now a:%(\/g) —2a.=c+d+/5

= 20" = a)’ = (c +d+5)° = ¢ + d°(v/5)P(mod p) (- (a + b)° = a° +
b°(mod p).)

L)
=cP+d’52° /5 (mod p) (5

Since p is of the form 5n + 1, 5 is a quadratic residue of p.

By Euler’s criterion

1
~(p-L
52(ID ) = (g) = 1(mod p)

20 = ¢ ++/5 d°(mod p) ...(6)
But c¢” = ¢ (mod p) and d” = d(mod p)
=N 20 = ¢ + d~/5 = 2a(mod p)
= o = a(mod p), since ged(2, p) = 1

But|p = o = a(mod r)
= o” ! = 1(mod =) as ged (o, 1) = 1

Now let gcd(ow ) = 1 then (o, p) =1since nm =p

- From (6), o”* = 1(mod p), which proves (4)

Now let =g where q is a rational prime of the form 5n + 2.
Firstletq>2

Now 200=c+d+/5
(20)? = (c +d/5)"

= ¢9+ d%(+/5)%mod q) (7
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Now 2%9=2(mod q),

¢ = ¢(mod @), d? = d(mod q)

1
S(p-1)
and (\/g)q=52p V5 ..(8)
But 5 is a quadratic non —residue of primes of the form 5n £ 2, so
5 2o
1= (—j552 (mod q) ..(9)
q

Using (8) and (9) in (7)we get
20 = c-d /5 (mod q)

But c—d\/§:26,sinceoc:CJF;Ng
208 = 20 (mod q)
But gcd (g, 2) = 1 since q is odd
= o= o (mod q) ...(10)

= o™ = o (mod q)

Butaa = N(a) = a®*! = N(a)(mod ) which proves (3) for g > 2

From (10) we get

0’ = (@)= & = o(mod q)

But gcd(a, g) = 1 and so

ad* = 1(mod q)
ie. '@ = 1(mod q)
which proves (1) for q > 2.
Now let T = 2. Then we write
oa=e+flwhene, fcZ
and we are given that gcd (o, ©) = 1. Then one of e and f must be odd.
Now o = 1* +f p? = e + fe’(mod q) (11

Now p=\/§T_1:>p+%:\/5/2
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-l>||—\
-l>|o'|
©
N
+
©
|
H
11
o

= ptp+

= pP=1-p
Then form (11) we get
o= e + f(1-¢)(mod 2)

V5-1 3 V5 1 5 _
Nowbutl—ézl——=___=____( 0d2) =/
2 2 2 2

=e+f(1-0)=e+fl(mod2)=
—  o’=aa =N(a)(mod 2)
This proves (3) for g = 2.

But N(a) =N(a + b/) = N[a b\/_—lj

=a’—ab—b®=1(mod 2) [
one of a & b is odd]

This proves (2) forq =2
Definition :- Let

_\/§+1
2 L
then W—E:E
2 2
— w-w-1=0iew’=w+1

Let its roots be w and W.

. om __om
Define m= W +W

Since ry is a symmetric function in the roots of the polynomial, w? — w -1 =
0, rm’s are integers.

In fact m=143,7,....... }.
_ - 1
Further ww=-1 =>W=——
W
m m m+1 m+1
rnz1 =(w? +w? )2 =w? T iw? +2(ww )?"
= rm+l +2 [..'

ww =-1]
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j— rm+1 = rr% _2

Lucas Test for Primality of the Mersenne Number :-

Theorem 4.56 Let p = 4n + 3 be a prime and Let M = M, = 2°-1 be the
corresponding Mersenne number.

Then M is prime < ry,_1 = 0(mod M)
Proof :- Suppose M is prime.

Now M =2P-1=2*"_1 =8.16" -1 = 2(mod 5)
Then M is a prime of the form 5n + 2
Now w = \/§2+1 = NWw) =-1

— w is a unity of Q(+/5). So if o is any algebraic integer of Q(+/5) then

gcd(o, w) =1
Now we apply the last theorem with oo =w, q=M
Then wM* = N(w)(mod M)
But M=2"-1
Therefore  w? = —1(mod M) (D

. p-1 _ ,p-1
By definition ry; =w? +W?

2p-1
-1
- w2 @j +1]

But W = —i
w
- -1
N o= W2 ((w)? +1)
__op-1 2P
=W (L+w* ) =0(mod M) [From (1)]
Conversely

let rp-1 = 0(mod M)
Now w?® p1=w? rp-1 = 0(mod M)

ie., w2 = ~1(mod M) (2)
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- w?* = 1(mod M) .03

Let t be any divisor of M then (2) and (3) are also true for y instead of M.
Now by definition, M=2(mod5) = 5|M

So if M is composite then only divisor of M are either of the form 5k + 1 or 5k
+2.

But M is of the form 5n + 2 so M must have at least one prime divisor of the
form 5k £ 2 say k.

Let M=p1 p2...q1 Q2.....

where p;’s are primes of the form 5k + 1 and g;’s are prime divisor of the form
5k + 2.

Let t be any divisor of M.

Consider S ={xeN; w*=1(mod 1)}

Then S # ¢ since on the observation made above 2°**¢S.

Now divisor of 2P are 2°, 2%, 2, 1 and since, w2 = —1(mod 1)
S0 2°¢S

= ord? = 2"

By last theorem,

wPi~1= 1(mod p)

and w3 = Nw) = ~1(mod q)

=N w5 1(mod q)

- pi — 1 and 2(q; + 1) are multiplies of 2°** since, ord? = 2°"* =
pi=2""hi+1

and gj=2"h-1

for some h; & h;. The first hypothesis is impossible since
pi > M = 2P —1 and the second hypothesis is possible only if k;

= M = q; is prime.
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Arithmetical Functions and Prime Number
Theory

Arithmatical Functions :-

Definition :- A function f defined for all natural numbers n is called an
arithmetic function and generally we shall write an arithmatical function as

f(n).
Definition :- An arithmatical function f(n) is called a multiplicative function
if
f(ny ny) = f(ny) f(ny) for ny, npeN & ged (ng, np) =1
Definition :- An arithmatical function is called strongly multiplicative if
f(nl nz) = f(nl) f(nz) Y ny, noeN.
Mobius Function

Mobius function denoted by pi(n) is defined as

1 if n=1
w(n) =4 (=1)"if n = pyp,...pr Where p;’s are distinct primes

0 otherwise, In this case n will be divisible by
square of a prime number

For example
n(1) =1, w@2) =pE) =-1, u@4) =0, uG)=-1u6) =1

Theorem 5.1 p(n) is a multiplicative function

Proof :- Let ny, n,eN, ged (ng, np) =1

It either ny = 1 or n, =1, clearlyu(ny n2) = u(ng) p(ng)
Soletn;>1&n,>1

If any one of ny, n, is not-square free then n; n, is also not square and then
(N nz) = 0 = p(na)-p(n2)

So assume both n; & n; are square free.

Let ny = p1 P2...pr, Where py, Pa,...pr are distinct primes

& N2 = (1-02... gs Where g1, 0z,...,qs are distinct primes.
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Then by definition

r(ng) = (-1)" & p(nz) = (-1)°
Since ged(ng, n2) = 1, so no pj is equal to a g; or vice-versa
Now nin;= P1 P2...prd1-G2...9s
and P1, P2,-.., Pry A1, O2,...,qs are distinct primes
= u(ne n2) = -1)" = (-1)" (-1)° = p(ny) - u(nz)
Thus in all cases

u(ng nz) = p(ng)- w(nz)

whenever gcd(ny, np) =1
= u is multiplicative
Theorem 5.2 If f(n) is a multiplicative function & F=0. Then f(1)=1
Proof :- Since f & 0, 3 neN such that f(n) = 0.
Now f(n) = f(n-1)
=f(n) - f(1), since gcd(n, 1) =1
= f(1) = 1 since f(n) = 0.
Theorem 5.3 If f(n) is a multiplicative function so is ¥ f(d)

dn

Proof :- Set g(n) = d|zn f(d)

If f =0 then so is g and so g(n) is multiplicative

Letf # 0. Then f(1) = 1. So by definition g(1) = f(1) = 1. Let ns, n,eN, gcd
(nl, nz) =1

