(do not open this qu	ESTION BOOKLET BEFORE (MPH/PHD/URS	· · · · ·	ARE ASKED TO DO SO,	•
	Electronic	S &	Sr. No. <u>1000</u> 1	
Code A Time : 1¼ Hours	Total Questio		SET-"X" Max. Marks : 100	
Roll No.	(in figure)		(in words)	÷
Name :			, ·	
Mother's Name :		Date of Examinat	ion :	

(Signature of the candidate)

(Signature of the Invigilator)

CANDIDATES MUST READ THE FOLLOWING INFORMATION/ INSTRUCTIONS BEFORE STARTING THE QUESTION PAPER.

- 1. All questions are compulsory.
- 2. The candidates must return the Question book-let as well as OMR answer-sheet to the Invigilator concerned before leaving the Examination Hall, failing which a case of use of unfair-means / misbehaviour will be registered against him / her, in addition to lodging of an FIR with the police. Further the answer-sheet of such a candidate will not be evaluated.
- 3. Keeping in view the transparency of the examination system, carbonless OMR Sheet is provided to the candidate so that a copy of OMR Sheet may be kept by the candidate.
- 4. Question Booklet along with answer key of all the A,B,C and D code will be got uploaded on the university website after the conduct of Entrance Examination. In case there is any discrepancy in the Question Booklet/Answer Key, the same may be brought to the notice of the Controller of Examination in writing/through E. Mail within 24 hours of uploading the same on the University Website. Thereafter, no complaint in any case, will be considered.
- 5. The candidate MUST NOT do any rough work or writing in the OMR Answer-Sheet. Rough work, if any, may be done in the question book-let itself. Answers MUST NOT be ticked in the Question book-let.
- 6. There will be no negative marking. Each correct answer will be awarded one full mark. Cutting, erasing, overwriting and more than one answer in OMR Answer-Sheet will be treated as incorrect answer.
- 7. Use only Black or Blue <u>BALL POINT PEN</u> of good quality in the OMR Answer-Sheet.
- 8. BEFORE ANSWERING THE QUESTIONS, THE CANDIDATES SHOULD ENSURE THAT THEY HAVE BEEN SUPPLIED CORRECT AND COMPLETE BOOK-LET. COMPLAINTS, IF ANY, REGARDING MISPRINTING ETC. WILL NOT BE ENTERTAINED 30 MINUTES AFTER STARTING OF THE EXAMINATION.

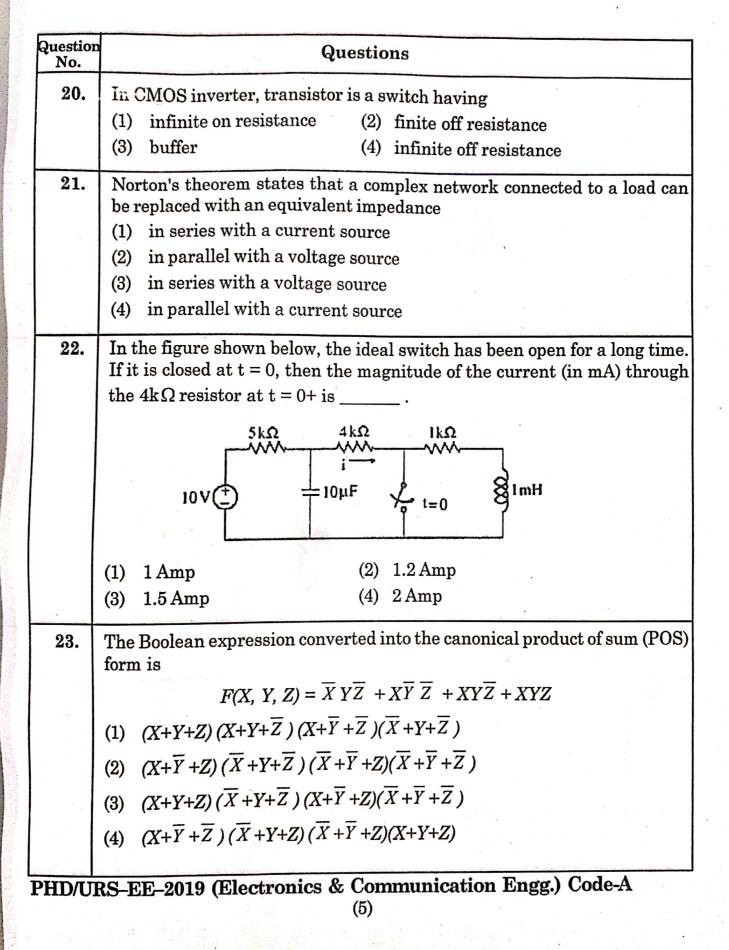
Question No.	Questions
1.	A silicon bar is doped with donor impurities $N_D = 2.25 \times 10^{15}$ atoms/cm ³ . Given the intrinsic carrier concentration of silicon at T = 300 K is $n_i = 1.5 \times 10^{10}$ cm ⁻³ . Assuming complete impurity ionization, the equilibrium electron and hole concentrations are
	(1) $n_0 = 1.5 \times 10^{16} \text{ cm}^{-3}, p_0 = 1.5 \times 10^5 \text{ cm}^{-3}$
	(2) $n_0 = 1.5 \times 10^{10} \text{ cm}^{-3}, p_0 = 1.5 \times 10^{15} \text{ cm}^{-3}$
	(3) $n_0 = 2.25 \times 10^{15} \text{ cm}^{-3}$, $p_0 = 1.5 \times 10^{10} \text{ cm}^{-3}$
	(4) $n_0 = 2.25 \times 10^{15} \text{ cm}^{-3}$, $p_0 = 1 \times 10^5 \text{ cm}^{-3}$
	Consider an abrupt PN junction (at T = 300 K) shown in the figure below. The depletion region width X_n on the N-side of the junction is 0.2 µm and the permittivity of silicon (ε_{si}) is 1.044×10 ⁻¹² F/m. At the junction, the
	approximate value of the peak electric field (in kV/cm) is $ \begin{array}{c} $
	$P^* - region$ $N_A >> N_D$ $N_D - 10^{16}/cm^3$

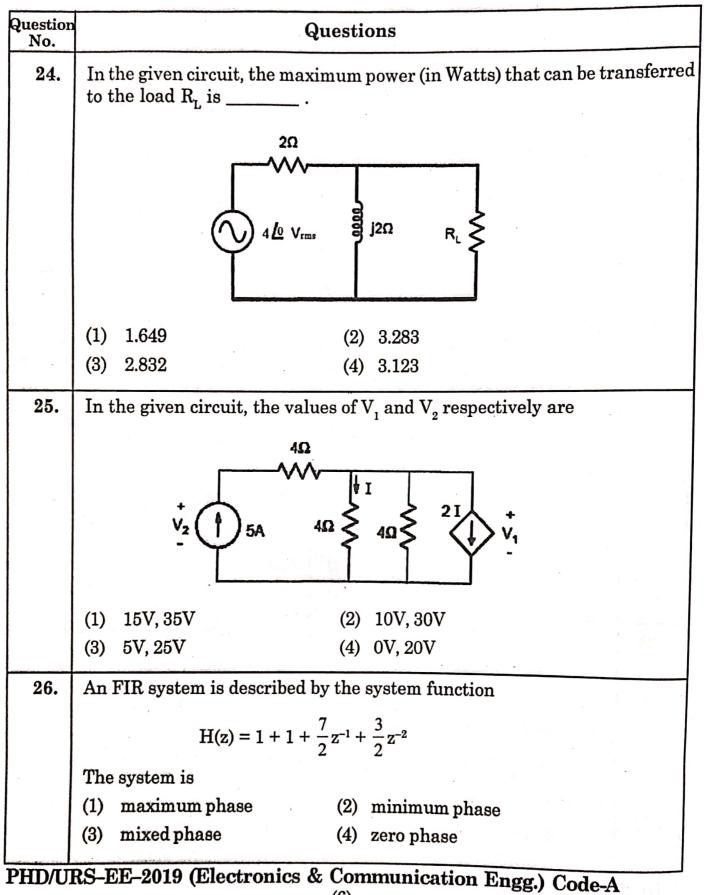
- (1) $2.7 \mu m \text{ and } 2.3 \times 10^5 \text{ V/cm}$ (2) $0.3 \mu m \text{ and } 4.15 \times 10^5 \text{ V/cm}$
- (3) $0.3 \mu m \text{ and } 0.42 \times 10^5 \text{ V/cm}$ (4) $2.1 \mu m \text{ and } 0.42 \times 10^5 \text{ V/cm}$

PHD/URS-EE-2019 (Electronics & Communication Engg.) Code-A
(1)

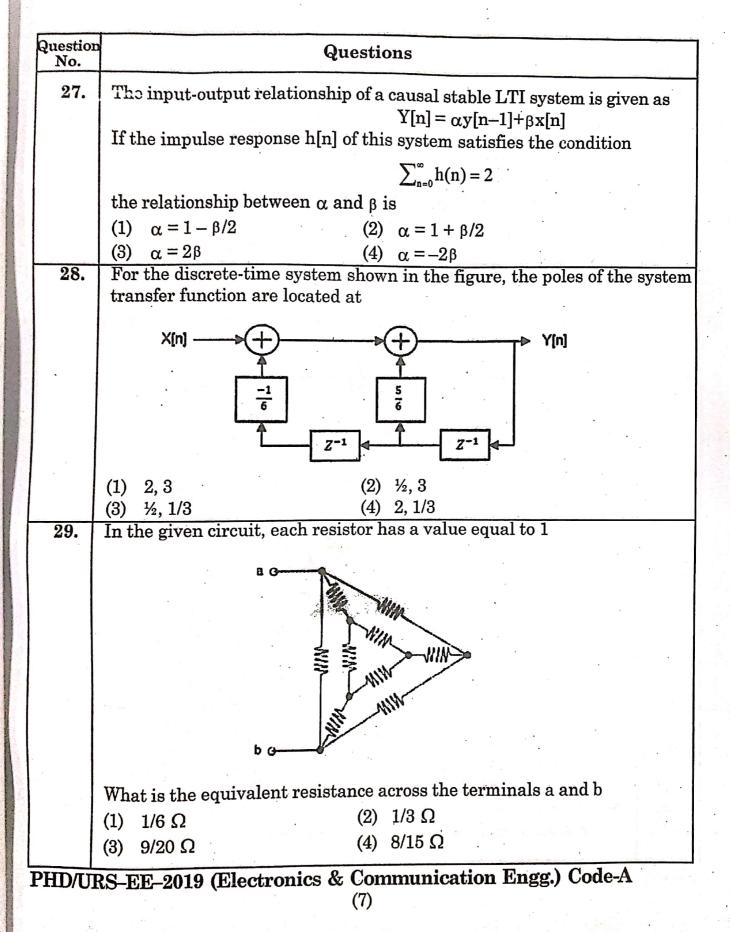
Scanned by CamScanner

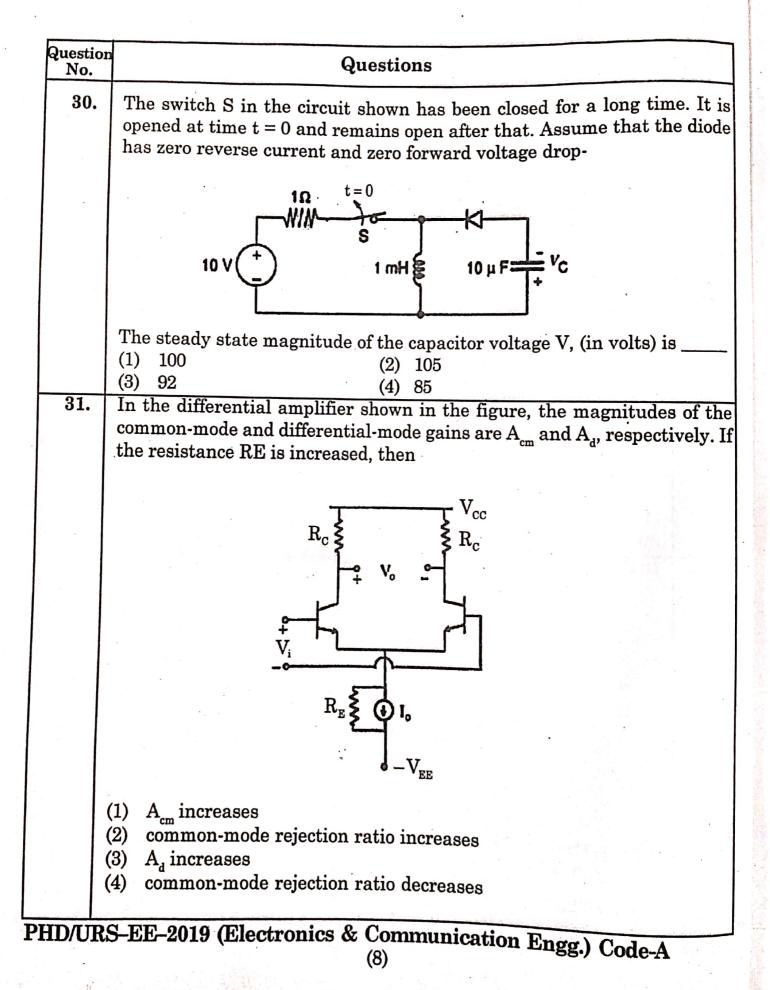
Question No.	Questions
4.	For the circuit shown below, $I_1 = 80 \text{ mA}$ and $I_2 = 4\text{mA}$. Transistors T_1 and are identical. Assume that the thermal voltage V_T is 26 mV at 27°C. 50°C, the value of the voltage $V_{12} = V_1 - V_2$ (in mV) is
	V_{s} $I_{2} \bigoplus I_{1}$ $V_{2} = V_{12} \bigoplus V_{1}$
	\overline{T}_2 T_1
1	(1) 87.14 (2) 83.15 (3) 84.12 (4) 81.13
5.	The internal quantum efficiency of LEDs decrease exponentially when the temperature
	(1) decreases (2) increases
-	(3) remains constant (4) none of these
6.	Which of the following is/are true(i) Graphene is an extremely thin three dimensional form of carbon.
n kultur Kunna (* 1	(ii) In aqueous solution, graphene can bind negatively charged ion.
	(1) Only 1 (2) Only 2
	(3) Both 1 and 2 (4) Neither 1 nor 2
7.	Carbon nano tubes can store
	(1) Nitrogen (2) Carbondioxide
	(3) Hydrogen (4) Peroxides
· · · ·	RS-EE-2019 (Electronics & Communication Engg.) Code-A

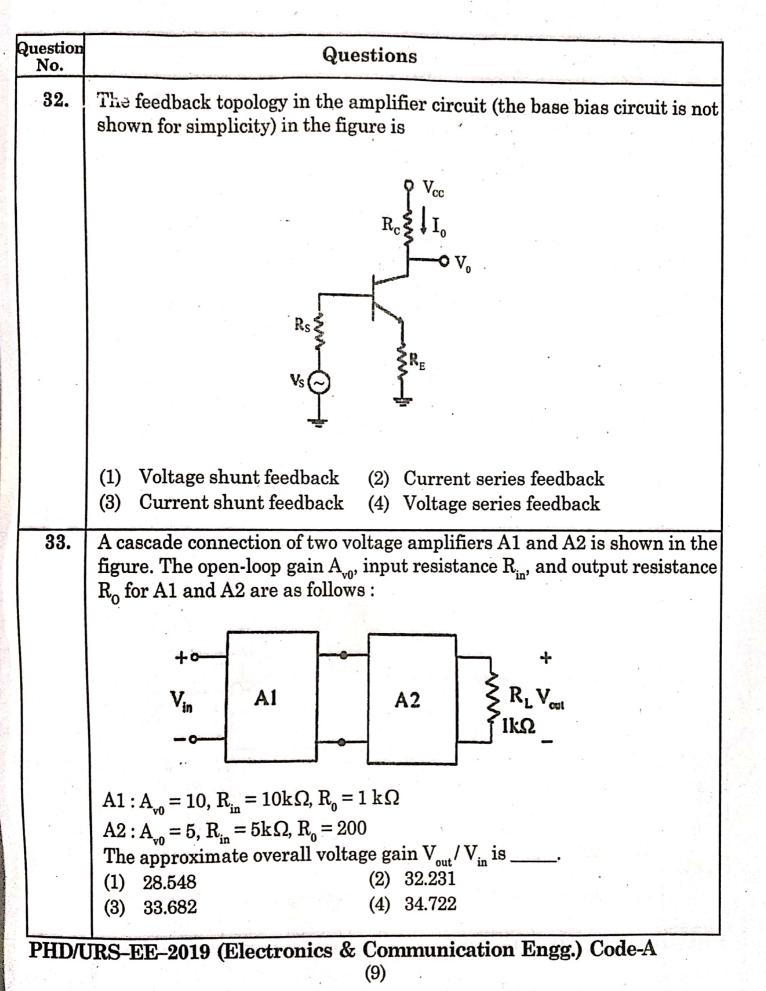

Code-A

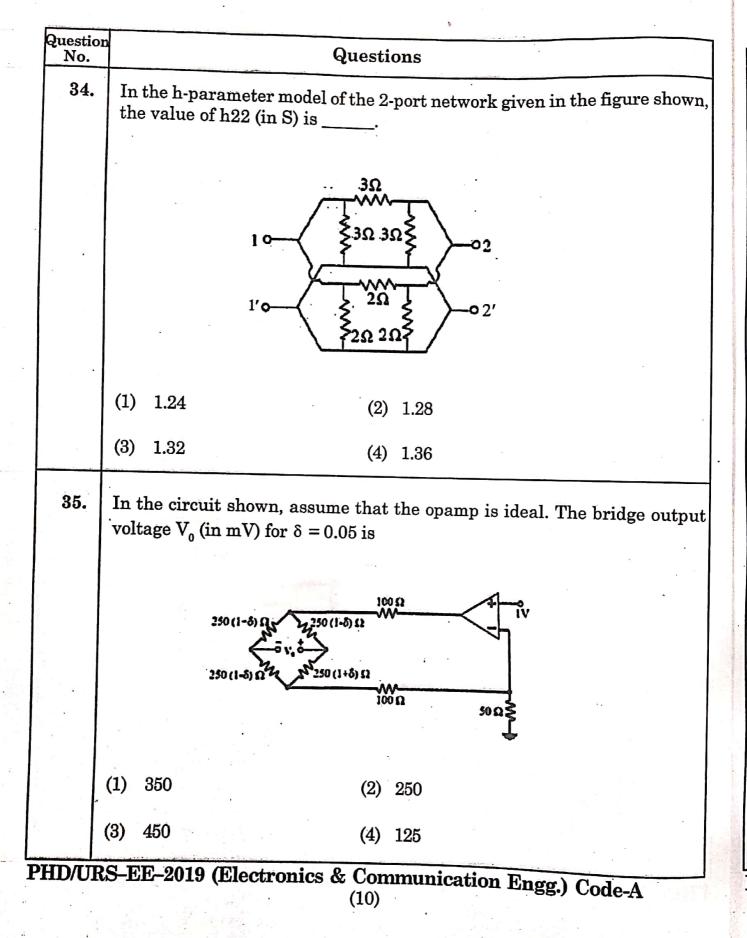

Question No.	Questions
8.	What does the 'Chirality'(n, m) denote for carbon nanotubes
	(1) the chirality is single walled or multi-walled.
	(2) the CNT is insulating or metallic.
	(3) A direction that the graphene sheet is rolled up to form a tube.
	(4) A direction that the CNT extends along
9.	Graphene epitaxial growth by thermal annealing of SiC is completed by
1 A	(1) Silicon sublimation during annealing, while carbon atoms remain on the surface.
	(2) Segregation to condense a carbon layer on top of surface.
	(3) An oxidation process to remove silicon atoms.
	(4) A reduction process to rearrange carbon atoms on the surface.
10.	Which one of the following is most famously known as solar grade silicon
	(1) Crystalline Silicon (2) Crushed Silicon
	(3) Powdered Silicon (4) Silicon
11.	nMOS devices are formed in
1	(1) p-type substrate of high doping level
	(2) n-type substrate of low doping level
	(3) p-type substrate of moderate doping level
	(4) n-type substrate of high doping level
12.	Speed power product is measured as the product of
	(1) gate switching delay and gate power dissipation
	(2) gate switching delay and gate power absorption
	(3) gate switching delay and net gate power
	(4) gate power dissipation and absorption
13.	In nMOS fabrication, etching is done using
	(1) plasma (2) hydrochloric acid
	(3) sulphuric acid (4) sodium chloride
HD/UR	S-EE-2019 (Electronics & Communication Engg.) Code-A

(3)

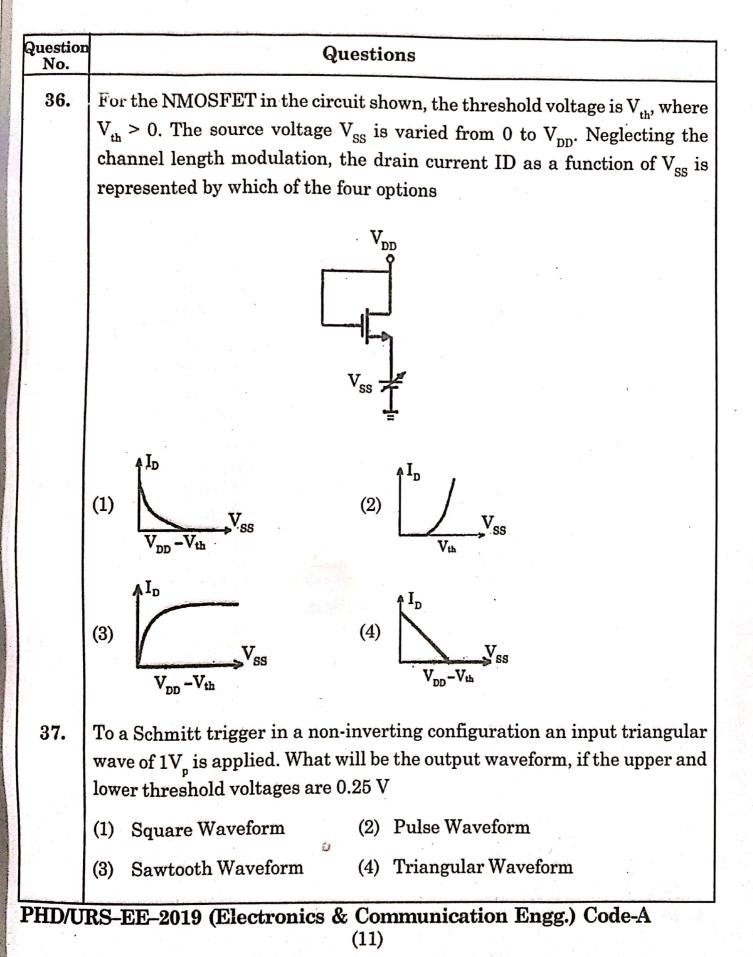

uestion No.		Questio	ns
14.	Heavily doped polysilicon i	s deposi	ted using
	(1) chemical vapour decor	mpositio	n
	(2) chemical vapour depo	sition	
	(3) chemical deposition		
	(4) dry deposition		and the second
15.	In CMOS fabrication, the	photores	ist layer is exposed to
	(1) visible light	(2)	ultraviolet light
-1 1	(3) infrared light	(4)	fluorescent
16.	P-well doping concentratio	n and de	pth will affect the
	(1) threshold voltage	(2)	V_{ss}
	(3) V _{dd}	(4)	V _{gs}
17.	Few parts of photoresist la	yer is re	moved by using
_	(1) acidic solution	(2)	neutral solution
	(3) pure water	(4)	diluted water
18.	Which color is used for imp	olant	2000 B
10.	(1) red	(2)	blue
	(3) green	(4)	yellow
19.	How is nMOS depletion m	ode tran	sistor represented
10.			
2			
	(1)	(2)	
		(4)	
	(3)	(-/	
			. 김 · 아랫동안 모님 모네 가장 밝힌
	and the second	0.0	munication Engg.) Code-A

