Total No. of Printed Pages: 21

(DO NOT OPEN THIS QUESTION BOOKLET BEFORE TIME OR UNTIL YOU

ARE ASKED TO DO SO) M.Phil./Ph.D./URS-EE-2020

SET-Z

SUBJECT: Electronics & Communication Engg.

					10001
Time: 11/4 Hours	Max	k. Marks : 100	4,	To	otal Questions : 100
Roll No. (in figures)	(in w	ords)			
Name		Father's Name	,		
Mother's Name		Date of Examination			
<u>*</u>	* .				
(Signature of the Candidate)	•	, .	(S	ignature o	f the Invigilator)
CANDIDATES MUST READ T	HE FOLLO	WING INFORMATI	ON/IN	ISTRUCT	IONS BEFORE

CANDIDATES MUST READ THE FOLLOWING INFORMATION/INSTRUCTIONS BEFORE STARTING THE QUESTION PAPER.

- 1. All questions are compulsory.
- 2. The candidates *must return* the question booklet as well as OMR Answer-Sheet to the Invigilator concerned before leaving the Examination Hall, failing which a case of use of unfairmeans / mis-behaviour will be registered against him / her, in addition to lodging of an FIR with the police. Further the answer-sheet of such a candidate will not be evaluated.
- 3. Keeping in view the transparency of the examination system, carbonless OMR Sheet is provided to the candidate so that a copy of OMR Sheet may be kept by the candidate.
- 4. Question Booklet along with answer key of all the A, B, C & D code will be got uploaded on the University website after the conduct of Entrance Examination. In case there is any discrepancy in the Question Booklet/Answer Key, the same may be brought to the notice of the Controller of Examination in writing/through E.Mail within 24 hours of uploading the same on the University Website. Thereafter, no complaint in any case, will be considered.
- 5. The candidate *must not* do any rough work or writing in the OMR Answer-Sheet. Rough work, if any, may be done in the question booklet itself. Answers *must not* be ticked in the question booklet.
- 6. There will be no negative marking. Each correct answer will be awarded one full mark. Cutting, erasing, overwriting and more than one answer in OMR Answer-Sheet will be treated as incorrect answer.
- 7. Use only Black or Blue Ball Point Pen of good quality in the OMR Answer-Sheet.
- 8. Before answering the questions, the candidates should ensure that they have been supplied correct and complete booklet. Complaints, if any, regarding misprinting etc. will not be entertained 30 minutes after starting of the examination.

1. Given that:

$$A = \begin{bmatrix} -5 & -3 \\ 2 & 0 \end{bmatrix} \text{ and } I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

The, the value of A^3 is:

$$(1) 15A + 12I$$

$$(2) 19A + 30I$$

$$(3) 17A + 15I$$

$$(4) 17A + 21I$$

2. A fair coin is tossed 10 times. What is the probability that only the first two tosses will yield heads?

$$(1) \left(\frac{1}{2}\right)^2$$

(2)
$${}^{10}C_2 \left(\frac{1}{2}\right)^2$$

(3)
$$\left(\frac{1}{2}\right)^{10}$$

(4)
$${}^{10}C_2\left(\frac{1}{2}\right)^{10}$$

3.
$$I = \int_{0}^{1} x^{5} \sqrt{(1-x^{2})^{5}} \cdot dx =$$

(1)
$$\frac{8}{693}$$

(2)
$$\frac{5}{317}$$

(3)
$$\frac{8}{315}$$

(4)
$$\frac{41}{720}$$

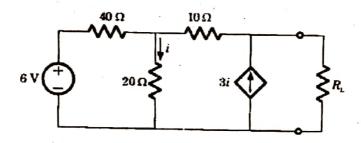
4. Match the following and choose the correct combination:

Group-1

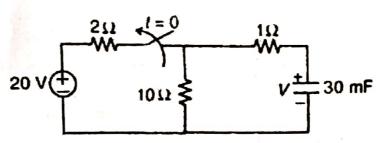
- A. Newton-Raphson method
- B. Runge-Kutta method
- C. Simpson's rule
- D. Gauss elimination

Group-2

- 1. Solving non-linear equations
- 2. Solving linear simultaneous equations
- 3. Solving ordinary differential equations
- 4. Numerical integration
- 5. Interpolation
- 6. Calculation of eigen values


(1)
$$A - 6$$
, $B - 1$, $C - 5$, $D - 3$

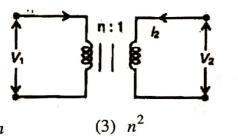
- 5. The length of arc of the curve $x = t^2$, $y = t^2$ from t = 0 to t = 4 is:
 - (1) $\frac{8}{27} (37\sqrt{37} 1)$


(2) $\frac{3}{5}(\sqrt{2}-1)$

(3) $\frac{5}{21}$

- (4) $\frac{5-\sqrt{3}}{2}$
- **6.** In the circuit given below, the R_L will absorb maximum power if R_L is equal to:

- (1) 40/3 Ohm
- (2) 60/3 Ohm
- (3) 70/3 Ohm
- (4) 20/3 Ohm
- 7. In the circuit given below the switch is opened at t = 0 after long time. The voltage v(t) for $t \ge 0$ is:



(1) $50/3 e^{(-t/0.33)} V$

(2) $15/3 e^{(-t/0.33)} V$

(3) $50/3 e^{(-t/30)} V$

- (4) $50/3 e^{(-0.33t)} V$
- 8. From the ABCD parameters of an ideal n : 1 transformer shown in figure below, the value of D is :

- (1) n
- (2) 1/n

(4) $1/n^2$

9.	Fourier	transform	of the	signal	u(t)	is	given	by	:
----	---------	-----------	--------	--------	------	----	-------	----	---

(1) 1

(2) $\pi\delta(\omega) - 1/j\omega$

(3) $2\pi\delta(\omega)$

(4) $\pi\delta(\omega) - j/\omega$

10. A series resonant circuit has L = 20 mH and C = 10 mF. The required R for the bandwidth of 50 Hz is:

- (1) 16 Ohm
- (2) 1 Ohm
- (3) 0.1 Ohm
- (4) 10 Ohm

11. For a silicon p + n junction diode the doping concentrations are $N_a = 10^{15} \, \mathrm{cm}^{-3}$ and $N_d = 10^{10} \, \mathrm{cm}^{-3}$. The minority carrier hole diffusion coefficient is $D_p = 10 \, \mathrm{cm}^2/\mathrm{s}$ and the minority carrier hole life time is $\tau_{p0} = 10^{-5} \, \mathrm{s}$. The cross sectional area is $A = 10^{-4} \, \mathrm{cm}^2$. The reverse saturation current is $(n_i = 1.5 \times 10^{-10} / \mathrm{cm}^3)$:

(1) 36×10^{-12} A

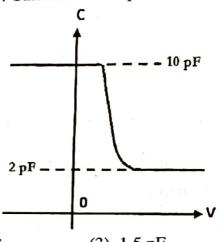
(2) 3.6×10^{-12} A

(3) 36×10^{-10} A

(4) 3.6×10^{-10} A

12. Match A (equations) with B (relations):

A


B

- P. Continuity Equation
- 1. Relates diffusion constant with mobility
- Q. Einstein's Equation
- 2. Relates charge density with electric field
- R. Poisson's Equation
- 3. Concentration gradient
- S. Diffusion Current
- 4. Rate of charge of minority carrier density with time
- (1) P-4, Q-1, R-3, S-2
- (2) P-4, Q-1, R-2, S-3
- (3) P-1, Q-4, R-2, S-3
- (4) P-1, Q-4, R-3, S-2

13. A Ge diode has a saturation current of 10 μA at room temperature. Then, the reverse current at $T=350^{\circ}$ K is :

- (1) 32 mA
- (2) 8.42 mA
- (3) 0.32 mA
- (4) 3.2 μA

14. The figure shows the high-frequency capacitance-voltage characteristics of a MOS capacitor. Assume that the permittivities of silicon and SiO_2 are 1×10^{-12} F/cm and 3.5×10^{-13} F/cm respectively. Calculate the capacitance in depletion mode.

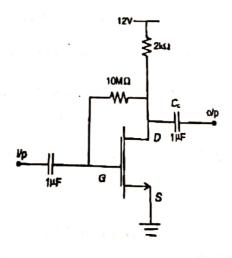
(1) 12 pF

(2) 5 pF

(3) 1.5 pF

(4) 2.5 pF

15. If P is passivation, Q is n-well implant, R is metallization and S is source/drain diffusion, then the order in which they are carried out in a standard n-well CMOS fabrication process is:

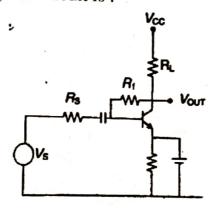

(1) S - R - Q - P

(2) R - P - S - Q

(3) Q - S - R - P

(4) P - Q - R - S

16. In the circuit given below, the parameters are $K = 0.2 \times 10^{-3} A/V^2$, $V_T = 3v$, $Y_d = 20$ μS , $V_{GSQ} = 6.4 V$, $I_{DQ} = 2.75$ mA. The output impedance z_0 and gain A_V is:

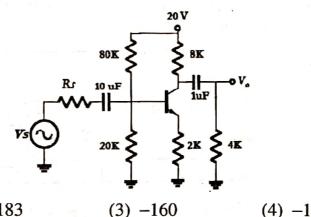

(1) $19.23 \text{ k}\Omega, -3.14$

(2) $1.923 \text{ k}\Omega$, 3.14

(3) $1.923 \text{ k}\Omega, -3.14$

(4) 12.93 k Ω , -31.4

The type of feedback in the given circuit is:

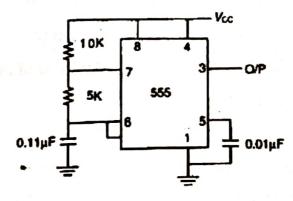

(1) Voltage shunt

(2) Current shunt

(3) Voltage series

(4) Current series

The gain A_V of the circuit shown below is: 18.


(1) -169

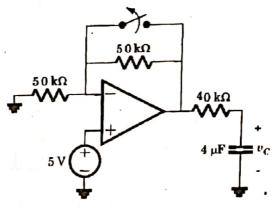
(2) -183

(3) -160

(4) -16.9

The 555 timer circuit as shown in figure generates a rectangular waveform. The 19. frequency and duty cycle of the waveform are:

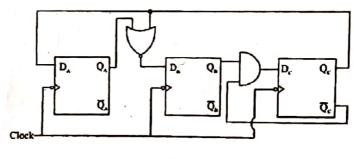
(1) 660 Hz, 0.45


(2) 660 Hz, 0.25

(3) 66 Hz, 0.25

(4) 6.6 Hz, 0.25

6


20. The circuit shown below is at steady state before the switch opens at t = 0. The $v_c(t)$ for t > 0 is:

- (1) $10 5e^{-6.25t}$ V
- (3) $5 + 5e^{-t/6.25}$ V

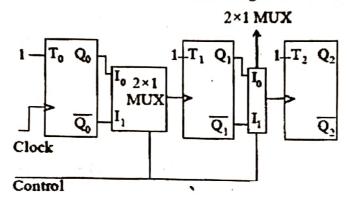
- (2) $5 + 5e^{-6.25t}$ V
- (4) $10 5e^{-t/6.25}$ V

21. If all flip-flops are reset to '0' at power on, then the total number of output states (ABC) represented by this counter is equal to:

- (1) 3
- (2) 5
- (3) 4
- (4) 7

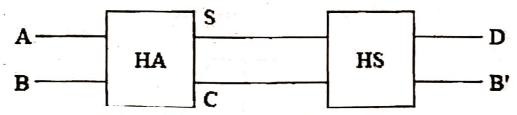
22. Given $F = F_1.F_2$, where $F(A, B, C, D) = \sum m(4, 7, 15)$, $F_1(A, B, C, D) = \sum m(0, 1, 2, 3, 4, 7, 8, 9, 10, 11, 15)$, the possible function for F_2 is:

- (1) Σ m (5, 6, 12, 13, 14)
- (2) Σm (4, 5, 6, 7, 8, 12, 13, 14, 15)
- (3) Σ m (5, 6, 12, 13, 4, 7, 15)
- (4) None of these


23. 1000 H: LXI SP, 0FFFH

CALL 2050H

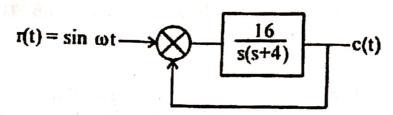
After call, content of PC and SP is:


- (1) $PC = 1006 \text{ H}, SP = 0FFFH}$
- (2) PC = 2050 H, SP = 0FFFH
- (3) PC = 2050 H, SP = 0FFDH
- (4) PC = 1006 H, SP = 0 FFDH

24. For the given sequential circuit, which of the following statements are true:

- a. For control = 0 it will acts as down counter
- b. For control = 1 it will acts at up counter
- c. Synchronous counter
- d. Asynchronous counter
- (1) a, b, c
- (2) a, c
- (3) a, b, d
- (4) b, d

25. The half adders and half substractor are connected as shown in figure below. The output D and B' are:


(1) $D = A \oplus B$; B' = AB

(2) D = A + B; B' = 0

(3) D = AB; B' = 0

(4) D = A + B; B' = AB

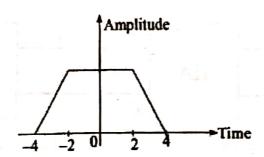
26. In the system shown below, the steady state response c(t) will exhibit a resonant peak at a frequency of rad/sec. (rounding up to 2 decimals)

- (1) $2\sqrt{2}$
- (2) $4\sqrt{2}$
- (3) $6\sqrt{2}$
- (4) $8\sqrt{2}$

MPH/PHD/URS-EE-2020/(Elec. & Comm. Engg.)(SET-Z)/(A)

P. T. O.

27. TF of a unity feedback system is $\frac{1}{(4s^2+s+4)}$. The magnitude of the system at 0.1591


Hz is approximately dB.

- (1) 0
- (2) 1
- (3) 2

- (4) 3
- 28. By performing cascading / summing / differencing operations using transfer function blocks $G_1(s)$ and $G_2(S)$ one cannot realize a transfer function of the form :
 - (1) $G_1(S) G_2(S)$

- (2) $\frac{G_1(S)}{G_2(S)}$
- (3) $G_2(S) \left(\frac{1}{G_1(S)} + G_2(S) \right)$
- (4) $G_1(S) \left(\frac{1}{G_1(S)} G_2(S) \right)$
- **29.** The impulse response of a discrete LTI system is given by $h(n) = -(0.25)^{-n} u (n-4)$. The system is:
 - (1) Causal and stable

- (2) Causal and unstable
- (3) Non causal and stable
- (4) Non-causal and unstable
- **30.** The graph shown below represents a wave form obtained by convolving two rectangular waveform of duration:

(1) 4 units each

- (2) 4 and 2 units respectively
- (3) 6 and 3 units respectively
- (4) 6 and 2 units respectively
- 31. An AWGN is transmitting symbols at an SNR = 30 dB. The channel capacity per symbol in the channel is:
 - (1) 2 bits
- (2) 4 bits
- (3) 5 bits
- (4) 8 bits
- 32. AM signal is detected using an envelope detector. With carrier frequency set at 200 Mhz and modulating signal frequency being 20 kHz, the approximate value of time constant of envelope detector is:
 - (1) 5 ns
- (2) $60 \, \mu s$
- (3) 70 μs
- (4) 2.5 ns

33.	A sinusoidal signal a midrise uniform of	quantizer. The	quanti	zation noise pov	quantized int	o 128 levels	using
	$(1) 2 \mu W$	(2) $10 \mu\text{W}$		$(3) 40 \mu W$		μW	
34.	In a FM system, a 2 kHz. Using Ca (modulated signal) around 30 MHz is	rson's approx) ³ . Then by u	imatio	n handwidth ma	animad in O	MII IC .	.(4)
	(1) 0.1 MHz	(2) 0.2 MH:	Z ·	(3) 0.3 MHz	(4) 0.5	MHz	
35.	The input to the ma	atched filter is	given	by			
	$s(t) = 20\sin(2\pi \times 1)$	$0^5 t$) for (0 < t <	10^{-3} s			
	= 0		elsewł	nere			
	The peak amplitud	e of filter outp	ut is:				
	(1) 20 V	(2) 2 V		(3) 10 V	(4) 0.2	V	
36.	Which of the follow	wing does not	satisfy	the wave equati	on?		
	$(1) Ae^{j(wt-2z)}$			(2) $\cos(w(z +$	<i>t</i>))		
	(3) $\cos x \cdot \cos t$			(4) $\cos(y^3 +$	5t)		
37.	7. The electric field intensity vector of a plane wave is given by $E(r, t) = 10 \sin(6000t - 0.06x + 20a_y)$ where a_y denotes unit vector along y direction. The wave is propagating with a phase velocity of:					00t + gating	
	(1) 1×10^5 m/s	(2) 1×10^6	m/s	$(3) -1 \times 10^5 \text{ r}$	m/s (4) -1	\times 10 ⁶ m/s	
38.	If the length of the the input impedance	e short-circuite ce is :	ed tran	smission line is	given as: 3/4	$\lambda < l < \lambda/2$, then
	(1) Inductive						
	(2) Capacitive					4 ft ,	
	(3) Zero						
	(4) Contains both	real and imagi	nary p	arts			

39. A quarter wave transformer matching a 50 Ohm source with a 200 Ohm load should

(3) 150 Ohm

P. T. O.

(2) 100 Ohm

have a characteristic impedance of:

(1) 50 Ohm

(4) 200 Ohm

40. Match A (theorem) with B (description):

A

P.
$$\operatorname{curl} \overrightarrow{F} = 0$$

Q. div $\overrightarrow{F} = 0$

R.
$$\iiint_V (\nabla .F) dV = \oiint_S F. dS$$

S. $\iint_{S} F \cdot dS = Q$

(3) P - 2, Q - 3, R - 1, S - 4

B

1. Gauss theorem

2. Irrotational

3. Solenoidal

4. Divergence theorem

(2) P-3, O-2, R-4, S-1

(4) P - 2, Q - 4, R - 3, S - 1

41. The Fermi level of a metal is the :

- (1) Energy at which the probability of finding an electron is 1/2.
- (2) The highest energy an electron can possess inside the metal.
- (3) The energy required to take an electron from metal to vacuum.
- (4) The lowest energy an electron possess at 0K.