If ny =1 orn,=1. Then clearly g(n; nz) = g(n1)- g(nz)
Soletn;>1,n,>1
Let d | (n1 n2). Then we can write d = d; d, where di/n; & da/n;

If dy = 1 or dy = 1 then dy = d; since (n1, n2) = 1. Now by definition
g(n, )= 3> f(d)

d|(n1.n2)

= Y f(didy)
ding
da[n2
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= Y f(dy) f(dy) [f is multiplicative]
ding
da|n2

Since (ng, nz) =1 = ged(d,, dp) = 1.
= g(ninz) = X f(dy) f(dy)

di|ng
da|n2

= [ Zf(dl)]£ Zf(dz)]
dilng da[n2

=9g(n) 9(n)

Hence g(n) is multiplicative

Theorem 5.4 > ¢(d)=n
d|n

Proof :- Set g(n) = d% d(d)

Since ¢(n) is a multiplicative function of n, so by previous theorem g(n) is

also multiplicative. If n=1thed=1 .. 9g1)=¢(1)=1
Soletn>1
Let n=p;tps2..py be the prime factorization of . ...(1)
Then g(n) = g(py? p32..prT)

=9(pr") 9(p3%)--0(p3?) .(2)

since g(n) is multiplicative.

If we are able to prove g(p®) = p* for every prime p & oo > 1. Then clearly
using (1) & (2), we are through.

o

Now only divisors of p* are 1, p, p.....p

.. By definition ap“) = 3 ¢(@d)
d|p*

= d(1) + ¢(p) +...+¢(p%)
=1 (p-1) + (P*-p)+...+ (p* - p*7)

=p” ¢ oM =p"-p"
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Hence the theorem.

1 if n=1
Theorem 55 ¥ (d) =
corem S5 & wld) {o if >1}

Proof :- Clearly for n = 1, we have

u(d) =1
drn

Soletn>1

Letn = p;2 p32..p;" be the prime factorization of n.

Let g(n) = >u(d)
d/n

Now divisors of n are of the form
pPt pB2 . pPr where 0 < B < a
If any Bi > 2, u( pl'31 pgz.. Pry = 0, since in this case pfl pQZ..pEr is not

square free. So while considering the divisors of n we leave out all those
divisors which are divisible by a square.

So the only divisors to be considered are 1, p1, p2,..., prn P1 P2, P1
P3,... p1Pr, P1P2 Ps3... P1 P2 P3Pr

r
g(n) = (1) +_211u(|0i)+1 > w(pipy) +-- P p2-..pr)
i= <i, j<r
i#]

=1- rC1 + rC2 - ng...+ (—l)r
= (1-1)" = 0. Hence Proved.

Example :- Let n>1 & let n have r distinct prime divisors. Then 3| u(d) | = 2"
d|n

Proof :- From above theorem, we see that

O”an pn(d)[= n(d) +él| uP) [+ > upirpy) [+...+ [n(p1 pa...po)l

i<i, jer
=1+ r01+ rCQ +...+ rC3

= (1+1)'=2" Hence Proved.
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Divisor Function :- d(n)

Definition :- Let n > 1. We define divisor function of n(to be denoted by
d(n)) as

3 1= Number of divisors of n (including 1 & n)
din

Clearly d(1) = 1 & d(p) = 2 for every prime p.

Theorem 5.6 Prove that d(n) is a multiplicative function. Find a formula for
d(n)

Proof :- The function f(n) = 1 is a multiplicative function and so

>f(d) = 31=d(n) is a multiplicative function.
din din

Ifn=1, Clearlyd(1)=1. Soletn>1.
Let n=p; ps2..pK be the prime power decomposition of n.
Since d is a multiplicative function, so

d(n) = d(p;*..p %) =d(pyt) d(p32)..d(p, %)

So to find d(n), it is enough to find d(p“) where p is any prime & a. > 1
By definition
d(p*) = X1
dp®
Now only divisors of p* are 1, p, p>...p" which are o + 1 in number
dpY)=a+1

dm =11 (o +1)
i=1

Sum function :- o(n)
Definition :- Let n > 1 be any natural number we define

o(n) =3 d =sum of all divisors of n (including 1 & n)
din

Clearly c(l)=1land c(p)=p+1
Further o(n) > n VvV n > 1 since there are at least 2 divisors of n namely 1 and
n.

Theorem 5.7 Prove that o(n) is a multiplicative function of n. Find a formula
for o(n).
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Proof :- Since f(n) = n is a multiplicative function of n, so

> f(d) = >d=o(n) is a multiplicative function.
din d|n

To find a formula for o(n), we not
c(1)=1. Letn>1

Let n = p;t..pK be the prime power decomposition of n. Since o is
multiplicative function, so

o(n) = o(py*..pi*) = o(p*)o(p3?)..o(pr*)
So to find o(n) it is enough to find o(p®) where p is any prime and o > 1,

(¢

Now c(p”) = > d. Theonlydivisorsof p“an1,p, ... p
d[p*

o(P*)=1+p+...+p"

p(l+l_1
p-1

ai+1_1

kK D.
o(n) = i];[l—pi 1

Example :- Evaluate 3 (M)
n=1

Solution :- %uq_n) = p(@) + 1 (2) +1(3) + o+ u( D)oo

=1-1+1+0=1.

Example :- Prove that u(n) p(n+1) w(n+2) u(n+3) =0v n>1

Solution :- Since n, n +1, n + 2, n + 3 are four consecutive integers and so at
least one of them is divisible by 4 and consequently p of that number is equal
to zero and so

u(n) (n+1) p(n+2) u(n+3) = 0. Definition Euler function ¢(n)
Theorem 5.8 Prove that ¢(n) is a multiplicative function of n.
i.e. o(m n) = ¢(m) ¢(n) whenever gcd (m, n) =1
Proof :-Ifm=1orn=1, clearly

o(m n) = ¢(m)-¢(n)
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Soletm>1,n>1

Now ¢(n) by definition is the number of natural numbers which are < n and

coprime to n. So to find out ¢(m n), we write first mn natural numbers in n
rows and m columns as

1 2 3, m
m+1 m+ 2 m+3...... 2m
(n-1)m+1 (n-1)m+2 (n—-1)m+3............ nm

Now consider any natural number ‘a’ such that 1 <a <mn
Now gcd (a, mn) =1 < gcd (a, m) =1 =gcd(a, n)

So let (a, m) = 1, Then there exists r (1 <r <m) suchthatgcd(r, m)=1 &a
= r(mod m), with 1 <r <m. Then this r is in the first row of the configuration
such that gcd(r, m) = 1.

But {1, 2,...,m} is the set of all natural numbers < m and so by definition, the
first row contains ¢(m) natural numbers which are coprime to m.

So by what we have proved above, ‘a’ can occur in those and only columns
which are headed by a natural number r (1 <r < m) such that gcd(r, m) =1

Now consider r where a=r(mod m) gcd(r,m)=1&1<r<m.

Consider all the natural numbers headed by r. These are of the form mx + r
where 0 < x <n-1. Now the set {0, 1, 2, ..., n—1} is a complete set of residues
(mod n) and so {mx + r; 0 < x < n-1} is also a complete and so it contains a

reduced set of residues (mod n) which contains exactly ¢(n) numbers and all
these numbers are co-prime to n.

But these are also coprime to m. So these ¢(n) numbers are coprime to mn.
But there are ¢(m) choices for r and so there are ¢(m) ¢(n) elements in this
configuration which are relatively coprime to mn and so by definition

o(m n) = ¢(m) - ¢(n).