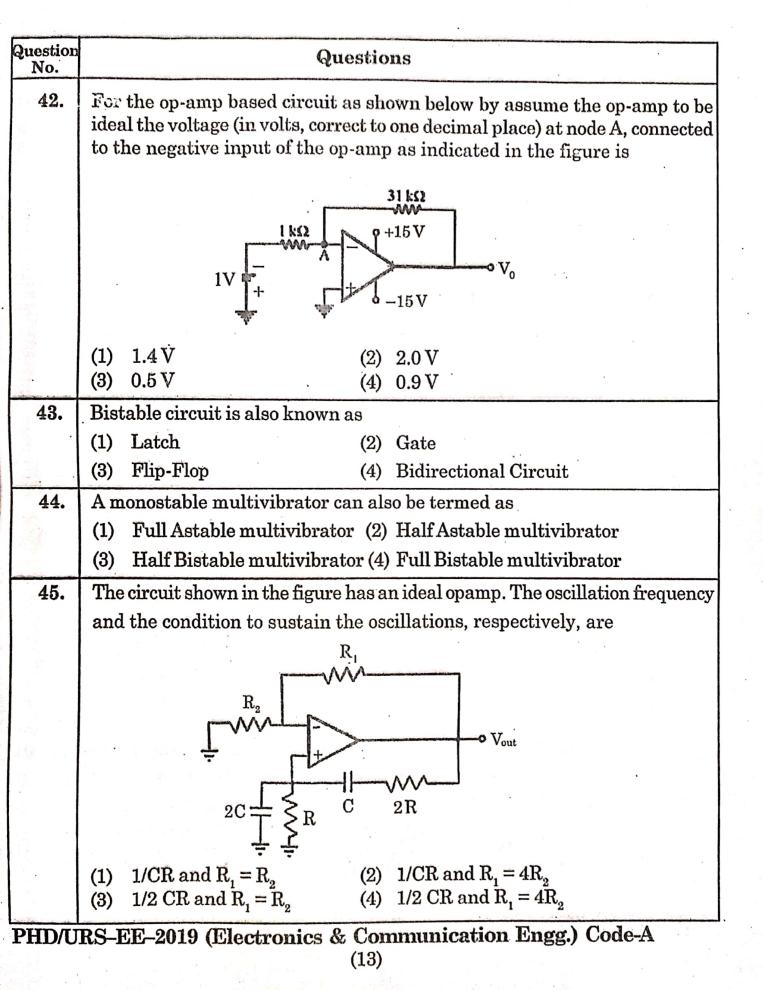

Code-A

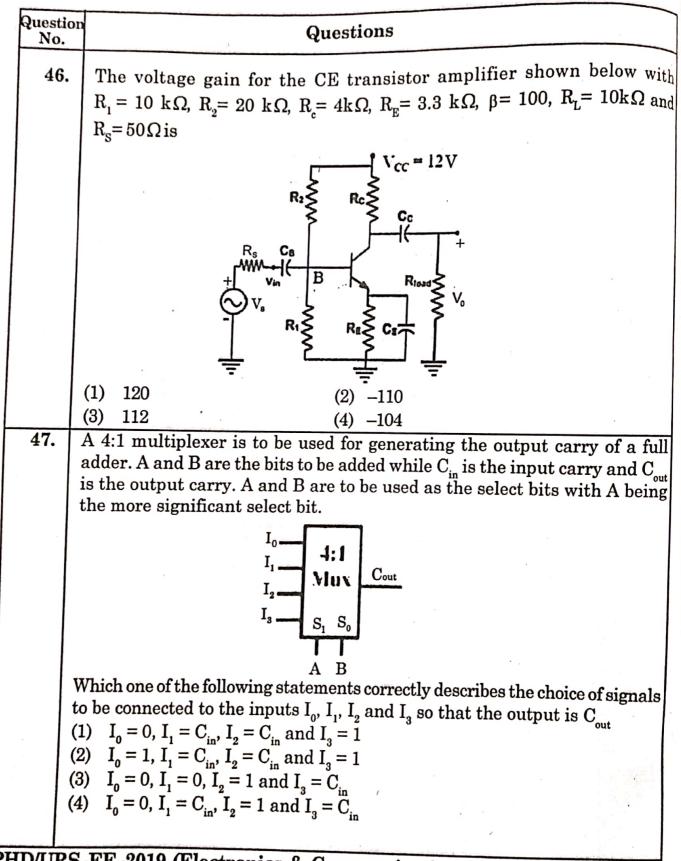




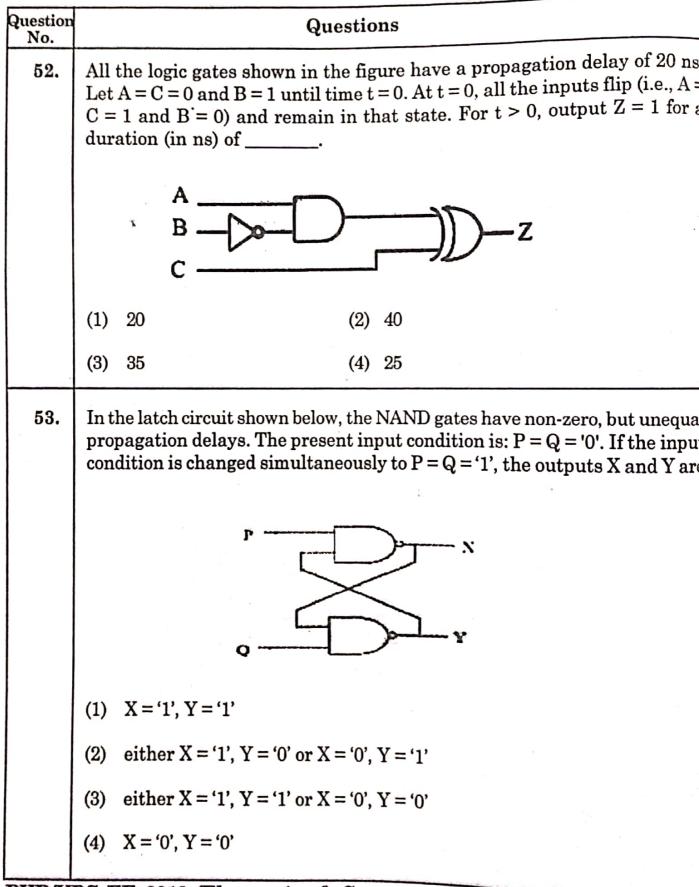
(6)

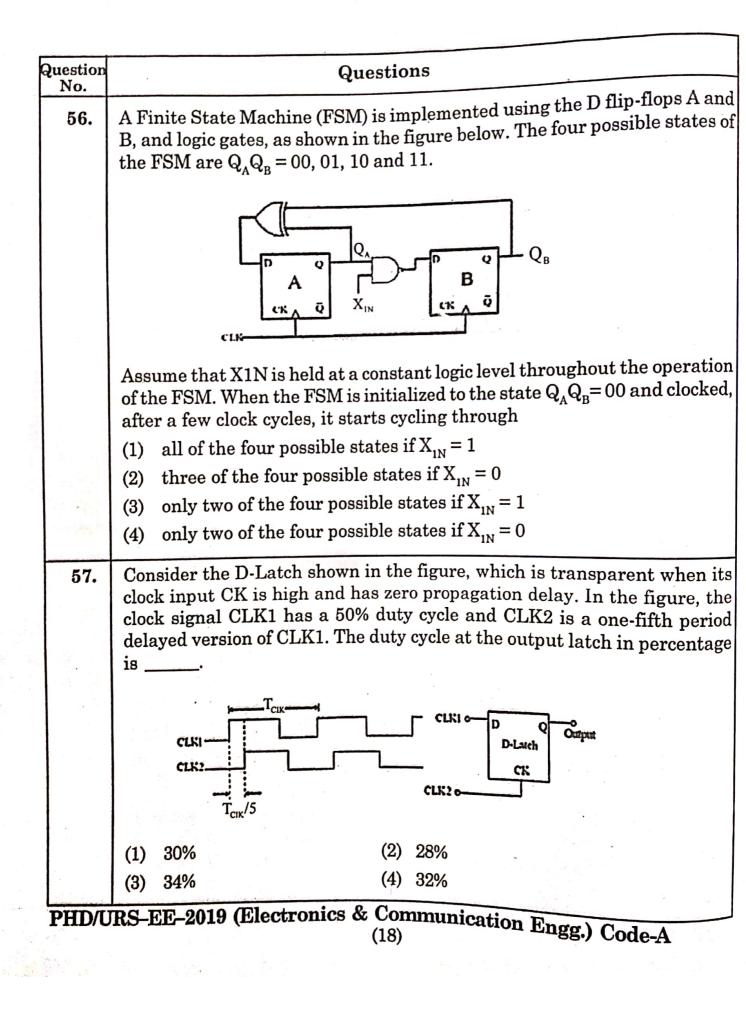


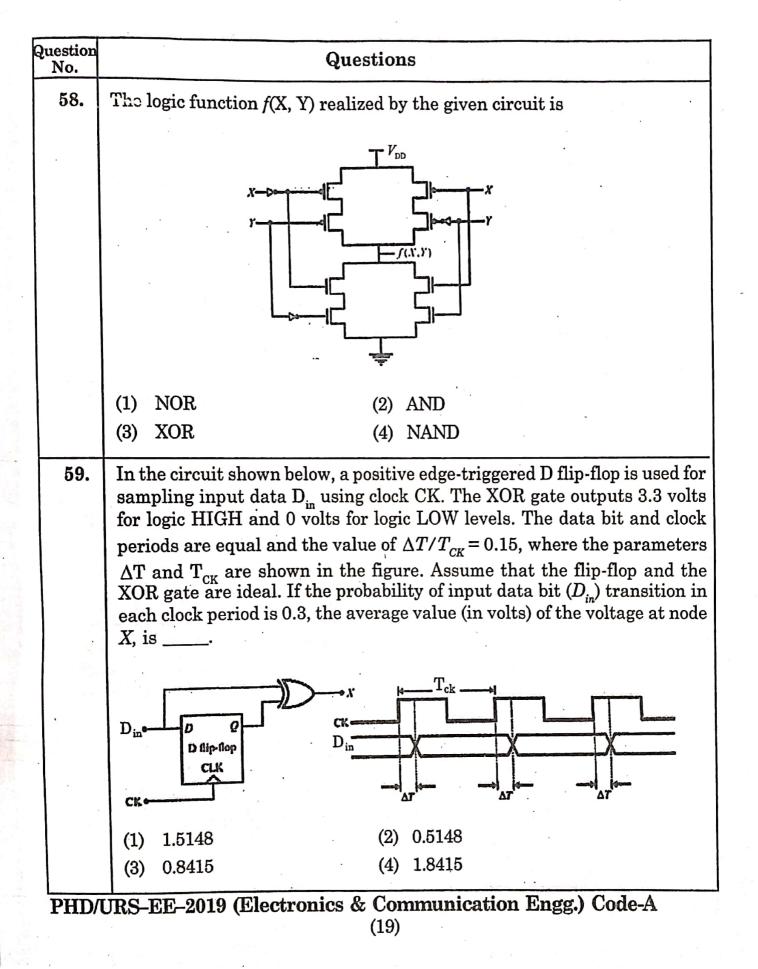




Code-A


pacitance in the ec $\frac{\pi C_1 C_2}{C_1 + C_2}$ $\frac{C_1 C_2}{2\pi (C_1 + C_2)}$ ecommended frequ) 30 kHz to 30 MH) 20 kHz to 20 MH ow the op-amp con- peration) Large Gain) Wider bandwidt ne amplifier circumpensated operation in A = 10 ⁵ , and an ex- in A = 10 ⁵ , and an ex- pacitance in the eco- second second s	quation of free (2 ency range of Hz (2 Hz (4 mparator sh (2 h (4 nit shown i onal amplifie	ce used in Colpitts oscillator the effect frequency calculation is equal to
$\frac{\pi C_1 C_2}{C_1 + C_2}$ $\frac{C_1 C_2}{2\pi (C_1 + C_2)}$ ecommended frequ 30 kHz to 30 MH 20 kHz to 20 MH ow the op-amp conversion 20 kHz to 20 MH where any conversion 4 conversion 4 conversion	(4 ency range of Hz (2 Hz (4 mparator sh (2 h (4 uit shown i onal amplifie	(2) $\frac{3C_1C_2}{C_1+C_2}$ (4) $\frac{C_1C_2}{C_1+C_2}$ e of Hartley oscillator is (2) 30 MHz to 300 MHz (4) 0.5 kHz to 40 MHz should be chosen to get higher spee (2) High slew rate (4) None of the above in the figure is implemented using
$\frac{2\pi(C_1 + C_2)}{2\pi(C_1 + C_2)}$ ecommended frequ) 30 kHz to 30 MH) 20 kHz to 20 MH ow the op-amp con- peration) Large Gain) Wider bandwidt ne amplifier circumpensated operation in A = 10 ⁵ , and an explanation	ency range of Hz (2 Hz (4 mparator sh (2 h (4 nit shown i onal amplifie	e of Hartley oscillator is (2) 30 MHz to 300 MHz (4) 0.5 kHz to 40 MHz should be chosen to get higher spee (2) High slew rate (4) None of the above in the figure is implemented usin
 30 kHz to 30 MH 20 kHz to 20 MH 20 kHz to 20 MH ow the op-amp conversion Large Gain Wider bandwidt me amplifier circumpensated operation in A = 10⁵, and an experimental conversion 	Hz (2 Hz (4 mparator sh (2 h (4 nit shown i onal amplifie	 (2) 30 MHz to 300 MHz (4) 0.5 kHz to 40 MHz should be chosen to get higher spee (2) High slew rate (4) None of the above in the figure is implemented using the state
 30 kHz to 30 MH 20 kHz to 20 MH 20 kHz to 20 MH ow the op-amp conversion Large Gain Wider bandwidt me amplifier circumpensated operation in A = 10⁵, and an experimental conversion 	Hz (2 Hz (4 mparator sh (2 h (4 nit shown i onal amplifie	 (2) 30 MHz to 300 MHz (4) 0.5 kHz to 40 MHz should be chosen to get higher spee (2) High slew rate (4) None of the above in the figure is implemented using the state
ow the op-amp co eration) Large Gain) Wider bandwidt ne amplifier circu mpensated operations in A = 10 ⁵ , and an o	mparator sl (2 h (4 uit shown i onal amplific	 should be chosen to get higher spee (2) High slew rate (4) None of the above in the figure is implemented usir
eration) Large Gain) Wider bandwidt ne amplifier circu mpensated operations in A = 10 ⁵ , and an o	(2 h (4 uit shown i onal amplific	(2) High slew rate(4) None of the abovein the figure is implemented usir
) Large Gain) Wider bandwidt ne amplifier circu mpensated operations in A = 10 ⁵ , and an o	h (4 uit shown i onal amplific	(4) None of the abovein the figure is implemented usir
) Wider bandwidt ne amplifier circu mpensated operation in A = 10 ⁵ , and an o	h (4 uit shown i onal amplific	(4) None of the abovein the figure is implemented usir
mpensated operation in $A = 10^5$, and an operation in $A = 10^5$ and a second	onal amplifie	
nplifier at 15kHz, i	open-loop cu n V/V is	fier (op-amp), and has an open-loop vol cut-off <i>f</i> _c frequency. The voltage gain of
Ļ		$R_2 = 79 k\Omega$
44.3 54.6		(2) 45.2 (4) 34.7
	↓ 44.3 54.6	44.3


PHD/URS-EE-2019 (Electronics & Communication Engg.) Code-A
(14)


Question No.	Questions
48.	An amplifier operating from +3V provide a 2.2V peak sine wave across a 100 ohm load when provided with a 0.2V peak sine wave as an input from which 1.0 mA current is drawn. The average current in each supply is measured to be 20mA. What is the amplifier efficiency (1) 25.2% (2) 30.2% (3) 20.2% (4) 35.2%
49.	 Which of the following is not true (1) both transformer and amplifier can provide voltage gain. (2) both transformer and amplifier can provide current gain. (3) both transformer and amplifier can provide power gain. (4) None of the above
50.	 FSK reception uses (1) Correlation receiver and PLL (2) PLL only (3) Correlation receiver only (4) None of the above
51.	In the circuit shown, choose the correct timing diagram of the output(y) from the given waveforms W1, W2, W3 and W4 $ \begin{array}{c c c c c c c c c c c c c c c c c c c $
	(1) W1 (2) W2 (3) W3 (4) W4
PHD/U	URS-EE-2019 (Electronics & Communication Engg.) Code-A (15)

PHD/URS-EE-2019 (Electronics & Communication Engg.) Code-A
(16)

Question No.	Questions
54.	A 4-bit shift register circuit configured for right-shift operation, $D \rightarrow A$, $A \rightarrow B$, $B \rightarrow C$, $C \rightarrow D$ is shown below. If the present state of the shift register is ABCD = 1101, the number of clock cycles required to reach the state ABCD = 1111 is ABCD = 1111 is
	 (1) 10 (2) 11 (3) 12 (4) 8
55.	Which one of the following gives the simplified sum of products expression for the Boolean function $F = m_0 + m_1 + m_2 + m_3 + m_5$ where ' m_x ' are min terms corresponding to the inputs A, B and C with A as the MSB and C as the LSB
	(1) $\overline{A}B + \overline{A}\overline{B}\overline{C} + A\overline{B}C$
	(2) $\overline{A} \overline{C} + \overline{A} B + A \overline{B} C$
	$(3) \overline{A} \ \overline{C} + A \ \overline{B} + A \ \overline{B} \ C$
	$(4) \overline{A} BC + \overline{A} \overline{C} + A \overline{B} C$
PHD/U	RS-EE-2019 (Electronics & Communication Engg.) Code-A (17)

Question No.			Quest	5	
60.	. For programmable logic functions, which type of PLD should be used				
	(1)	PLA) PAI	
	(3)	CPLD	(4) SLI)
61.	Whe	en 8051 wakes up	then 0×00 is	loade	ed to which register
	(1)	DPTR	(2) SP	
	(3)	PC	• (4) PSV	V
62.	On	power up, the 805	1 uses which	RAM	locations for register R0-R7
	(1)	00-2F	(2		
	(3)	00-07	(4) 00-0	F
63.					arison operation, the result o
,		paring or subtrac			-+
	(1)	memory	(2)	0	
	(3)	stack	(4)) none	e of the above
64.		ich segment of t ructions to be exe			the actual assembly language
	(1)	Data Segment	(2)	Code	e Segment
	(3)	Stack Segment	(4)	Extr	ra Segment
65.	resp prob	ectively. The nois	y observation ver the interv	n of <i>X</i> i val (–1	nd 0.5 with probabilities $\frac{1}{4}$ and $\frac{3}{4}$, is $Y = X + Z$, where Z has uniform , 1). X and Z are independent. If X as
		Â	$= \begin{cases} -0.5, & Y \\ 0.5, & Y \end{cases}$	<α ≥α	
	then	the value of α (a	accurate to t	wo dec	imal places) is
	(1)	0.5	(2)	0.25	
	(3)	0.4	(4)	0.7	

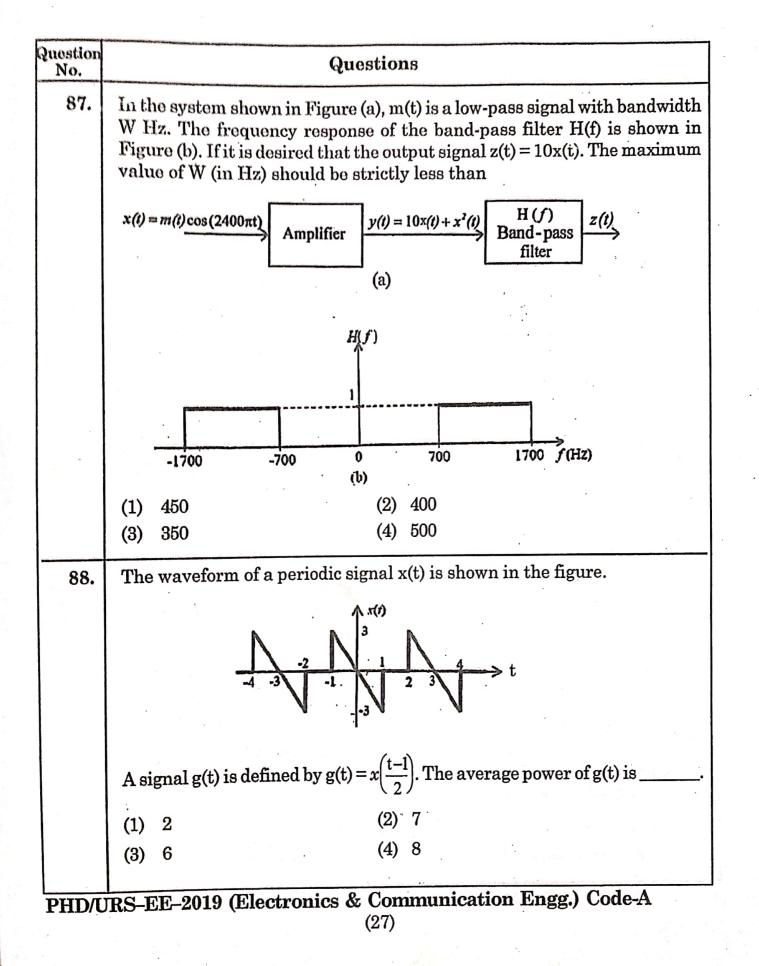
Code-A

۰,

Questions
The phenomenon leading to avalanche breakdown in reverse biased diodes is known as
(1) Auger recombination (2) Mode hopping
(3) Impact ionization (4) Extract ionization
Why VHF, UHF and microwave signals used in satellite communication
(1) More bandwidth
(2) More spectrum space
(3) Are not diffracted by ionosphere
(4) Economically viable
The free space model of propagation refers to
1. Unobstructed line of sight between transmitter and receiver.
2. Satellite communication systems and microwave line of sight radio links.
3. Propagation along the ground surface.
(1) 1 and 2 are correct
(2) 1 and 3 are correct
(3) 2 and 3 are correct
(4) All are correct
The material used to construct a variable reluctance stepper motor with salient poles is
(1) Paramagnetic (2) Ferromagnetic
(3) Diamagnetic (4) Non-magnetic