42. In a semiconductor, the probability of finding an electron at an energy ΔE above the bottom of the conduction band is always the probability of finding a hole at an energy ΔE below the top of the valence band.

(1) greater than

(2) equal to

(3) less than

(4) unequal to

43. In the piecewise linear diode model, the diode resistance is:

- (1) low for all biases
- (2) high for all biases
- (3) low for biases greater than cut-in voltage and high for biases less than cut-in voltage
- (4) high for biases greater than cut-in voltage and low for biases less than cut-in voltage

44.	In the triode region, the	$I_D - V_{DS}$ charac	cteristi	cs of a MOSFI	ET are:		
	(1) hyperbolic (2)	linear	(3) q	uadratic	(4) ex	ponential	
45.	In the common emitter then:	configuration,	if the	e transistor is	in the	saturation	region,
	$(1) \ I_C > I_E \qquad (2)$	$I_C < \beta I_B$	(3)	$I_E < I_B$	$(4) I_B$	$> \beta I_C$	
46.	The LEVEL 1 SPICE m	odel implements	s:				
	(1) Square Law model		(2) A	Alpha Power La	aw mod	el	
	(3) Injection Velocity n	nodel	(4) V	Velocity Satura	tion mo	del	
47.	BSIM 1 is a:						
	(1) Charge based mode	l					
	(2) Threshold voltage b	ased model					
	(3) Surface potential ba	sed model					
1	(4) None of the above						
48.	PSP is a:						
	(1) Charge based mode	l .	(2)	Threshold volta	ige base	d model	
	(3) Surface potential ba	sed model	(4)	None of the abo	ove		
49.	EKV is a:						
	(1) Charge based mode	1					
	(2) Threshold voltage b	ased model				÷	
	(3) Surface potential ba	ised model					
	(4) None of the above						
50.	BSIM4 model considers	s the influence o	f narro	ow width effect	t (NWE) on :	
	(1) Mobility only		(2)	Threshold volt	age only	1	

(3) Saturation velocity only (4) All of the above

- 51. Which one of the following is *not* the advantage of ion-implantation over diffusion doping?
 - (1) It is a low temperature process.
 - (2) Point imperfections are not produced.
 - (3) Shallow doping is possible.
 - (4) Gettering is possible.
- **52.** Imperfection arising due to the displacement of an ion from a regular site to an interstitial site maintaining overall electrical neutrality of the ionic crystal is called:
 - (1) Frenkel imperfection
 - (2) Schottky imperfection
 - (3) Point imperfection
 - (4) Volume imperfection
- **53.** Four probe method is used to measure:
 - (1) resistivity of semi-conducting material
 - (2) mobility of carriers
 - (3) carrier concentration
 - (4) none of the above
- 54. In photolithography, higher the radiation wavelength:
 - (1) smaller is the minimum feature size
 - (2) larger is the minimum feature size
 - (3) feature size is independent of it
 - (4) none of these
- 55. Hall effect can be used to measure:
 - (1) mobility of carriers

(2) type of semiconductor

(3) carrier concentration

(4) all of these

56.	Etching is always anisotropic if the mate		13
	(1) Crystalline		
	(3) Amorphous	(2) Polycrystalline	
57.		(4) None of the above	
57.	The steady state conditions in diffusion	are governed by:	
	(1) Fick's second law	(2) Fick's first law	
	(3) Both (1) and (2)	(4) Maxwell-Boltzmann's law	
58.	A heavily doped buried layer is used in	bipolar IC technology to:	
	(1) bury the defects in Silicon below the		
	(2) reduce the resistance to current flow	from the active layer to the substrate	
	(3) Prevent latchup		
	(4) reduce the collector resistance of the	e bipolar transistor	
59.	While diffusing an impurity into silicon maintained constant at the surface of the	n, if the concentration of the impurity atoms wafer, then the diffused impurity profile is a	is
	(1) Gaussian	(2) Exponential	
	(3) Quadratic	(4) Complementary error function	
60.	If aluminum is deposited Upon a lightly	doped n-region:	
	(1) A schottky diode is obtained		
	(2) An ohmic contact is obtained		
	(3) A constant capacitance is obtained		
	(4) A high valued constant resistance c	an be obtained	
61.	The threshold voltage of an <i>n</i> -channel M	MOSFET can be increased by:	
	(1) Increasing the channel dopant conc	entration	
	(2) Reducing the channel dopant conce	ntration	
	(3) Reducing the gate oxide thickness		
	(4) Reducing the channel length		

4	. c MOSI	TET ic :
62.	In modern technology, the gate material used for a MOSI	EI 15.
	(1) Heavily doped polycrystalline silicon	
	(2) Pure silicon	
	(3) High purity silica oxide	
	(4) Epitaxial grown silicon	1

63. A certain gate draws 1.8μA when its output is HIGH and 3.3μA when its output is LOW. V_{CC} is 5V and the gate is operated on a 50% duty cycle. The average power

dissipation (P_D) is: (1) $2.55 \,\mu\text{W}$

(2) $1.27 \mu W$

(3) $12.75 \,\mu\text{W}$ (4) $5 \,\mu\text{W}$

In BiCMOS circuits: 64.

- (1) CMOS is used for implementing logic and BJT is used for high drive current
- (2) BJT is used for implementing logic and CMOS is used for high drive current
- (3) CMOS is used for implementing logic and BJT is used for low power
- (4) CMOS is used for high speed and BJT is used for high drive current
- 65. Propagation delay of a cell primarily depends on :
 - (1) Output transition and input load
 - (2) Input transition and output load
 - (3) Input transition and output transition
 - (4) Input load and output load

66. If metal 6 and metal 7 are used for the power in 7 metal layer process design then which metals you will use for clock?

(1) Metal 1 and metal 2

(2) Metal 3 and metal 4

(3) Metal 4 and metal 5

(4) Metal 6 and metal 7

- 67. Emitter-coupled logic (ECL) is the fastest bipolar transistor logic because :
 - (1) it uses current, rather than voltages, as the output variables
 - (2) it uses a circuit configuration that prevents the transistors from going into saturation
 - (3) it has no p-n-p transistors
 - (4) it uses differential inputs

- 68. A Schmitt trigger circuit achieves hysteresis by utilizing:
 - (1) the magnetic properties of a transformer code
 - (2) avalanche multiplication in a zener (tunnel) diode
 - (3) the Barkhausen principle
 - (4) regenerative positive feedback
- 69. When a step input is applied to an inverter made with an n-p-n transistor, such that the transistor goes from cutoff to saturation, there is a delay time (t_d) before the output goes low. The delay time is due partly to:
 - (1) the stored minority carrier charge in the base
 - (2) the charging of the base-collector junction capacitance
 - (3) the charging of the base-emitter junction capacitance
 - (4) the discharging of the minority carrier stored charge in the collector
- 70. Which equation related to noise margins is correct?
 - $(1) V_{NL} = V_{IL(\max)} + V_{OL(\max)}$
- (2) $V_{NH} = V_{OH(\min)} + V_{IH(\min)}$
- (3) $V_{NL} = V_{OH(\min)} V_{IH(\min)}$
- $(4) V_{NH} = V_{OH(\min)} V_{IH(\min)}$
- 71. Consider an Ideal voltage amplifier with a gain of 0.95 and a resistance $R = 100 \text{ K}\Omega$ connected between output and input terminals. Use Miller's theorem to find the input resistance of this circuit:
 - (1) $1 M\Omega$
- (2) $2 M\Omega$
- (3) $3 M\Omega$
- (4) $4 M\Omega$
- 72. Consider an amplifier with a voltage gain of -10 and a capacitance C = 10 pF connected between output and input terminals. Use Miller's theorem to find the equivalent capacitances at the output side.
 - (1) 11 pF
- (2) 110 pF
- (3) 10 pF
- (4) 100 pF
- 73. The cascode amplifier is composed of direct coupled:
 - (1) CE-CB configuration
- (2) CC-CC configuration
- (3) CB-CE configuration
- (4) None

74.	CMRR is more in:					
	(1) Single ended amplifier	(2) Differential amplifier				
	(3) Inverting operational amplifier	(4) None				
75.	Common mode rejection ratio is define	ed as ratio of:				
	(1) Common mode gain to differential	mode gain				
	(2) Differential mode gain to common	mode gain				
	(3) Common mode gain at input to diff	ferential mode gain at input				
	(4) Common mode gain at output to di	ifferential mode gain at output				
76.	Which of following configuration calle	ed as source follower?				
	(1) Common Gate	(2) Common Source				
	(3) Common Drain	(4) None				
77.	Dynamic power of a CMOS VLSI circ	uit is linearly proportional to:				
	(1) short-circuit current	(2) switching frequency				
	(3) time	(4) none of the above				
78.	Using 'Full-scaling' approach, the power dissipation of a transistor is scaled by a factor of :					
	(1) s (2) s^2	(3) s^3 (4) s^4				
79.	Dynamic power optimization technique	primarily follows:				
	(1) Transistor sizing	(2) Transistor stacking				
	(3) Multiple thresholds	(4) None of the above				
80.	Which one of the following models is n	ot related to low power design methodology?				
	(1) Power consumption model	(2) Current waveform model				
	(3) Voltage-sensitive timing model	(4) None of the above				

- 81. In 'clock gating' methodology, power can be reduced by:
 - (1) Reducing the effective frequency
 - (2) Reducing wasted operations
 - (3) Minimizing the power of each access
 - (4) None of the above
- 82. Using 'Alpha-power law model', the value of ' α ' for 65–180 nm CMOS technology lies in the range of :
 - $(1) 0.6 \sim 0.7$
- $(2) 1.0 \sim 1.1$
- $(3) 1.2 \sim 1.3$
- (4) 1.5 ~ 2.0
- 83. Using 'Monte Carlo Technique', one can choose N randomly distributed points x_1 , x_2 , x_3 ,, x_N in a multidimensional volume V to determine the integral of a function f. Then, the function f results in :

(1)
$$\int f dV \approx V < f > + \sqrt{\frac{< f^2 > - < f >}{N}}$$

(2)
$$\int f dV \approx V < f > -\sqrt{\frac{< f^2 > - < f >}{N}}$$

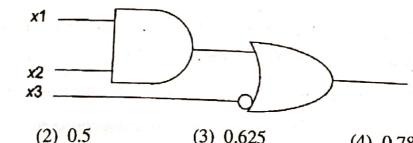
(3)
$$\int f dV \approx V < f > \pm \sqrt{\frac{< f^2 > - < f >}{N}}$$

(4)
$$\int f dV \approx V < f > \mp \sqrt{\frac{\langle f^2 \rangle - \langle f \rangle}{N}}$$

where
$$\langle f \rangle \equiv \frac{1}{N} \sum_{i=1}^{N} f(x_i)$$
 and $\langle f^2 \rangle \equiv \frac{1}{N} \sum_{i=1}^{N} f^2(x_i)$

- 84. Latches constructed with NOR and NAND gates tend to remain in the latched condition due to which configuration feature?
 - (1) asynchronous operation
- (2) low input voltages

(3) gate impedance


(4) cross coupling

- Four J-K flip-flops are cascaded with their J-K inputs tied HIGH. If the input frequency (f_{in}) to the first flip-flop is 32 kHz, the output frequency (f_{out}) will be:
 - (1) 1 kHz
- (2) 2 kHz
- (3) 4 kHz
- (4) 16 kHz
- 86. Which type of analysis cannot be supported by SPICE?
 - (1) non-linear d.c.

(2) non-linear a.c.

(3) linear a.c.

- (4) temperature
- 87. How can you best use schematics to create a netlist which is easy to understand?
 - (1) Allocate node numbers randomly.
 - (2) Use existing part numbers.
 - (3) Work through the circuit diagram adding the parts to the netlist as you encounter them.
 - (4) By annotating the schematic with our own practical node numbers that can then be used for the netlist.
- In a synchronous circuit, positive clock skew occurs only when:
 - (1) the transmitting register receives the clock earlier than the receiving register
 - (2) the transmitting register receives the clock after the receiving register
 - (3) the receiving register gets the clock earlier than the sending register
 - (4) the receiving register gets the clock after the sending register
- Calculate the signal probability for the following logic circuits with inputs x_1 , x_2 and 89. x_3 :

(1) 0.35

(3) 0.625

(4) 0.78

,				19		
90.	Double Gate MOSFETs are preferred over Single Gate MOSFETs due to:					
	(1) Easy fabrication					
	(2) Better control of	over channel				
	(3) Reduced Chann	nel length				
	(4) Smaller size of	Source/Drain				
91.	The far field of an a	antenna varies with d	istance r as:			
	(1) 1/r		(3) $1/r^3$	(4) $1/\sqrt{r}$		
92.	For the operation 2	1 + 13 = 40 to be cor	rect what will be the	base of the number:		
	(1) 2	(2) 4	(3) 11	(4) 8		
93.	The number of dist	inct Boolean express	ions of 3 variables is	:		
	(1) 16	(2) 256	(3) 8	(4) 1024		
94.	Hexadecimal numb	er 'A' is equal to octa	ıl number:			
	(1) 16	(2) 12	(3) 8	(4) 10		
95.	The number of bits	in ASCII is:		•		
	(1) 10	(2) 12	(3) 7	(4) 4		
96.	The Hamming dista	ance between 010 an	d 001 is:	•		
	(1) 0	(2) 1	(3) 2	(4) 3		
97.	Satellite the earth.	e orbits in a circular	pattern with an angu	lar velocity equal to that of		
	(1) Geostationary		(2) Early Bird I			
	(3) Stationary satel		(4) None of the ab			
98.	The process of tran	sferring a mobile sta	tion from one base st	ation to another is:		
	(1) MSC		(2) Roaming			
MDr	(3) Hand off		(4) Forwarding	P. T. O.		
чгН/]	PHD/URS-EE-2020/()	Elec. & Comm. Engg	.)(SET-Z)/(A)			

99.	For maximum radio coverag	e shape of	f the cellular	region	should	be	:
-----	---------------------------	------------	----------------	--------	--------	----	---

(1) Circular

(2) Hexagon

(3) Square

(4) Oval

100. Electrical permittivity of materials is approximately equal to square of:

- (1) Refractive index
- (2) Magnetic permeability
- (3) Speed of light × Magnetic permeability
- (4) None

Total No. of Printed Pages: 21

(DO NOT OPEN THIS QUESTION BOOKLET BEFORE TIME OR UNTIL YOU

ARE ASKED TO DO SO) M.Phil./Ph.D./URS-EE-2020

SET-Z

SUBJECT: Electronics & Communication Engg.

		31. 110.
Time : 1¼ Hours Roll No. (in figures)	Max. Marks : 100 (in words)	Total Questions : 100
Name	Father's Name	
Mother's Name	Date of Examination_	
(Signature of the Candidate)	_	(Signature of the Invigilator)

CANDIDATES MUST READ THE FOLLOWING INFORMATION/INSTRUCTIONS BEFORE STARTING THE QUESTION PAPER.