Mobius Inversion Formula

Theorem 5.9 Let F(n) = ¥ f(d)
d|n

Then f(n) = dlzn F(d)p(gj = dlzn p(d) F(gj
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Also prove its converse.

n
Proof :- Clearly > F(d) M(—j
dn d

din

= ZM(d)F(gj sinced |n < g|n

So let us prove

i = > u(d) F(Ej
dfn d
By definition, F[%j = >f(c)

cl —
d

dlZnu(d)F gj zdlznu(d) >f(c)= dZn f(c)| Zu(d)
c d| —

n
d c

= f(n) [%u(d)}c% f(©) Zu(d)

c<n dlE
Now S wd)=0ifn>c
di
c
and > ud)=1 <:>%=l on=c
n
dl—
c

Soinnersum ¥ u(d) vanishesunlessn=candincasen=c¢, ¥ w(d)=1
n n

dl— dl—

c c

> u(d) FG] ~f(n)
d|n

Conversely

Let fn)= % “(d)'FGj vn
din
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Now Sfd) =X [ZM(S)F[ED (By definition)

din din | 5/d )

din 3|n

d d
=¥y ¥ u(—] F(y) (Setgwj

din yIn \ Y

=3 > u@d (g]

Since v|d,setd=Bv, So
> fd)=% > uP)F®

din yIn Byln

=X F@) Z u@)

y[n BIE
y
=F(n)

n
since > w(p)=0for—>1
Bl Y
Y

d n
Theorem 5.10 Prove that Y, % :?
d|n

Proof :- We know > ¢(d)=n

d|n
Then o(n) =% u(d).g (By Mobius Inversion formula)
d|n
ie. @ = Z@
n din d

For n=1 exerciseistrue. Solet n>1

and > @ = f(n)
dm d
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Since u(n) is a multiplicative function of n.

d
= Z% = f(n) is a multiplicative function of n.
din

Letn = p;2.p52..pK be the prime power factorization of n.
then f(n) = f(pyL.p5%..pR< )

= f(p{?) f(p32)..F(pjx).
Let us compute f(p“) where p is any prime & o > 1
Now only divisors of p“ are 1, p, p,...p*
o w(d)
f(p)= ¥ —

dlpOL d

= (1) + %w (- u(p") =0 fori>2)

_9(py" p2° -Pi) _ o(n)

pixl_pgz._.p&k n
Hence the result.
Example :- prove
n
si = neln)
i—1 2

god(i.n)-1
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n
Solution :-LetS= i =a;+ay+...+ aym Where 1 <aj<n, gecd(a;, n) =1

i=1

gcdzi,n):l
But gcd(ai, n) =1 < ged(n—a;, n) =1
S = (n—ap) + (n—ap) +...+ (n—aym)

and 25 = n ¢(n) :s:”‘PT(”) n>1)
Now n(pT(n) is always an integer vV n > 1

= ¢(n) is even for all odd n- > 1

A General Principle :- Let there be N objects. Suppose N, of these have
property o, Ng have property f3 .... Suppose Nyg have both of these property o
& B; ...Ngp, have the property o, B, v... and so on. Then the number of
objects which do not have any of the properties o, B, v;....... is

N = Ny + 3 Nep = SNogy +... (D)

and consequently the number of objects having at least one property is
Y No— 2Nap + ZNapyeenennn ..(2)

Proof :- If is enough to prove (1) since (2) can be obtained by subtracting (1)
from N. Let A be any one of these N objects. Then A contributes 1 to the
term N of (1). Let A possess exactly k of these properties. If k = 0, then A
does not contribute to any of the terms >N, >Ngp, XNgpy,...and so A
contributes exactly one 1 to (1). Now let k > 1(k is finite).

Then A contributes 1 to N, 1 to exactly k of the terms in >N, 1 to exactly k/2
of the terms >N and so on.

So the total contribution of A to (1) is

ol

=(1-1)*=0
and this proves the theorem.
Application of General Principle

Theorem 5.11 Let n > 1 and let n = p;2.p52..pK where py, pa.....p« are
distinct prime then
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i

Proof :- To find out ¢(n), by definition, we have to find the natural numbers <
n which are not divisible by any of ps, pa,..., p«

Let Ngi(i = 1, 2,...k) be the number of integers < n divisible by pi(i = 1, 2,
...k) Ny aj be the number of natural numbers < n divisible by p; p; (1 <1, ] <

k, 1 +])and so on.

Clearly
n
Noj =—. Infact the natural numbers < n divisible by p; are
Pi
n
piazpi!"’p_ipi :
- n
Similarly Noij oj = —— and so on

PiPj
.. By General principle number of natural numbers < n and not divisible by
any of p1, p2,..., pk IS

oy=n-y iy "
Pi PiP;j

k 1
= 1——
" El( pij

Example :- The sum of the squares of the integers which are < n and
relatively coprime to n is :—13n2c|>(n) +% n (1-p1) (1-p2)...(1-px) where n > 1
and ps, p2,...,pk are the only distinct prime dividing n.

Solution :- To find out the required sum we shall find the sum of squares < n
and not coprime to n i.e. sum of squares < n of those natural numbers which
are divisible by at least one p;.

By General principle, this sum is equal to
zNa_zNaﬁ +2Naﬁy (1)

Now sum of squares of numbers < n and divisible by p; is

2
() + (2p))° +---+[£-Pi j
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The sum of squares of numbers < n and divisible by p; p; is

2
n
(i ) + (2pi ) +...+| ——p; P
PiPj

and so on
So the sum (1) is equal to

k n 2
Z[(pi)2 +(2p;)? +---+(E'pij ]

i=1 i

1<i j<k i Pj
i#]

2
> [(pip,->2+<2pip,-)2+...+[%pip,} ]+ .....

k1, 2 _ 2 n ’
+(-1) (Pi P2--P) " +(2Pi Py Pi) + oot | —————P1 P2 Py ..(2)
P1P2-- Pk

Now let d be any divisor of n. Then the sum of squares of natural numbers <
n & divisible by d is

2 2
d® + (2d)* +...+G-dj =d2[12 +22 ++Gj ]

n® n? nd ;
= — 4 — 4+ —
ad 2 6 ®)
From (3), sum (2) is equal to
3
n_ Zi_ Z i_km_’_(_l)k_l#
3| Pi 1< j<k PiPj P1P2--Pk
i#]

2

n“| k )

+—(31- ¥ 1+..4+(-)

2 i <, jek
1#]
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+%Em—2mm+m+en“pmppd .(4)

But the sum of squares of natural numbers <n is

3 n2 n

1 n
—nh+1)@n+1)= —+—+—
s+ D( )F gt

.. Sum of squares of natural numbers < n & coprime to n is

3
S P R NPV
3 Pi  PiPj P1P2--Pk

2
Sy

n
% [1-% pi+ Z pipj .-+ (-1) p1 pa...pid]

- nd 1
—?H( —p—lj —(1 1k +6|1:[(1 Pi)

%nwm+—nap)

] i

K
n'H[ —p—j d(n)

Example :- Find the sum of the cubes of the integers < n and relatively
coprimeton. (n>1)

Solution :- Let x be any natural number < n and coprime to n.
Let S=Yx*=Y(n-x)*

=¥(n® - 3n% + 3nx2— X%

25 = 253 = Tn® — 3n? X + 3n Ix2 = n(n) — 3n’ ncpT(n)
+3n[ 1n? (n)+ 21— -)j
3 () 6 Pi

=n’¢(n) - n o(n) +n’ <|>(n)+—n I (1-pi)
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= 2n%o(m) +2 011 (1-p)

Perfect Numbers

Definition :- A natural number n is called a perfect number if o(n) = 2n
For example 6 & 28 are perfect numbers.

as c(6)=1+2+3+6=12=2.6

c(28)=1+2+4+7+14 + 28 =56 = 2.28
Theorem 5.12 If 2™*—1 is a prime number then

m = 2"(2"*-1) is perfect.
Proof :- we have

o(2" (2"-1) =o(2") o(2™1-1)
=(1+2+...+2" (1+2"-1) [ - ged(2", 2™1-1) = 1]
=(2"-1) 2™t
=2.2"(@2"-1)=2m

Remark :- All the known perfect numbers are even. We don’t know any odd
perfect number and neither it has been proved that all perfect numbers. must
be even.

Theorem 5.13 Every even perfect number must be of the form 2"(2""-1)
where 2™"-1 is a prime number.

Proof :- To prove the theorem, we first prove a lemma.

Lemma:-let c(m)=m ¢ wherel</<m&/¢|m. Then/=1and misa
prime number.