Question No.	Questions
70.	Consider the network shown below with $R_1 = 1\Omega$, $R_s = 2\Omega$ and $R_s = 3\Omega$. The network is connected to a constant voltage source of 11V.
	R_1 R_2 R_3 R_1 T T R_1 T
	The magnitude of the current (in amperes, accurate to two decimal places) through the source is
	(1) 8A (2) 6A
	(3) 7 A (4) 10 A
71.	A rectangular waveguide of internal dimensions $a \times b(a > b)$, the cut-off frequency for the TE ₁₁ mode is the arithmetic mean of the cut-off
	frequencies for TE_{10} mode and TE_{20} mode. If $a = \sqrt{5}$ cm the value of b(in cm) is
	(1) 1 cm (2) 2 cm
	(3) 4 cm (4) 8 cm
HD/UF	2S-EE-2019 (Electronics & Communication Engg.) Code-A

Consider a straight, infinitely long, current carrying conductor lying on the z-axis. Which one of the following plots (111 linear scale) qualitatively represents the dependence of H_{ϕ} oil r, where H_{ϕ} is the magnitude of the azimuthal component of magnetic field outside the conductor and r is the radial distance from the conductor H_{ϕ}^{\dagger} H_{ϕ}^{\dagger}
azimuthal component of magnetic field outside the conductor and r is the radial distance from the conductor
adial distance from the conductor
$H_{\phi \uparrow}$. $H_{\phi \uparrow}$
(1) (2) r
$(3) \qquad \qquad$
A helix is used in a travelling wave tube to
(1) Increase the speed of electron beam
2) Decrease the speed of electron beam
3) Increase the speed of electromagnetic wave along the axis of the tube
(4) Decrease the speed of electromagnetic wave along the axis of the tube
Which one of the following diodes provides high range of variable resistance
1) PN Junction Silicon Diode (2) Schottky Diode
3) Varactor Diode (4) PIN Diode
Which one of the following diodes will be most suitable for making high power transmitter
1) PN Junction Diode (2) GUNN Diode
3) Tunnel Diode (4) Schottky Diode


. (23)

Question No.	question					
76.	Two identical transmitting and receiving antennas with gain of 15 dBi a 2.45 GHz are separated by a distance of 3 km. If the transmitted power is 20W, the power received will be					
, · · .	(1) $-112.8 \mathrm{dBm}$ (2) $-78.4 \mathrm{dBm}$					
	(3) -52.8 dBm (4) -36.8 dBm					
77.	The phase velocity of electromagnetic waves in a hollow metal waveguide is					
	(1) Equal to group velocity					
	(2) Greater than velocity of light in free space					
	(3) Lesser than velocity of light in free space					
	(4) Equal to velocity of light in free space					
78.	A lossless $\lambda/2$ line having characteristic impedance = 70.7 Ω is terminated with 100 Ω . The input impedance of this line is					
	(1) 50Ω (2) 70.7Ω					
0.1.1	(3) 100Ω(4) 200Ω					
79.	The electric field component of a plane wave travelling in a lossless dielectric medium is given by					
	$E(z, t) = 2 \cos(10^8 t - \frac{z}{\sqrt{2}})$ V/m. The wavelength (in m) for the wave is					
	 (1)(2)					
	(1) 8.89 (2) 7.28					
	(3) 4.87 (4) 6.23					

- Carthalt A

Question No.	Questions					
80.	Consider a uniform plane wave with amplitude (E_0) of 10 V/m and 1.1 GHz frequency travelling in air, and incident normally on a dielectric medium with complex relative permittivity (ϵ_r) and permeability (μ_r) as shown in the figure.					
	Air $\eta = 120\pi \Omega$ $I_{r} = 1 - 12$ $e_{r} = 1$					
	The magnitude of the transmitted electric field component (in V/m) afterit has travelled a distance of 10 cm inside the electric region is(1) 0.2(2) 0.3(3) 0.1(4) 0.4					
81.	Consider sinusoidal modulation in an AM system. Assuming no over- modulation, the modulation index(μ) when the maximum and minimum values of the envelope, respectively, are 3V and 1 V, is (1) 1.0 (2) 0.5 (3) 1.5 (4) 2.0					
82.	Coherent orthogonal binary FSK modulation is used to transmit two equi-probable symbol waveforms $S_1(t) = \alpha \cos 2\pi f_1 t$ and $S_2(t) = \alpha \cos 2\pi f_2 t$, where $\alpha = 4mV$. Assume an AWGN channel with two-sided noise power spectral density $N_0/2 = 0.5 \times 10^{-12}$ W/Hz. Using an optimal receiver and the relation					
	$Q(v) = \frac{1}{\sqrt{2\pi}} \int_{0}^{db} e^{-v^{2}/2} du$					
	the bit error probability for a data rate of 500 kbps is $(2) O(2)$					
ц. 1	(1) Q(2) (3) Q(4) (2) Q($2\sqrt{2}$) (4) Q($4\sqrt{2}$)					
	RS-EE-2019 (Electronics & Communication Engg.) Code-A					
	(25)					

s I ((A sinusoidal signal of 2 kHz frequency is applied to a delta modulator. The sampling rate and step-size Δ of the delta modulator are 20,000 sample per second and 0.1 V, respectively. To prevent slope overload, the maximum amplitude of the sinusoidal signal (in Volts) is (1) $1/2\pi$ (2) $1/\pi$ (3) $2/\pi$ (4) π
84. 7	$(4) \pi$
a s (The transmitted signal in a GSM system is of 200 kHz bandwidth and 8 users share a common bandwidth using TDMA. If at a given time 12 users are talking in a cell, the total bandwidth of the signal received by the base station of the cell will be at least (in kHz) (1) 300 kHz (2) 400 kHz (3) 450 kHz (4) 500 kHz
i d i	Light from free space is incident at an angle 0°, to the normal of the face of a step-index large core optical fibre. The core and cladding refractive indices are $n_1 = 1.5$ and $n_2 = 1.4$, respectively. The maximum value of θ_i (in degrees) for which the incident light will be guided in the core of the fibre is Free n_2 (cladding) n_1 (core) θ_i Light
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
86. C W m (1 (2 (3) (4	Consider the signal $s(t) = m(t) \cos(2\pi f_c t) + m_1(t) \sin(2\pi f_c t)$ Where $m_1(t)$ denotes the Hilbert transform of $m(t)$ and the bandwidth of $n(t)$ is very small compared to f_c . The signal $s(t)$ is a 1) high-pass signal 2) low-pass signal 3) band-pass signal

Question No.	Questions					
89.	In a proportional temperature controller, if the quantity under the heater increases the offset will					
	(1) increases					
	(2) decreases					
	(3) remains unaffected					
-	(4) increases first and then decreases after a threshold					
90.	If a Nyquist plot of $G(j\omega)$ $H(j\omega)$ point for a closed loop system passes through (-2, j0) point in GH plane, what would be the value of gain margin of system in dB					
	(1) $0dB$ (2) $2.0201 dBs$					
	(3) $4.021 \mathrm{dB}$ (4) $6.0205 \mathrm{dB}$					
91.	Consider the state space system expressed by the signal flow diagram shown in the figure.					
	$\begin{array}{c} \begin{array}{c} & & & \\ & & \\ u \\ & & \\ u \\ & & \\ & \\ &$					
	The corresponding system is					
	(1) always controllable (2) always observable					
	(3) always stable (4) always unstable					
92.	A TRIAC is equivalent to two SCRs in					
	(1) parallel (2) series					
	(3) inverse parallel (4) none of the above					
PHD/UR	S-EE-2019 (Electronics & Communication Engg.) Code-A (28)					

Question No.	Questions					
93.	The V-I Characteristics for a TRIAC in the first and third quadrants are essentially identical to those of in the first quadrant.					
	(1) Transistor (2) SCR					
	(3) UJT (4) None of the above					
94.	A device that does not have gate terminal is					
	(1) TRIAC (2) FET					
	(3) SCR (4) DIAC					
95.	In an unregulated power supply, if input ac voltage increases, the output voltage					
	(1) Increases (2) Decreases					
	(3) Unchanged (4) Becomes zero					
96.	SMPS is based on the principle of					
	(1) Phase control (2) Integral control					
	(3) Chopper (4) MOSFET					
97.	Piezoelectric crystals					
	(1) float on water					
	(2) dissolve in water					
	(3) are not soluble in water					
	(4) absorb water					
98.	. Operation of a thermocouple is governed by					
	(1) Peltier effect (2) Seebeck effect					
	(3) Thomson Effect (4) All of the mentioned					
PHD/U	RS-EE-2019 (Electronics & Communication Engg.) Code-A (29)					

Question No.			Qu	estio	IS				
99.	9. A spectrum analyser is used to measure								
	(1)	frequency		ю ше <i></i>	Suic				
	(2)	loss angle of	dielectric	343 (4)	•				
	(3)	harmonics							
	(4)	insulating re	sistance						
100.	Osc	illoscope is a	•						
	(1)	Ohmmeter		(2)	Ammeter				
ана (1997) Алан (1997)	(3)	Voltmeter			Multimeter	r			
				а. С. 1					
	•	÷.							
		. (I		•					
	÷ .					L		•	
						÷			
÷		. ×	5		1.1				
								•	
									2
		E–2019 (Elec		~				~ 1	

.

DO NOT ODEN THE	QUESTION BOOKLE	T REFORE TIME OR	UNTIL YOU	ARE ASKED TO) do so)
(DO NOT OPEN THIS	QUESTION DOULLE	DEFORE TIME OF			

(MPH/PHD/URS-EE-2019)

Electronics & Communication Engg. Sr. No. 10002

(in words)

Max. Marks: 100

Time: 1¼ Hours

Total Questions : 100

(in figure)_____

Roll No.

Name :

Code

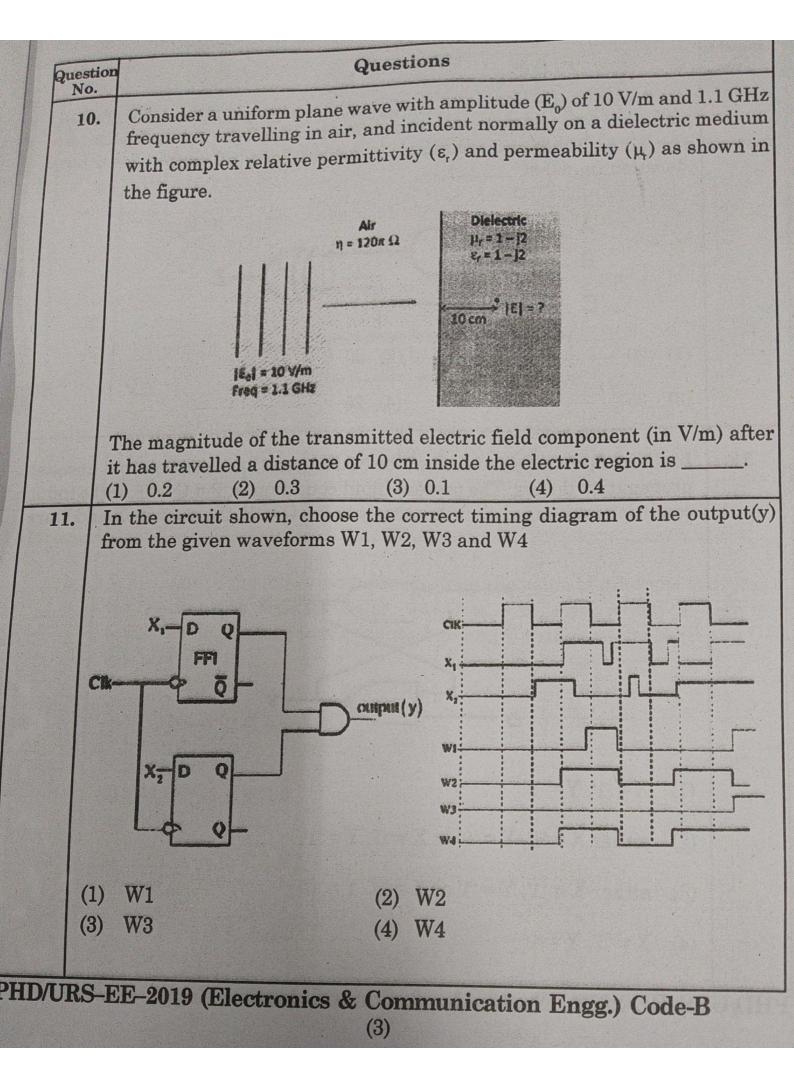
Father's Name : _____ Date of Examination :

Mother's Name : ____

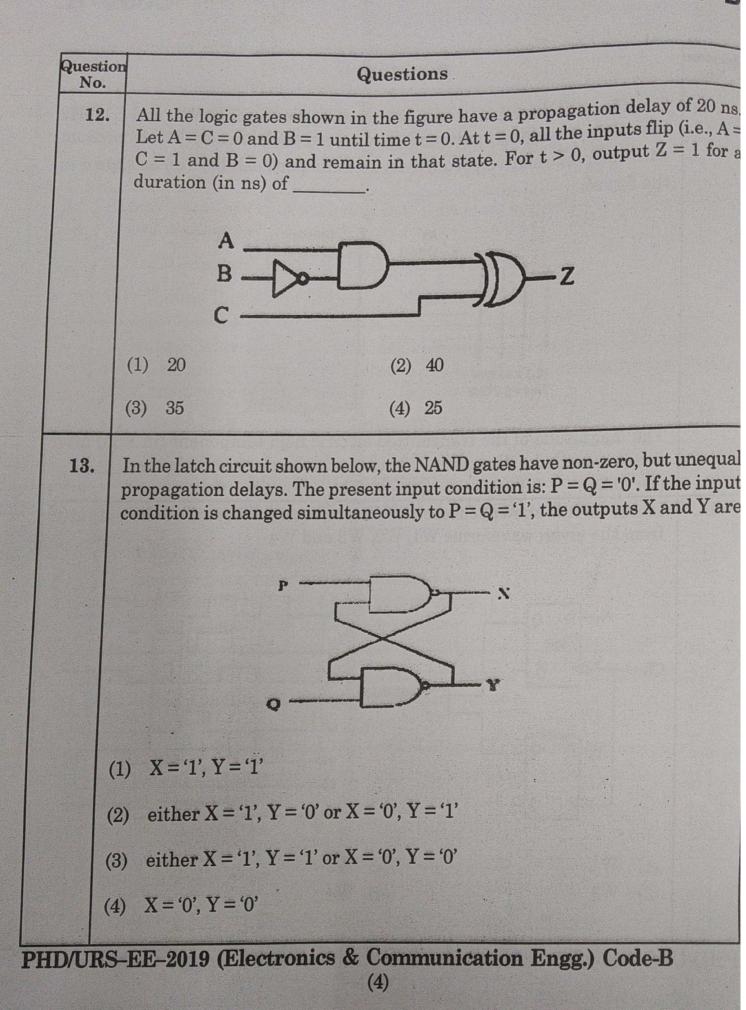
(Signature of the Invigilator)

(Signature of the candidate) CANDIDATES MUST READ THE FOLLOWING INFORMATION/ INSTRUCTIONS BEFORE STARTING THE QUESTION PAPER.

- 1. All questions are compulsory.
- The candidates must return the Question book-let as well as OMR answer-sheet 2. to the Invigilator concerned before leaving the Examination Hall, failing which a case of use of unfair-means / misbehaviour will be registered against him / her, in addition to lodging of an FIR with the police. Further the answer-sheet of such a candidate will not be evaluated.

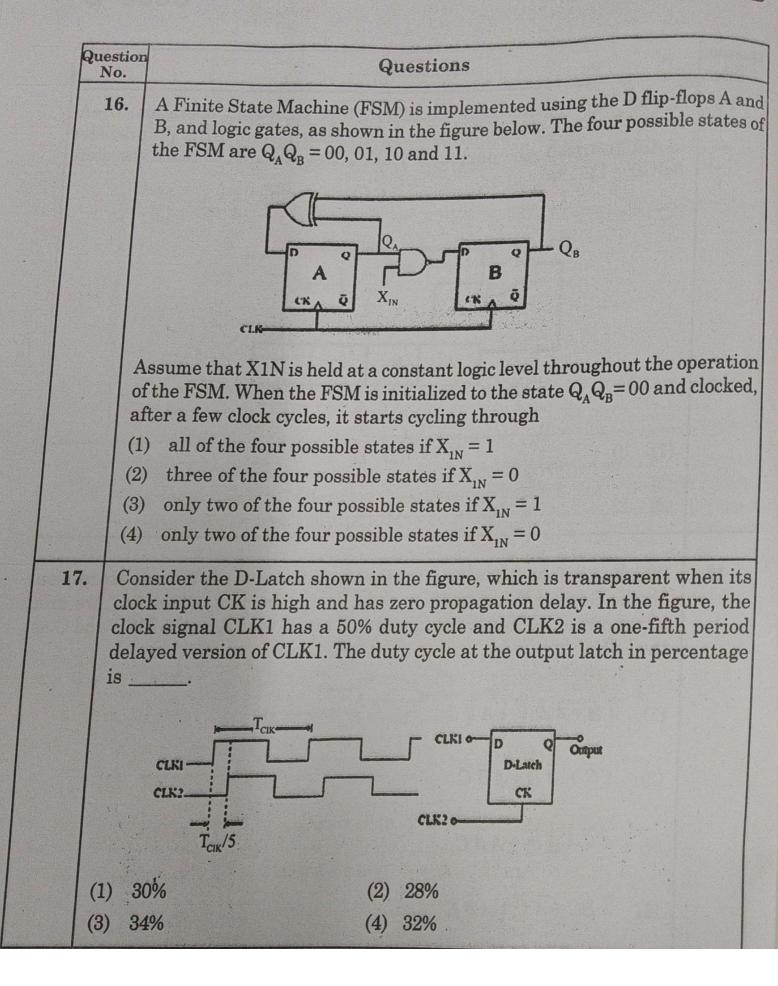

- Keeping in view the transparency of the examination system, carbonless OMR 3. Sheet is provided to the candidate so that a copy of OMR Sheet may be kept by the candidate.
- Question Booklet along with answer key of all the A,B,C and D code will be got 4. uploaded on the university website after the conduct of Entrance Examination. In case there is any discrepancy in the Question Booklet/Answer Key, the same may be brought to the notice of the Controller of Examination in writing/through E. Mail within 24 hours of uploading the same on the University Website. Thereafter, no complaint in any case, will be considered.
- The candidate MUST NOT do any rough work or writing in the OMR Answer-5. Sheet. Rough work, if any, may be done in the question book-let itself. Answers MUST NOT be ticked in the Question book-let.
- There will be no negative marking. Each correct answer will be awarded 6. one full mark. Cutting, erasing, overwriting and more than one answer in OMR Answer-Sheet will be treated as incorrect answer.
- Use only Black or Blue BALL POINT PEN of good quality in the OMR Answer-7. Sheet.
- 8. BEFORE ANSWERING THE QUESTIONS, THE CANDIDATES SHOULD ENSURE THAT THEY HAVE BEEN SUPPLIED CORRECT AND COMPLETE BOOK-LET. COMPLAINTS, IF ANY, REGARDING MISPRINTING ETC. WILL NOT BE ENTERTAINED 30 MINUTES AFTER STARTING OF THE EXAMINATION.