- 1. All questions are compulsory.
- 2. The candidates must return the question booklet as well as OMR Answer-Sheet to the Invigilator concerned before leaving the Examination Hall, failing which a case of use of unfairmeans / mis-behaviour will be registered against him / her, in addition to lodging of an FIR with the police. Further the answer-sheet of such a candidate will not be evaluated.
- 3. Keeping in view the transparency of the examination system, carbonless OMR Sheet is provided to the candidate so that a copy of OMR Sheet may be kept by the candidate.
- 4. Question Booklet along with answer key of all the A, B, C & D code will be got uploaded on the University website after the conduct of Entrance Examination. In case there is any discrepancy in the Question Booklet/Answer Key, the same may be brought to the notice of the Controller of Examination in writing/through E.Mail within 24 hours of uploading the same on the University Website. Thereafter, no complaint in any case, will be considered.
- 5. The candidate *must not* do any rough work or writing in the OMR Answer-Sheet. Rough work, if any, may be done in the question booklet itself. Answers *must not* be ticked in the question booklet.
- 6. There will be no negative marking. Each correct answer will be awarded one full mark. Cutting, erasing, overwriting and more than one answer in OMR Answer-Sheet will be treated as incorrect answer.
- 7. Use only Black or Blue Ball Point Pen of good quality in the OMR Answer-Sheet.
- 8. Before answering the questions, the candidates should ensure that they have been supplied correct and complete booklet. Complaints, if any, regarding misprinting etc. will not be entertained 30 minutes after starting of the examination.

	1.	Consider an Ideal voltage amplifier with a gain of 0.95 and a resistance $R=100~\text{K}\Omega$ connected between output and input terminals. Use Miller's theorem to find the input resistance of this circuit :						
		(1) 1 MΩ	(2) 2 MΩ	(3)	3 ΜΩ	(4) 4 MΩ	Σ	
	2.	connected between	ifier with a voltage n output and input inces at the output sid (2) 110 pF	termi de.			em to fi	
	3.		fier is composed of c	19				
		(1) CE-CB configu	-		CC-CC conf	iguration		
		(3) CB-CE configu	uration	(4)	None			
	4.	CMRR is more in :	'e''					
		(1) Single ended a	mplifier	(2)	Differential	amplifier		
		(3) Inverting opera	ational amplifier	ier (4) None				
	5.	Common mode rejection ratio is defined as ratio of:						
		(1) Common mode	e gain to differential	mode	gain			
		(2) Differential mo	ode gain to common	mode	gain			
		(3) Common mode	e gain at input to diff	ferentia	al mode gain	at input		
		(4) Common mode	e gain at output to di	fferent	ial mode gai	n at output		
	6.	Which of following	g configuration calle	d as so	ource followe	er ?		
		(1) Common Gate			Common So	ource		
		(3) Common Drai	n	(4)	None	6		
	7.	Dynamic power of	a CMOS VLSI circu	uit is li	nearly propo	ortional to:		
		(1) short-circuit cu	ırrent	(2)	switching fr	equency		
		(3) time		(4)	none of the	above		
MI	MPH/PHD/URS-EE-2020/(Elec. & Comm. Engg.)(SET-Z)/(B)							

8.	8. Using 'Full-scaling' approach, the power dissipation of a trafactor of:	ensistor is scaled by
	(1) s (2) s^2 (3) s^3 (4)	s^4
9.	9. Dynamic power optimization technique primarily follows:	
	(1) Transistor sizing (2) Transistor stacking	,
	(3) Multiple thresholds (4) None of the above	
10.	0. Which one of the following models is not related to low power of	lesign methodology?
	(1) Power consumption model	
	(2) Current waveform model	
	(3) Voltage-sensitive timing model	
	(4) None of the above	ga s
11.		
	(1) It is a low temperature process.	
	(2) Point imperfections are not produced.	
	(3) Shallow doping is possible.	
	(4) Gettering is possible.	1
12.	Imperfection arising due to the displacement of an ion from interstitial site maintaining overall electrical neutrality of the ion	a regular site to an ic crystal is called:
	(1) Frenkel imperfection	
	(2) Schottky imperfection	
	(3) Point imperfection	
	(4) Volume imperfection	

13.	Four probe method is used to measure:			
	(1) resistivity of semi-conducting material			
	(2) mobility of carriers			
	(3) carrier concentration			
	(4) none of the above			
14.	In photolithography, higher the radiation wavelength:			
(1) smaller is the minimum feature size				
	(2) larger is the minimum feature size			
	(3) feature size is independent of it			
	(4) none of these			
15.	Hall effect can be used to measure:			
	(3) carrier concentration (4) all of these			
16.	Etching is always anisotropic if the material is:			
	(1) Crystalline (2) Polycrystalline			
	(3) Amorphous (4) None of the above			
17.	The steady state conditions in diffusion are governed by:			
	(1) Fick's second law (2) Fick's first law			
	(3) Both (1) and (2) (4) Maxwell-Boltzmann's law			
18.	A heavily doped buried layer is used in bipolar IC technology to:			
	(1) bury the defects in Silicon below the active epitaxial layer			
	(2) reduce the resistance to current flow from the active layer to the substrate			
	(3) Prevent latchup			
	(4) reduce the collector resistance of the bipolar transistor			
ı du /	P. T. O.			

19.	While diffusing an maintained constant	impurity into silic at the surface of t	on, if the concentrate the wafer, then the di	tion of the impurity atoms is iffused impurity profile is a:	
	(1) Gaussian		(2) Exponential		
	(3) Quadratic		(4) Complemen	tary error function	
20.	20. If aluminum is deposited Upon a lightly doped n-region:				
	(1) A schottky diode is obtained				
	(2) An ohmic contact is obtained				
	(3) A constant capacitance is obtained				
	(4) A high valued of	constant resistance	can be obtained		
21.	An AWGN is transmitting symbols at an SNR = 30 dB. The channel capacity paymbol in the channel is:			B. The channel capacity per	
	(1) 2 bits	(2) 4 bits	(3) 5 bits	(4) 8 bits	
22.	AM signal is detected using an envelope detector. With carrier frequency set at 200 Mhz and modulating signal frequency being 20 kHz, the approximate value of time constant of envelope detector is:				
	(1) 5 ns	(2) 60 μs	(3) 70 μs	(4) 2.5 ns	
23.	A sinusoidal signal with peak to peak voltage at 2 V is quantized into 128 levels us a midrise uniform quantizer. The quantization noise power is:			nantized into 128 levels using r is:	
	$(1) 2 \mu W$	$(2) 10 \mu\text{W}$	(3) $40 \mu\text{W}$	$(4) 20 \mu\text{W}$	
24.	In a FM system, a 10 MHz carrier is modulated by a sinusoidal signal of frequent 2 kHz. Using Carson's approximation bandwidth required is 0.1 MHz. If $y(t)$ (modulated signal) ³ . Then by using Carson's approximation, the bandwidth of y around 30 MHz is:			ired is 0.1 MHz. If $y(t) =$	
	(1) 0.1 MHz	(2) 0.2 MHz	(3) 0.3 MHz	(4) 0.5 MHz	
25.	1 1 Clausia airea hu				
	$s(t) = 20\sin(2\pi \times 10^{-3})$	$0^5 t$) for $0 < t$	$< 10^{-3} s$		
	= 0 elsewhere The peak amplitude of filter output is:				
	(1) 20 V	(2) 2 V	(3) 10 V	(4) 0.2 V	
DU/	PHD/URS-EE-2020/(Elec. & Comm. En	gg.)(SET-Z)/(B)		

Which of the following does not satisfy the wave equation? 26.

(1)
$$Ae^{j(wt-2z)}$$

$$(2) \cos(w(z+t))$$

(3)
$$\cos x \cdot \cos t$$

(4)
$$\cos(y^3 + 5t)$$

27. The electric field intensity vector of a plane wave is given by $E(r, t) = 10 \sin(6000t + t)$ $0.06x + 20a_y$) where a_y denotes unit vector along y direction. The wave is propagating with a phase velocity of:

(1)
$$1 \times 10^5$$
 m/s

(2)
$$1 \times 10^6$$
 m/s

(2)
$$1 \times 10^6$$
 m/s (3) -1×10^5 m/s (4) -1×10^6 m/s

$$(4) -1 \times 10^6 \,\text{m/s}$$

28. If the length of the short-circuited transmission line is given as: $3/4.\lambda < l < \lambda/2$, then the input impedance is:

- (1) Inductive
- (2) Capacitive
- (3) Zero
- (4) Contains both real and imaginary parts

29. A quarter wave transformer matching a 50 Ohm source with a 200 Ohm load should have a characteristic impedance of:

30. Match A (theorem) with B (description):

A

P. curl
$$\overrightarrow{F} = 0$$

Q. div
$$\overrightarrow{F} = 0$$

R.
$$\iiint_V (\nabla . F) dV = \iint_S F. \, dS$$

S.
$$\oint_S F. dS = Q$$

31. For a silicon p + n junction diode the doping concentrations are $N_a = 10^{15} \,\mathrm{cm}^{-3}$ and $N_d = 10^{10} \,\mathrm{cm}^{-3}$. The minority carrier hole diffusion coefficient is $D_p = 10 \,\mathrm{cm}^2/\mathrm{s}$ and the minority carrier hole life time is $\tau_{p0} = 10^{-5} \,\mathrm{s}$. The cross sectional area is $A = 10^{-4} \,\mathrm{cm}^2$. The reverse saturation current is $(n_i = 1.5 \times 10^{-10}/\mathrm{cm}^3)$:

(1)
$$36 \times 10^{-12}$$
 A

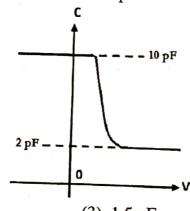
(2)
$$3.6 \times 10^{-12}$$
 A

(3)
$$36 \times 10^{-10}$$
 A

(4)
$$3.6 \times 10^{-10} \text{ A}$$

32. Match A (equations) with B (relations):

A

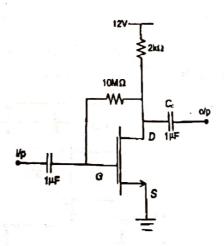

B

- P. Continuity Equation
- 1. Relates diffusion constant with mobility
- Q. Einstein's Equation
- 2. Relates charge density with electric field
- R. Poisson's Equation
- 3. Concentration gradient
- S. Diffusion Current
- 4. Rate of charge of minority carrier density with time

33. A Ge diode has a saturation current of 10 μ A at room temperature. Then, the reverse current at T = 350° K is :

- (1) 32 mA
- (2) 8.42 mA
- (3) 0.32 mA
- (4) 3.2 μA

34. The figure shows the high-frequency capacitance-voltage characteristics of a MOS capacitor. Assume that the permittivities of silicon and SiO_2 are 1×10^{-12} F/cm and 3.5×10^{-13} F/cm respectively. Calculate the capacitance in depletion mode.

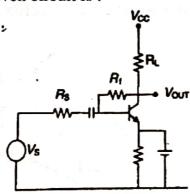

- (1) 12 pF
- (2) 5 pF
- (3) 1.5 pF
- (4) 2.5 pF

- **35.** If P is passivation, Q is n-well implant, R is metallization and S is source/drain diffusion, then the order in which they are carried out in a standard n-well CMOS fabrication process is:
 - (1) S R Q P

(2) R - P - S - Q

(3) Q - S - R - P

- (4) P Q R S
- 36. In the circuit given below, the parameters are $K = 0.2 \times 10^{-3} A/V^2$, $V_T = 3v$, $Y_d = 20$ μS , $V_{GSQ} = 6.4 V$, $I_{DQ} = 2.75$ mA. The output impedance z_0 and gain A_V is:



(1) $19.23 \text{ k}\Omega, -3.14$

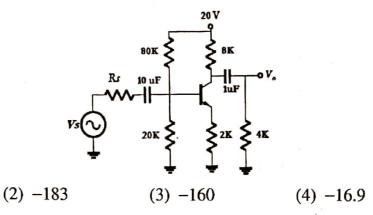
(2) $1.923 \text{ k}\Omega$, 3.14

(3) $1.923 \text{ k}\Omega, -3.14$

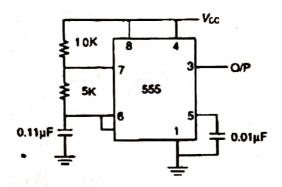
- (4) $12.93 \text{ k}\Omega, -31.4$
- **37.** The type of feedback in the given circuit is:

(1) Voltage shunt

(2) Current shunt


(3) Voltage series

(4) Current series

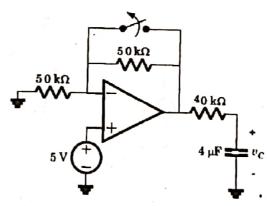

MPH/PHD/URS-EE-2020/(Elec. & Comm. Engg.)(SET-Z)/(B)

P. T. O.

38. The gain A_V of the circuit shown below is:

39. The 555 timer circuit as shown in figure generates a rectangular waveform. The frequency and duty cycle of the waveform are:

(1) 660 Hz, 0.45


(2) 660 Hz, 0.25

(3) 66 Hz, 0.25

(1) -169

(4) 6.6 Hz, 0.25

40. The circuit shown below is at steady state before the switch opens at t = 0. The $v_c(t)$ for t > 0 is:

(1) $10 - 5e^{-6.25t}$ V

(2) $5 + 5e^{-6.25t}$ V

(3) $5 + 5e^{-t/6.25}$ V

(4) $10-5e^{-t/6.25}$ V

41.	The fai field of all afferma varies with distance r as:				
	(1) 1/r	(2) $1/r^2$	(3) $1/r^3$	(4) $1/\sqrt{r}$	
42.	For the operation $21 + 13 = 40$ to be correct what will be the base of the number:				
	(1) 2	(2) 4	(3) 11	(4) 8	
43.	The number of distinct Boolean expressions of 3 variables is:				
	(1) 16	(2) 256	(3) 8	(4) 1024	
44.	Hexadecimal number 'A' is equal to octal number:				
	(1) 16	(2) 12	(3) 8	(4) 10	
45.	The number of bits in ASCII is:				
	(1) 10	(2) 12	(3) 7	(4) 4	
46.	The Hamming distance between 010 and 001 is:				
	(1) 0	(2) 1	(3) 2	(4) 3	
47.	Satellite orbits in a circular pattern with an angular velocity equal to that of the earth.				
	(1) Geostationary		(2) Early Bird I		
	(3) Stationary satellite		(4) None of the above		
48.	The process of transferring a mobile station from one base station to another is:				
	(1) MSC		(2) Roaming		
	(3) Hand off		(4) Forwarding		
49.	For maximum radio coverage shape of the cellular region should be:				
	(1) Circular	., -	(2) Hexagon		
	(3) Square		(4) Oval		
	**** #*** *** ****		VCER 71/(D)	РТО	

- Electrical permittivity of materials is approximately equal to square of: 50.
 - (1) Refractive index
 - (2) Magnetic permeability
 - (3) Speed of light × Magnetic permeability
 - (4) None
- 51. The threshold voltage of an n-channel MOSFET can be increased by :
 - (1) Increasing the channel dopant concentration
 - (2) Reducing the channel dopant concentration
 - (3) Reducing the gate oxide thickness
 - (4) Reducing the channel length
- **52.** In modern technology, the gate material used for a MOSFET is:
 - (1) Heavily doped polycrystalline silicon
 - (2) Pure silicon
 - (3) High purity silica oxide
 - (4) Epitaxial grown silicon
- A certain gate draws 1.8µA when its output is HIGH and 3.3µA when its output is LOW. V_{CC} is 5V and the gate is operated on a 50% duty cycle. The average power dissipation (P_D) is:
 - (1) $2.55 \mu W$
- (2) $1.27 \mu W$
- (3) $12.75 \,\mu\text{W}$ (4) $5 \,\mu\text{W}$

- 54. In BiCMOS circuits:
 - (1) CMOS is used for implementing logic and BJT is used for high drive current
 - (2) BJT is used for implementing logic and CMOS is used for high drive current
 - (3) CMOS is used for implementing logic and BJT is used for low power
 - (4) CMOS is used for high speed and BJT is used for high drive current

- **55.** Propagation delay of a cell primarily depends on :
 - (1) Output transition and input load
 - (2) Input transition and output load
 - (3) Input transition and output transition
 - (4) Input load and output load
- **56.** If metal 6 and metal 7 are used for the power in 7 metal layer process design then which metals you will use for clock?
 - (1) Metal 1 and metal 2