Proof of Lemma :- If possible, let / > 1, thensince / |m & 1</<m,som
has at least three divisors 1, / & m

o(m) >/ + m + 1, which contradicts the hypothesis that s(m) = / + m

So ¢ =1, then s(m) =m + 1. Then m can have only two divisors 1 &
m and so m must be a prime number.

Proof of Theorem :- Let k be a given even perfect number. Then k is of the
form
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k=2".mwheren>1& mis odd (we can not have k = 2" since ¢(2") =
2™1 222 (1)

Leto(m)=m + / where / > 1
Now K is perfect, so
2" m=2.(2"m) = 2k = o(K)

=o(2"m) = (2" 5(m)
= (2™-1) (m + 1)

=2 m-—m+ ¢ (2"™-1).

= m = £(2™"-1) (2
= (= ~m
2"t 1

Alson>1 =>/<m =1</<m&/|m.

So by the lemma, / =1 & m is a prime number. Setting ¢ =1 in (2) we get
m=2""1-1

and from (1)
k=2"(2""-1)

Example :- Prove that -(24m-1) =0 (mod 24) V m > 1

Solution :- we know 24 =3.8

To prove the result, we shall in fact prove a little more. To be precise, we
shall prove

Q) o(3m-1) =0 (mod 3)
(i)  o(8m-1) =0 (mod 8).

(i) Letn =3m-1. Thenn=-1=2(mod 3)

So n can not be a perfect square since k’= 0 or 1(mod 3) for any natural
number k.

Sod[ne 2 in &d=-
0 n< — N #* —
d d

Also 3fn
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. We write
n d?+n
ocBm-1)= ¥ |d+—|= X
din d) an d
4" 1<d<Vn
n
1<d</n d;ta
Since 3/n =3}d = d’=1(mod 3)
= d?+ n = 0(mod 3)
d?+n

n
Since 3} d, (d +a] =0 (mod 3) = = 0 (mod 3) for every divisor d of

n,where 1 <d <+/n

— o3m-1) = 0(mod 3)

(i) Letn=8m -1 = n=-1=7(mod 8)

Then 2} n and so every divisor d of n must be odd

— d? = 1(mod 8) for every divisor d of n. Further n is not a perfect square
since every odd square number must be = 1(mod 8)

n d?+n

Now o(nN)=c@m-1)= ¥ |d+-|= X

din d) dsn d

g 1<d<v/n

Jsdd<ﬁ

Since 2fd = d®=1(mod 8)
2

- @+n=0(mod8)and " = 0 (mod 8)
= o(n) =0 (mod 8)

Combining (i) & (ii) we get
c(24m-1) =0 (mod 24)
By similar methods we can prove
o(4m-1) = 0(mod 4)
and c(12m-1) = 0 (mod 12)

i.e. o(48m-1) = 0(mod 48)
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2
Example:- ¥ d*(m) :{ Zd(m)}

m|n m|n

Solution :- Let f(n) = >°d*(m)

m|n

2
and g(n) = { Zd(m)}

m|n

Clearly exercise istrue forn=1.Soletn>1
Let n= pyp52..p,K be the prime power decomposition of n.
Since d(n) is a multiplicative function of n.

So d*(n) = (d(n))* is also a multiplicative function of n and so

f(n)= X d(m) is also a multiplicative function.
m|n

Further Y. d(m)is also a multiplicative function since d(n) is a multiplicative

m|n
function and so

2
g(n) = L%nd(m)}

is also a multiplicative function of n
So to prove f(n) = g(n), it is enough to prove

f(p™) = g(p“) for every primep & o > 1
Now f(p*) = ¥.d*(m)

m|p*
The only divisors of p* are 1, p, p2..., p*
f(p*) = d*(1) + d*(p) + d*(p)+...+d°(p%)

=13+ 22433+ +(a+l)®  (odi) =i+l

_ {(a+l)(a+ 2)}2
2

= square of the sum of first (o + 1) natural numbers

ie. [1+2+.. .+ (a+])]?

=[d(1) + d(p) +...+ dp™)]?
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=g(p").

Example :- For every natural number n > 1,

where p1, p2...., pk are the only prime divisors of n and f(n) is a multiplicative
function of n.

Solution :- Let n = p; p52.. p, X be the prime power decomposition of n
Since u(n) is a multiplication of n and f(n) is a multiplicative function of n

= u(n) f(n) is a multiplicative function of n.

= Y u(d)f(d) is a multiplicative function of n
din

So to evaluate > p(d)f(d), we evaluate > p(d)f(d)where p isa prime &
d | n d | pOL

a>1

(¢

Now only divisors of p*are 1, p, p%..., p

© Y u(d)f(d) = p(D) Q) + up) f(p) + n(p?) f(p?) +...+ u(p”) & (p%)
d/p®

=1-1(p) (- u(p)=0viz2)
PROUOR ilj(l—f(pi))

Corollary :- If f(n) =d(n). Then d(p;) =2
= dlzn u(d) 7(d)= (-1)"

> u(d)o(0) =1ﬁ (- o(p))

= (—1)k P1 P2...pk.
Example :- Prove that o(n) is odd < n = m? or 2m?
Proof :- Letn=1. Thenc(1) =1

Letn>1and n=2" p;?p52..pK where r >0 & py, pa...., px are distinct odd
primes.

Now o(n)=0c(2") 0o (pfl)o(p‘éz)--s(p‘ﬁ")
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= (2"1) L+ Py *pf 4 AP (L4 Pt PR+t DY) (1)

Now o(n) is odd < Each factor on R.H. S of (1) is odd. But (2"'-1) is odd V
r>0

However if o is odd for some i (1 <i<k)thenl1l+p;+ piz +..+ p?i is even,
since number of terms in the sum is even while each term is odd.

o(n) is odd < each o is even. If r is also even, n = m? for some m and
ris odd n = 2m? for some m.

n
Example :- Prove that 3 (-1 d‘lq{aj = n or 0 according as n is odd or n is
dln

even.

Solution :- Let n be odd. Then each divisor d of n is odd and so d—1 is even
= (-1)**=1and Z(l)dl(dj Zd{ j >¢(d) =n
din

So let n be even and n = 2"p;? p52.. ppk be the prime power decomposition of
n.

n n - -
AN CIEEE z ¢ Y ¢—|= So8 = Tpd =n-n=0
dTn d din\d dIn din
d| odd diseven d odd d even

Order of Magnitude and Average Order :- d(n), o(n) & ¢(n).

Order of magnitude is simply how Large or how small is the magnitude of the
function

Weknow d(1)=1&d(n)>2V n=>2.
Further d(p) = 2 for all primes p
Definition :- Let f(n) & g(n) be two functions of n.

(1) Wesay  f(n) =o(g(n))

if lim —~=

(2) Wesay  f(n) =0 (g(n))
if 3 a positive constant A such that |f(n)| < A g(n)
(3) Wesay  f(n) ~g(n)

if lim (M) _
n—co g(n)
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Remark :- If f(n) = 0 (g(n))

then f(n) = O (g(n))

and if f(n) ~ g(n) even then
f(n) = O(g(n))

Some rules for addition
(1) o(m)+o()=o(n)

(2)  O(n) +O(n) = O(n)

() o) +0(n)=0(n)

(4)  O(f(n)) + O(g(n)) = O[f(n) + g(n)]

Theorem 5.14 d(n) = O(n®) for all positive §, (5 however small)

Proof :- We know if n= pjtp52..ppk

Then d(n) = ﬁ (a+1)
i=1

din) r[a;+1

d—a—g[piaia ]

_ 1_[ ai +1] H ai+l]
pi<21/5 p?iS PiZZl/6 p?iS

Now for p > 2% p°>2, so

a+l a+1 a+1
<

paS :(pS)a < 2a - va
Also for all p,
adlog2 < e®002= 2% £ p?® (- 2<p)
a+l 1 a <1 1
=—+—<1+
pa6 paS pa6 8'092

<
< exp

Using the above estimate for p; < 2'°,
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We aet d(n) - a; +1< . 1
g n_5_pi<l_2[1/6 piai6 _pigl/a P dlog2
21/6
=0(1
P [Slog 2] ()
d(n) = O(n®).