Code-B

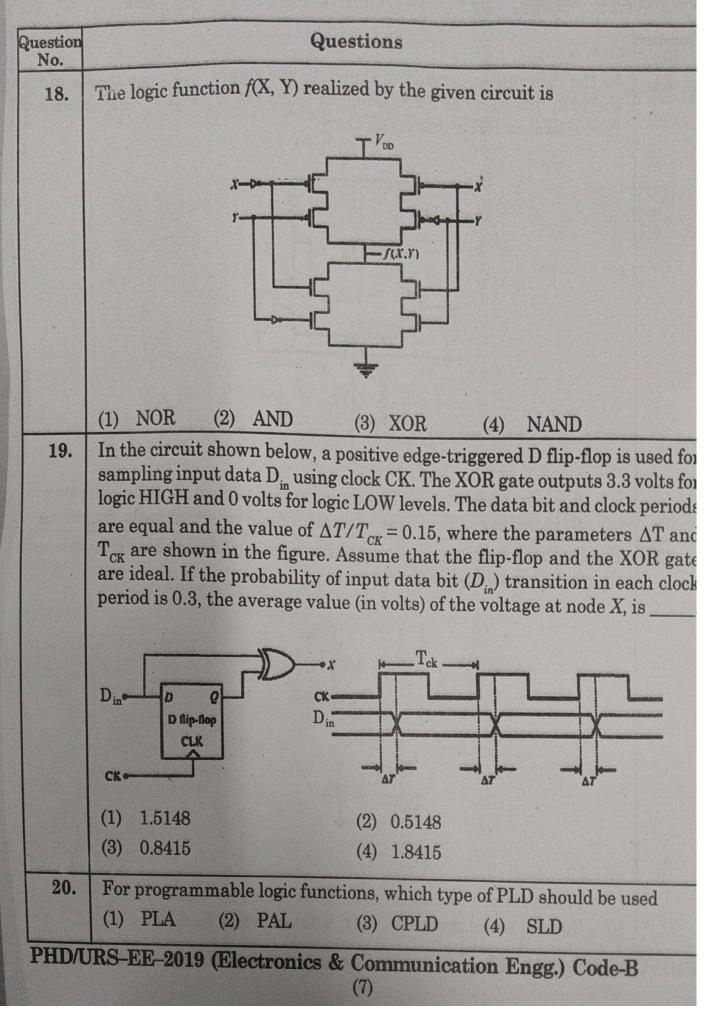

Question No.	Questions					
1.	A rectangular waveguide of internal dimensions $a \times b(a > b)$, the cut-off frequency for the TE ₁₁ mode is the arithmetic mean of the cut-off frequencies for TE ₁₀ mode and TE ₂₀ mode. If $a = \sqrt{5}$ cm the value of					
	b(in cm) is					
	(1) 1 cm (2) 2 cm					
	(3) 4 cm (4) 8 cm					
2.	Consider a straight, infinitely long, current carrying conductor lying on the z-axis. Which one of the following plots (111 linear scale) qualitatively represents the dependence of H oil and H indication of H					
	represents the dependence of H_{ϕ} oil r, where H_{ϕ} is the magnitude of the azimuthal component of magnetic field outside the conductor and r is the radial distance from the conductor					
	H _{\$\$}					
	(1) (2)					
	r H _{\$\$}					
((3) (4)					
	r					
3.] A	A helix is used in a travelling wave tube to					
(1) Increase the speed of electron beam					
(:	2) Decrease the speed of electron beam					
(;	3) Increase the speed of electromagnetic wave along the axis of the tu					
(4	4) Decrease the speed of electromagnetic wave along the axis of the tu					
DAIDO	E-EE-2019 (Electronics & Communication Engg.) Code-B					

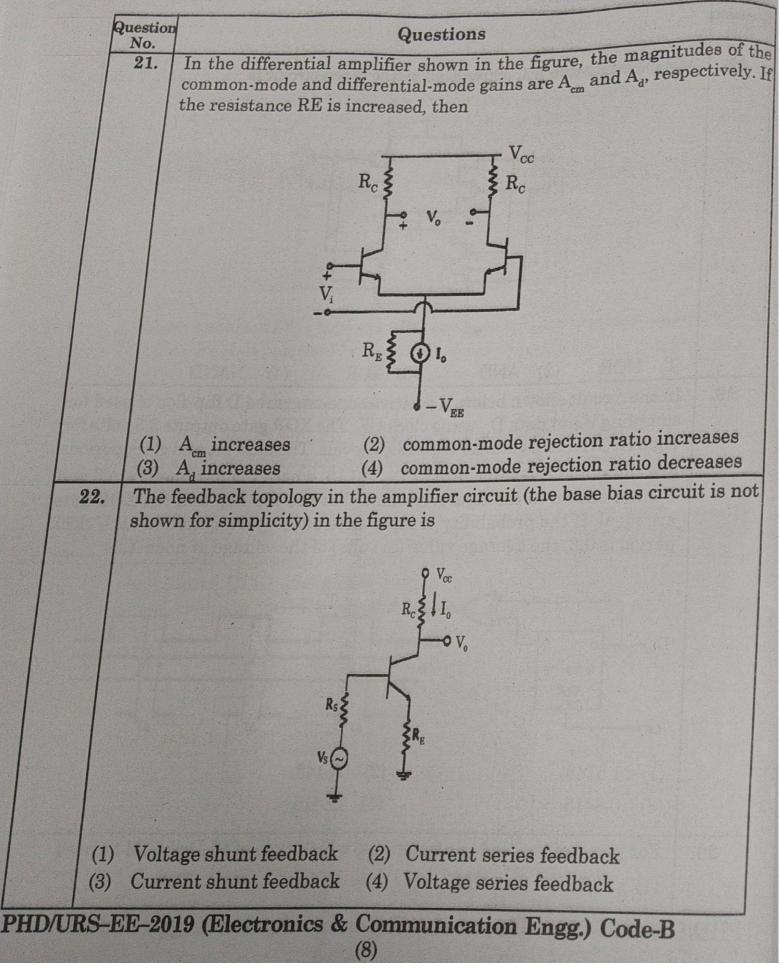
P

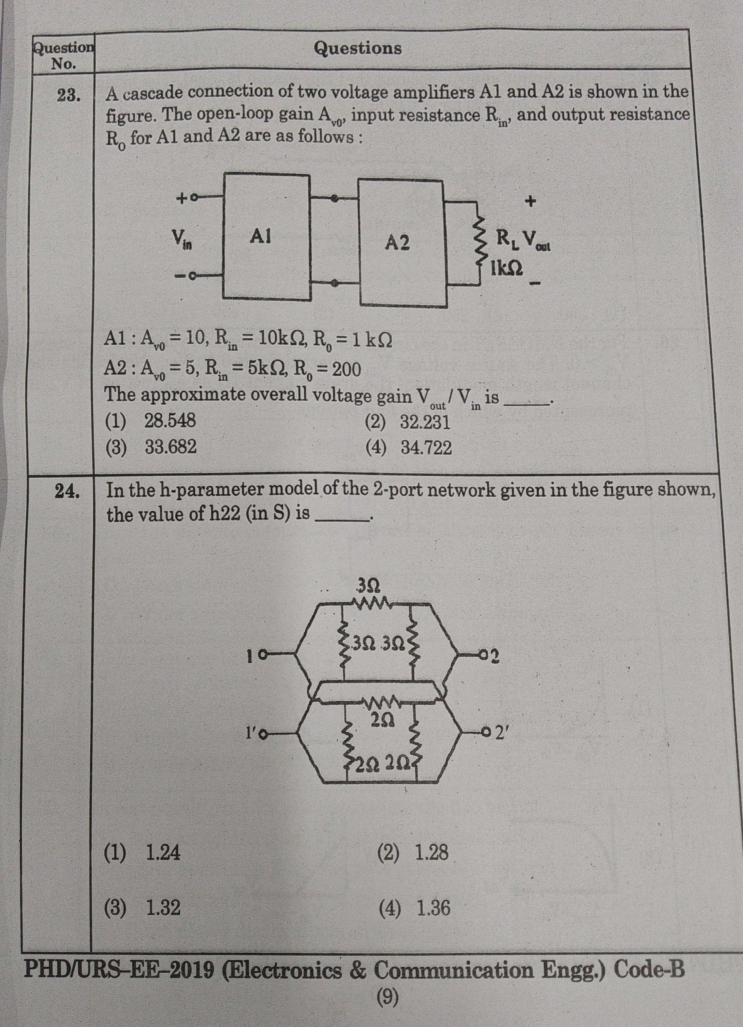
Quest No.	ion Questions
4.	Which one of the following diodes provides high range of the (1) PN Junction Silicon Diode (2) Schottky Diode
5.	(3) Varactor Diode (4) THEE Which one of the following diodes will be most suitable for making high power transmitter
	 (1) PN Junction Diode (2) GUNN Diode (3) Tunnel Diode (4) Schottky Diode
6.	Two identical transmitting and receiving antennas with gain of 15 dBi at 2.45 GHz are separated by a distance of 3 km. If the transmitted power is 20W, the power received will be
	(1) -112.8 dBm (2) -78.4 dBm
	(3) -52.8 dBm (4) -36.8 dBm
7.	 The phase velocity of electromagnetic waves in a hollow metal waveguide is (1) Equal to group velocity (2) Greater than velocity of light in free space (3) Lesser than velocity of light in free space (4) Equal to velocity of light in free space
8.	A lossless $\lambda/2$ line having characteristic impedance = 70.7 Ω is terminated with 100 Ω . The input impedance of this line is
	(1) 50Ω (2) 70.7Ω (3) 100Ω (4) 200Ω
CONTRACTOR STOCKED	The electric field component of a plane wave travelling in a lossless dielectric nedium is given by
E	$C(z, t) = 2\cos(10^8 t - \frac{z}{\sqrt{2}})$ V/m. The wavelength (in m) for the wave is
1 (1	.) 8.89 (2) 7.28 (3) 4.87 (4) 6.23
Station Maximum	-EE-2019 (Electronics & Communication Engg.) Code-B



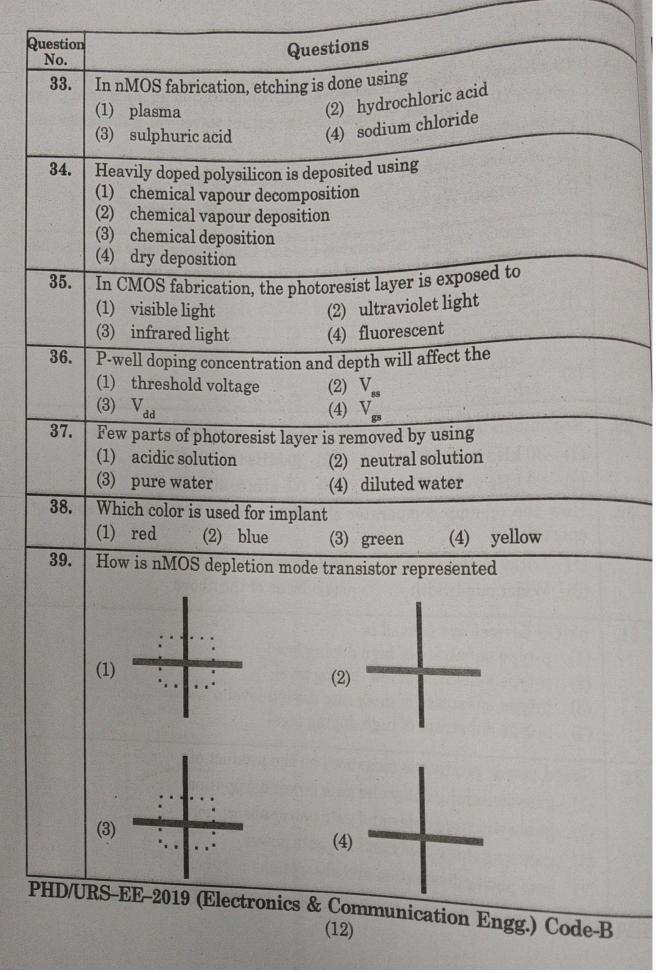
Code-B

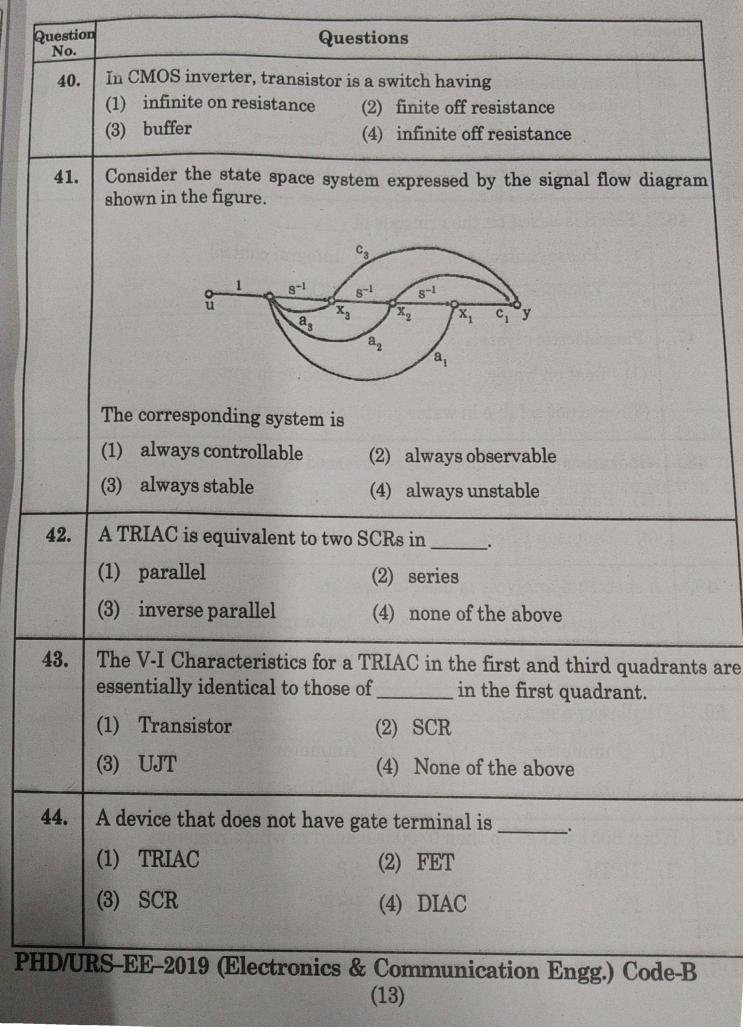



Question Questions No. A 4-bit shift register circuit configured for right-shift operation, $D \rightarrow A$, 14. $A \rightarrow B$, $B \rightarrow C$, $C \rightarrow D$ is shown below. If the present state of the shift register is ABCD = 1101, the number of clock cycles required to reach the state ABCD = 1111 is _ B C D D_{in} (2)11 10 (1)(4) 8 12 (3)Which one of the following gives the simplified sum of products expression 15. for the Boolean function $F=m_0 + m_1 + m_2 + m_3 + m_5$ where 'm' are minterms corresponding to the inputs A, B and C with A as the MSB and C as the LSB (1) $\overline{A}B + \overline{A}\overline{B}\overline{C} + A\overline{B}C$ (2) $\overline{A}\overline{C} + \overline{A}B + A\overline{B}C$ (3) $\overline{A}\overline{C} + A\overline{B} + A\overline{B}C$ $\overline{A}BC + \overline{A}\overline{C} + \overline{A}\overline{B}C$ (4) PHD/URS-EE-2019 (Electro


Scanned by CamScanner

Code-E



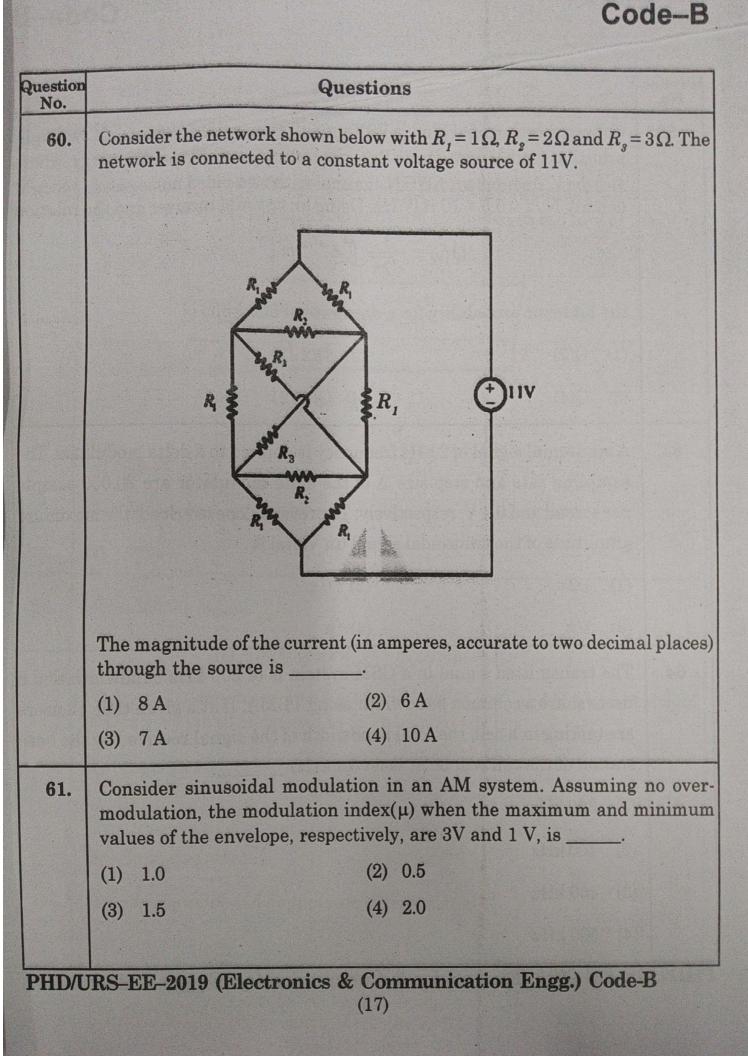


Scanned by CamScanner

Code_8

Scanned by CamScanner

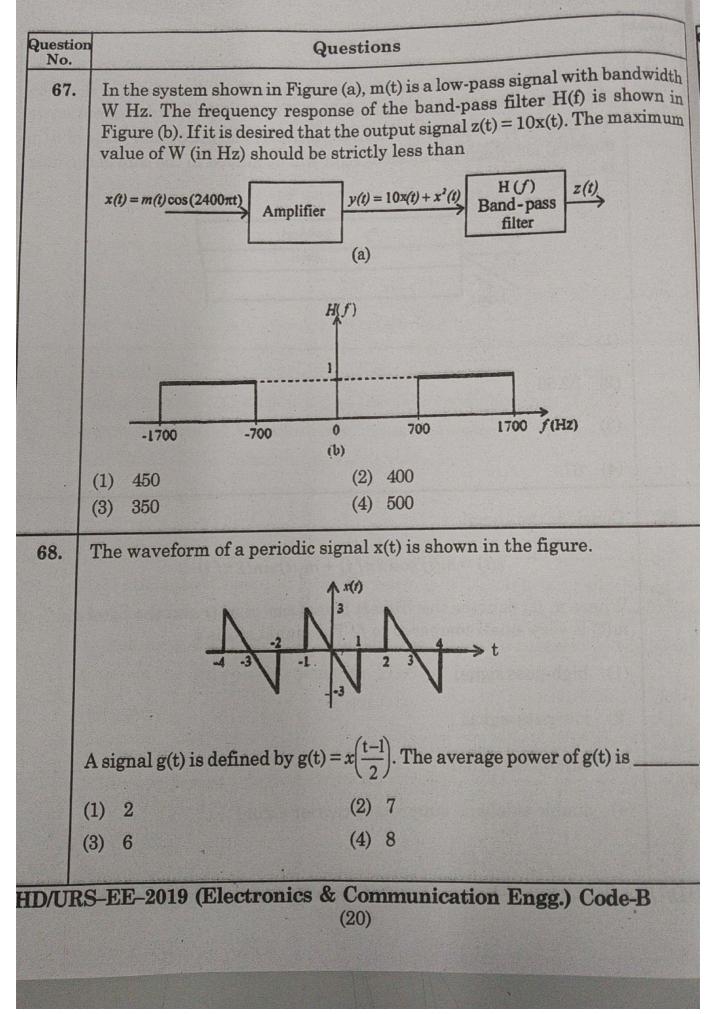
3


	iestic No.	Questions		
	45.	In an unregulated power supply, if input ac voltage increases, the output voltage		
		(1) Increases (2) Decreases		
		(3) Unchanged (4) Becomes zero		
4	16.	SMPS is based on the principle of (1) Phase control (2) Integral control (3) Chopper (4) MOSFET		
47		Piezoelectric crystals (1) float on water (2) dissolve in water (3) are not soluble in water (4) absorb water		
48.	(1)	Operation of a thermocouple is governed by 1) Peltier effect (2) Seebeck effect 2) Thomson Effect (4) All of the mentioned		
49.	A (1) (3)	spectrum analyser is used to measure frequency (2) loss angle of dielectric harmonics (4) insulating resistance		
50.	Osc	cilloscope is a		
	(1) (3)	Ohmmeter(2) AmmeterVoltmeter(4) Multimeter		
((3)	en 8051 wakes up then 0×00 is loaded to which register DPTR (2) SP PC (4) PSW		
HD/UR	S-E	E-2019 (Electronics & Communication Engg.) Code-B (14)		

and the second

No.	Que	stions			
52.	On power up, the 8051 uses which RAM locations for register R0-R7				
0	(1) 00-2F	(2) 00-7F			
	(3) 00-07	(4) 00-0F			
53.	In 8086 microprocessor during comparison operation, the result of comparing or subtraction is stored in				
	(1) memory	(2) registers			
and a start	(3) stack	(4) none of the above			
54.	Which segment of the 8080 instructions to be executed b	6 contains the actual assembly languag by the microprocessor			
•	(1) Data Segment	(2) Code Segment			
	(3) Stack Segment	(4) Extra Segment			
	respectively. The noisy obser	values -0.5 and 0.5 with probabilities $\frac{1}{4}$ and rvation of X is $Y = X + Z$, where Z has unifor interval (-1, 1). X and Z are independent or outputs ^ X as			
	respectively. The noisy observation probability density over the the MAP rule based detector $\hat{X} = \begin{cases} -0, \\ 0, \end{cases}$	rvation of X is $Y = X + Z$, where Z has unifor a interval (-1, 1). X and Z are independent r outputs ^ X as 5, $Y < \alpha$.5, $Y \ge \alpha$			
	respectively. The noisy observation probability density over the the MAP rule based detector $\hat{X} = \begin{cases} -0, \\ 0, \\ 0 \end{cases}$ then the value of α (accurate)	rvation of X is $Y = X + Z$, where Z has unifor a interval (-1, 1). X and Z are independent or outputs ^ X as 5, $Y < \alpha$.5, $Y \ge \alpha$ ate to two decimal places) is			
	respectively. The noisy observation probability density over the the MAP rule based detector $\hat{X} = \begin{cases} -0, \\ 0, \\ 0, \\ 1 \end{cases}$ then the value of α (accurate) (1) 0.5	rvation of X is $Y = X + Z$, where Z has unifor a interval (-1, 1). X and Z are independent r outputs ^ X as 5, $Y < \alpha$.5, $Y \ge \alpha$ ate to two decimal places) is (2) 0.25			
	respectively. The noisy observation probability density over the the MAP rule based detector $\hat{X} = \begin{cases} -0, \\ 0, \\ 0, \\ 1 \end{cases}$ then the value of α (accurate) (1) 0.5 (3) 0.4	rvation of X is $Y = X + Z$, where Z has unifor interval (-1, 1). X and Z are independent r outputs ^ X as 5, $Y < \alpha$.5, $Y \ge \alpha$ ate to two decimal places) is (2) 0.25 (4) 0.7			
56.	respectively. The noisy observation probability density over the the MAP rule based detector $\hat{X} = \begin{cases} -0, \\ 0, \\ 0, \\ 1 \end{cases}$ then the value of α (accurate) (1) 0.5 (3) 0.4	rvation of X is $Y = X + Z$, where Z has unifor a interval (-1, 1). X and Z are independent r outputs ^ X as 5, $Y < \alpha$.5, $Y \ge \alpha$ ate to two decimal places) is (2) 0.25			
56.	respectively. The noisy observation probability density over the the MAP rule based detector $\hat{X} = \begin{cases} -0, \\ 0, \\ 0, \\ 0 \end{cases}$ then the value of α (accurated in the the value of α (accurated in the	rvation of X is $Y = X + Z$, where Z has unifor interval (-1, 1). X and Z are independent r outputs ^ X as 5, $Y < \alpha$.5, $Y \ge \alpha$ ate to two decimal places) is (2) 0.25 (4) 0.7 o avalanche breakdown in reverse biased			
56.	respectively. The noisy observation probability density over the the MAP rule based detector $\hat{X} = \begin{cases} -0, \\ 0, \\ 0, \\ 0, \\ 0, \\ 0, \\ 0, \\ 0, $	rvation of X is $Y = X + Z$, where Z has unifor interval (-1, 1). X and Z are independent r outputs ^ X as 5, $Y < \alpha$.5, $Y \ge \alpha$ ate to two decimal places) is (2) 0.25 (4) 0.7 o avalanche breakdown in reverse biased			
56.	respectively. The noisy observes probability density over the the MAP rule based detector $\hat{X} = \begin{cases} -0, \\ 0, \\ 0, \\ 1 \end{cases}$ then the value of α (accurated in the the value of α (accurated in the	rvation of X is $Y = X + Z$, where Z has unifor interval (-1, 1). X and Z are independent r outputs ^ X as 5, $Y < \alpha$.5, $Y \ge \alpha$ ate to two decimal places) is (2) 0.25 (4) 0.7 o avalanche breakdown in reverse biased			
	respectively. The noisy observation probability density over the the MAP rule based detector $\hat{X} = \begin{cases} -0, \\ 0, \end{cases}$ then the value of α (accurate (1) 0.5 (3) 0.4 The phenomenon leading to is known as (1) Auger recombination (2) Mode hopping (3) Impact ionization (4) Extract ionization	rvation of X is $Y = X + Z$, where Z has unifor interval (-1, 1). X and Z are independent r outputs ^ X as 5, $Y < \alpha$.5, $Y \ge \alpha$ ate to two decimal places) is (2) 0.25 (4) 0.7 o avalanche breakdown in reverse biased			