(2) Metal 3 and metal 4

(3) Metal 4 and metal 5

- (4) Metal 6 and metal 7
- 57. Emitter-coupled logic (ECL) is the fastest bipolar transistor logic because :
 - (1) it uses current, rather than voltages, as the output variables
 - (2) it uses a circuit configuration that prevents the transistors from going into saturation
 - (3) it has no p-n-p transistors
 - (4) it uses differential inputs
- **58.** A Schmitt trigger circuit achieves hysteresis by utilizing:
 - (1) the magnetic properties of a transformer code
 - (2) avalanche multiplication in a zener (tunnel) diode
 - (3) the Barkhausen principle
 - (4) regenerative positive feedback
- 59. When a step input is applied to an inverter made with an n-p-n transistor, such that the transistor goes from cutoff to saturation, there is a delay time (t_d) before the output goes low. The delay time is due partly to:
 - (1) the stored minority carrier charge in the base
 - (2) the charging of the base-collector junction capacitance
 - (3) the charging of the base-emitter junction capacitance
 - (4) the discharging of the minority carrier stored charge in the collector

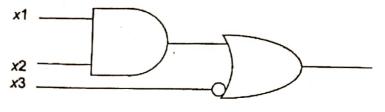
- **60.** Which equation related to noise margins is *correct*?
 - (1) $V_{NL} = V_{IL(\text{max})} + V_{OL(\text{max})}$
- (2) $V_{NH} = V_{OH(\min)} + V_{IH(\min)}$
- (3) $V_{NL} = V_{OH(\min)} V_{IH(\min)}$
- (4) $V_{NH} = V_{OH(\min)} V_{IH(\min)}$
- 61. In 'clock gating' methodology, power can be reduced by:
 - (1) Reducing the effective frequency
 - (2) Reducing wasted operations
 - (3) Minimizing the power of each access
 - (4) None of the above
- 62. Using 'Alpha-power law model', the value of ' α ' for 65–180 nm CMOS technology lies in the range of :
 - $(1) \ 0.6 \sim 0.7$
- $(2) 1.0 \sim 1.1$
- $(3) 1.2 \sim 1.3$
- $(4) 1.5 \sim 2.0$
- **63.** Using 'Monte Carlo Technique', one can choose N randomly distributed points x_1 , x_2 , x_3 ,, x_N in a multidimensional volume V to determine the integral of a function f. Then, the function f results in :

(1)
$$\int f dV \approx V < f > + \sqrt{\frac{< f^2 > - < f >}{N}}$$

(2)
$$\int f dV \approx V < f > -\sqrt{\frac{< f^2 > - < f >}{N}}$$

(3)
$$\int f dV \approx V < f > \pm \sqrt{\frac{< f^2 > - < f >}{N}}$$

$$(4) \int f dV \approx V < f > \mp \sqrt{\frac{\langle f^2 \rangle - \langle f \rangle}{N}}$$


where
$$\langle f \rangle = \frac{1}{N} \sum_{i=1}^{N} f(x_i)$$
 and $\langle f^2 \rangle = \frac{1}{N} \sum_{i=1}^{N} f^2(x_i)$

64.	Latches constructed with NOR and NAND gates tend to remain in the latched condition due to which configuration feature?			
	(1) asynchronous operation	(2) low input voltages		
	(3) gate impedance	(4) cross coupling		
65.	65. Four J-K flip-flops are cascaded with their J-K inputs tied HIGH. If the input frequency (f_{in}) to the first flip-flop is 32 kHz, the output frequency (f_{out}) will be:			
	(1) 1 kHz	(2) 2 kHz		
	(3) 4 kHz	(4) 16 kHz		
66.	6. Which type of analysis cannot be supported by SPICE?			
	(1) non-linear d.c.	(2) non-linear a.c.		
	(3) linear a.c.	(4) temperature		
67.	How can you best use schematics to create a netlist which is easy to understand?			
	(1) Allocate node numbers randomly.			
	(2) Use existing part numbers.			
	(3) Work through the circuit diagram adding the parts to the netlist as you encounter.(4) By annotating the schematic with our own practical node numbers that can be used for the netlist.			
68.	In a synchronous circuit, positive clock	skew occurs only when:		
	(1) the transmitting register receives the clock earlier than the receiving register			
	(2) the transmitting register receives the clock after the receiving register			
	(3) the receiving register gets the clock	earlier than the sending register		
	(4) the receiving register gets the clock	after the sending register		

MPH/PHD/URS-EE-2020/(Elec. & Comm. Engg.)(SET-Z)/(B)

P. T. O.

69. Calculate the signal probability for the following logic circuits with inputs x_1 , x_2 and x_3 :

- (1) 0.35
- (2) 0.5
- (3) 0.625
- (4) 0.78

70. Double Gate MOSFETs are preferred over Single Gate MOSFETs due to:

(1) Easy fabrication

- (2) Better control over channel
- (3) Reduced Channel length
- (4) Smaller size of Source/Drain

71. The Fermi level of a metal is the :

- (1) Energy at which the probability of finding an electron is 1/2.
- (2) The highest energy an electron can possess inside the metal.
- (3) The energy required to take an electron from metal to vacuum.
- (4) The lowest energy an electron possess at 0K.

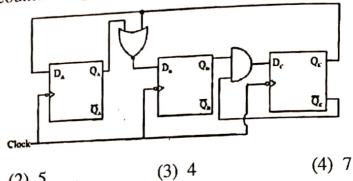
72. In a semiconductor, the probability of finding an electron at an energy ΔE above the bottom of the conduction band is always the probability of finding a hole at an energy ΔE below the top of the valence band.

(1) greater than

(2) equal to

(3) less than

(4) unequal to


73. In the piecewise linear diode model, the diode resistance is:

- (1) low for all biases
- (2) high for all biases
- (3) low for biases greater than cut-in voltage and high for biases less than cut-in voltage
- (4) high for biases greater than cut-in voltage and low for biases less than cut-in voltage

74.	In the triode region, the I_D - V_{DS} characteristics of a MOSFET are :					
	(1) hyperbolic	(2) linear	(3)	quadratic	(4) exponential	
75.	In the common er then:	mitter configuration,	if t	he transistor is	in the saturation region	n,
	$(1) I_C > I_E$	$(2) I_C < \beta I_B$	(3)	$I_E < I_B$	$(4) I_B > \beta I_C$	
76.	The LEVEL 1 SPIC	CE model implements	s :			
	(1) Square Law mo	odel	(2)	Alpha Power L	aw model	
	(3) Injection Veloc	ity model	(4)	Velocity Satura	tion model	
77.	BSIM 1 is a:					
	(1) Charge based m	nodel		• • •		
	(2) Threshold volta	ge based model				
	(3) Surface potentia	al based model				
	(4) None of the abo	ove				
78.	PSP is a:				An .	
	(1) Charge based m	nodel	(2)	Threshold volta	ge based model	
	(3) Surface potentia	al based model	(4)	None of the abo	ove	
79.	EKV is a:					
	(1) Charge based m	nodel		,		
	(2) Threshold volta	ge based model				
	(3) Surface potentia	al based model				
	(4) None of the abo	ove				
80.	BSIM4 model consi	ders the influence of	narı	ow width effect	(NWE) on:	
	(1) Mobility only		(2)	Threshold volta	ge only	
	(3) Saturation veloc	city only	(4)	All of the above	•	

16

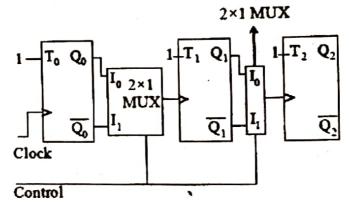
If all flip-flops are reset to '0' at power on, then the total number of output states (ABC) represented by this counter is equal to:

- (1) 3
- (2) 5

Given $F = F_1.F_2$, where $F(A, B, C, D) = \sum m (4, 7, 15)$, $F_1(A, B, C, D) = \sum m (0, 1, 2, 3, 15)$ 4, 7, 8, 9, 10, 11, 15), the possible function for F_2 is:

(1) Σ m (5, 6, 12, 13, 14)

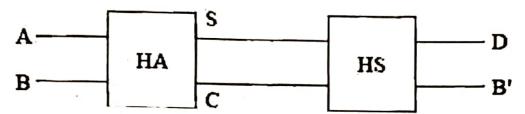
- (2) Σ m (4, 5, 6, 7, 8, 12, 13, 14, 15)
- (3) Σ m (5, 6, 12, 13, 4, 7, 15)
- (4) None of these


1000 H : LXI SP, 0FFFH

CALL 2050H

After call, content of PC and SP is:

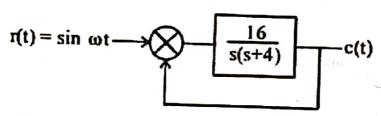
- (1) PC = 1006 H, SP = 0FFFH
- (2) PC = 2050 H, SP = 0FFFH
- (3) PC = 2050 H, SP = 0FFDH
- (4) PC = 1006 H, SP = 0FFDH


For the given sequential circuit, which of the following statements are true:

- For control = 0 it will acts as down counter
- For control = 1 it will acts at up counter
- Synchronous counter
- Asynchronous counter
- (1) a, b, c
- (2) a, c
- (3) a, b, d
- (4) b, d

MPH/PHD/URS-EE-2020/(Elec. & Comm. Engg.)(SET-Z)/(B)

85. The half adders and half substractor are connected as shown in figure below. The output D and B' are :


(1) $D = A \oplus B$; B' = AB

(2) D = A + B; B' = 0

(3) D = AB; B' = 0

(4) D = A + B; B' = AB

86. In the system shown below, the steady state response c(t) will exhibit a resonant peak at a frequency of rad/sec. (rounding up to 2 decimals)

- (1) $2\sqrt{2}$
- (2) $4\sqrt{2}$
- (3) $6\sqrt{2}$
- (4) $8\sqrt{2}$

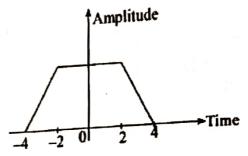
87. TF of a unity feedback system is $\frac{1}{(4s^2+s+4)}$. The magnitude of the system at 0.1591

Hz is approximately dB.

- (1) 0
- (2) 1
- (3) 2
- (4) 3

88. By performing cascading / summing / differencing operations using transfer function blocks $G_1(s)$ and $G_2(S)$ one cannot realize a transfer function of the form:

(1) $G_1(S) G_2(S)$


- (2) $\frac{G_1(S)}{G_2(S)}$
- (3) $G_2(S) \left(\frac{1}{G_1(S)} + G_2(S) \right)$
- (4) $G_1(S) \left(\frac{1}{G_1(S)} G_2(S) \right)$

89. The impulse response of a discrete LTI system is given by $h(n) = -(0.25)^{-n} u (n-4)$. The system is:

(1) Causal and stable

- (2) Causal and unstable
- (3) Non causal and stable
- (4) Non-causal and unstable

The graph shown below represents a wave form obtained by convolving two 90. rectangular waveform of duration:

(1) 4 units each

- (2) 4 and 2 units respectively
- (3) 6 and 3 units respectively
- (4) 6 and 2 units respectively

Given that: 91.

$$A = \begin{bmatrix} -5 & -3 \\ 2 & 0 \end{bmatrix} \text{ and } I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

The, the value of A^3 is:

(1) 15A + 12I

(2) 19A + 30I

(3) 17A + 15I

- (4) 17A + 21I
- A fair coin is tossed 10 times. What is the probability that only the first two tosses will 92. yield heads?
 - (1) $\left(\frac{1}{2}\right)^2$

(2) ${}^{10}C_2\left(\frac{1}{2}\right)^2$

 $(3) \left(\frac{1}{2}\right)^{10}$

- (4) ${}^{10}C_2 \left(\frac{1}{2}\right)^{10}$
- **93.** $I = \int_{0}^{1} x^5 \sqrt{(1-x^2)^5}$. dx =

 - (1) $\frac{8}{693}$ (2) $\frac{5}{317}$
- (3) $\frac{8}{315}$
- $(4) \frac{41}{720}$

MPH/PHD/URS-EE-2020/(Elec. & Comm. Engg.)(SET-Z)/(B)

Match the following and choose the correct combination: 94.

Group-1

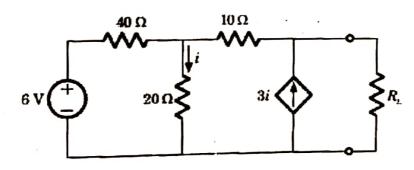
- Newton-Raphson method A.
- Runge-Kutta method Β.
- Simpson's rule C.
- Gauss elimination D.

Group-2

- 1. Solving non-linear equations
- 2. Solving linear simultaneous equations
- 3. Solving ordinary differential equations
- 4. Numerical integration
- 5. Interpolation
- 6. Calculation of eigen values

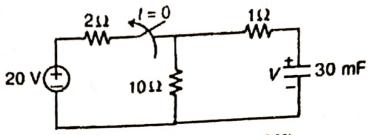
$$(1) A - 6, B - 1, C - 5, D - 3$$

The length of arc of the curve $x = t^2$, $y = t^2$ from t = 0 to t = 4 is: 95.


(1)
$$\frac{8}{27} (37\sqrt{37} - 1)$$

(2)
$$\frac{3}{5}(\sqrt{2}-1)$$

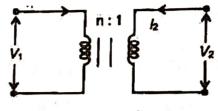
(3)
$$\frac{5}{21}$$


(4)
$$\frac{5-\sqrt{3}}{2}$$

In the circuit given below, the R_L will absorb maximum power if R_L is equal to:

- (1) 40/3 Ohm
- (2) 60/3 Ohm
- (3) 70/3 Ohm
- (4) 20/3 Ohm

97. In the circuit given below the switch is opened at t = 0 after long time. The voltage v(t) for $t \ge 0$ is :



(1) $50/3 e^{(-t/0.33)} V$

(2) $15/3 e^{(-t/0.33)} V$

(3) $50/3 e^{(-t/30)} V$

- (4) $50/3 e^{(-0.33t)} V$
- **98.** From the ABCD parameters of an ideal n : 1 transformer shown in figure below, the value of D is :

- (1) n
- (2) 1/n
- (3) n^2
- (4) $1/n^2$
- **99.** Fourier transform of the signal u(t) is given by:
 - (1) 1

(2) $\pi\delta(\omega) - 1/j\omega$

(3) $2\pi\delta(\omega)$

- (4) $\pi\delta(\omega) j/\omega$
- **100.** A series resonant circuit has L = 20 mH and C = 10 mF. The required R for the bandwidth of 50 Hz is:
 - (1) 16 Ohm
- (2) 1 Ohm
- (3) 0.1 Ohm
- (4) 10 Ohm

Total No. of Printed Pages: 21

10002

(DO NOT OPEN THIS QUESTION BOOKLET BEFORE TIME OR UNTIL YOU ARE ASKED TO DO SO) SET-Z

M.Phil./Ph.D./URS-EE-2020

SUBJECT: Electronics & Communication Engg.

		Sr. No
Time: 1¼ Hours Roll No. (in figures)	Max. Marks : 100 (in words)	Total Questions : 100
Name	Father's Name	
Mother's Name	Date of Examination_	
(Signature of the Candidate)		(Signature of the Invigilator)

CANDIDATES MUST READ THE FOLLOWING INFORMATION/INSTRUCTIONS BEFORE STARTING THE QUESTION PAPER.

- 1. All questions are compulsory.
- 2. The candidates must return the question booklet as well as OMR Answer-Sheet to the Invigilator concerned before leaving the Examination Hall, failing which a case of use of unfairmeans / mis-behaviour will be registered against him / her, in addition to lodging of an FIR with the police. Further the answer-sheet of such a candidate will not be evaluated.
- 3. Keeping in view the transparency of the examination system, carbonless OMR Sheet is provided to the candidate so that a copy of OMR Sheet may be kept by the candidate.
- 4. Question Booklet along with answer key of all the A, B, C & D code will be got uploaded on the University website after the conduct of Entrance Examination. In case there is any discrepancy in the Question Booklet/Answer Key, the same may be brought to the notice of the Controller of Examination in writing/through E.Mail within 24 hours of uploading the same on the University Website. Thereafter, no complaint in any case, will be considered.
- 5. The candidate *must not* do any rough work or writing in the OMR Answer-Sheet. Rough work, if any, may be done in the question booklet itself. Answers *must not* be ticked in the question booklet.
- 6. There will be no negative marking. Each correct answer will be awarded one full mark. Cutting, erasing, overwriting and more than one answer in OMR Answer-Sheet will be treated as incorrect answer.
- 7. Use only Black or Blue Ball Point Pen of good quality in the OMR Answer-Sheet.
- 8. Before answering the questions, the candidates should ensure that they have been supplied correct and complete booklet. Complaints, if any, regarding misprinting etc. will not be entertained 30 minutes after starting of the examination.