Definition :- If f(n) and g(n) are two arithmetic functions of n, then we say
f(n) is a average order of g(n) if f(1) + f(2) +...+ f(n) ~ g(1) + g(2) +...+g(n)

Example :- Let us see when f(n) is of average order of n.

n(n+1) ~ln2
2

Nowl1+2+3+..n=

Thus if f(n) ~ %nz , then f(n) is of average order of n

Theorem 5.15 d(n) is of average order of log n. In fact d(1) + d(2) +...+ d(n)
~nlogn

Proof :- First we prove

log (1) +log (2) +...+ logn~nlogn
Now log (1) +log (2) +...+logn
=1 logl+1-log2+...+1-logn

n+1

2 3
~ [logtdt+flog t dt+..+ [log t dt
1 2 n

n+l il
= { log t dt=tlogt—t

=(n+1)log (n+l) —n
~nlogn

Now to prove the theorem it is enough to prove
d(1) +d(2) +...+d(n) ~ n log n.

Y A
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Consider the lattice whose vertices (X, y) are the points in the xy-plane with
integral co-ordinates. Denote by D the region in the upper right hand corner
contained between the rectangular axes & the rectangular hyperbola

Xy = n leaving out the coordinate axes and counting the lattice points on the
rectangular hyperbola.

We count the lattice point in this region in two different ways.

Let (X, y) be any lattice point in this region. Then X y < n and Xy is a natural
number and so this lattice point lies on one of the rectangular hyperbolas xy =
d, where 1 < <n. Then total number of lattice points in this region will be

d(1) +dQ) +...+d(n)
Also the number of lattice points in this region with x-coordinate equal to 1

willbea= |2 |,
1]
the number of lattice points in this region with x-coordinate equal to 2
will bea= | 2
2]

.. Total number of lattice points in this region will be

w22} 2

- d(1) +d(2) +...+ d(n)

- [n] + H H

n n n
:n+E+QD+§+QD+m+H+Oﬂ)

= n[1+1+1+...+1j+ O(n)
2 3 n
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1
= n[log n+y +O£HD + O(n) (by Sterling formula)

=nlogn+ny+0(1) + O(n)
=nlogn+O()~nlogn

Theorem 5.16 Prove that
d(1) +d(2) +...+ d(n)=nlogn+ 2y 1) n + O(~/n)

where v is the Sterlings constant.

Proof :- Let D denote the region as defined in the previous theorem. Then we
have already prove in previous then that the number of lattice points in this

region is
d(1) +dQ2) +...+d(n)
Set u=[v/n]=+n +0()
W=(/n +0@)?=n+0(/n)+0()=n+0(~n)
=n+0 (u)
So logu= Iog(\/ﬁ +0(1)= Iog[ﬁ[ﬂO(i]]]
Jn

= Iog(\/ﬁ) +log [1+C{%D

_ 1
-Iog(\/ﬁ)+0(ﬁj

L logn ! logu L
= — +Q — |= +Q —
29 Jn J u
We know that the lattice points (x, y) with x #0 & y = 0 is equal to

d(1) +d(2) +...+ d(n)

Since x = 0 and y # 0, the lattice points (X, y) be on the line x =1, x = 2,...
andy=1,y=2,....
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Let A B C D be the square determined by the vertices (1, 1), (1, u), (u, u) &
(u, 1). By symmetry the number of lattice points in the region ABCHGDA =
number of lattice points in the region ADEFGBA

Since [\/ﬁ] = u, there is no lattice point in the small triangle FGH.

Further (square ABCD) < Region (ABCHGDA) and Square
(ABCD) < Region (ABEFGDA).

.. If we count the points on the lines x =1, x=2,... &y=1,y=2,..., the
lattice points in the square ABCD are counted twice.

The number of lattice points in the square ABCD including on the boundary is
equal to u?

.. Number of lattice points in the region under consideration = 2(humber of
Lattice points in the region ABCHGDA)- u?

But as in the first part of the proof number of Lattice points in the region
ABCHGDA

Xy =n

éd(i) = 2[H+B}+BD T
But |:%:|+|:2:|+...+|:3:|:%4—%4----4—%4‘0([])

n . 1 1 )
Yd@i)=2n|1+—-+...+—|-u
2 u

i=1
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poeered |-
=2n| logu+vy+ m —u

=2nlogu+2ny+ O(u)-n+ O(u)
=2n [% logn -+ O[%D + (2y-1)n + O(u)

=nlogn+ O(u) + (2y-1)n + O(u)

=nlogn + (2y-1) n+O(~/n)
Magnitude and average order of o(n).
We know o(p) = p+1 and number of primes is infinite so all we can say about
magnitude of o(n) is o(n) >nforn > 2.

Theorem 5.17 The average order of o(n) is %nzn, More precisely

o(1) + 6(2) +...+ o(n) = énznz +O(n log n)

Proof :- Let as before, D be the region bounded by x-axis, y-axis & the
rectangular hyperbola xy =n.

If x is a divisor of n, then 3 a lattice point (X, y) lying in this region. Then this
point will lie on one of the linesy =1, y =2, and xy <n.

n

%a(i): S %y

x=1 szs{;
2x | X \[ X
But F} _ioa
X X

n . 1n(n n
EG(|)=§Z ;+o(1)j(;+o(1)j

x=1

n n2 n
>l +C{—] +O(1)]
x=1l X X

N|
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n 1l o 1 1) =? 1
x=1 X x=1 X n 6 n

and % 1:IognJrO[lj.
X n

no 1 (n° 1 1
Zc(l):z 2 FJFO[H] +0Oln Iogn+O£HD +0O(n)
= énz n? + O(n) + O(n log n) + O(n)

1 2 .2
=—7w1°n“+0O(nlogn
5 n°+0(n log )

Magnitude and Average order of ¢(n).

We know if n > 1, ¢(n) < n On the other hand if n = p™ and p > 1/ where € >
0 is given

then d(n) = n(l—%j >n(1-¢)
o(n )>1 e = lim (pE]n) 1

Theorem 5.18 There exists a constant A, such that

A<&(2p(n)<1foralln>l
n

Proof :- Letn = ] p“, then we know

p
1
p(x+l 1_ o
o+l 1 [ (x+1j 1 oa-1
s =11 " 1 P ( pl)
pin P=1  pn p[l_lj pln - (1-p7)
p
1_pot—l
=n H ]
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Also we know ¢(n) =n [T (L-p™)
pIn

o(n) ¢(n)=n® ] 1-p“*

pIn
o(n)¢(n) .
o _ 7 pety <t
n pln
Now for o > 1, p* < p***
1 < 1
- pa+1 _p_Z
1 1
= 1- >1-—
pa+1 p2
o(n)¢(n) o 1
—— =11 @p*H=1] (1——2j
n pln pln p

We know that the series Y. a, and the infinite product IT(1-a,) converge or
diverge together

But Ziz is convergent — ﬁ ( _izj is also convergent]
k k=1 k

So there exists a constant A such that

a<omo® g

n
Theorem 5.19 The average order of ¢p(n) is 6—2
TT
_ _ 3n?
In fact @d(n) = (1) + ¢(2) +...+d(n) = — O(n log n)
T

Proof :- We have already prove 3 ¢(d)=n
din



PRIMES IN CERTAIN ARITHMETICAL PROGRESSIONS AND SYSTEM OF CONGRUENCES

So by Mobius inversion formula,

o(n) = Z p(m)= > d" w(d)

dd'<n

:d%:l(d) {z}d

d=1

ol )t (]

_ 1n (d) n2 0 n
_Edé:lu d—2+ d
1,0 w(d) n 1l
—En dgl—2+0(nd§la]

But we know that

§ ; )converges to 6/m°
O(n) = = n s 19 wa) +O( 3 ) = En{inrO[EﬂO(n log n)
d=1 d d=1d 2 T n
2
= 3L2+ O(n log n)
T

Remark :- We know that the number of terms in Farey series function of

order nis

1+ 3 i) = 1+0(n)
i=1

We get the number of terms in the Farey series of order n is

3n2
. n

approximately — for large n.
T

Thus an alternative statement of the last theorem is that the number of terms in

Farey series of order n is approximately 3n%/r%.

Theorem 5.20 The probability that the two given integers should be coprime

to each other is %
T

229
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Proof :- Consider the pair of integers (p, ). Letl1<p<qg<n.