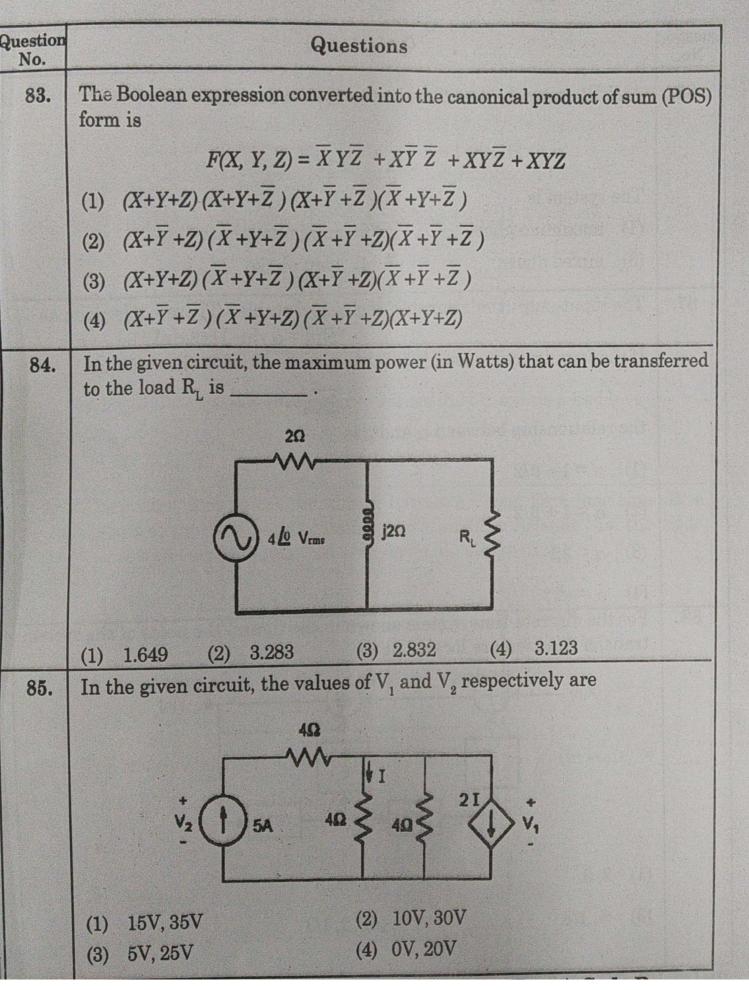
Q

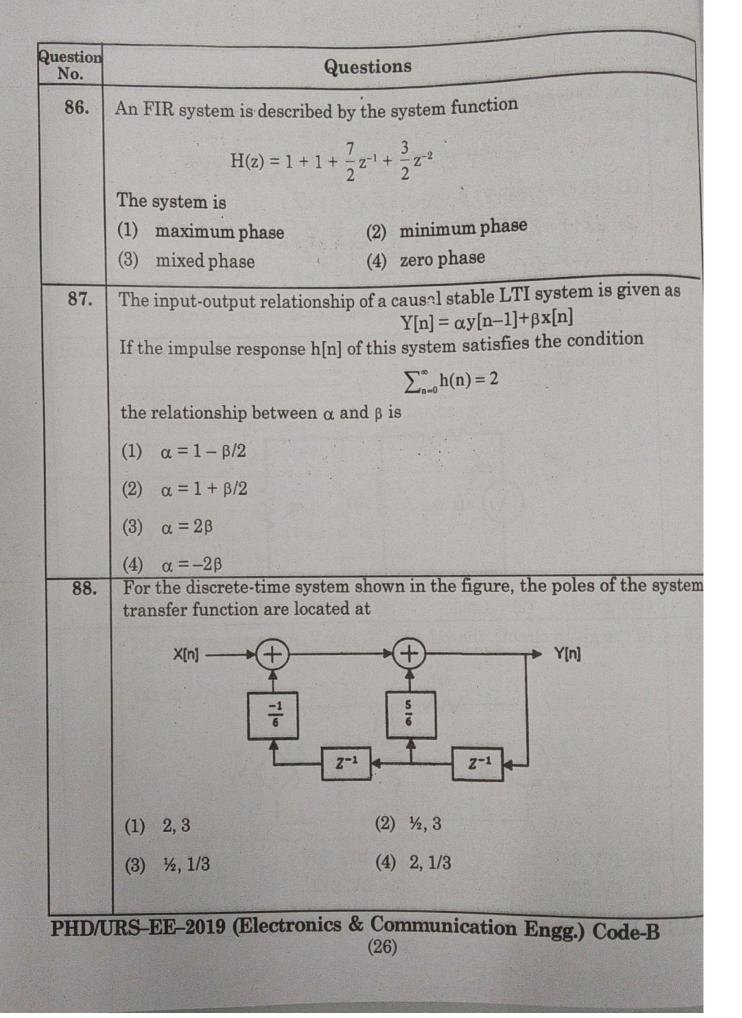

Question No.	Questions				
57.	Why VHF, UHF and microwave signals used in satellite communication				
	(1) More bandwidth				
	(2) More spectrum space				
	(3) Are not diffracted by ionosphere				
	(4) Economically viable				
58.	The free space model of propagation refers to				
	1. Unobstructed line of sight between transmitter and receiver.				
	2. Satellite communication systems and microwave line of sight radi links.				
	3. Propagation along the ground surface.				
	(1) 1 and 2 are correct				
	(2) 1 and 3 are correct				
	(3) 2 and 3 are correct				
	(4) All are correct				
59.	The material used to construct a variable reluctance stepper motor with salient poles is				
	(1) Paramagnetic				
	(2) Ferromagnetic				
	(3) Diamagnetic				
	(4) Non-magnetic				
	RS-EE-2019 (Electronics & Communication Engg.) Code-B				

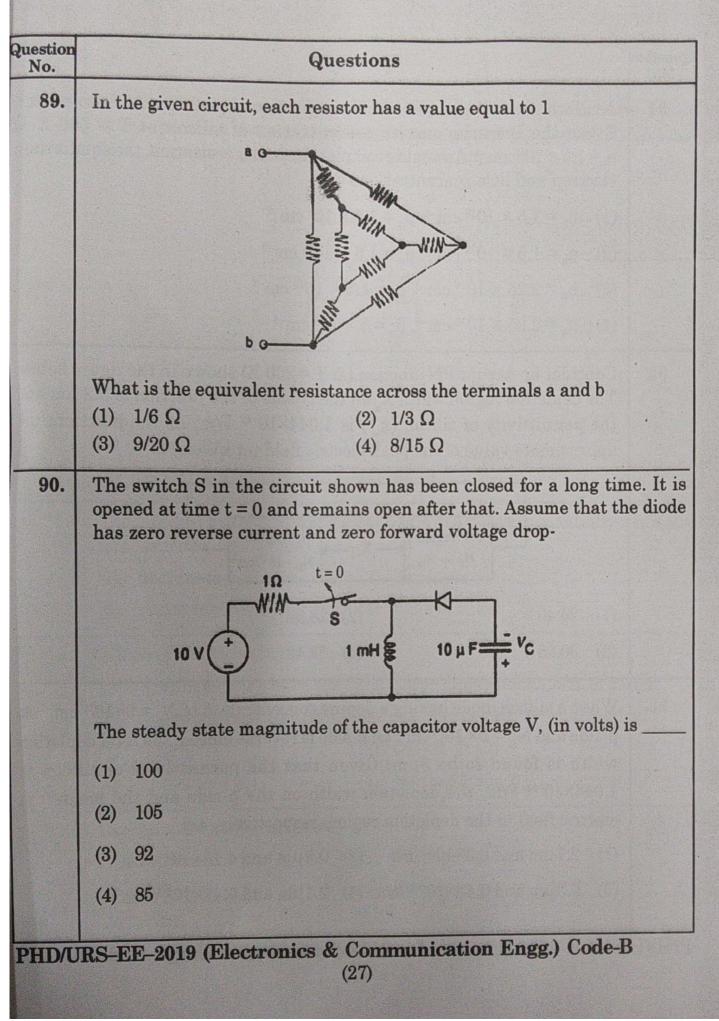
Scanned by CamScanner

Question No.		Questions		
62.	probable symbol wave	binary FSK modulation is used to transmit two equi- eforms $S_1(t) = \alpha \cos 2\pi f_1 t$ and $S_2(t) = \alpha \cos 2\pi f_2 t$, where AWGN channel with two-sided noise power spectral 0^{-12} W/Hz. Using an optimal receiver and the relation		
	and the second designed on the second s	$(v) = \frac{1}{\sqrt{2\pi}} \int_{v}^{db} e^{-v^{2}/2} du$		
	the bit error probabil	ity for a data rate of 500 kbps is		
	(1) Q(2)	(2) $Q(2\sqrt{2})$		
	(3) Q(4)	(4) $Q(4\sqrt{2})$		
63.	A sinusoidal signal of 2 kHz frequency is applied to a delta modulator. The sampling rate and step-size Δ of the delta modulator are 20,000 sample per second and 0.1 V, respectively. To prevent slope overload, the maximum amplitude of the sinusoidal signal (in Volts) is			
	 1/2π 	(2) $1/\pi$		
	(3) 2/π	(4) π		
64.	The transmitted sign users share a common are talking in a cell, t	(4) π nal in a GSM system is of 200 kHz bandwidth and 8 n bandwidth using TDMA. If at a given time 12 users he total bandwidth of the signal received by the base l be at least (in kHz)		
64.	The transmitted sign users share a common are talking in a cell, t	nal in a GSM system is of 200 kHz bandwidth and 8 n bandwidth using TDMA. If at a given time 12 users the total bandwidth of the signal received by the base		
64.	The transmitted sign users share a common are talking in a cell, t station of the cell will	nal in a GSM system is of 200 kHz bandwidth and 8 n bandwidth using TDMA. If at a given time 12 user the total bandwidth of the signal received by the base		
64.	The transmitted sign users share a common are talking in a cell, t station of the cell will (1) 300 kHz	nal in a GSM system is of 200 kHz bandwidth and 8 n bandwidth using TDMA. If at a given time 12 user the total bandwidth of the signal received by the base		

luestion No.	Questions
65.	Light from free space is incident at an angle 0°, to the normal of the face of a step-index large core optical fibre. The core and cladding refractive indices are $n_1 = 1.5$ and $n_2 = 1.4$, respectively. The maximum value of θ_i (in degrees) for which the incident light will be guided in the core of the fibre is
	Free n ₂ (cladding) θ_i Light
	(1) 35
	(2) 32.58
	(3) 34
	(4) 37
66.	Consider the signal
	$s(t) = m(t)\cos(2\pi f_c t) + m_1(t)\sin(2\pi f_c t)$
	Where $m_1(t)$ denotes the Hilbert transform of $m(t)$ and the bandwidth of $m(t)$ is very small compared to f_c . The signal $s(t)$ is a
	(1) high-pass signal
	(2) low-pass signal
	(3) band-pass signal
	(4) double sideband suppressed carrier signal
PHD/UI	RS-EE-2019 (Electronics & Communication Engg.) Code-B


Code-B


Question No.	Questions				
69.	In a proportional temperature controller, if the quantity under the heater increases the offset will				
	(1) increases				
	(2) decreases				
	(3) remains unaffected				
	(4) increases first and then decreases after a threshold				
70.	If a Nyquist plot of $G(j\omega)$ $H(j\omega)$ point for a closed loop system passes through (-2, j0) point in GH plane, what would be the value of gain margin of system in dB				
· · · · · · · · ·	(1) 0dB (2) 2.0201 dBs				
	(3) 4.021 dB (4) 6.0205 dB				
	gain A = 10 ⁵ , and an open-loop cut-off f_c frequency. The voltage gain of the				
	gain A = 10 ⁵ , and an open-loop cut-off f_c frequency. The voltage gain of the amplifier at 15kHz, in V/V is $R_2 = 79k\Omega$				
· · · · · · · · · · · · · · · · · · ·	gain A = 10 ⁵ , and an open-loop cut-off f_c frequency. The voltage gain of the amplifier at 15kHz, in V/V is R ₂ = 79k\Omega				
· · · · ·	$R_2 = 79k\Omega$ $R_1 = 1k\Omega$				
	gain A = 10 ⁵ , and an open-loop cut-off f_c frequency. The voltage gain of the amplifier at 15kHz, in V/V is $R_2 = 79k\Omega$ $R_1 = 1k\Omega$				
	gain A = 10 ⁵ , and an open-loop cut-off f_c frequency. The voltage gain of the amplifier at 15kHz, in V/V is $R_2 = 79k\Omega$ $R_1 = 1k\Omega$				
	gain A = 10 ⁵ , and an open-loop cut-off f_c frequency. The voltage gain of the amplifier at 15kHz, in V/V is $R_2 = 79k\Omega$ $R_1 = 1k\Omega$				
	gain A = 10 ⁵ , and an open-loop cut-off f_c frequency. The voltage gain of the amplifier at 15kHz, in V/V is $R_2 = 79k\Omega$ $R_1 = 1k\Omega$				


Question No.					
78.	An amplifier operating from +3V provide a 2.2V peak sine wave across 100 ohm load when provided with a 0.2V peak sine wave as an input from which 1.0 mA current is drawn. The average current in each supply is measured to be 20mA. What is the amplifier efficiency(1)25.2%(2)30.2%(3)20.2%(4)35.2%				
79.	 Which of the following is not true (1) both transformer and amplifier can provide voltage gain. (2) both transformer and amplifier can provide current gain. (3) both transformer and amplifier can provide power gain. (4) None of the above 				
80.	 FSK reception uses (1) Correlation receiver and PLL (2) PLL only (3) Correlation receiver only (4) None of the above 				
81.	Norton's theorem states that a complex network connected to a load ca be replaced with an equivalent impedance (1) in series with a current source (2) in parallel with a voltage source (3) in series with a voltage source (4) in parallel with a current source				
82.	In the figure shown below, the ideal switch has been open for a long time If it is closed at t = 0, then the magnitude of the current (in mA) through the 4k Ω resistor at t = 0+ is $ \underbrace{5k\Omega \qquad 4k\Omega}_{i} \qquad ik\Omega \qquad ik\Omega \qquad ik\Omega \qquad ik\Omega \qquad ik\Omega \qquad imH \qquad if i = 0 \qquad if i = 0 \qquad imH \qquad if i = 0 \qquad if i = 0 \qquad imH \qquad if i = 0 \qquad if i = 0 \qquad imH \qquad if i = 0 \qquad if i = 0$				
and the second se					

E-aboD.

Code-B

Question No.	QUESTIC			
91.	A silicon bar is doped with donor impurities $N_p = 2.25 \times 10^{15} \text{ atoms/cm}^3$ Given the intrinsic carrier concentration of silicon at T = 300 K is $n_i = 1.5 \times 10^{10} \text{ cm}^{-3}$. Assuming complete impurity ionization, the equilibrium electron and hole concentrations are			
	(1) $n_0 = 1.5 \times 10^{16} \text{ cm}^{-3}, p_0 = 1.5 \times 10^5 \text{ cm}^{-3}$			
	(2) $n_0 = 1.5 \times 10^{10} \text{ cm}^{-3}, p_0 = 1.5 \times 10^{15} \text{ cm}^{-3}$			
	(3) $n_0 = 2.25 \times 10^{15} \text{ cm}^{-3}, p_0 = 1.5 \times 10^{10} \text{ cm}^{-3}$			
	(4) $n_0 = 2.25 \times 10^{15} \text{ cm}^{-3}, p_0 = 1 \times 10^5 \text{ cm}^{-3}$			
92.	Consider an abrupt PN junction (at T = 300 K) shown in the figure be The depletion region width X_n on the N-side of the junction is 0.2 µm the permittivity of silicon (ε_{si}) is 1.044×10 ⁻¹² F/m. At the junction, approximate value of the peak electric field (in kV/cm) is			
	$P^{*} - region$ $N_{A} >> N_{D}$ $N_{D} - 10^{16}/cm^{3}$			
	(1) 25.40 (2) 28.32			
	(3) 30.66 (4) 32.42			
93.	When a silicon diode having a doping concentration of $N_A = 9 \times 10^{16} \text{ cm}^{-3} \text{ on}$ p-side and $N_D = 1 \times 10^{16} \text{ cm}^{-3}$ on n-side is reverse biased, the total depletion width is found to be $3 \mu \text{m}$. Given that the permittivity of silicon is 1.044×10^{-12} F/m, the depletion width on the p-side and the maximum electric field in the depletion region, respectively, are			
	(1) $2.7 \mu m \text{ and } 2.3 \times 10^5 \text{ V/cm}$ (2) $0.3 \mu m \text{ and } 4.15 \times 10^5 \text{ V/cm}$			
	(3) $0.3 \mu\text{m}$ and $0.42 \times 10^5 \text{V/cm}$ (4) $2.1 \mu\text{m}$ and $0.42 \times 10^5 \text{V/cm}$			
DUD	RS-EE-2019 (Electronics & Communication Engg.) Code-B			

Question No.	Questions				
94.	For the circuit shown below, $I_1 = 80$ mA and $I_2 = 4$ mA. Transistors T_1 and T_2 are identical. Assume that the thermal voltage V_T is 26 mV at 27°C. At 50°C, the value of the voltage $V_{12} = V_1 - V_2$ (in mV) is				
			Ţ	and the A mainstran process or part	
Charles -	(1)	87.14	(2)	83.15	
	(3)	84.12	(4)	81.13	
and the second second second		e internal quantum eff operature	iciency of	LEDs decrease exponentially when the	
	(1)	decreases	(2)	increases	
	(3)	remains constant	(4)	none of these	
96.	Wh	ich of the following is/	are true		
((i) Graphene is an extremely thin three dimensional form of carbon.				
((ii)	In aqueous solution,	graphene	can bind negatively charged ion.	
	(1)	Only 1	(2)	Only 2	
(Both 1 and 2	(4)	Neither 1 nor 2	
	(3)	2000 2	and the second second second	and the second	
(bon nano tubes can sto	re		
97. (ore (2)	Carbondioxide	

Question No.	n Questions			
98.	 Questione Questione What does the 'Chirality'(n, m) denote for carbon nanotubes (1) the chirality is single walled or multi-walled. (2) the CNT is insulating or metallic. (3) A direction that the graphene sheet is rolled up to form a tube. (4) A direction that the CNT extends along Graphene epitaxial growth by thermal annealing of SiC is completed by Graphene sublimation during annealing, while carbon atoms remained 			
99.	 Graphene epitaxial growth by thermal annealing of SIO is every formation of Silicon sublimation during annealing, while carbon atoms remain the surface. (2) Segregation to condense a carbon layer on top of surface. (3) An oxidation process to remove silicon atoms. (4) A reduction process to rearrange carbon atoms on the surface. (5) Which one of the following is most famously known as solar grade silicon atoms. (2) Crushed Silicon 			
	Which one of the following is most famour?(1) Crystalline Silicon(2) Crushed Silicon(3) Powdered Silicon(4) Silicon			

(DO NOT OPEN THIS QUESTION BOOKLET BEFORE TIME OR UNTIL YOU ARE ASKED TO DO SO)

(MPH/PHD/URS-EE-2019)

Code	\cap
Jue	

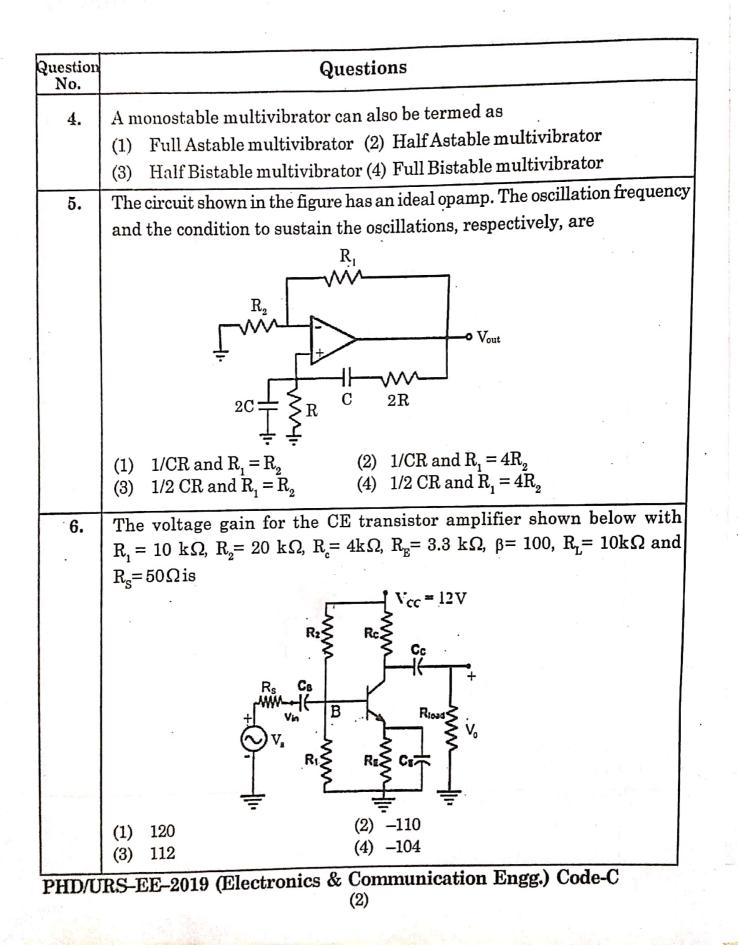
Electronics &	
Communication	Engg.