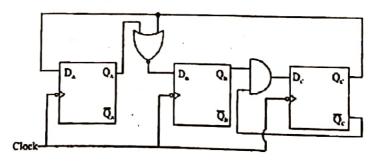
MPH/PHD/URS-EE-2020/(Electronic & Comm. Engg.)(SET-Z)/(C)

1.	. The Fermi level of a metal is the :			
	(1) Energy at which the probability of finding an electron is 1/2.			
	(2) The highest energy an electron can possess inside the metal.			
	(3) The energy required to take an electron from metal to vacuum.			
	(4) The lowest energy an electron possess at 0K.			
2.	In a semiconductor, the probability of finding an electron at an energy ΔE above the bottom of the conduction band is always the probability of finding a hole at an energy ΔE below the top of the valence band.			
	(1) greater than (2) equal to			
	(3) less than (4) unequal to			
3.	In the piecewise linear diode model, the diode resistance is:			
	(1) low for all biases			
	(2) high for all biases			
	(3) low for biases greater than cut-in voltage and high for biases less than cut-in voltage			
	(4) high for biases greater than cut-in voltage and low for biases less than cut-in voltage			
4.	In the triode region, the $I_D - V_{DS}$ characteristics of a MOSFET are:			
	(1) hyperbolic (2) linear (3) quadratic (4) exponential			
5.	In the common emitter configuration, if the transistor is in the saturation region, then:			
	(1) $I_C > I_E$ (2) $I_C < \beta I_B$ (3) $I_E < I_B$ (4) $I_B > \beta I_C$			
6.	The LEVEL 1 SPICE model implements:			
	(1) Square Law model (2) Alpha Power Law model			
	(3) Injection Velocity model (4) Velocity Saturation model			
PH/F	PHD/URS-EE-2020/(Elec. & Comm. Engg.)(SET-Z)/(C)			

7. BSIM 1 is a:

- (1) Charge based model
 - (2) Threshold voltage based model
 - (3) Surface potential based model
 - (4) None of the above

8. PSP is a:


(1) Charge based model

- (2) Threshold voltage based model
- (3) Surface potential based model
- (4) None of the above

9. EKV is a:

- (1) Charge based model
- (2) Threshold voltage based model
- (3) Surface potential based model
- (4) None of the above
- 10. BSIM4 model considers the influence of narrow width effect (NWE) on:
 - (1) Mobility only

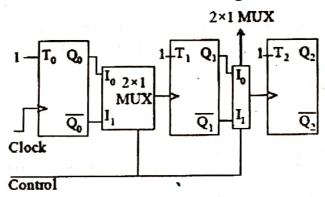
- (2) Threshold voltage only
- (3) Saturation velocity only
- (4) All of the above
- 11. If all flip-flops are reset to '0' at power on, then the total number of output states (ABC) represented by this counter is equal to:

- (1) 3
- (2) 5
- (3) 4

(4) 7

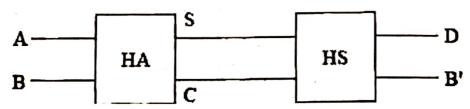
12. Given $F = F_1.F_2$, where $F(A, B, C, D) = \Sigma m$ (4, 7, 15), $F_1(A, B, C, D) = \Sigma m$ (0, 1, 2, 3, 4, 7, 8, 9, 10, 11, 15), the possible function for F_2 is:

- (1) Σ m (5, 6, 12, 13, 14)
- (2) Σ m (4, 5, 6, 7, 8, 12, 13, 14, 15)
- (3) Σ m (5, 6, 12, 13, 4, 7, 15)
- (4) None of these


13. 1000 H: LXI SP, 0FFFH

CALL 2050H

After call, content of PC and SP is:

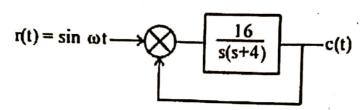

- (1) PC = 1006 H, SP = 0FFFH
- (2) PC = 2050 H, SP = 0FFFH
- (3) PC = 2050 H, SP = 0 FFDH
- (4) PC = 1006 H, SP = 0 FFDH

14. For the given sequential circuit, which of the following statements are true:

- a. For control = 0 it will acts as down counter
- b. For control = 1 it will acts at up counter
- c. Synchronous counter
- d. Asynchronous counter
- (1) a, b, c
- (2) a, c
- (3) a, b, d
- (4) b, d

15. The half adders and half substractor are connected as shown in figure below. The output D and B' are :

 $(1) D = A \oplus B; B' = AB$

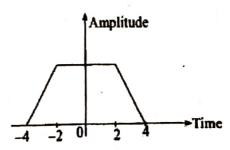

(2) D = A + B; B' = 0

(3) D = AB; B' = 0

(4) D = A + B; B' = AB

MPH/PHD/URS-EE-2020/(Elec. & Comm. Engg.)(SET-Z)/(C)

16. In the system shown below, the steady state response c(t) will exhibit a resonant peak at a frequency of rad/sec. (rounding up to 2 decimals)


- (1) $2\sqrt{2}$
- (2) $4\sqrt{2}$
- (3) $6\sqrt{2}$
- (4) $8\sqrt{2}$
- TF of a unity feedback system is $\frac{1}{(4s^2+s+4)}$. The magnitude of the system at 0.1591

Hz is approximately dB.

- (1) 0
- (2) 1
- (3) 2
- (4) 3
- By performing cascading / summing / differencing operations using transfer function blocks $G_1(s)$ and $G_2(S)$ one cannot realize a transfer function of the form:
 - (1) $G_1(S) G_2(S)$

- (2) $\frac{G_1(S)}{G_2(S)}$
- (3) $G_2(S) \left(\frac{1}{G_1(S)} + G_2(S) \right)$ (4) $G_1(S) \left(\frac{1}{G_1(S)} G_2(S) \right)$
- 19. The impulse response of a discrete LTI system is given by $h(n) = -(0.25)^{-n} u (n-4)$. The system is:
 - (1) Causal and stable

- (2) Causal and unstable
- (3) Non causal and stable
- (4) Non-causal and unstable
- The graph shown below represents a wave form obtained by convolving two 20. rectangular waveform of duration:

(1) 4 units each

- (2) 4 and 2 units respectively
- (3) 6 and 3 units respectively
- (4) 6 and 2 units respectively

MPH/PHD/URS-EE-2020/(Elec. & Comm. Engg.)(SET-Z)/(C)

21. Given that:

$$A = \begin{bmatrix} -5 & -3 \\ 2 & 0 \end{bmatrix} \text{ and } I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

The, the value of A^3 is:

$$(1) 15A + 12I$$

$$(2) 19A + 30I$$

$$(3) 17A + 15I$$

$$(4) 17A + 21I$$

22. A fair coin is tossed 10 times. What is the probability that only the first two tosses will yield heads?

$$(1) \left(\frac{1}{2}\right)^2$$

(2)
$${}^{10}C_2 \left(\frac{1}{2}\right)^2$$

$$(3) \left(\frac{1}{2}\right)^{10}$$

(4)
$${}^{10}C_2 \left(\frac{1}{2}\right)^{10}$$

23. $I = \int_{0}^{1} x^{5} \sqrt{(1-x^{2})^{5}} \cdot dx =$

(1)
$$\frac{8}{693}$$

(1)
$$\frac{8}{693}$$
 (2) $\frac{5}{317}$

(3)
$$\frac{8}{315}$$

(3)
$$\frac{8}{315}$$
 (4) $\frac{41}{720}$

24. Match the following and choose the correct combination:

Group-1

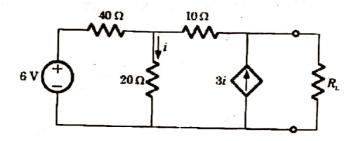
Group-2

- A. Newton-Raphson method
- 1. Solving non-linear equations
- B. Runge-Kutta method
- 2. Solving linear simultaneous equations

C. Simpson's rule

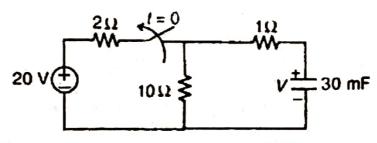
- 3. Solving ordinary differential equations
- D. Gauss elimination
- 4. Numerical integration
- 5. Interpolation
- 6. Calculation of eigen values

25. The length of arc of the curve $x = t^2$, $y = t^2$ from t = 0 to t = 4 is:


(1) $\frac{8}{27} (37\sqrt{37} - 1)$

(2) $\frac{3}{5}(\sqrt{2}-1)$

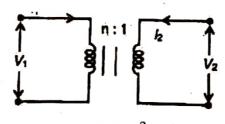
(3) $\frac{5}{21}$


(4) $\frac{5-\sqrt{3}}{2}$

26. In the circuit given below, the R_L will absorb maximum power if R_L is equal to :

- (1) 40/3 Ohm
- (2) 60/3 Ohm
- (3) 70/3 Ohm
- (4) 20/3 Ohm

27. In the circuit given below the switch is opened at t = 0 after long time. The voltage v(t) for $t \ge 0$ is :


(1) $50/3 e^{(-t/0.33)} V$

(2) $15/3 e^{(-t/0.33)} V$

(3) $50/3 e^{(-t/30)} V$

(4) $50/3 e^{(-0.33t)} V$

28. From the ABCD parameters of an ideal n:1 transformer shown in figure below, the value of D is:

- (1) n
- (2) 1/n
- (3) n^2
- (4) $1/n^2$

MPH/PHD/URS-EE-2020/(Elec. & Comm. Engg.)(SET-Z)/(C)

29. Fourier transform of the signal u(t) is given by :

(1) 1

(2) $\pi\delta(\omega) - 1/j\omega$

(3) $2\pi\delta(\omega)$

(4) $\pi\delta(\omega) - j/\omega$

30. A series resonant circuit has L = 20 mH and C = 10 mF. The required R for the bandwidth of 50 Hz is:

- (1) 16 Ohm
- (2) 1 Ohm
- (3) 0.1 Ohm
- (4) 10 Ohm

31. In 'clock gating' methodology, power can be reduced by:

- (1) Reducing the effective frequency
- (2) Reducing wasted operations
- (3) Minimizing the power of each access
- (4) None of the above

32. Using 'Alpha-power law model', the value of ' α ' for 65–180 nm CMOS technology lies in the range of :

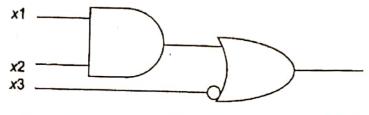
- $(1) \ 0.6 \sim 0.7$
- $(2) 1.0 \sim 1.1$
- $(3) 1.2 \sim 1.3$
- $(4) 1.5 \sim 2.0$

33. Using 'Monte Carlo Technique', one can choose N randomly distributed points x_1 , x_2 , x_3 ,, x_N in a multidimensional volume V to determine the integral of a function f. Then, the function f results in :

(1)
$$\int f dV \approx V < f > + \sqrt{\frac{< f^2 > - < f >}{N}}$$

(2)
$$\int f dV \approx V < f > -\sqrt{\frac{< f^2 > - < f >}{N}}$$

(3)
$$\int f dV \approx V < f > \pm \sqrt{\frac{\langle f^2 \rangle - \langle f \rangle}{N}}$$


$$(4) \int f dV \approx V < f > \mp \sqrt{\frac{\langle f^2 \rangle - \langle f \rangle}{N}}$$

where
$$\langle f \rangle \equiv \frac{1}{N} \sum_{i=1}^{N} f(x_i)$$
 and $\langle f^2 \rangle \equiv \frac{1}{N} \sum_{i=1}^{N} f^2(x_i)$

MPH/PHD/URS-EE-2020/(Elec. & Comm. Engg.)(SET-Z)/(C)

34	Latches constructed with NOR and condition due to which configuration for	NAND gates tend to remain in the latched eature?
	(1) asynchronous operation	(2) low input voltages
	(3) gate impedance	(4) cross coupling
35.	Four J-K flip-flops are cascaded with the (f_{in}) to the first flip-flop is 32 kHz, the	heir J-K inputs tied HIGH. If the input frequency output frequency (f_{out}) will be:
	(1) 1 kHz (2) 2 kHz	(3) 4 kHz (4) 16 kHz
36.	Which type of analysis cannot be support	orted by SPICE?
	(1) non-linear d.c.	(2) non-linear a.c.
	(3) linear a.c.	(4) temperature
37.	How can you best use schematics to cre	eate a netlist which is easy to understand?
ė	(1) Allocate node numbers randomly.	
	(2) Use existing part numbers.	
	(3) Work through the circuit diagram them.	adding the parts to the netlist as you encounter
	(4) By annotating the schematic with be used for the netlist.	our own practical node numbers that can then
38.	In a synchronous circuit, positive clock	skew occurs only when:
	(1) the transmitting register receives the	e clock earlier than the receiving register
	(2) the transmitting register receives the	e clock after the receiving register
	(3) the receiving register gets the clock	earlier than the sending register
	(4) the receiving register gets the clock	after the sending register

39. Calculate the signal probability for the following logic circuits with inputs x_1 , x_2 and x_3 :

- (1) 0.35
- (2) 0.5
- (3) 0.625
- (4) 0.78
- 40. Double Gate MOSFETs are preferred over Single Gate MOSFETs due to:
 - (1) Easy fabrication
 - (2) Better control over channel
 - (3) Reduced Channel length
 - (4) Smaller size of Source/Drain
- 41. The threshold voltage of an *n*-channel MOSFET can be increased by :
 - (1) Increasing the channel dopant concentration
 - (2) Reducing the channel dopant concentration
 - (3) Reducing the gate oxide thickness
 - (4) Reducing the channel length
- 42. In modern technology, the gate material used for a MOSFET is:
 - (1) Heavily doped polycrystalline silicon
 - (2) Pure silicon
 - (3) High purity silica oxide
 - (4) Epitaxial grown silicon
- 43. A certain gate draws 1.8 μ A when its output is HIGH and 3.3 μ A when its output is LOW. V_{CC} is 5V and the gate is operated on a 50% duty cycle. The average power dissipation (P_D) is:
 - $(1)\ \ 2.55\ \mu W$
- (2) $1.27 \mu W$
- (3) $12.75 \,\mu\text{W}$
- (4) 5 μ W

- 44. In BiCMOS circuits:
 - (1) CMOS is used for implementing logic and BJT is used for high drive current
 - (2) BJT is used for implementing logic and CMOS is used for high drive current (3) CMOS is used for implementing logic and BJT is used for low power

 - (4) CMOS is used for high speed and BJT is used for high drive current
- Propagation delay of a cell primarily depends on:
 - (1) Output transition and input load
 - (2) Input transition and output load
 - (3) Input transition and output transition
 - (4) Input load and output load
- 46. If metal 6 and metal 7 are used for the power in 7 metal layer process design then which metals you will use for clock?
 - (1) Metal 1 and metal 2

(2) Metal 3 and metal 4

(3) Metal 4 and metal 5

- (4) Metal 6 and metal 7
- 47. Emitter-coupled logic (ECL) is the fastest bipolar transistor logic because :
 - (1) it uses current, rather than voltages, as the output variables
 - (2) it uses a circuit configuration that prevents the transistors from going into saturation
 - (3) it has no p-n-p transistors
 - (4) it uses differential inputs
- 48. A Schmitt trigger circuit achieves hysteresis by utilizing:
 - (1) the magnetic properties of a transformer code
 - (2) avalanche multiplication in a zener (tunnel) diode
 - (3) the Barkhausen principle
 - (4) regenerative positive feedback

49.	When a step input is applied to an inverter made with an n-p-n transistor, such that the
	transistor goes from cutoff to saturation, there is a delay time (t_d) before the output
	goes low. The delay time is due partly to:

- (1) the stored minority carrier charge in the base
- (2) the charging of the base-collector junction capacitance
- (3) the charging of the base-emitter junction capacitance
- (4) the discharging of the minority carrier stored charge in the collector
- **50.** Which equation related to noise margins is *correct*?
 - (1) $V_{NL} = V_{IL(\text{max})} + V_{OL(\text{max})}$ (2) $V_{NH} = V_{OH(\text{min})} + V_{IH(\text{min})}$
 - (3) $V_{NL} = V_{OH(\min)} V_{IH(\min)}$ (4) $V_{NH} = V_{OH(\min)} V_{IH(\min)}$

51. An AWGN is transmitting symbols at an SNR = 30 dB. The channel capacity per symbol in the channel is:

- (1) 2 bits
- (2) 4 bits
- (3) 5 bits
- (4) 8 bits

52. AM signal is detected using an envelope detector. With carrier frequency set at 200 Mhz and modulating signal frequency being 20 kHz, the approximate value of time constant of envelope detector is:

- (1) 5 ns
- (2) $60 \,\mu s$
- (3) $70 \, \mu s$
- (4) 2.5 ns

53. A sinusoidal signal with peak to peak voltage at 2 V is quantized into 128 levels using a midrise uniform quantizer. The quantization noise power is:

- (1) $2 \mu W$
- (2) $10 \, \mu W$
- (3) $40 \mu W$
- (4) $20 \mu W$

In a FM system, a 10 MHz carrier is modulated by a sinusoidal signal of frequency 54. 2 kHz. Using Carson's approximation bandwidth required is 0.1 MHz. If y(t) = $(modulated signal)^3$. Then by using Carson's approximation, the bandwidth of y(t)around 30 MHz is:

- (1) 0.1 MHz
- (2) 0.2 MHz
- (3) 0.3 MHz
- (4) 0.5 MHz

55. The input to the matched filter is given by

$$s(t) = 20\sin(2\pi \times 10^5 t) \quad \text{for} \quad 0 < t < 10^{-3} \text{ s}$$

= 0 elsewhere

The peak amplitude of filter output is:

- (1) 20 V
- (2) 2 V
- (3) 10 V
- (4) 0.2 V

MPH/PHD/URS-EE-2020/(Elec. & Comm. Engg.)(SET-Z)/(C)

Which of the following does not satisfy the wave equation?