Now also consider the corresponding fraction % For every n, there are

almost n fractions. g withl<p<qg<n.

Total number of such fractions with all g(l <p<qg<n)is

1
—-nN

n. 1 1
i==n(n ~
zi=3 M+~
But the number of fractions % where 1 < p < qg<nandgcd(p, q) =1 is 3n?|

7 for large n.

2/ 2
. Probability = 3”1 I :%.
he oom
2

The Mangoldt function A(n)

We introduce next Mangoldt’s function A which plays a central role in the
distribution of primes.

Definition :- For every integer n > 1 we define

A() = log p if n=p™ fosomeprime p andsomem >1.
0 otherwise

Here is a short table of values of A(n) :

1 2 3 4 5 6 7 8 9
0 log2 log3 log2 log5 0 log7 log2 log3
Theorem 5.21 If n > 1 we have
logn=">" A(d). (D)
dJn

Proof :- The theorem is true if n = 1 since both members are 0. Therefore,
assume that n > 1 and write

r
n=I1pgK.
k=1
Taking logarithms we have

;
logn= ¥ a, logpy.
k=1

10
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Now consider the sum on the right of (1). The only nonzero terms in the sum
come from those divisors d of the form p" form =1, 2,...,axand k=1, 2,...,
r. Hence

r ak ak r

SAD=Y 3 AE™M=Y S log p, =3 a,log p, = log n,

dln k=1 m=1 k=1 m=1 k=1
which proves (1).

Now we use Mobius inversion to express A(n) in terms of the logarithm.
Theorem 5.22 If n > 1 we have

AM =Y u(d)logT =-3" p(d)logd

d|n d|n
Proof :- We know logn = A(d) (D)
din
Inverting (1) by the Mobius inversion formula we obtain

A= Y pdhlog s =logn’y” p(d)— Y u(d)logd

din d|n din
1

= [—} logn— 3> w(d) log d.
n d/n

Since [ﬂ log n = 0 for all n the proof is complete.

Chebyshev’s functions y(x) and 3§ (x)
Definition :- For x > 0 we define Chebyshev’s y-function by the formula

y(x)= ¥ An).

n<x

Since A(n) = 0 unless n is a prime power we can write the definition of (x)
as follows :

o]

> AP =% X logp.
p

m=1 pSX1/m

18

y(x)= X A(n)=

n<x m
p

3
A P

X

The sum on m is actually a finite sum. In fact, the sum on p is empty if x*™ <

2, thatis, if
(/m)log x < log 2, or if
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Therefore we have

v = ) 21; log p.

mslog, X p<x

This can be written in a slightly different form by introducing another function
of Chebyshev.

Definition :- If x > 0 we define Chebyshev’s $-function by the equation
$(x)= % logp,

p<x
where p runs over all primes < x.

The last formula for y(x) can now be restated as follows :

veo= Y 8.

mslog2 X

The next theorem relates the two quotients y(x)/x and $(x)/x.
Theorem 5.23 For x >0 we have

o< Y _8() _ (logx)’

= = 2
X X~ 2Jxlog

Note :- This inequality implies that
lim [M _ @j -0,

X—o0\ X X

In other words, if one of y(x)/x or 3(x)/x tends to a limit then so does the
other, and the two limits are equal.

Proof :-we have y(x) = Y 9(x'™), so0

m < logp x

0<y()-909)= >  9(x'M.

Zsmslogzx

But from the definition of 3(x) we have the trivial inequality

3(X) < > log x <xlog x

p<Xx

SO

0<y(X)-90)< > xYMlog(x"™) < (log, X)v/x log+'x
mslogzx

2<
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_ logx \/_ log X = Jx (logx)?
log2" 2 ~ 2log2
Now divide by x to obtain the theorem.
Relations connecting 3(x) and 7w(x)

In this section we obtain two formulas relating 3(x) and n(x). where &t (x) is
the number of primes < x. These will be used to show that the prime
number theorem is equivalent to the limit relation

lim 8( ) =1.

X—wo X

Both functions wt(x) and 3(x) are step functions with jumps at the primes; m(x)
has a jump 1 at each prime p, whereas $(x) has a jump of log p at p. Sums
involving step functions of this type can be expressed as integrals by means of
the following theorem.

Theorem 5.24 Abel’s identity. For any arithmetical function a(n) let
AX)= ¥ a(n),

n<x

Where A(x) = 0 if x < 1. Assume f has a continuous derivative on the interval
[y, x], where 0 <y <x. Then we have

> a(n) f(n) = A(x) f(x) — A(y) f(y) —)j( AR Fr@e)dt.  ...(1)

y<ns<x y

Proof :- Let k = [x] and m = [y], so that A(x) = A(k) and A(y) = A(m).

Then > amfm= 3 amfm= 3 {AM)-AM-1}m)

y<n<x n=m-+1 n=m-+1

2 A(nf(n) - 2 A(n)f(n+1)

n=m+l

kz_l An) {f(n) -f(n+1)} + Ak) f(k)

n=m+1
—A(m)f(m +1)
= S AMT £+ AK) K -Am)m + 1)
n=m+1 n

=_ i nfl A(t) f' (t) dt + A(K) f(k) — A(m) f(m + 1)

n=m+l n

233
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= ] AT A+ AR 0] AD T dt

m+1 k

m-+1
—Aly) fly) - [ A f’ (t)dt
y

= AKX) f(x) - A(y) f(y) - >I( A() F'(dt.

y
Theorem 5.25 For x > 2 we have
3(x) = n(x) log x—z @dt ..(D)
and
2(x) = E’(gx))( +Z “223 dt Q)

Proof :- Let a(n) denote the characteristic function of the primes; that is,

a(n) = 1 if nis pr.ime,
0 otherwise

Then we have
)= > 1= > a(n) and 8(x) = 3 logp= > a(n)logn.

p<x 1<n<x p<x l<n<x
Taking f(x) = log x in Abel’s identity with y =1 we obtain

3(x)= > a(n)log n=mn(x)log x — w(1) log 1- nTt)dt,

l<n<x

= — X

which proves (1) since n(t) = 0 for t < 2.
Next, let b(n) = a(n) log n and write

_ 1 _
) = 3/2§1§xb(n) logn’ 8 = 2 o).

Taking f(x) = 1/log x in Abel’s identity with y = 3/2 we obtain

_9(x) 8(3/2) oS
= _ + I !
logx log3/2 4, tlog“t

7(X)

which proves (2) since 3(t) =0 ift< 2.

Some equivalent forms of the prime number theorem
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Theorem 5.26 The following relations are logically equivalent :

lim ZX)10gx ;. (1)
X—>00 X

fim 300 _q. Q)
Xx—w X

lim YO _q. ..(3)
Xx—w X

Proof :- From above theorem we obtain, respectively,

9(x) _ n(X) log x _E’f ﬂdt

X X Xy t

and

n(x)logx  9(x) N logx* 9(t)dt
X X X 3 tlog?t

To show that (1) implies (2) we need only show that (1) implies

X
im 27 ™o
X—o X 9
But (1) implies n() O(i fort>2so
logt

1f xy_o[1] d ]
X t X< logt

2 2
Now
’fdt_*j&dt ¢odt _ Jx o x-Vx
> logt 5 logt JLIogt log 2 Iog\/—
1X
s =[] ———>0asx—>w.
X2 logt

This shows that (1) implies (2).

To show that (2) implies (1) we need only show that (2) implies
im logx* g(t)dt
x> X 3 tlog?t

=0.

235
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But (2) implies 3(t) = O(t) so
logx X 8(t)dt O[ Iogx’f dt ]
2

X 2 tlg?t | X 2 log?t
Now
X dt xodt ox dt o Jx x-4x
[ — =1 2+JL 2. 1 25" 2 /x
2 logt 2 log“t Jx log“t log“2 log“~/x
hence

logx* dt
X 2 log?t

—>0 asx — .

This proves that (2) implies (1), so (1) and (2) are equivalent. We know
already, that (2) and (3) are equivalent.

Theorem 5.27 Bertrand’s Postulate. If x is a real number, x > 1, then there
exists at least one prime number in the open interval (x, 2x).