Sr. No. <u>1001</u>9

SET-"X"

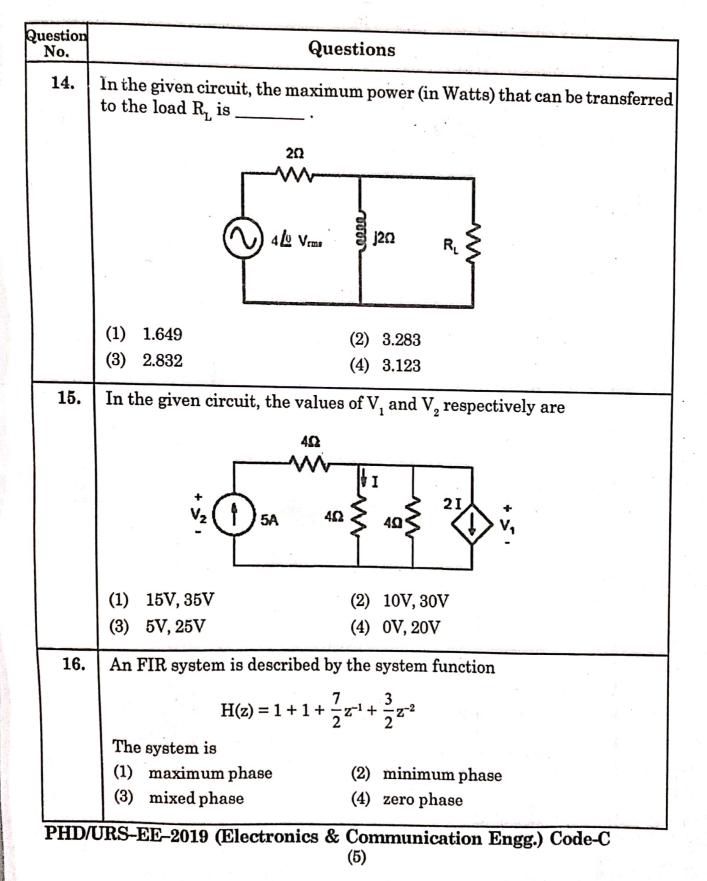
Time: 1¼ Hours	Total Quest	ions : 100	Max. Marks : 100
Roll No	(in figure)		(in words)
Name :			•
Mother's Name :		Date of Examinat	ion :

(Signature of the candidate)

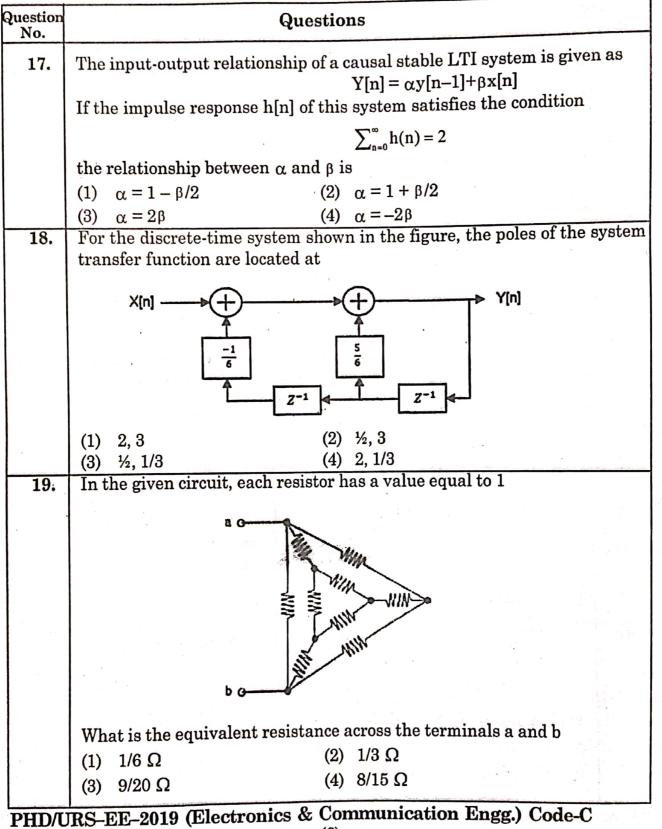

(Signature of the Invigilator)

CANDIDATES MUST READ THE FOLLOWING INFORMATION/ INSTRUCTIONS BEFORE STARTING THE QUESTION PAPER.

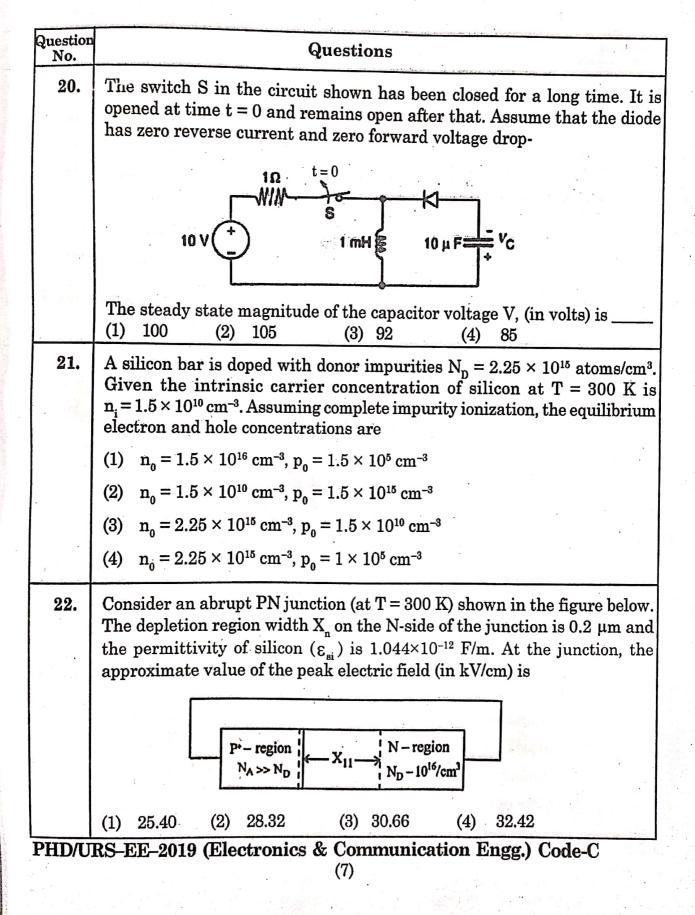
- 1. All questions are compulsory.
- 2. The candidates must return the Question book-let as well as OMR answer-sheet to the Invigilator concerned before leaving the Examination Hall, failing which a case of use of unfair-means / misbehaviour will be registered against him / her, in addition to lodging of an FIR with the police. Further the answer-sheet of such a candidate will not be evaluated.
- 3. Keeping in view the transparency of the examination system, carbonless OMR Sheet is provided to the candidate so that a copy of OMR Sheet may be kept by the candidate.
- 4. Question Booklet along with answer key of all the A,B,C and D code will be got uploaded on the university website after the conduct of Entrance Examination. In case there is any discrepancy in the Question Booklet/Answer Key, the same may be brought to the notice of the Controller of Examination in writing/through E. Mail within 24 hours of uploading the same on the University Website. Thereafter, no complaint in any case, will be considered.
- 5. The candidate MUST NOT do any rough work or writing in the OMR Answer-Sheet. Rough work, if any, may be done in the question book-let itself. Answers **MUST NOT** be ticked in the Question book-let.
- 6. There will be no negative marking. Each correct answer will be awarded one full mark. Cutting, erasing, overwriting and more than one answer in OMR Answer-Sheet will be treated as incorrect answer.
- 7. Use only Black or Blue <u>BALL POINT PEN</u> of good quality in the OMR Answer-Sheet.
- 8. BEFORE ANSWERING THE QUESTIONS, THE CANDIDATES SHOULD ENSURE THAT THEY HAVE BEEN SUPPLIED CORRECT AND COMPLETE BOOK-LET. COMPLAINTS, IF ANY, REGARDING MISPRINTING ETC. WILL NOT BE ENTERTAINED 30 MINUTES AFTER STARTING OF THE EXAMINATION.


1.	The amplifier circuit shown in the figure is implemented using a compensated operational amplifier (op-amp), and has an open-loop voltage gain $A = 10^5$, and an open-loop cut-off f_c frequency. The voltage gain of the amplifier at 15kHz, in V/V is	
	$R_{2} = 79 k\Omega$ $R_{1} = 1 k\Omega$ V_{0}	
	(1) 44.3 (2) 45.2 (3) 54.6 (4) 34.7	
2.	For the op-amp based circuit as shown below by assume the op-amp to be ideal the voltage (in volts, correct to one decimal place) at node A, connected to the negative input of the op-amp as indicated in the figure is	
	$\frac{1 k\Omega}{4} + 15 V$	
	1V + $-15V$	
	(1) 1.4 V (2) 2.0 V (3) 0.5 V (4) 0.9 V	
3.	Bistable circuit is also known as	
	(1) Latch(2) Gate(3) Flip-Flop(4) Bidirectional Circuit	

2-90-0


uestion No.	Questions	
7.	A 4:1 multiplexer is to be used for generating the output carry of a ful adder. A and B are the bits to be added while C_{in} is the input carry and C_{out} is the output carry. A and B are to be used as the select bits with A being the more significant select bit.	
	I_{0}	
	A B Which one of the following statements correctly describes the choice of signals to be connected to the inputs I_0 , I_1 , I_2 and I_3 so that the output is C_{out} (1) $I_0 = 0$, $I_1 = C_{in}$, $I_2 = C_{in}$ and $I_3 = 1$ (2) $I_0 = 1$, $I_1 = C_{in}$, $I_2 = C_{in}$ and $I_3 = 1$ (3) $I_0 = 0$, $I_1 = 0$, $I_2 = 1$ and $I_3 = C_{in}$ (4) $I_0 = 0$, $I_1 = C_{in}$, $I_2 = 1$ and $I_3 = C_{in}$	
8.	An amplifier operating from +3V provide a 2.2V peak sine wave across a 100 ohm load when provided with a 0.2V peak sine wave as an input from which 1.0 mA current is drawn. The average current in each supply is measured to be 20mA. What is the amplifier efficiency	
n daar e	(1) 25.2% (2) 30.2% (3) 20.2% (4) 35.2%	
9.	 Which of the following is not true (1) both transformer and amplifier can provide voltage gain. (2) both transformer and amplifier can provide current gain. (3) both transformer and amplifier can provide power gain. (4) None of the above 	
10.	FSK reception uses(1) Correlation receiver and PLL (2) PLL only(3) Correlation receiver only(4) None of the above	

Question No.	Questions
11.	Norton's theorem states that a complex network connected to a load car be replaced with an equivalent impedance
in the	(1) in series with a current source
	(2) in parallel with a voltage source
	(3) in series with a voltage source
	(4) in parallel with a current source
12.	In the figure shown below, the ideal switch has been open for a long time. If it is closed at $t = 0$, then the magnitude of the current (in mA) throug the $4k\Omega$ resistor at $t = 0+$ is
	$\frac{5k\Omega}{i}$ $\frac{4k\Omega}{i}$ $\frac{1k\Omega}{i}$
	$10V^{+}$ $\pm 10\mu F$ $t=0$ hmH
and the second	(1) 1 Amp
14 1.1 1 1 1 2	(2) 1.2 Amp
18.0	(3) 1.5 Amp
	(4) 2 Amp
13.	The Boolean expression converted into the canonical product of sum (POS form is
ی کی اور	$F(X, Y, Z) = \overline{X} Y \overline{Z} + X \overline{Y} \overline{Z} + X Y \overline{Z} + X Y Z$
	(1) $(X+Y+Z)(X+Y+\overline{Z})(X+\overline{Y}+\overline{Z})(\overline{X}+Y+\overline{Z})$
1 a 2	(2) $(X+\overline{Y}+Z)(\overline{X}+Y+\overline{Z})(\overline{X}+\overline{Y}+Z)(\overline{X}+\overline{Y}+\overline{Z})$
	(3) $(X+Y+Z)(\overline{X}+Y+\overline{Z})(X+\overline{Y}+Z)(\overline{X}+\overline{Y}+\overline{Z})$
	(4) $(X+\overline{Y}+\overline{Z})(\overline{X}+Y+Z)(\overline{X}+\overline{Y}+Z)(X+Y+Z)$
PHD/UI	RS-EE-2019 (Electronics & Communication Engg.) Code-C (4)



(marth a

Code-C

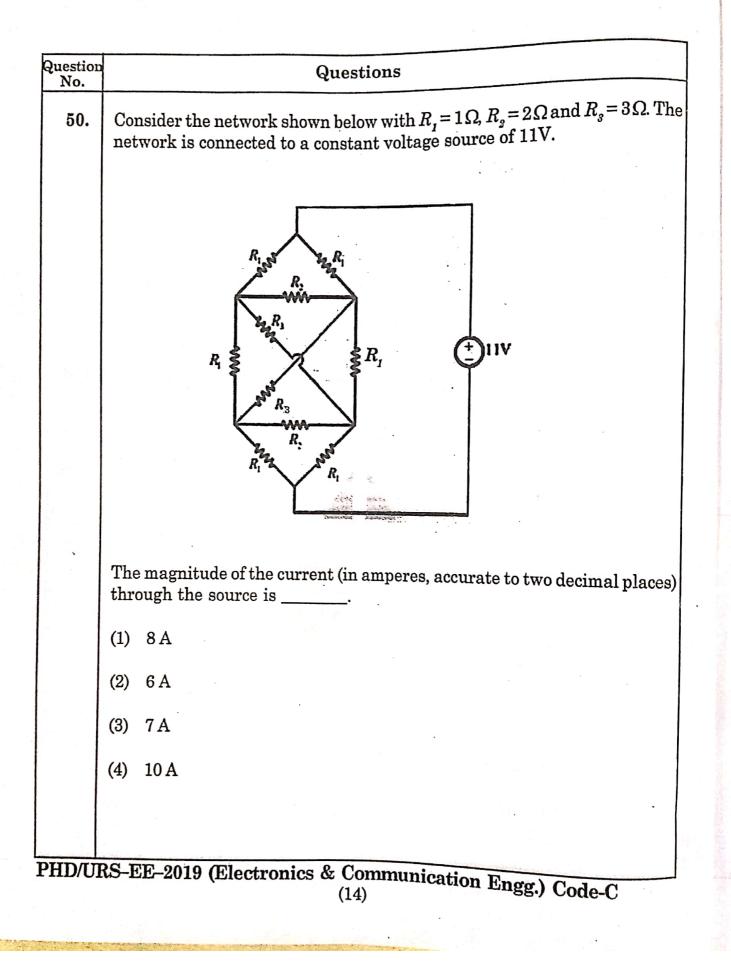
(6)

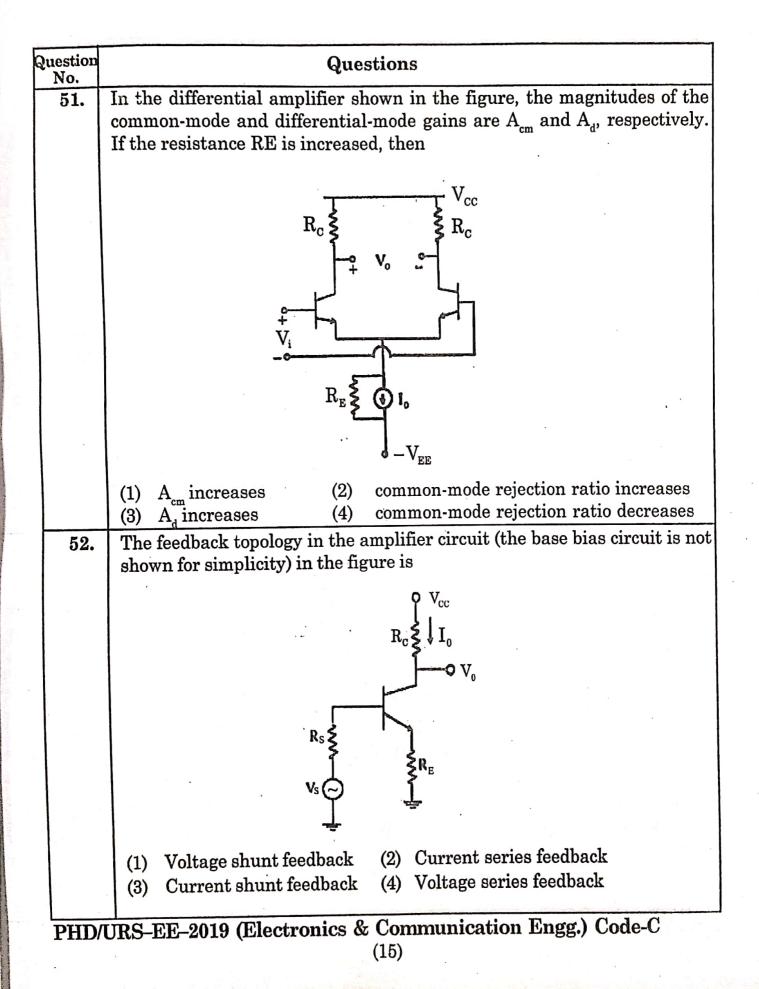
uestion No.	Questions
23.	When a silicon diode having a doping concentration of $N_A = 9 \times 10^{16}$ cm ⁻³ or p-side and $N_D = 1 \times 10^{16}$ cm ⁻³ on n-side is reverse biased, the total depletion width is found to be 3µm. Given that the permittivity of silicon is 1.044×10^{-12} F/m, the depletion width on the p-side and the maximum electric field in the depletion region, respectively, are
	 (1) 2.7 μm and 2.3×10⁵ V/cm (2) 0.3 μm and 4.15×10⁵ V/cm (3) 0.3 μm and 0.42×10⁵ V/cm (4) 2.1 μm and 0.42×10⁵ V/cm
24.	For the circuit shown below, $I_1 = 80 \text{ mA}$ and $I_2 = 4\text{mA}$. Transistors T_1 and T_1 are identical. Assume that the thermal voltage V_T is 26 mV at 27°C. At 50°C, the value of the voltage $V_{12} = V_1 - V_2$ (in mV) is
	(1) 87.14 (2) 83.15 (3) 84.12 (4) 81.13
25.	 The internal quantum efficiency of LEDs decrease exponentially when the temperature (1) decreases (2) increases (3) remains constant (4) none of these

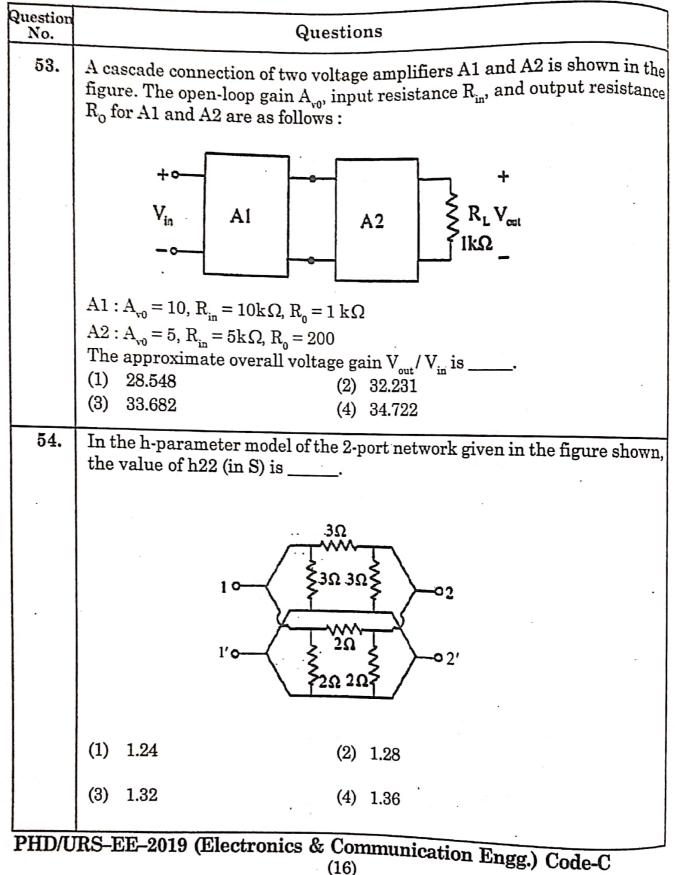
(8)

Question No.	Questions		
26.	Which of the following is/are true		
×	(i) Graphene is an extremely thin three dimensional form of carbon.		
	(ii) In aqueous solution, graphene can bind negatively charged ion.		
-	(1) Only 1 (2) Only 2		
	(3) Both 1 and 2 (4) Neither 1 nor 2		
27.	Carbon nano tubes can store		
	(1) Nitrogen (2) Carbondioxide		
ж.	(3) Hydrogen (4) Peroxides		
28.	What does the 'Chirality'(n, m) denote for carbon nanotubes		
	1) the chirality is single walled or multi-walled.		
	(2) the CNT is insulating or metallic.		
	(3) A direction that the graphene sheet is rolled up to form a tube.		
	(4) A direction that the CNT extends along		
29.	aphene epitaxial growth by thermal annealing of SiC is completed by		
The state	(1) Silicon sublimation during annealing, while carbon atoms remain or the surface.		
	(2) Segregation to condense a carbon layer on top of surface.		
	(3) An oxidation process to remove silicon atoms.		
	(4) A reduction process to rearrange carbon atoms on the surface.		
30.	Which one of the following is most famously known as solar grade silicon		
	(1) Crystalline Silicon		
	(2) Crushed Silicon		
	(3) Powdered Silicon		
	(4) Silicon		
PHD/U	RS-EE-2019 (Electronics & Communication Engg.) Code-C (9)		