 $(1) Ae^{j(wt-2z)}$

 $(2) \cos(w(z+t))$

 $(3) \cos x \cos t$

(4) $\cos(y^3 + 5t)$

The electric field intensity vector of a plane wave is given by $E(r, t) = 10 \sin(6000t +$ $0.06x + 20a_y$) where a_y denotes unit vector along y direction. The wave is propagating with a phase velocity of: (2) 1×10^6 m/s (3) -1×10^5 m/s (4) -1×10^6 m/s

- (1) 1×10^5 m/s

58. If the length of the short-circuited transmission line is given as: $3/4.\lambda < l < \lambda/2$, then the input impedance is:

- (1) Inductive
- (2) Capacitive
- (3) Zero
- (4) Contains both real and imaginary parts

59. A quarter wave transformer matching a 50 Ohm source with a 200 Ohm load should have a characteristic impedance of:

- (1) 50 Ohm
- (2) 100 Ohm
- (3) 150 Ohm
- (4) 200 Ohm

60. Match A (theorem) with B (description):

curl $\overrightarrow{F} = 0$ P.

- B
- Gauss theorem

 $\overrightarrow{\text{div } F} = 0$ Q.

- 2. Irrotational
- $\iiint_{S} (\nabla . F) dV = \oiint_{S} F. dS$
- 3. Solenoidal

 $\oint \int_{\mathcal{C}} F. \, dS = Q$

- Divergence theorem
- (1) P-2, Q-3, R-4, S-1
- (2) P-3, Q-2, R-4, S-1
- (3) P-2, O-3, R-1, S-4
- (4) P-2, Q-4, R-3, S-1

Consider an Ideal voltage amplifier with a gain of 0.95 and a resistance $R = 100 \text{ K}\Omega$ connected between output and input terminals. Use Miller's theorem to find the input resistance of this circuit:

- (1) $1 M\Omega$
- (2) $2 M\Omega$
- (3) $3 M\Omega$
- (4) 4 M Ω

MPH/PHD/URS-EE-2020/(Elec. & Comm. Engg.)(SET-Z)/(C)

62.	Consider an amplifier with a voltage connected between output and input t equivalent capacitances at the output side	gain of -10 and a capacitance $C = 10$ perminals. Use Miller's theorem to find the	oF he
	(1) 11 pF (2) 110 pF	(3) 10 pF (4) 100 pF	
63.	The cascode amplifier is composed of dir	ect coupled:	
	(1) CE-CB configuration	(2) CC-CC configuration	
	(3) CB-CE configuration	(4) None	
64.	CMRR is more in:		
	(1) Single ended amplifier	(2) Differential amplifier	
	(3) Inverting operational amplifier	(4) None	
65.	Common mode rejection ratio is defined	as ratio of:	
	(1) Common mode gain to differential m	ode gain	
	(2) Differential mode gain to common m	ode gain	
	(3) Common mode gain at input to differ	rential mode gain at input	
	(4) Common mode gain at output to diffe	erential mode gain at output	
66.	Which of following configuration called	as source follower?	
	(1) Common Gate	(2) Common Source	
	(3) Common Drain	(4) None	
67.	Dynamic power of a CMOS VLSI circuit	is linearly proportional to:	
	(1) short-circuit current	(2) switching frequency	
	(3) time	(4) none of the above	
68.	Using 'Full-scaling' approach, the pow factor of:	er dissipation of a transistor is scaled by	/ a
	(1) s^2 (2) s^2	(3) s^3 (4) s^4	

MPH/PHD/URS-EE-2020/(Elec. & Comm. Engg.)(SET-Z)/(C)

69.	Dynamic power optimization technique primarily follows:			
	(1) Transistor sizi	ng	(2) Transistor stac	cking
	(3) Multiple thres	holds	(4) None of the al	oove
70.	Which one of the	following models is n	not related to low pov	wer design methodology?
	(1) Power consum		(2) Current wavef	
	(3) Voltage-sensit	ive timing model	(4) None of the ab	pove
71.	The far field of an	antenna varies with o	distance r as:	
	(1) 1/r	$(2) 1/r^2$	(3) $1/r^3$	(4) $1/\sqrt{r}$
72.	For the operation 2	21 + 13 = 40 to be con	rrect what will be the	base of the number:
	(1) 2	(2) 4	(3) 11	(4) 8
73.	The number of dist	inct Boolean express	sions of 3 variables is	3:
	(1) 16	(2) 256	(3) 8	(4) 1024
74.	Hexadecimal numb	per 'A' is equal to octa	al number:	
	(1) 16	(2) 12	(3) 8	(4) 10
75.	The number of bits	in ASCII is:		
	(1) 10	(2) 12	(3) 7	(4) 4
76.	The Hamming dista	ance between 010 and	d 001 is:	
	(1) 0	(2) 1	(3) 2	(4) 3
77.				lar velocity equal to that o
	(1) Geostationary		(2) Early Bird I	
	(3) Stationary satell	lite	(4) None of the abo	ove

C

78. The process of transferring a mobile station from one base station to another is:

(1) MSC

(2) Roaming

(3) Hand off

(4) Forwarding

79. For maximum radio coverage shape of the cellular region should be:

(1) Circular

(2) Hexagon

(3) Square

(4) Oval

80. Electrical permittivity of materials is approximately equal to square of:

- (1) Refractive index
- (2) Magnetic permeability
- (3) Speed of light × Magnetic permeability
- (4) None

81. For a silicon p + n junction diode the doping concentrations are $N_a = 10^{15} \, \mathrm{cm}^{-3}$ and $N_d = 10^{10} \, \mathrm{cm}^{-3}$. The minority carrier hole diffusion coefficient is $D_p = 10 \, \mathrm{cm}^2/\mathrm{s}$ and the minority carrier hole life time is $\tau_{p0} = 10^{-5} \, \mathrm{s}$. The cross sectional area is $A = 10^{-4} \, \mathrm{cm}^2$. The reverse saturation current is $(n_i = 1.5 \times 10^{-10} / \mathrm{cm}^3)$:

(1) 36×10^{-12} A

(2) 3.6×10^{-12} A

(3) 36×10^{-10} A

(4) $3.6 \times 10^{-10} \,\mathrm{A}$

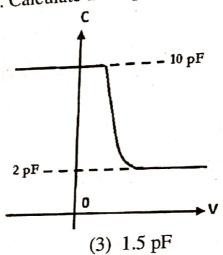
82. Match A (equations) with B (relations):

٨

 \mathbf{B}

- P. Continuity Equation
- 1. Relates diffusion constant with mobility
- Q. Einstein's Equation
- 2. Relates charge density with electric field
- R. Poisson's Equation
- 3. Concentration gradient
- S. Diffusion Current
- 4. Rate of charge of minority carrier density with time
- (1) P-4, Q-1, R-3, S-2
- (2) P-4, Q-1, R-2, S-3
- (3) P-1, Q-4, R-2, S-3
- (4) P-1, Q-4, R-3, S-2

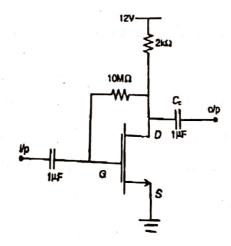
MPH/PHD/URS-EE-2020/(Elec. & Comm. Engg.)(SET-Z)/(C)


A Ge diode has a saturation current of 10 μA at room temperature. Then, the reverse

current at $T = 350^{\circ} \text{ K is}$:

- (3) 0.32 mA
- (4) $3.2 \mu A$

- (2) 8.42 mA


The figure shows the high-frequency capacitance-voltage characteristics of a MOS the figure shows the first shows that the permittivities of silicon and SiO_2 are 1×10^{-12} F/cm and capacitor. Assume that the permittivities of silicon and SiO_2 are 1×10^{-12} F/cm and 84. 3.5×10^{-13} F/cm respectively. Calculate the capacitance in depletion mode.

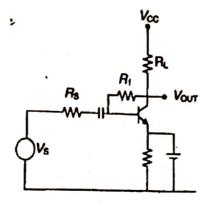
- (1) 12 pF
- (2) 5 pF
- (4) 2.5 pF

If P is passivation, Q is n-well implant, R is metallization and S is source/drain diffusion, then the order in which they are carried out in a standard n-well CMOS fabrication process is: (1) S-R-Q-P (2) R-P-S-Q (3) Q-S-R-P (4) P-Q-R-S

In the circuit given below, the parameters are $K = 0.2 \times 10^{-3} A/V^2$, $V_T = 3v$, $Y_d = 20$ μS , $V_{GSQ} = 6.4 \text{ V}$, $I_{DQ} = 2.75 \text{ mA}$. The output impedance z_0 and gain A_V is:

(1) $19.23 \text{ k}\Omega, -3.14$

(2) $1.923 \text{ k}\Omega$, 3.14


(3) $1.923 \text{ k}\Omega, -3.14$

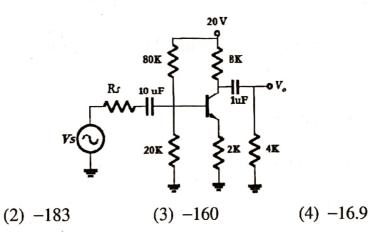
(4) $12.93 \text{ k}\Omega$, -31.4

MPH/PHD/URS-EE-2020/(Elec. & Comm. Engg.)(SET-Z)/(C)

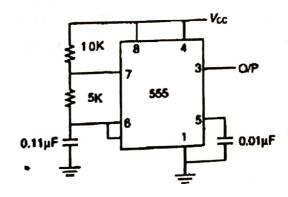
17

87. The type of feedback in the given circuit is:

(1) Voltage shunt


(2) Current shunt

(3) Voltage series


(1) -169

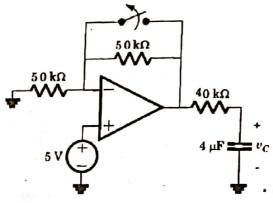
(4) Current series

88. The gain A_V of the circuit shown below is:

89. The 555 timer circuit as shown in figure generates a rectangular waveform. The frequency and duty cycle of the waveform are:

(1) 660 Hz, 0.45

(2) 660 Hz, 0.25


(3) 66 Hz, 0.25

(4) 6.6 Hz, 0.25

MPH/PHD/URS-EE-2020/(Elec. & Comm. Engg.)(SET-Z)/(C)

0

90. The circuit shown below is at steady state before the switch opens at t = 0. The $v_c(t)$ for t > 0 is:

(1)
$$10 - 5e^{-6.25t}$$
 V

(2)
$$5 + 5e^{-6.25t}$$
 V

(3)
$$5 + 5e^{-t/6.25}$$
 V

(4)
$$10 - 5e^{-t/6.25}$$
 V

- **91.** Which one of the following is **not** the advantage of ion-implantation over diffusion doping?
 - (1) It is a low temperature process.
 - (2) Point imperfections are not produced.
 - (3) Shallow doping is possible.
 - (4) Gettering is possible.
- 92. Imperfection arising due to the displacement of an ion from a regular site to an interstitial site maintaining overall electrical neutrality of the ionic crystal is called:
 - (1) Frenkel imperfection
 - (2) Schottky imperfection
 - (3) Point imperfection
 - (4) Volume imperfection

MPH/PHD/URS-EE-2020/(Elec. & Comm. Engg.)(SET-Z)/(C)

- 99. While diffusing an impurity into silicon, if the concentration of the impurity atoms is maintained constant at the surface of the wafer, then the diffused impurity profile is a:
 - (1) Gaussian

(2) Exponential

(3) Quadratic

(4) Complementary error function

- 100. If aluminum is deposited Upon a lightly doped n-region:
 - (1) A schottky diode is obtained
 - (2) An ohmic contact is obtained
 - (3) A constant capacitance is obtained
 - (4) A high valued constant resistance can be obtained

Total No. of Printed Pages: 21

(DO NOT OPEN THIS QUESTION BOOKLET BEFORE TIME OR UNTIL YOU

ARE ASKED TO DO SO) M.Phil./Ph.D./URS-EE-2020

SET-Z

10004

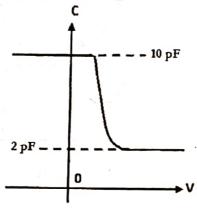
SUBJECT: Electronics & Communication Engg.

	Sr. No 1000 4
Max. Marks : 100	Total Questions: 100
(in words)	
Father's Name	
Date of Examination	
	(Signature of the Invigilator)
	(in words) Father's Name

CANDIDATES MUST READ THE FOLLOWING INFORMATION/INSTRUCTIONS BEFORE STARTING THE QUESTION PAPER.

- 1. All questions are compulsory.
- 2. The candidates *must return* the question booklet as well as OMR Answer-Sheet to the Invigilator concerned before leaving the Examination Hall, failing which a case of use of unfairmeans / mis-behaviour will be registered against him / her, in addition to lodging of an FIR with the police. Further the answer-sheet of such a candidate will not be evaluated.
- 3. Keeping in view the transparency of the examination system, carbonless OMR Sheet is provided to the candidate so that a copy of OMR Sheet may be kept by the candidate.
- 4. Question Booklet along with answer key of all the A, B, C & D code will be got uploaded on the University website after the conduct of Entrance Examination. In case there is any discrepancy in the Question Booklet/Answer Key, the same may be brought to the notice of the Controller of Examination in writing/through E.Mail within 24 hours of uploading the same on the University Website. Thereafter, no complaint in any case, will be considered.
- 5. The candidate *must not* do any rough work or writing in the OMR Answer-Sheet. Rough work, if any, may be done in the question booklet itself. Answers *must not* be ticked in the question booklet.
- 6. There will be no negative marking. Each correct answer will be awarded one full mark. Cutting, erasing, overwriting and more than one answer in OMR Answer-Sheet will be treated as incorrect answer.
- 7. Use only Black or Blue Ball Point Pen of good quality in the OMR Answer-Sheet.
- 8. Before answering the questions, the candidates should ensure that they have been supplied correct and complete booklet. Complaints, if any, regarding misprinting etc. will not be entertained 30 minutes after starting of the examination.