Proof :- Suppose that the interval (x, 2x) contains no prime number. If p is
prime then there is at most one value of k for which p* (x, 2x), since p***/p~
=p > 2. Furthermore, k > 1, since the interval contains no primes. Hence

W(2X) - y(X) = Z: log p < w(~/2x ) + log 2x.

X <p-<2X

Here the last term on the right is required because 2x may be a prime number.
We use y(x) > apX — 5 log ex for x > 6, to provide a lower bound for (2x),
and use w(x) < box + 5 (log ex)? to provide upper bounds for wy(x) and

w(+/2x ). Thus we find that
(230 — bg) x — 5 log 2 ex — 5 (log ex)?

< bo/2x + 5(log e+/2x )% + log 2x. (D

Here the left side is comparable to x as x —o, while the right side is

comparable to VX . Hence the set of x for which this holds is bounded. In
fact, we show that if (1) holds then x < 1600. That is, if x > 1600 hen

23y — b > 5(log 2ex)/x + 5(log ex)?/x
+ 5(log e+/2x )2/x + (10g 2X)/X + bg/2 /X -..(2)
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To this end let f(x) be a function of the form f(x) = (log ax”)°/ x where a, b, ¢
are positive real constants. Then log f(x) = ¢ log log ax® — log x, and by
differentiating it follows that

f'(x) _ by
m = (bc/(log ax”)-1)/x.

Thus if ax® > e, then f(x) > 0 and the above expression is negative, so that f
'(X) < 0. In other words, f(x) is decreasing in the interval [Xo, «) where Xo =
e%a™™. Thus in particular the first term on the right side of (2) is decreasing
for x > x; = %, the second is decreasing for x > x, = e, the third is decreasing
for X > X3 = %, and the fourth is decreasing for x > x4 = e/2. Since the last
term on the right side of (2) is decreasing for all positive values of x, we
conclude that the right side is decreasing for x > x, = 2.71828---. By direct
calculation we discover that the right side of (2) is less than 3/8 when x =
1600, while the left side is > 3/8. Since the right side is decreasing, it follows
that (2) holds for all x > 1600.

We have shown that Bertrand’s postulate is true for x > 1600. To
verify it for 1 < x < 1600 we note that the following thirteen numbers are
prime : 2, 3,5, 7, 13, 23, 43, 83, 163, 317, 631, 1259, 2503. As each term of
this sequence is less than twice the preceding member, Bertrand’s postulate is
valid for 1 < x < 2503, and the proof is complete.

An asymptotic formula for the partial sums >, < x(1/p)
Theorem 5.28 There is a constant A such that

> 1: loglogx + A + O(i) forallx>2. ...(1)
p<x log x
Proof :- Let
lo
AX) = Y logp
p<x P
and let
a(n) = 1 ifnis pr_ime
0 otherwise
Then

» 1oy A agax= s @Iogn-

psx P n<x N n<x

Therefore if we take f(t) = 1/log t in Abel’s identity we find, since A(t) = 0 for
t<2,

237
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1_AK)

_ AW g
p<x P logx

tlog? t

.2

X
+]
2

But we know that Z Io& = log + O(1), so we have A(X) = log X + R(x),
p<Xx

where R(x) = O(1). Using this on the right of (2) we find

X
5 1=|09X+O(1)+j IogtJrZR(t)dt
p<x P log 2 tlog“t

1) X dt X R(Y)
=1+0| — |+ + dt. ...(3
('ngj £ tlogt g tlog? t ©)

Now

%: log log x — log log 2

N — X

and

2 tlog?t

the existence of the improper integral being assured by the condition R(t) =

O(1). But
R o f 2 :0[ L j
x tlog®t x tlog“t log x

Hence Equation (3) can be written as follow :

> 1:Ioglogx+1—loglogZ+Ojo R(tz) dt+0(ij.
p<x P 2 tlog“t log x

This proves the theorem with

A=1_loglog2+ | R(tz) dt
2 tlog“t

Theorem 5.29 For x > 2,

m% W(%j =d§X A(d){g} =X log x—x + O(log Xx).

Proof :- To prove this theorem, we use the following identity “Let f(n) be an
arithmetic function and
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Foo= 3 f(n).

n<x

e Z ) Z el
=Y, ¥ O

n<x djn

With f(n) = A(n) in Theorem 6.15, we have

FX) = 2 A() = w(x),

n<x

X d
mzs:x W{Ej B dgx A( )|: :|

> 3 Ad)

n<x dx

and so

> logn

=xlog x — x + O(log x).

The last identity comes from the estimate Z logn =xlog x — x + O(log x)

n<x

Theorem 5.30 (Merten’s formula) There exists a constant y such that for x >
2,

-1
11 [1—%] =¢" log x + O(1).

p <X

Proof:- We begin with two observations. First, the series Zp Zfzz p*/k

converges, since

© 1 1
;Zk_<;27_; p(p 1)

Z n(n 1)

n=2

=
N

Let

239
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Second, for x > 2,

= 1 1 1
0<> 2 (k<2 2.
55 kp

<
k=2 p>Xx p(p_l) n>Xx n(n_l)

v (. N 1
'nz[zxm(n—l nj [x]

2
< —.
X
From the Taylor series
o tk
—log (1-t) = —for|t]|<1
g(1-t) kzl " | t]

and using the estimate of Z 1 for x > 2, we obtain
p<x P

1 -1 1 -1
log T] [1——] > Iog[l——j
p<x p p<x p

:Ioglogx+b1+b2+0( L j+0[£}
log x X

=log Iogx+b1+b2+0(i].
log x
Lety=Db; + b, Then

6 el
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Since exp(t) = 1 + O(t) for t in any bounded interval [0, to], and since O(1/log
X) is bounded for x >2, we have

exp(O(@jj:HO(%}
IEIERCEY

=¢' log x(1+ O(ij
log x

=e"log x + O(1).

Therefore,

This is Merten’s formula.

Theorem 5.31 (Mertens Theorem) For x > 1,

> % =log x + O(1) (1)
and
logp _ log x + O(1). (2
p<x P

Proof :- Since y(x) = O(x) by Chebyshev’s theorem, we have

X logx —x + O(logx) = > A(d) g}
d<x

_ Ald X X
_dgx ( )E_{a}

S SR

d=<x d d<x

=X Y

d<x

A(d
((j ), O(w(x))
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:XZ

d<x

A(d)
+ O(x).
o+ 0w
We obtain equation (1) by dividing by x.
Next, we observe that

A | |
I

n<x p=x P

IA
N
=)
Q
o
M3

logp
<y
p<x P(p-1)

=0 (1).
This proves (1).
Selberg’s asymptotic formula

We deduce Selberg’s formula by a method given by Tatuzawa and Iseki. It is
based on the following theorem which has the nature of an inversion formula.

Theorem 5.32 Let F be a real or complex-valued function defined on (0, ),

and let
X
G(xX)=logx ¥ F(—).
n<x \N
X X
Then F(X)logx+ ¥ —jA(n): S u(d)G(—j.
n<x \N d<x d

Proof :- First we write F(x)log x as a sum,

Fo)logx= 3 [%Hfjlog%: 5 %jlog%d; u(d).
n

n<x n n<x

Then we use the identity,
n
A(n)= X w(d)log—
d/n d

to write

LHESLH

n=<x n=<x

3 u(d) Iog%.

d|n
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Adding these equations we find

F()log x + F( )A(n) > F(

n<x n<x

S X

jz M(d){log +Iogd}

d|n

) F(%)M(d) |og§.

n<x d|n

In the last sum we write n = qd to obtain

> Z ( ju(d)loga > u(d)loga > [ j D u(d)G( j

n<x d|n d=<x g=x/d d<x

which proves the theorem.