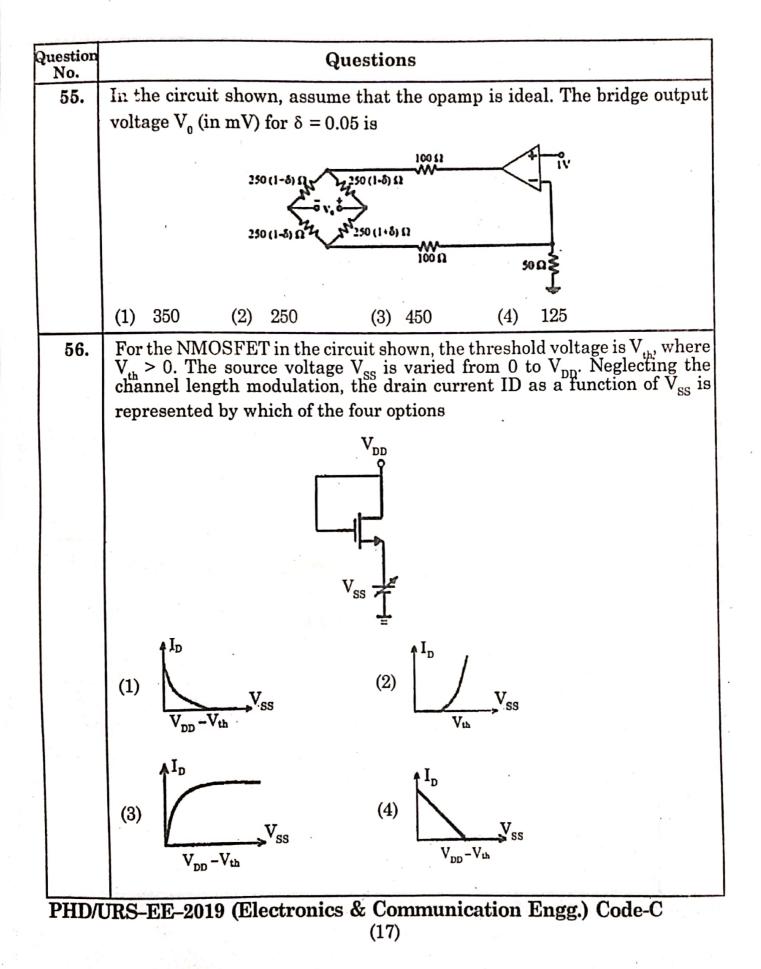
uestion No.	Questions	
31.	Consider the state space system expressed by the signal flow diag shown in the figure.	
	$u = \frac{1}{u} = \frac{s^{-1}}{x_3} + \frac{s^{-1}}{x_2} + \frac{s^{-1}}{x_1} + \frac{s^{-1}}{x_1} + \frac{s^{-1}}{x_2} + \frac{s^{-1}}{x_2} + \frac{s^{-1}}{x_2} + \frac{s^{-1}}{x_1} + \frac{s^{-1}}{x_2} + \frac{s^{-1}}{x_1} + \frac{s^{-1}}{x_2} + \frac{s^{-1}}{x_1} + \frac{s^{-1}}{x_2} + s^{-1$	
	a_3 a_2 x_1 c_1 y	
	a ₁	
	The corresponding system is	
	(1) always controllable (2) always observable	
	(3) always stable (4) always unstable	
32.		
02.	A TRIAC is equivalent to two SCRs in (1) parallel (2) series	
	(3) inverse parallel (4) none of the above	
33.	The V-I Characteristics for a TRIAC in the first and third quadrants are essentially identical to those of in the first quadrant.	
	(1) Transistor (2) SCR	
	(3) UJT (4) None of the above	
34.	A device that does not have gate terminal is	
	(1) TRIAC (2) FET	
	(3) SCR (4) DIAC	
35.	In an unregulated power supply, if input ac voltage increases, the output voltage	
	(1) Increases (2) Decreases	
	(3) Unchanged (4) Becomes zero	
HD/UR	S-EE-2019 (Electronics & Communication Engg.) Code-C	


Question No.	Questions	
36.	SMPS is based on the principle of	
	(1) Phase control (2) Integral control	
	(3) Chopper (4) MOSFET	
37.	Piezoelectric crystals	
	(1) float on water	
4	(2) dissolve in water	
	(3) are not soluble in water	
	(4) absorb water	
38.	Operation of a thermocouple is governed by	
	(1) Peltier effect (2) Seebeck effect	
	(3) Thomson Effect (4) All of the mentioned	
39.	A spectrum analyser is used to measure	
,	(1) frequency	
	(2) loss angle of dielectric	
	(3) harmonics	
• •	(4) insulating resistance	
40:	Oscilloscope is a	
	(1) Ohmmeter (2) Ammeter	
	(3) Voltmeter (4) Multimeter	
41.	When 8051 wakes up then 0×00 is loaded to which register	
÷.	(1) DPTR (2) SP	
	(3) PC (4) PSW	
PHD/	JRS-EE-2019 (Electronics & Communication Engg.) Code-C (11)	


Code-C


Question No.	Questions	
42.	On power up, the 8051 uses which RAM locations for register R0-R7	
	(1) $00-2F$ (2) $00-7F$	
	(3) 00-07 (4) 00-0F	
43.	In 8086 microprocessor during comparison operation, the result of comparing or subtraction is stored in	
	(1) memory (2) registers	
	(3) stack (4) none of the above	
44.	Which segment of the 8086 contains the actual assembly language instructions to be executed by the microprocessor	
	(1) Data Segment (2) Code Segment	
	(3) Stack Segment (4) Extra Segment	
45.	A random variable 'X' takes values -0.5 and 0.5 with probabilities '4 and '4, respectively. The noisy observation of X is $Y = X + Z$, where Z has uniform probability density over the interval (-1, 1). X and Z are independent. If the MAP rule based detector outputs ^ X as	
	$\hat{X} = \begin{cases} -0.5, & Y < \alpha \\ 0.5, & Y \ge \alpha \end{cases}$	
	then the value of α (accurate to two decimal places) is	
	(1) 0.5 (2) 0.25	
	(3) 0.4 (4) 0.7	
46.	The phenomenon leading to avalanche breakdown in reverse biased diodes is known as	
	(1) Auger recombination (2) Mode hopping	
	(3) Impact ionization (4) Extract ionization	
PHD/UI	RS-EE-2019 (Electronics & Communication Engg.) Code-C	

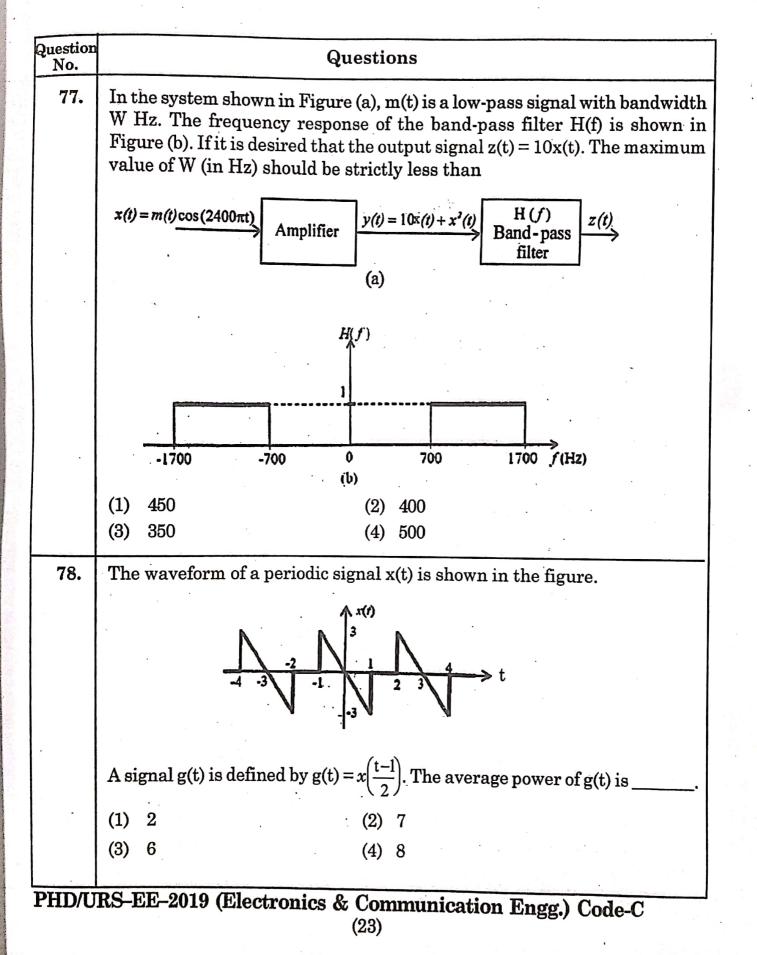
Question No.	Questions
47.	Why VHF, UHF and microwave signals used in satellite communication
	(1) More bandwidth
	(2) More spectrum space
	(3) Are not diffracted by ionosphere
	(4) Economically viable
48.	The free space model of propagation refers to
	1. Unobstructed line of sight between transmitter and receiver.
	2. Satellite communication systems and microwave line of sight radio links.
	3. Propagation along the ground surface.
	(1) 1 and 2 are correct
	(2) 1 and 3 are correct
	(3) 2 and 3 are correct
	(4) All are correct
49.	The material used to construct a variable reluctance stepper motor with salient poles is
,	(1) Paramagnetic
	(2) Ferromagnetic
	(3) Diamagnetic
	(4) Non-magnetic
- " "	


PHD/URS-EE-2019 (Electronics & Communication Engg.) Code-C (13)

(16)

Question No.	Questions			
57.	To a Schmitt trigger in a non-inverting configuration an input triangular wave of $1V_p$ is applied. What will be the output waveform, if the upper and lower threshold voltages are 0.25 V			
	(1) Square Waveform (2) Pulse Waveform			
	(3) Sawtooth Waveform (4) Triangular Waveform			
58.	If C_1 and C_2 are the capacitance used in Colpitts oscillator the effective capacitance in the equation of frequency calculation is equal to			
	(1) $\frac{\pi C_1 C_2}{C_1 + C_2}$ (2) $\frac{3C_1 C_2}{C_1 + C_2}$			
	(3) $\frac{C_1 C_2}{2\pi (C_1 + C_2)}$ (4) $\frac{C_1 C_2}{C_1 + C_2}$			
59.	Recommended frequency range of Hartley oscillator is			
	(1) 30 kHz to 30 MHz (2) 30 MHz to 300 MHz			
	(3) 20 kHz to 20 MHz (4) 0.5 kHz to 40 MHz			
60.	How the op-amp comparator should be chosen to get higher speed coperation			
	(1) Large Gain (2) High slew rate			
	(3) Wider bandwidth (4) None of the above			
61,	A rectangular waveguide of internal dimensions $a \times b(a > b)$, the cut-off frequency for the TE ₁₁ mode is the arithmetic mean of the cut-off			
	frequencies for TE_{10} mode and TE_{20} mode. If $a = \sqrt{5}$ cm the value of b(in cm) is			
	(1) 1 cm (2) 2 cm			
	(3) 4 cm (4) 8 cm			
المحقو				
HD/UI	RS-EE-2019 (Electronics & Communication Engg.) Code-C (18)			

Code-C


r a straight, infinitely long, current carrying conductor lying on s. Which one of the following plots (111 linear scale) qualitatively ts the dependence of H_{ϕ} oil r, where H_{ϕ} is the magnitude of the al component of magnetic field outside the conductor and r is the stance from the conductor (2) H_{ϕ} (2) H_{ϕ} (4) H_{ϕ} (4) H_{ϕ} (4) H_{ϕ} (5) r
al component of magnetic field outside the conductor and r is the stance from the conductor $(2) \qquad \qquad H_{\phi} \qquad \qquad$
al component of magnetic field outside the conductor and r is the stance from the conductor $(2) \qquad \qquad H_{\phi} \qquad \qquad$
stance from the conductor (2) H_{ϕ} r r H_{ϕ}
(2)
(2)
r r H _{\$\$}
r r H _{\$\$}
and the second sec
and the second sec
and the second sec
(4) r
r
r
is used in a travelling wave tube to
rease the speed of electron beam
crease the speed of electron beam
rease the speed of electromagnetic wave along the axis of the tube
crease the speed of electromagnetic wave along the axis of the tube
one of the following diodes provides high range of variable resistance
Junction Silicon Diode (2) Schottky Diode
ractor Diode (4) PIN Diode
one of the following diodes will be most suitable for making high transmitter
J Junction Diode (2) GUNN Diode

(19)

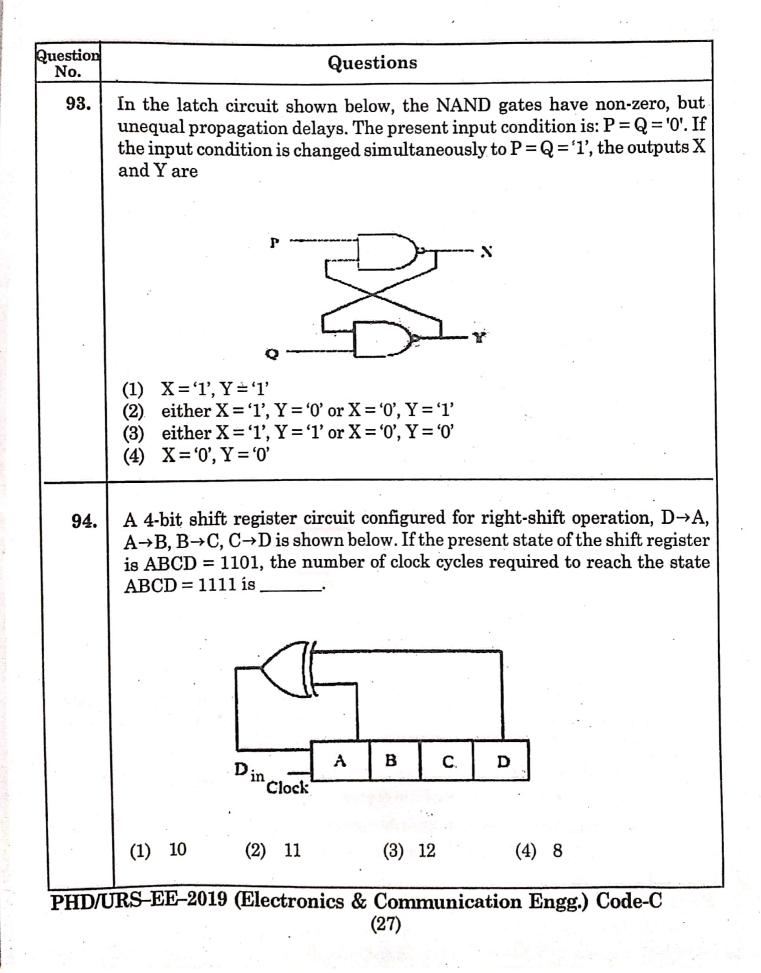
Question No.	Questions				
66.	Two identical transmitting and receiving antennas with gain of 15 dB 2.45 GHz are separated by a distance of 3 km. If the transmitted powe 20W, the power received will be				
	(1) $-112.8 \mathrm{dBm}$ (2) $-78.4 \mathrm{dBm}$				
	(3) $-52.8 \mathrm{dBm}$ (4) $-36.8 \mathrm{dBm}$				
67.	The phase velocity of electromagnetic waves in a hollow metal waveguide is				
	(1) Equal to group velocity				
	(2) Greater than velocity of light in free space				
•	(3) Lesser than velocity of light in free space				
	(4) Equal to velocity of light in free space				
68.	A lossless $\lambda/2$ line having characteristic impedance = 70.7 Ω is terminated with 100 Ω . The input impedance of this line is				
	(1) 50Ω (2) 70.7Ω				
	(3) 100Ω (4) 200Ω				
69.	The electric field component of a plane wave travelling in a lossless dielectric medium is given by				
	E(z, t) = 2 cos(10 ⁸ t $-\frac{z}{\sqrt{2}}$) V/m. The wavelength (in m) for the wave is				
	·				
	(1) 8.89 (2) 7.28 (4) 6.29				
	(3) 4.87 (4) 6.23				
	RS-EE-2019 (Electronics & Communication Engg.) Code-C				

Question No.	Questions
70.	Consider a uniform plane wave with amplitude (E_0) of 10 V/m and 1.1 GHz frequency travelling in air, and incident normally on a dielectric medium with complex relative permittivity (ϵ_r) and permeability (μ) as shown in the figure.
	Air $\eta = 120\pi \Omega$ $\eta = 120\pi \Omega$ $E_0 = 10 \text{ V/m}$ Freq = 1.1 GHz
	The magnitude of the transmitted electric field component (in V/m) afterit has travelled a distance of 10 cm inside the electric region is(1) 0.2(2) 0.3(3) 0.1(4) 0.4
71.	Consider sinusoidal modulation in an AM system. Assuming no over- modulation, the modulation index(μ) when the maximum and minimum values of the envelope, respectively, are 3V and 1 V, is (1) 1.0 (2) 0.5 (3) 1.5 (4) 2.0
72.	Coherent orthogonal binary FSK modulation is used to transmit two equi-probable symbol waveforms $S_1(t) = \alpha \cos 2\pi f_1 t$ and $S_2(t) = \alpha \cos 2\pi f_2 t$, where $\alpha = 4mV$. Assume an AWGN channel with two-sided noise power spectral density $N_0/2 = 0.5 \times 10^{-12}$ W/Hz. Using an optimal receiver and the relation
а ^н • и	$Q(v) = \frac{1}{\sqrt{2\pi}} \int^{tb} e^{-v^2/2} du$ the bit error probability for a data rate of 500 kbps is
	(1) Q(2) (2) Q($2\sqrt{2}$) (3) Q(4) (4) Q($4\sqrt{2}$)
PHD/UI	RS-EE-2019 (Electronics & Communication Engg.) Code-C (21)

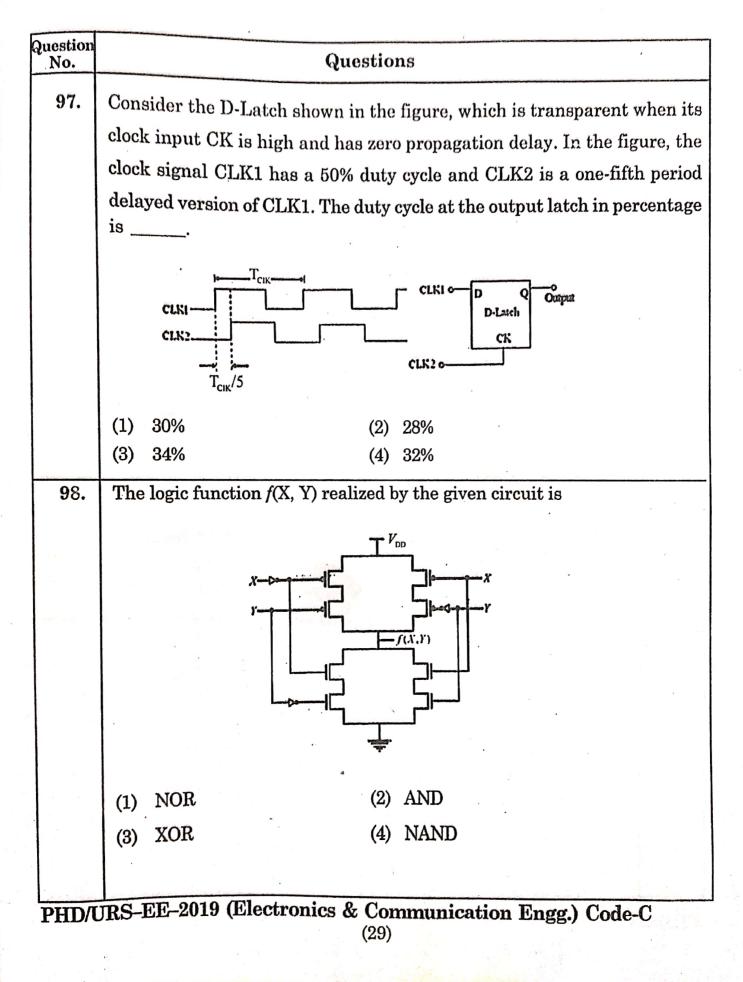
Question No.	Questions
73.	A sinusoidal signal of 2 kHz frequency is applied to a delta modulator. The sampling rate and step-size Δ of the delta modulator are 20,000 sample per second and 0.1 V, respectively. To prevent slope overload, the maximum amplitude of the sinusoidal signal (in Volts) is
	(1) $1/2\pi$ (2) $1/\pi$ (3) π
74.	(3) $2/\pi$ (4) π The transmitted signal in a GSM system is of 200 kHz bandwidth and 8users share a common bandwidth using TDMA. If at a given time 12 usersare talking in a cell, the total bandwidth of the signal received by the basestation of the cell will be at least (in kHz)(1) 300 kHz(2) 400 kHz(3) 450 kHz(4) 500 kHz
75.	Light from free space is incident at an angle 0°, to the normal of the facet of a step-index large core optical fibre. The core and cladding refractive indices are $n_1 = 1.5$ and $n_2 = 1.4$, respectively. The maximum value of θ_i (in degrees) for which the incident light will be guided in the core of the fibre is
	(1) 35 (3) 34 (2) 32.58 (4) 37
76.	Consider the signal $s(t) = m(t) \cos(2\pi f_c t) + m_1(t) \sin(2\pi f_c t)$ Where $m_1(t)$ denotes the Hilbert transform of m(t) and the bandwidth of m(t) is very small compared to f_c . The signal $s(t)$ is a (1) high-pass signal (2) low-pass signal (3) band-pass signal (4) double sideband suppressed carrier signal

Question No.	Questions				
79.	In a proportional temperature controller, if the quantity under the heater increases the offset will				
	(1) increases				
	(2) decreases				
	(3) remains unaffected				
	(4) increases first and then decreases after a threshold				
80.	If a Nyquist plot of $G(j\omega)$ $H(j\omega)$ point for a closed loop system passes through (-2, j0) point in GH plane, what would be the value of gain margin of system in dB				
	(1) $0dB$ (2) 2.0201 dBs				
	(3) $4.021 \mathrm{dB}$ (4) $6.0205 \mathrm{dB}$				
81.	nMOS devices are formed in				
	(1) p-type substrate of high doping level				
	(2) n-type substrate of low doping level				
	(3) p-type substrate of moderate doping level				
	(4) n-type substrate of high doping level				
82.	Speed power product is measured as the product of				
	(1) gate switching delay and gate power dissipation				
-	(2) gate switching delay and gate power absorption				
	(3) gate switching delay and net gate power				
	(4) gate power dissipation and absorption				
83.	In nMOS fabrication, etching is done using				
	(1) plasma				
	(2) hydrochloric acid				
	(3) sulphuric acid				
the state of the state	(4) sodium chloride				
PHD/UI	RS-EE-2019 (Electronics & Communication Engg.) Code-C				

uestion No.	Questions			
84.	Heavily doped polysilicon is deposited using			
	(1) chemical vapour decomposition			
	(2) chemical vapour deposition			
	(3) chemical deposition			
and the second	(4) dry deposition			
85.	In CMOS fabrication, the photoresist layer is exposed to			
	(1) visible light (2) ultraviolet light			
-	(3) infrared light (4) fluorescent			
86.	P-well doping concentration and depth will affect the			
	(1) threshold voltage (2) V_{ss}			
-	$(3) V_{dd} \qquad \qquad (4) V_{gs}$			
87.	Few parts of photoresist layer is removed by using			
	(1) acidic solution (2) neutral solution			
	(3) pure water (4) diluted water			
88.	. Which color is used for implant			
	(1) red (2) blue			
	(3) green (4) yellow			
89.	How is nMOS depletion mode transistor represented			
חדום	/URS-EE-2019 (Electronics & Communication Engg.) Code-C			
LUD	(25)			


.