MPH/PHD/URS-EE-2020/(Electronic & Comm. Engg.)(SET-Z)/(D)

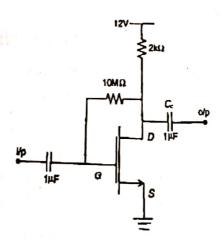

- 1. For a silicon p + n junction diode the doping concentrations are $N_a = 10^{15} \, \mathrm{cm}^{-3}$ and $N_d = 10^{10} \, \mathrm{cm}^{-3}$. The minority carrier hole diffusion coefficient is $D_p = 10 \, \mathrm{cm}^2/\mathrm{s}$ and the minority carrier hole life time is $\tau_{\rho 0} = 10^{-5} \, \mathrm{s}$. The cross sectional area is $A = 10^{-4} \, \mathrm{cm}^2$. The reverse saturation current is $(n_i = 1.5 \times 10^{-10} / \mathrm{cm}^3)$:
 - (1) $36 \times 10^{-12} \text{ A}$ (2) $3.6 \times 10^{-12} \text{ A}$ (3) $36 \times 10^{-10} \text{ A}$ (4) $3.6 \times 10^{-10} \text{ A}$
- 2. Match A (equations) with B (relations):

A

- P. Continuity Equation
- 1. Relates diffusion constant with mobility
- Q. Einstein's Equation
- 2. Relates charge density with electric field
- R. Poisson's Equation
- 3. Concentration gradient
- S. Diffusion Current
- 4. Rate of charge of minority carrier density with time

B

- (1) P-4, Q-1, R-3, S-2
- (2) P-4, Q-1, R-2, S-3
- (3) P 1, Q 4, R 2, S 3
- (4) P-1, Q-4, R-3, S-2
- 3. A Ge diode has a saturation current of 10 μ A at room temperature. Then, the reverse current at T = 350° K is :
 - (1) 32 mA
- (2) 8.42 mA
- (3) 0.32 mA
- (4) $3.2 \mu A$
- 4. The figure shows the high-frequency capacitance-voltage characteristics of a MOS capacitor. Assume that the permittivities of silicon and SiO_2 are 1×10^{-12} F/cm and 3.5×10^{-13} F/cm respectively. Calculate the capacitance in depletion mode.

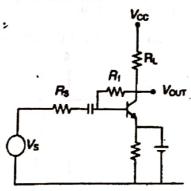

- (1) 12 pF
- (2) 5 pF
- (3) 1.5 pF
- (4) 2.5 pF

- 5. If P is passivation, Q is n-well implant, R is metallization and S is source/drain diffusion, then the order in which they are carried out in a standard n-well CMOS fabrication process is:
 - (1) S R Q P

(2) R - P - S - Q

(3) Q - S - R - P

- (4) P Q R S
- 6. In the circuit given below, the parameters are $K = 0.2 \times 10^{-3} A/V^2$, $V_T = 3v$, $Y_d = 20$ μ S, $V_{GSQ} = 6.4 V$, $I_{DQ} = 2.75$ mA. The output impedance z_0 and gain A_V is:

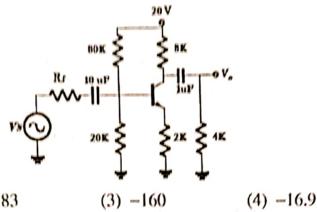


(1) $19.23 \text{ k}\Omega, -3.14$

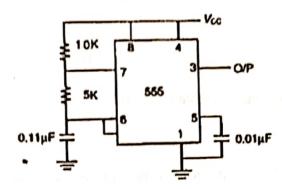
(2) $1.923 \text{ k}\Omega$, 3.14

(3) $1.923 \text{ k}\Omega, -3.14$

- (4) 12.93 kΩ, -31.4
- 7. The type of feedback in the given circuit is:


(1) Voltage shunt

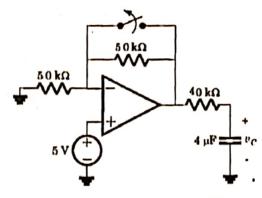
(2) Current shunt


(3) Voltage series

(4) Current series

8. The gain A_V of the circuit shown below is:

- (1) 169
- (2) -183
- 9. The 555 timer circuit as shown in figure generates a rectangular waveform. The frequency and duty cycle of the waveform are:



(1) 660 Hz, 0.45

(2) 660 Hz, 0.25

(3) 66 Hz, 0.25

- (4) 6.6 Hz, 0.25
- 10. The circuit shown below is at steady state before the switch opens at t = 0. The $v_c(t)$ for t > 0 is:

(1) $10 - 5e^{-6.25t}$ V

(2) $5 + 5e^{-6.25t}$ V

(3) $5 + 5e^{-t/6.25}$ V

(4) $10 - 5e^{-t/6.25}$ V

MPH/PHD/URS-EE-2020/(Elec. & Comm. Engg.)(SET-Z)/(D)

11.	The far field of an a	ıntenna varies with d	istance r as:	
	(1) 1/r	(2) $1/r^2$	(3) $1/r^3$	(4) $1/\sqrt{r}$
12.	For the operation 2	1 + 13 = 40 to be corn	rect what will be the	base of the number:
	(1) 2	(2) 4	(3) 11	(4) 8
13.	The number of disti	nct Boolean expressi	ions of 3 variables is	:
	(1) 16	(2) 256	(3) 8	(4) 1024
14.	Hexadecimal number	er 'A' is equal to octa	l number :	
	(1) 16	(2) 12	(3) 8	(4) 10
15.	The number of bits	in ASCII is:		
	(1) 10	(2) 12	(3) 7	(4) 4
16.	The Hamming dista	nce between 010 and	1 001 is:	
		(2) 1		(4) 3
17.		e orbits in a circular p	pattern with an angul	ar velocity equal to that of
	the earth.			
	(1) Geostationary	n en	(2) Early Bird I	
	(3) Stationary satel	lite	(4) None of the abo	ove
18.	The process of trans	sferring a mobile stat	ion from one base sta	ation to another is:
	(1) MSC		(2) Roaming	•
	(3) Hand off		(4) Forwarding	
19.	For maximum radio	coverage shape of th	ne cellular region sho	ould be:
	(1) Circular		(2) Hexagon	
	(3) Square		(4) Oval	F -

20.	Electrical permittivity of materials is approximately equal to square of:				
	(1) Refractive index				
	(2) Magnetic permea	ability			
	(3) Speed of light \times	Magnetic permeabi	lity		
	(4) None				
21.	Consider an Ideal vo connected between or resistance of this circ	output and input ter	h a gain of 0.95 and minals. Use Miller's	I a resistance $R = 100 \text{ K}\Omega$ theorem to find the input	
	(1) $1 M\Omega$	(2) $2 M\Omega$	(3) 3 MΩ	(4) $4 M\Omega$	
22.	Consider an amplification connected between equivalent capacitant	output and input	terminals. Use Mil	a capacitance $C = 10 \text{ pF}$ ler's theorem to find the	
	(1) 11 pF	(2) 110 pF	(3) 10 pF	(4) 100 pF	
23.	The cascode amplific	er is composed of d	irect coupled:		
	(1) CE-CB configur	ration	(2) CC-CC configu	iration	
	(3) CB-CE configur	ration	(4) None		
24.	CMRR is more in:		· Lander of the second		
	(1) Single ended am	nplifier	(2) Differential am	plifier	
	(3) Inverting operat	ional amplifier	(4) None		
25.	Common mode reject	ction ratio is defined	l as ratio of:		
	(1) Common mode	gain to differential	mode gain		
	(2) Differential mod	de gain to common	mode gain		
	(3) Common mode	gain at input to diff	erential mode gain at	input	
	(4) Common mode	gain at output to dif	ferential mode gain a	at output	

26.	Which of following configuration called as source follower?		
	(1) Common Gate	(2) Common Source	
	(3) Common Drain	(4) None	
27.	Dynamic power of a CMOS VLSI circuit	it is linearly proportional to:	
	(1) short-circuit current	(2) switching frequency	
	(3) time	(4) none of the above	
28.	Using 'Full-scaling' approach, the pow factor of:	ver dissipation of a transistor is scaled by	
	(1) s (2) s^2	(3) s^3 (4) s^4	
29.	Dynamic power optimization technique	primarily follows:	
	(1) Transistor sizing	(2) Transistor stacking	
	(3) Multiple thresholds	(4) None of the above	
30.	Which one of the following models is no	ot related to low power design methodology?	
	(1) Power consumption model	(2) Current waveform model	
	(3) Voltage-sensitive timing model	(4) None of the above	
31.	Which one of the following is not the doping?	advantage of ion-implantation over diffusion	
	(1) It is a low temperature process.		
	(2) Point imperfections are not produce	d.	
	(3) Shallow doping is possible.	and the second of the second o	
	(4) Gettering is possible.		

MPH/PHD/URS-EE-2020/(Elec. & Comm. Engg.)(SET-Z)/(D)

32.	Imperfection arising due to the displacement of an ion from a regular site to an interstitial site maintaining overall electrical neutrality of the ionic crystal is called:		
	(1) Frenkel imperfection		
	(2) Schottky imperfection		
	(3) Point imperfection		
	(4) Volume imperfection		
33.	Four probe method is used to measure:		
	(1) resistivity of semi-conducting mater	ial	
	(2) mobility of carriers		
	(3) carrier concentration		
	(4) none of the above	i grandina pina	
34.	In photolithography, higher the radiation	wavelength:	
	(1) smaller is the minimum feature size		. 1.
	(2) larger is the minimum feature size		
	(3) feature size is independent of it		
	(4) none of these	5., 23. 6. 3. Seq. (80) - 2. ¹ - 2.	f
35.	Hall effect can be used to measure:		1 , 1
	(1) mobility of carriers	(2) type of semiconductor	
	(3) carrier concentration	(4) all of these	
36.	Etching is always anisotropic if the mate	erial is:	.e.
	(1) Crystalline	(2) Polycrystalline	
	(3) Amorphous	(4) None of the above	
37.	The steady state conditions in diffusion	are governed by:	
	(1) Fick's second law	(2) Fick's first law	
	(3) Both (1) and (2)	(4) Maxwell-Boltzmann's law	

	(1) bury the defects in Silicon below the active epitaxial layer				
	(2) reduce the resistance to current flow from the active layer to the substrate				
	(3) Prevent latchup				
	(4) reduce the collector resistance of the bipolar transistor				
39.	While diffusing an impurity into silicon, if the concentration of the impurity atoms is maintained constant at the surface of the wafer, then the diffused impurity profile is a :				
	(1) Gaussian		(2) Exponential		
	(3) Quadratic		(4) Complementary error function		
40.	If aluminum is deposited Upon a lightly doped n-region:				
	(1) A schottky diode is obtained				
	(2) An ohmic contact is obtained				
	(3) A constant capacitance is obtained				
	(4) A high valued constant resistance can be obtained				
41.	An AWGN is transmitting symbols at an SNR = 30 dB. The channel capacity pe symbol in the channel is:				
	(1) 2 bits	(2) 4 bits	(3) 5 bits	(4) 8 bits	
42.	AM signal is detected using an envelope detector. With carrier frequency set at 200 Mhz and modulating signal frequency being 20 kHz, the approximate value of time constant of envelope detector is:				
	(1) 5 ns	·(2) 60 μs	(3) 70 μs	(4) 2.5 ns	
43.	A sinusoidal signal with peak to peak voltage at 2 V is quantized into 128 levels using a midrise uniform quantizer. The quantization noise power is:				
	(1) 2 μW	(2) $10 \mu\text{W}$	(3) 40 μ W	(4) 20 μW	
/I	MIDAIDE EE 2020	//Floo & Comm Eng	σ)(SET-Z)/(D)		

38. A heavily doped buried layer is used in bipolar IC technology to:

44.	2 kHz. Using Car	rson's approximation 3 . Then by using	on bandwidth require	usoidal signal of frequency ed is 0.1 MHz. If $y(t) = 0$ on, the bandwidth of $y(t)$
	(1) 0.1 MHz	(2) 0.2 MHz	(3) 0.3 MHz	(4) 0.5 MHz
45.	The input to the ma	tched filter is given	by	

$$s(t) = 20\sin(2\pi \times 10^5 t) \quad \text{for} \quad 0 < t < 10^{-3} \text{s}$$
$$= 0 \quad \text{elsewhere}$$

The peak amplitude of filter output is:

46. Which of the following does *not* satisfy the wave equation?

(1)
$$Ae^{j(wt-2z)}$$
 (2) $\cos(w(z+t))$
(3) $\cos x \cdot \cos t$ (4) $\cos(y^3 + 5t)$

The electric field intensity vector of a plane wave is given by $E(r, t) = 10 \sin(6000t +$ $0.06x + 20a_y$) where a_y denotes unit vector along y direction. The wave is propagating with a phase velocity of:

(2) 1×10^6 m/s (3) -1×10^5 m/s (4) -1×10^6 m/s (1) 1×10^5 m/s

48. If the length of the short-circuited transmission line is given as: $3/4.\lambda < l < \lambda/2$, then the input impedance is:

- (1) Inductive
- (2) Capacitive
- (3) Zero
- (4) Contains both real and imaginary parts

49. A quarter wave transformer matching a 50 Ohm source with a 200 Ohm load should have a characteristic impedance of:

(4) 200 Ohm (3) 150 Ohm (2) 100 Ohm (1) 50 Ohm

50. Match A (theorem) with B (description):

A

P.
$$\operatorname{curl} \overrightarrow{F} = 0$$

Q. div $\overrightarrow{F} = 0$

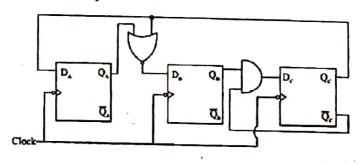
R.
$$\iiint_{V} (\nabla . F) dV = \oiint_{S} F. dS$$

S. $\iint_{S} F. dS = Q$

(3) P-2, Q-3, R-1, S-4

B

1. Gauss theorem


2. Irrotational

3. Solenoidal

4. Divergence theorem

(4) P - 2, Q - 4, R - 3, S - 1

51. If all flip-flops are reset to '0' at power on, then the total number of output states (ABC) represented by this counter is equal to:

(1) 3

(2) 5

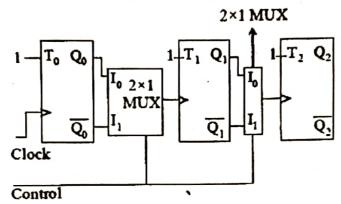
(3) 4

(4) 7

52. Given $F = F_1.F_2$, where $F(A, B, C, D) = \sum m (4, 7, 15)$, $F_1(A, B, C, D) = \sum m (0, 1, 2, 3, 4, 7, 8, 9, 10, 11, 15)$, the possible function for F_2 is:

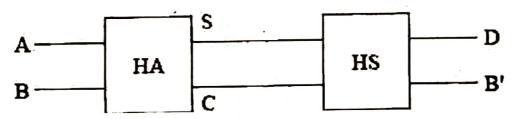
- (1) Σ m (5, 6, 12, 13, 14)
- (2) Σ m (4, 5, 6, 7, 8, 12, 13, 14, 15)
- (3) Σ m (5, 6, 12, 13, 4, 7, 15)
- (4) None of these

53. 1000 H: LXI SP, 0FFFH


CALL 2050H

After call, content of PC and SP is:

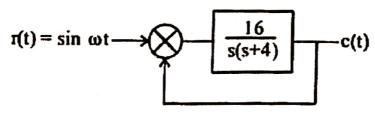
- (1) PC = 1006 H, SP = 0FFFH
- (2) $PC = 2050 \text{ H}, SP = 0FFFH}$
- (3) PC = 2050 H, SP = 0 FFDH
- (4) PC = 1006 H, SP = 0 FFDH


D

54. For the given sequential circuit, which of the following statements are true:

- a. For control = 0 it will acts as down counter
- b. For control = 1 it will acts at up counter
- c. Synchronous counter
- d. Asynchronous counter
- (1) a, b, c
- (2) a, c
- (3) a, b, d
- (4) b, d

55. The half adders and half substractor are connected as shown in figure below. The output D and B' are:


(1) $D = A \oplus B$; B' = AB

(2) D = A + B; B' = 0

(3) D = AB; B' = 0

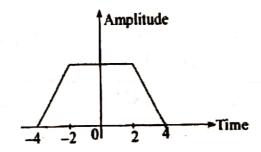
(4) D = A + B; B' = AB

56. In the system shown below, the steady state response c(t) will exhibit a resonant peak at a frequency of rad/sec. (rounding up to 2 decimals)

- (1) $2\sqrt{2}$
- (2) $4\sqrt{2}$
- (3) $6\sqrt{2}$
- (4) $8\sqrt{2}$

MPH/PHD/URS-EE-2020/(Elec. & Comm. Engg.)(SET-Z)/(D)

P. T. O.


TF of a unity feedback system is $\frac{1}{(4s^2+s+4)}$. The magnitude of the system at 0.1591

Hz is approximately dB.

- (1) 0
- (2) 1
- (3) 2
- (4) 3
- By performing cascading / summing / differencing operations using transfer function blocks $G_1(s)$ and $G_2(s)$ one cannot realize a transfer function of the form:
 - (1) $G_1(S) G_2(S)$

- (2) $\frac{G_1(S)}{G_2(S)}$
- (3) $G_2(S) \left(\frac{1}{G_1(S)} + G_2(S) \right)$ (4) $G_1(S) \left(\frac{1}{G_1(S)} G_2(S) \right)$
- The impulse response of a discrete LTI system is given by $h(n) = -(0.25)^{-n} u (n-4)$. 59. The system is:
 - (1) Causal and stable

- (2) Causal and unstable
- (3) Non causal and stable
- (4) Non-causal and unstable
- 60. The graph shown below represents a wave form obtained by convolving two rectangular waveform of duration:

(1) 4 units each

- (2) 4 and 2 units respectively
- (3) 6 and 3 units respectively
- (4) 6 and 2 units respectively
- The Fermi level of a metal is the: 61.
 - (1) Energy at which the probability of finding an electron is 1/2.
 - (2) The highest energy an electron can possess inside the metal.
 - (3) The energy required to take an electron from metal to vacuum.
 - (4) The lowest energy an electron possess at 0K.