Theorem 5.33 Selberg’s asymptotic formula. For x > 0 we have

y()logx + > A(n)\y[ j 2X log x +0O(x).

n<x

Proof :- We apply above theorem to the function Fy(x) = w(x) and also to
F2(X) =x — C — 1, where C is Euler’s constant. Corresponding to F1 we have

Gi(x)=log x Y. W[%j = xlog® x — x log x + O(log? x),

n<x

where we have used the relation )’ 5j: X log x — x + O(log X).

n<x

Corresponding to F, we have

Ga(x)=log x ¥ Fz(%jzlogxz (%—C—lj

n<x n<x

=xlogx 3 l—(CJrl)Iogxz 1

=X log x (Iog X+C+ O[%)j — (C+1) log x(x+ O(1))

=x log® x — x log x + O(log X).
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Comparing the formulas for Gi(x) and G,(x) we see that Gi(x) — Gu(X) =
O(log? x). Actually, we shall only use the weaker estimate

Gi(X) — Ga(x) = O(X).

Now we apply above Theorem to each of F; and F, and subtract the two
relations so obtained. The difference of the two right members is

dZ u(d){e{gj—e{gj} - o[d; g] _ o[&d; % ] _0(x)

Therefore the difference of the two left members is also O(x). In other words,

we have

{w(x) - (x-C-D)} logx + {VGJ _G - c_1j} A(n) = O(x).

n=x

Rearranging terms and using Z Aln) _ log x + O(1) we find that
n

n<x

w)logx + 3 WG) A(n) = (X = C — D)log x

n<x

Y G—c—l]A(n) +0(X)

n<x
= 2x log x + O(Xx).

The Prime Number Theorem

The function =t(x) counts the number of prime numbers not exceeding x. The
prime number theorem (conjectured independently around 1800 by Gauss and
Legendre), states that =(x) is asymptotic to x/log X, that is,

lim n(X)log x _
X—0 X

1.

We define the remainder term R(x) for Chebyshev’s function 3(x) by
R(x) =3(x) — x.
We shall prove the prime number theorem in the form 3(x) ~ x, or,

equivalently, R(x) = o(x) as we have already proved in theorem 5.26 that 3(x)
~ x and wt(x) ~x are equivalent. More precisely, we shall prove that there exist
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sequences of positive real numbers {6m}n_; and {um};_; such that limm .
dm=0and

IR(X)| < 8mx for X > upm.
We need the following lemmas [cf: Melvin B. Nathanson, Elementary
Methods in Number Theory, Springer-Verlag, New York 1999].
Lemma 1. For every positive integer n,

[1 pes

p<n

Equivalently, for every real number k > 1
v(X) < x log 4.

Lemma 2 :- There exists positive constants A and B such that
A(X) <V(X) <wy(x)=m(x)log x <B for x > 2.

Moreover tim inf Y& _ jim inf Y& _ jim inf 209X,
X—>®0 X X—>0 X X—>00 X

and
lim supv( ) = lim supW( ) = lim supms log 4
X—>® X X—>o0 X—3c0 X

Lemma 3 For x > g,

3 ~_ 9P _ 5 (log log x).

p=x p£1+ Iong
p

Lemma4 Forx>1

IR(X)| <

o 2 ) o)

Lemma 5 Let 0 <6 < 1. There exist numbers ¢, > 1 and x3(8) > 4 such that if
X > X1(8), then there exists an integer n such that

x <n<e®’®

and |R(n)| < &n.

X

The constant ¢y does not depend on d.
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Lemma 6 Let cg > 1 be the number constructed in Lemma 3 and let0 < < 1.

There exists a number x,(8) such that if x > x; (8), then the interval (X, e°0/5x]
contains a subinterval (y, e?y] such that

|R(t)| < 48t

8/2

forall t € (y, e*y].

Theorem 5.34 (Prime number theorem) For Chebyshev’s function 3(x),
9(x) ~ x

as X — oo,

Proof :- By lemma 1,

: R(X) . 8(x)
lim sup—— =Ilim sup——~-1<log4 -1<0.4.
X—© X X—>00 X
By lemma 2,
lim mfﬁ_ lim mfﬁ—b log2-1>-04.
X—0 X—©

It follows that there exist numbers M and u; such that
IR(X)|<Mx forallx>1,

and IR(X)| < &:1x  forall x > uy,

where 01 =04.

We shall construct sequences of positive real numbers {&m}r _; and
{em}in_1 . such that

01>08,>03>...
and
lim e, =0. ...(1)

m—w

Let m > 1, and suppose that we have constructed the number &y,,. Let co > 1 be
the number defined in Lemma 5. Choose gr, such that

0<emn<l/m

and
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82
1+ 1-—" |<1.
( Sm)[ 256c0]

We define

82
Sme1 = (1 + 1-—" |3 (2
m+1 ( 8m)[ 25600] m (2)
Then 0 < 8m+1 < Om. This determines the sequences {6m}y_; and {em}n _;
inductively.

We shall prove that for every m there exists a number up, such that

|R(X)| < dmx for all x > up,. (3)

Let us show that this suffices to prove the prime number theorem. The
sequence {Om };n_; i a strictly decreasing sequence of positive real numbers,

so the sequence converges to some non negative number 6 < 1. Then (1) and
(2) imply that

82
5=[1- 5=0.
356,

Inequality (3) implies that R(x) = o(x), which is equivalent to the prime
number theorem.

We construct the numbers uy, inductively. There exists u; such that
|IR(X)| < &1 x for X > u;. Suppose that uy has been determined. We shall prove
that there exists a number um+; such that |R(X)| < dm+1X for all X > Upq1.

d

Define &'m= ?m

and o =e%0/om.

Let X2(8, ) be the number constructed in Lemma 6, and let

X3(m) = max (X2(8 1, ), Um)-

X > Xa(m) = Xo(8 ),

then by Lemma 6, every interval (x, px] contains a subinterval (y,esm’ 2

such that

y]

S st
|R(t)| <48mt: 7
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for all t < (y, eE’Im’ 2y]. Let k be the greatest integer such that P < x/xa(m).
Then
I
k < M< k + ]_,
logp
and so
log(x/x5(m
(= oglTxsm)
logp
Co
3, log x
- Om 08X 0(1).
8¢y
By lemma 4,
X
IR(X)| < > R[—j +0(X)
logxn<x| N
1 X 1 X
= — Rl—|l+— X Rl — || + O(x)
log x , <k n log X k 27 <« n
1 X Mx
< > [Ri=|l+—— X — +0(x)
log x , <k n logX kZnex N
1 X
< > R[—j + 0(X),
logx , <k n
since
1 1 3
—< = =log (pxsz(m)) + O(1/x) = O(1).
Kenex M xipxgmensx N
If 1 <n<pX then
X _ X
Ezp—kz X3(M) > Un,
and
dmX
< .
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by the definition of up,.

Forj=1,... .k, we have

X X '
— Z—kZ x3(m) 2 X2(8m)’
ol p

X X :
and so each interval | —,—— | contains a subinterval I; = (y;,e>'?y]
p! p

: Syt
such that R(t)|<46,,t= - forall t el

s

Therefore,

+ 2

nelj

= X

ne@Et, pl;

el pll

X
5]
n
< OmX >

ne(pi, Pj]\|j

= OmX >

ne@El, pl

Then

X k
R[H]‘: R(X)+ Y >

n<p FLoneeipjl

:6mx+2[8mx > ——Z—J

We have

b 1 o klo ({1]
X —=38. X gp+Q —
m ngpk n m pk

= dmX log x + O(x).

Moreover,
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and so
K 1 .k kK p
=1 neIJ n 2 = X
8 (8, logx
= — +0Q1) | +0(1
> [ 8¢, Q) (1)
5 lo
_ %m g o),
128¢c,
since
j k k
pr ple" =D 2 2
> —= =0(1)
A X x(p-D T x T xg(m)
Therefore,
S X k 1 & xlogx
m® S _ opXI0g +0(x)

Combining these results, we obtain, for x > x3(m),

s

582 xlog x
256¢,

) < (6mX log x + O(X)) —[ +O(x)]
n<p

82
=|1-—" |5, log x + O(X),
[ 25600]m J )

and

+0(X)

1
R < » R[fj
logx , <k n

82
1——" 15X + 0o(X).
[ 256C, | )
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We choose un.+1 sufficiently large that for all X > um+; We have

82
oX)<gml1-—2 1§ X
%) 8’“[ 256c0] m

82
Then R(X)| < (1+ 1-—" 85X = 8me1X.
| ( )l ( 8m) [ 256C0] m m+1

This completes the proof of the prime number theorem.
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