-	n		
-			
	_		

62.	In a semiconductor, the probability of finding an electron at an energy ΔE above the
02.	bottom of the conduction band is always the probability of finding a hole at
	an energy ΔE below the top of the valence band.

(1) greater than

(2) equal to

(3) less than

(4) unequal to

In the piecewise linear diode model, the diode resistance is:

- (1) low for all biases
- (2) high for all biases
- (3) low for biases greater than cut-in voltage and high for biases less than cut-in voltage
- (4) high for biases greater than cut-in voltage and low for biases less than cut-in voltage

In the triode region, the $I_D - V_{DS}$ characteristics of a MOSFET are:

(1) hyperbolic

(2) linear

(3) quadratic

(4) exponential

In the common emitter configuration, if the transistor is in the saturation region, then:

(1) $I_C > I_E$ (2) $I_C < \beta I_B$ (3) $I_E < I_B$ (4) $I_B > \beta I_C$

The LEVEL 1 SPICE model implements:

(1) Square Law model

(2) Alpha Power Law model

(3) Injection Velocity model

(4) Velocity Saturation model

BSIM 1 is a: 67.

- (1) Charge based model
- (2) Threshold voltage based model
- (3) Surface potential based model
- (4) None of the above

68.	PSP	is	a	:
			••	•

(1) Charge based model

- (2) Threshold voltage based model
- (3) Surface potential based model
- (4) None of the above

69. EKV is a:

- (1) Charge based model
- (2) Threshold voltage based model
- (3) Surface potential based model
- (4) None of the above
- 70. BSIM4 model considers the influence of narrow width effect (NWE) on :
 - (1) Mobility only

- (2) Threshold voltage only
- (3) Saturation velocity only
- (4) All of the above
- The threshold voltage of an *n*-channel MOSFET can be increased by :
 - (1) Increasing the channel dopant concentration
 - (2) Reducing the channel dopant concentration
 - (3) Reducing the gate oxide thickness
 - (4) Reducing the channel length
- In modern technology, the gate material used for a MOSFET is:
 - (1) Heavily doped polycrystalline silicon
 - (2) Pure silicon
 - (3) High purity silica oxide
 - (4) Epitaxial grown silicon
- A certain gate draws $1.8\mu A$ when its output is HIGH and $3.3\mu A$ when its output is LOW. V_{CC} is 5V and the gate is operated on a 50% duty cycle. The average power dissipation (P_D) is:
 - (1) $2.55 \mu W$
- (2) $1.27 \mu W$
- (3) $12.75 \,\mu\text{W}$ (4) $5 \,\mu\text{W}$

74. In BiCMOS circuits:

- (1) CMOS is used for implementing logic and BJT is used for high drive current
- (2) BJT is used for implementing logic and CMOS is used for high drive current
- (3) CMOS is used for implementing logic and BJT is used for low power
- (4) CMOS is used for high speed and BJT is used for high drive current
- 75. Propagation delay of a cell primarily depends on :
 - (1) Output transition and input load
 - (2) Input transition and output load
 - (3) Input transition and output transition
 - (4) Input load and output load
- **76.** If metal 6 and metal 7 are used for the power in 7 metal layer process design then which metals you will use for clock?
 - (1) Metal 1 and metal 2

(2) Metal 3 and metal 4

(3) Metal 4 and metal 5

- (4) Metal 6 and metal 7
- 77. Emitter-coupled logic (ECL) is the fastest bipolar transistor logic because :
 - (1) it uses current, rather than voltages, as the output variables
 - (2) it uses a circuit configuration that prevents the transistors from going into saturation
 - (3) it has no p-n-p transistors
 - (4) it uses differential inputs
- 78. A Schmitt trigger circuit achieves hysteresis by utilizing:
 - (1) the magnetic properties of a transformer code
 - (2) avalanche multiplication in a zener (tunnel) diode
 - (3) the Barkhausen principle
 - (4) regenerative positive feedback

- 79. When a step input is applied to an inverter made with an n-p-n transistor, such that the transistor goes from cutoff to saturation, there is a delay time (t_d) before the output goes low. The delay time is due partly to:
 - (1) the stored minority carrier charge in the base
 - (2) the charging of the base-collector junction capacitance
 - (3) the charging of the base-emitter junction capacitance
 - (4) the discharging of the minority carrier stored charge in the collector
- 80. Which equation related to noise margins is correct?

(1)
$$V_{NL} = V_{IL(max)} + V_{OL(max)}$$

(2)
$$V_{NH} = V_{OH(\min)} + V_{IH(\min)}$$

(3)
$$V_{NL} = V_{OH(\min)} - V_{IH(\min)}$$

(4)
$$V_{NH} = V_{OH(\min)} - V_{IH(\min)}$$

81. Given that:

$$A = \begin{bmatrix} -5 & -3 \\ 2 & 0 \end{bmatrix} \text{ and } I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

The, the value of A^3 is:

(1)
$$15A + 12I$$

(2)
$$19A + 30I$$

$$(3) 17A + 15I$$

$$(4) 17A + 21I$$

82. A fair coin is tossed 10 times. What is the probability that only the first two tosses will yield heads?

(1)
$$\left(\frac{1}{2}\right)^2$$

(2)
$${}^{10}C_2 \left(\frac{1}{2}\right)^2$$

$$(3) \left(\frac{1}{2}\right)^{10}$$

(4)
$$^{10}C_2\left(\frac{1}{2}\right)^{10}$$

- **83.** $I = \int_{0}^{1} x^{5} \sqrt{(1-x^{2})^{5}} \cdot dx =$
 - (1) $\frac{8}{693}$
- (2) $\frac{5}{317}$
- (3) $\frac{8}{315}$
- (4) $\frac{41}{720}$

D

Match the following and choose the correct combination: 84.

Group-1

- Newton-Raphson method
- Runge-Kutta method В.
- C. Simpson's rule

A.

Gauss elimination D.

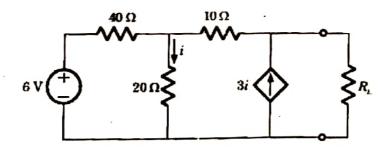
- Solving non-linear equations 1.
- Solving linear simultaneous equations 2.

Group-2

- Solving ordinary differential equations 3.
- Numerical integration
- Interpolation 5.
- Calculation of eigen values 6.

(2) A - 1, B - 6, C - 4, D - 3

The length of arc of the curve $x = t^2$, $y = t^2$ from t = 0 to t = 4 is: 85.


(1)
$$\frac{8}{27} (37\sqrt{37} - 1)$$

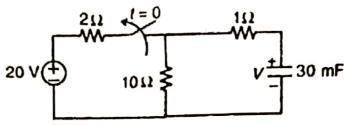
(2)
$$\frac{3}{5}(\sqrt{2}-1)$$

(4) $\frac{5-\sqrt{3}}{2}$

(3)
$$\frac{5}{21}$$

(4)
$$\frac{5-\sqrt{3}}{2}$$

In the circuit given below, the R_L will absorb maximum power if R_L is equal to:

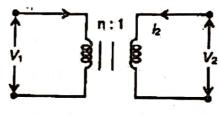


- (1) 40/3 Ohm
- (2) 60/3 Ohm
- (3) 70/3 Ohm
- (4) 20/3 Ohm

MPH/PHD/URS-EE-2020/(Elec. & Comm. Engg.)(SET-Z)/(D)

P. T. O.

87. In the circuit given below the switch is opened at t = 0 after long time. The voltage v(t) for $t \ge 0$ is:



(1) $50/3 e^{(-t/0.33)} V$

(2) $15/3 e^{(-t/0.33)} V$

(3) $50/3 e^{(-t/30)} V$

- (4) $50/3 e^{(-0.33t)} V$
- 88. From the ABCD parameters of an ideal n:1 transformer shown in figure below, the value of D is:

- (1) n
- (2) 1/n
- (3) n^2
- (4) $1/n^2$
- **89.** Fourier transform of the signal u(t) is given by:
 - (1) 1

(2) $\pi\delta(\omega) - 1/j\omega$

(3) $2\pi\delta(\omega)$

- (4) $\pi\delta(\omega) j/\omega$
- **90.** A series resonant circuit has L = 20 mH and C = 10 mF. The required R for the bandwidth of 50 Hz is:
 - (1) 16 Ohm
- (2) 1 Ohm
- (3) 0.1 Ohm
- (4) 10 Ohm
- 91. In 'clock gating' methodology, power can be reduced by:
 - (1) Reducing the effective frequency
 - (2) Reducing wasted operations
 - (3) Minimizing the power of each access
 - (4) None of the above

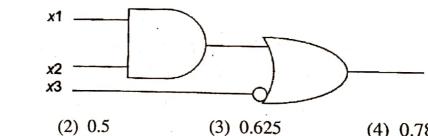
- 92. Using 'Alpha-power law model', the value of 'α' for 65–180 nm CMOS technology lies in the range of :
 - $(1) 0.6 \sim 0.7$
- $(2) 1.0 \sim 1.1$
- $(3) 1.2 \sim 1.3$
- (4) 1.5 ~ 2.0
- 93. Using 'Monte Carlo Technique', one can choose N randomly distributed points x_1 , x_2 , x_3 ,, x_N in a multidimensional volume V to determine the integral of a function f. Then, the function f results in :
 - $(1) \int f dV \approx V < f > + \sqrt{\frac{< f^2 > < f >}{N}}$
 - (2) $\int f dV \approx V < f > -\sqrt{\frac{< f^2 > < f >}{N}}$
 - (3) $\int f dV \approx V < f > \pm \sqrt{\frac{\langle f^2 \rangle \langle f \rangle}{N}}$
 - (4) $\int f dV \approx V < f > \mp \sqrt{\frac{\langle f^2 \rangle \langle f \rangle}{N}}$
 - where $\langle f \rangle = \frac{1}{N} \sum_{i=1}^{N} f(x_i)$ and $\langle f^2 \rangle = \frac{1}{N} \sum_{i=1}^{N} f^2(x_i)$
 - 94. Latches constructed with NOR and NAND gates tend to remain in the latched condition due to which configuration feature?
 - (1) asynchronous operation
- (2) low input voltages

(3) gate impedance

- (4) cross coupling
- 95. Four J-K flip-flops are cascaded with their J-K inputs tied HIGH. If the input frequency (f_{in}) to the first flip-flop is 32 kHz, the output frequency (f_{out}) will be:
 - (1) 1 kHz
- (2) 2 kHz
- (3) 4 kHz
- (4) 16 kHz
- 96. Which type of analysis cannot be supported by SPICE?
 - (1) non-linear d.c.

(2) non-linear a.c.

(3) linear a.c.


(4) temperature

MPH/PHD/URS-EE-2020/(Elec. & Comm. Engg.)(SET-Z)/(D)

P. T. O.

97.

- How can you best use schematics to create a netlist which is easy to understand?
 - (1) Allocate node numbers randomly.
 - (2) Use existing part numbers.
 - (3) Work through the circuit diagram adding the parts to the netlist as you encounter them.
 - (4) By annotating the schematic with our own practical node numbers that can then be used for the netlist.
- In a synchronous circuit, positive clock skew occurs only when: 98.
 - (1) the transmitting register receives the clock earlier than the receiving register
 - (2) the transmitting register receives the clock after the receiving register
 - (3) the receiving register gets the clock earlier than the sending register
 - (4) the receiving register gets the clock after the sending register
- Calculate the signal probability for the following logic circuits with inputs x_1 , x_2 and x_3 :

(1) 0.35

(4) 0.78

D

- Double Gate MOSFETs are preferred over Single Gate MOSFETs due to:
 - (1) Easy fabrication
 - (2) Better control over channel
 - (3) Reduced Channel length
 - (4) Smaller size of Source/Drain

Answer Key Set A

Q No	Answer								
1	В	21	С	41	Α	61	В	81	Α
2	С	22	Α	42	D	62	Α	82	С
3	Α	23	С	43	С	63	С	83	С
4	С	24	С	44	С	64	Α	84	D
5	Α	25	D	45	В	64	В	85	В
6	С	26	Α	46	Α	66	С	86	В
7	Α	27	Α	47	В	67	В	87	D
8	В	28	В	48	С	68	D	88	Α
9	D	29	В	49	Α	69	С	89	С
10	В	30	D	50	В	70	D	90	В
11	D	31	С	51	С	71	В	91	Α
12	В	32	Α	52	Α	72	Α	92	Α
13	С	33	D	53	Α	73	С	93	В
14	D	34	С	54	В	74	В	94	В
15	С	35	D	55	D	75	В	95	С
16	С	36	D	56	Α	76	С	96	С
17	Α	37	Α	57	В	77	В	97	Α
18	Α	38	Α	58	D	78	В	98	С
19	В	39	В	59	D	79	Α	99	В
20	Α	40	Α	60	Α	80	D	100	Α

Answer Key Set B

Q No	Answer								
1	В	21	С	41	Α	61	Α	81	С
2	Α	22	Α	42	Α	62	С	82	Α
3	С	23	D	43	В	63	С	83	С
4	В	24	С	44	В	64	D	84	С
5	В	25	D	45	С	64	В	85	D
6	С	26	D	46	С	66	В	86	Α
7	В	27	Α	47	Α	67	D	87	Α
8	В	28	Α	48	С	68	Α	88	В
9	Α	29	В	49	В	69	С	89	В
10	D	30	Α	50	Α	70	В	90	D
11	С	31	D	51	В	71	Α	91	В
12	Α	32	В	52	Α	72	D	92	С
13	Α	33	С	53	С	73	С	93	Α
14	В	34	D	54	Α	74	С	94	С
15	D	35	С	55	В	75	В	95	Α
16	Α	36	С	56	С	76	Α	96	С
17	В	37	Α	57	В	77	В	97	Α
18	D	38	Α	58	D	78	С	98	В
19	D	39	В	59	С	79	Α	99	D
20	Α	40	Α	60	D	80	В	100	В

Answer Key Set C

Q No	Answer								
1	Α	21	В	41	В	61	В	81	D
2	D	22	С	42	Α	62	Α	82	В
3	С	23	Α	43	С	63	С	83	С
4	С	24	С	44	Α	64	В	84	D
5	В	25	Α	45	В	64	В	85	С
6	Α	26	C	46	С	66	С	86	С
7	В	27	Α	47	В	67	В	87	Α
8	С	28	В	48	D	68	В	88	Α
9	Α	29	D	49	С	69	Α	89	В
10	В	30	В	50	D	70	D	90	Α
11	С	31	Α	51	С	71	Α	91	С
12	Α	32	С	52	Α	72	Α	92	Α
13	С	33	С	53	D	73	В	93	Α
14	С	34	D	54	С	74	В	94	В
15	D	35	В	55	D	75	С	95	D
16	Α	36	В	56	D	76	С	96	Α
17	Α	37	D	57	Α	77	Α	97	В
18	В	38	Α	58	Α	78	С	98	D
19	В	39	С	59	В	79	В	99	D
20	D	40	В	60	Α	80	Α	100	Α

Answer Key Set D

Q No	Answer								
1	D	21	В	41	С	61	Α	81	В
2	В	22	Α	42	Α	62	D	82	С
3	С	23	С	43	D	63	С	83	Α
4	D	24	В	44	С	64	С	84	С
5	С	25	В	45	D	64	В	85	Α
6	С	26	С	46	D	66	Α	86	С
7	Α	27	В	47	Α	67	В	87	Α
8	Α	28	В	48	Α	68	С	88	В
9	В	29	Α	49	В	69	Α	89	D
10	Α	30	D	50	Α	70	В	90	В
11	Α	31	С	51	С	71	В	91	Α
12	Α	32	Α	52	Α	72	Α	92	С
13	В	33	Α	53	С	73	С	93	С
14	В	34	В	54	С	74	Α	94	D
15	С	35	D	55	D	75	В	95	В
16	С	36	Α	56	Α	76	С	96	В
17	Α	37	В	57	Α	77	В	97	D
18	С	38	D	58	В	78	D	98	Α
19	В	39	D	59	В	79	С	99	С
20	Α	40	Α	60	D	80	D	100	В