Question No.	Questions			
90.	In CMOS inverter, transistor is a switch having			
	(1) infinite on resistance (2) finite off resistance			
	(3) buffer (4) infinite off resistance			
91.	In the circuit shown, choose the correct timing diagram of the output(from the given waveforms W1, W2, W3 and W4			
ş.				
	$X_{1} - D Q = C_{X_{1}} - D Q = C_{X_{1}} - C_{X_{2}} - C_{X_{1}} - C_{X_{2}} - C_{X_{2}$			
	(1) W1 (2) W2 (3) W3 (4) W4			
92.	All the logic gates shown in the figure have a propagation delay of 20 ns. Let $A = C = 0$ and $B = 1$ until time $t = 0$. At $t = 0$, all the inputs flip (i.e., $A = C = 1$ and $B = 0$) and remain in that state. For $t > 0$, output $Z = 1$ for a duration (in ns) of			
	A = D = D = D = Z c = C			
	(1) 20 (2) 40 (3) 35 (4) 25			
PHD/U	RS-EE-2019 (Electronics & Communication Engg.) Code-C			


.

.....

۰.

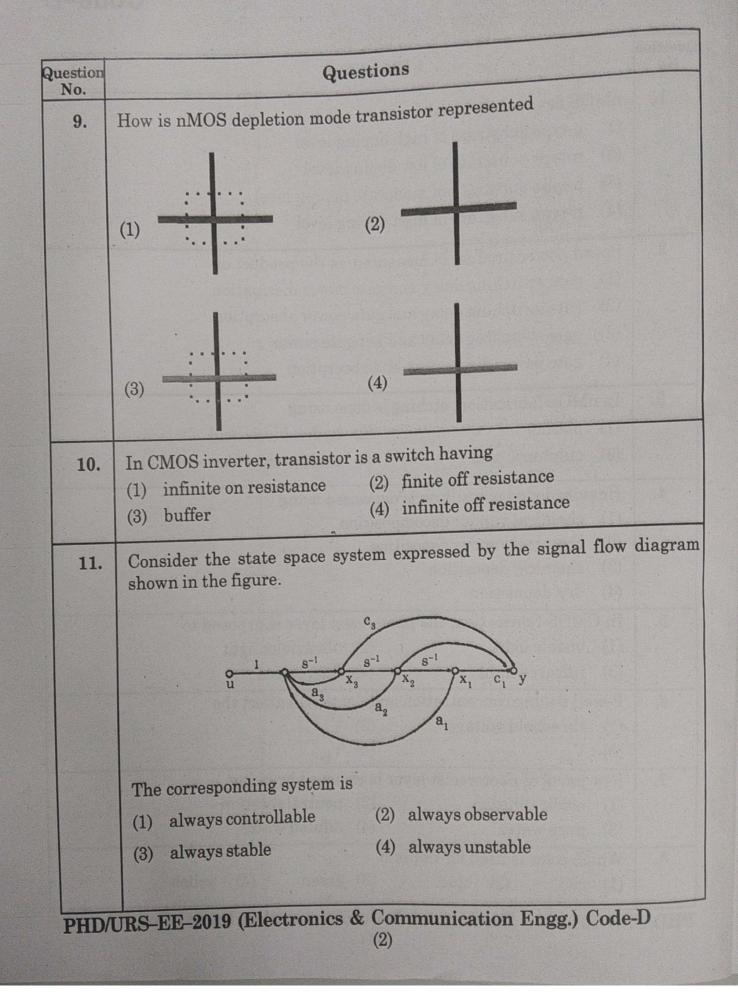
uestion No.	Questions			
95.	Which one of the following gives the simplified sum of products expression for the Boolean function $F = m_0 + m_1 + m_2 + m_3 + m_5$ where 'm _x ' are materms corresponding to the inputs A, B and C with A as the MSB and C the LSB			
	(1) $\overline{A}B + \overline{A}\overline{B}\overline{C} + A\overline{B}C$			
	(2) $\overline{A} \overline{C} + \overline{A} B + A \overline{B} C$			
	(3) $\overline{A} \overline{C} + A\overline{B} + A\overline{B} C$ (4) $\overline{A} BC + \overline{A} \overline{C} + A\overline{B} C$			
96.	A Finite State Machine (FSM) is implemented using the D flip-flops A and B, and logic gates, as shown in the figure below. The four possible states of			
	the FSM are $Q_A Q_B = 00, 01, 10 \text{ and } 11.$			
	the FSM are $Q_A Q_B = 00, 01, 10 \text{ and } 11.$ $\int \left(\int Q_A Q_B - Q_B Q_B \right) \left(\sum_{K \neq Q_B} Q_B - \sum_{K \neq Q_B} Q_B - \sum_{K \neq Q_B} Q_B \right)$ Assume that X1N is held at a constant logic level throughout the operation of the FSM. When the FSM is initialized to the state Q_A = 0. All the operation of the FSM.			
	the FSM are $Q_A Q_B = 00, 01, 10 \text{ and } 11.$			

Questions
In the circuit shown below, a positive edge-triggered D flip-flop is used for sampling input data D_{in} using clock CK. The XOR gate outputs 3.3 voltations for logic HIGH and 0 volts for logic LOW levels. The data bit and clock periods are equal and the value of $\Delta T/T_{CK} = 0.15$, where the parameters ΔT and T_{CK} are shown in the figure. Assume that the flip-flop and the XOR gate are ideal. If the probability of input data bit (D_{in}) transition in each clock period is 0.3, the average value (in volts) of the voltage at node X , is
$D_{in} \longrightarrow D \xrightarrow{P} CK \longrightarrow D_{in} \xrightarrow{P} T_{ck} $
(1)1.5148(2)0.5148(3)0.8415(4)1.8415
For programmable logic functions, which type of PLD should be used(1)PLA(2)PAL(3)CPLD(4)SLD

(DO NOT OPEN THIS QU	JESTION BOOKLET BEFOR	RE TIME OR UNTIL YOU	ARE ASKED TO DO SO)
	(MPH/PHD/UR	S-EE-2019)	
Code D	Electron Communica		sr. No <mark>10020</mark> SET–"X"
Time : 1 ¹ / ₄ Hours	Total Quest	ions : 100	Max. Marks: 100
Roll No.	(in figure)	1	(in words)
Name :		_ Father's Name : _	
Mother's Name :		Date of Examinat	ion :

(Signature of the candidate)

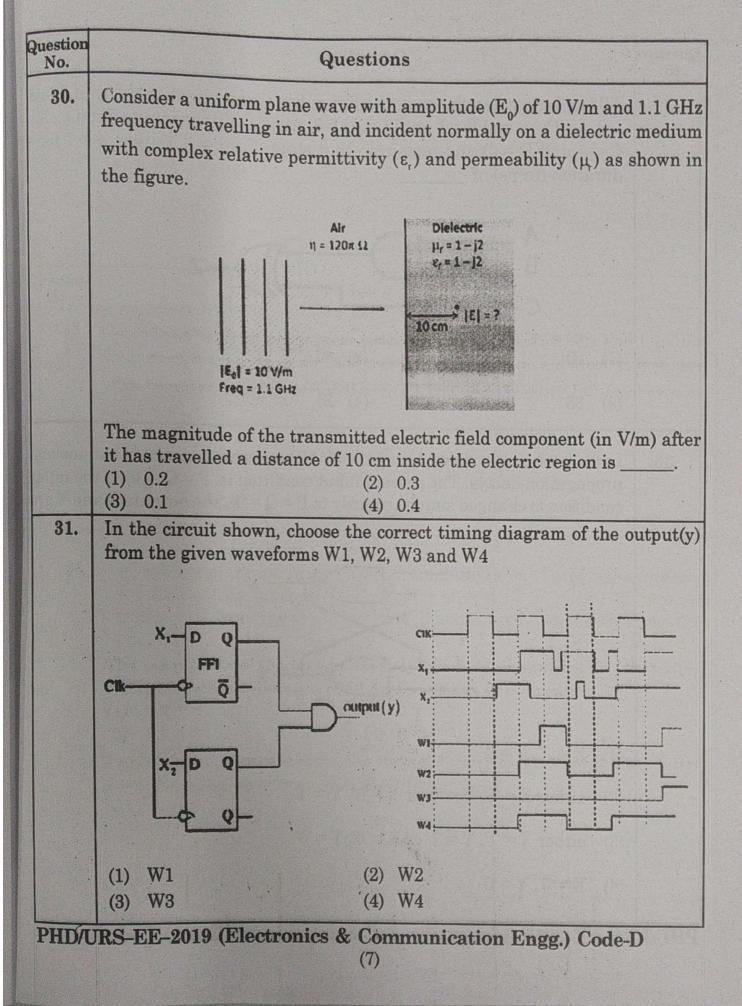
(Signature of the Invigilator)

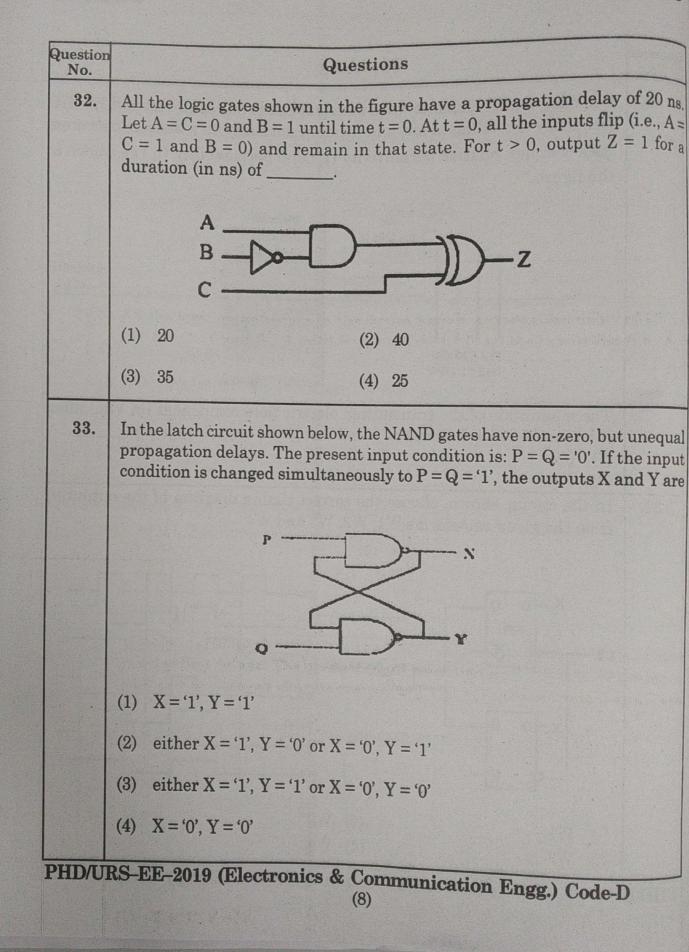

CANDIDATES MUST READ THE FOLLOWING INFORMATION/ INSTRUCTIONS BEFORE STARTING THE QUESTION PAPER.

- 1. All questions are compulsory.
- 2. The candidates must return the Question book-let as well as OMR answer-sheet to the Invigilator concerned before leaving the Examination Hall, failing which a case of use of unfair-means / misbehaviour will be registered against him / her, in addition to lodging of an FIR with the police. Further the answer-sheet of such a candidate will not be evaluated.

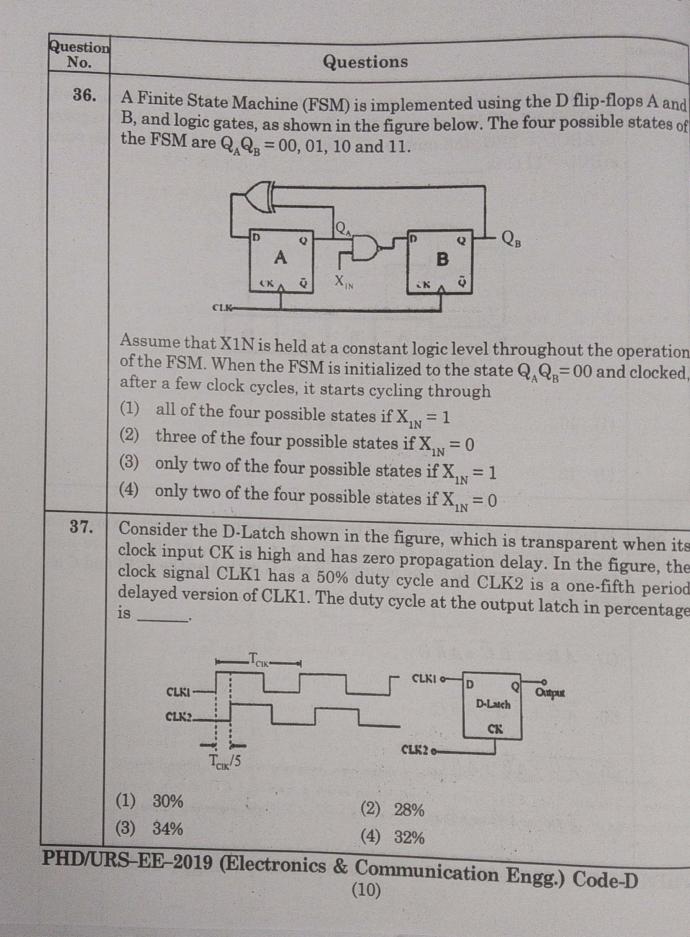
- 3. Keeping in view the transparency of the examination system, carbonless OMR Sheet is provided to the candidate so that a copy of OMR Sheet may be kept by the candidate.
- 4. Question Booklet along with answer key of all the A,B,C and D code will be got uploaded on the university website after the conduct of Entrance Examination. In case there is any discrepancy in the Question Booklet/Answer Key, the same may be brought to the notice of the Controller of Examination in writing/through E. Mail within 24 hours of uploading the same on the University Website. Thereafter, no complaint in any case, will be considered.
- 5. The candidate MUST NOT do any rough work or writing in the OMR Answer-Sheet. Rough work, if any, may be done in the question book-let itself. Answers MUST NOT be ticked in the Question book-let.
- 6. There will be no negative marking. Each correct answer will be awarded one full mark. Cutting, erasing, overwriting and more than one answer in OMR Answer-Sheet will be treated as incorrect answer.
- 7. Use only Black or Blue <u>BALL POINT PEN</u> of good quality in the OMR Answer-Sheet.
- 8. BEFORE ANSWERING THE QUESTIONS, THE CANDIDATES SHOULD ENSURE THAT THEY HAVE BEEN SUPPLIED CORRECT AND COMPLETE BOOK-LET. COMPLAINTS, IF ANY, REGARDING MISPRINTING ETC. WILL NOT BE ENTERTAINED 30 MINUTES AFTER STARTING OF THE EXAMINATION.

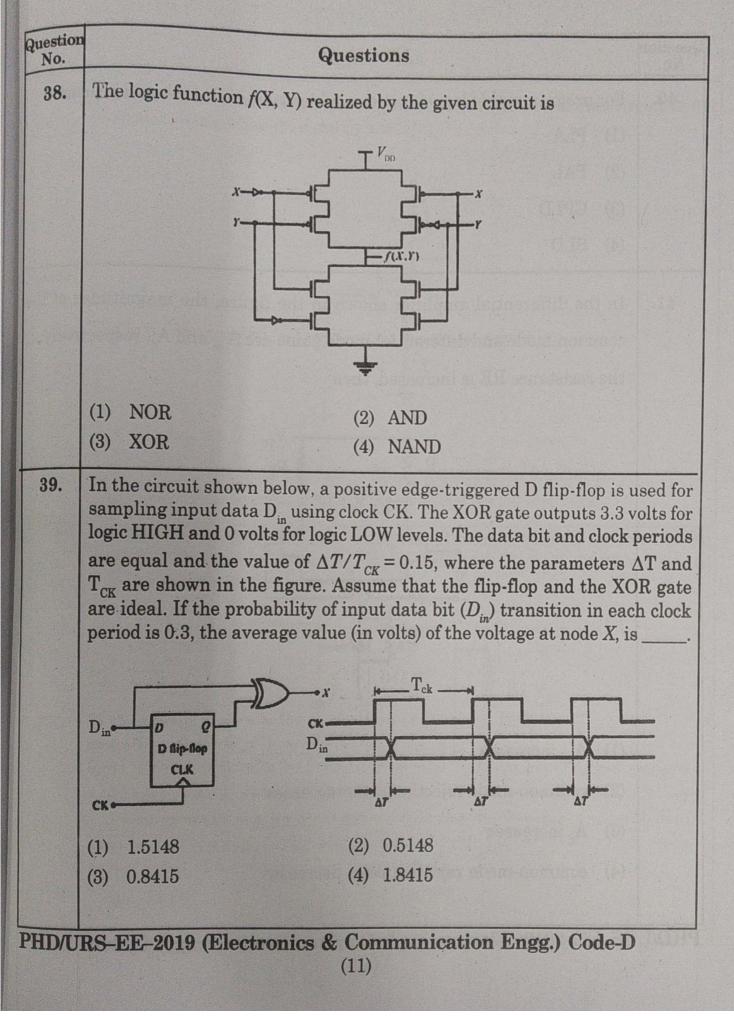
nitoo and a nit
 nMOS devices are formed in (1) p-type substrate of high doping level (2) n-type substrate of low doping level (3) p-type substrate of moderate doping level (4) n-type substrate of high doping level
 Speed power product is measured as the product of (1) gate switching delay and gate power dissipation (2) gate switching delay and gate power absorption (3) gate switching delay and net gate power (4) gate power dissipation and absorption
In nMOS fabrication, etching is done using(1) plasma(2) hydrochloric acid(3) sulphuric acid(4) sodium chloride
 Heavily doped polysilicon is deposited using (1) chemical vapour decomposition (2) chemical vapour deposition (3) chemical deposition (4) dry deposition
In CMOS fabrication, the photoresist layer is exposed to(1) visible light(2) ultraviolet light(3) infrared light(4) fluorescent
P-well doping concentration and depth will affect the(1) threshold voltage(2) V ss(3) V dd(4) V gs
Few parts of photoresist layer is removed by using(1) acidic solution(2) neutral solution(3) pure water(4) diluted water
Which color is used for implant (1) red (2) blue (3) green (4) yellow

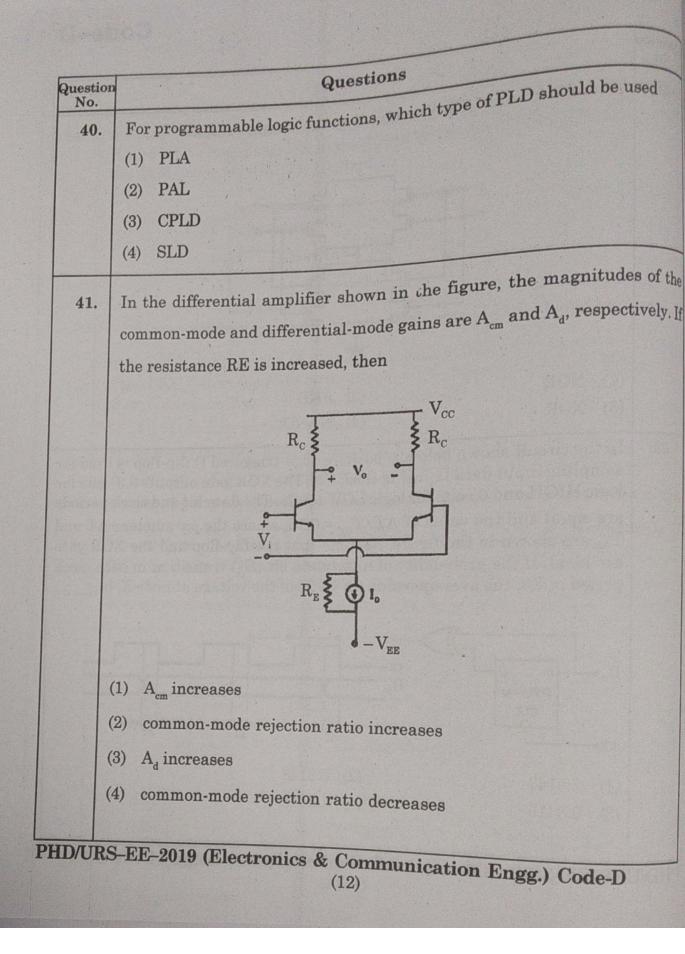


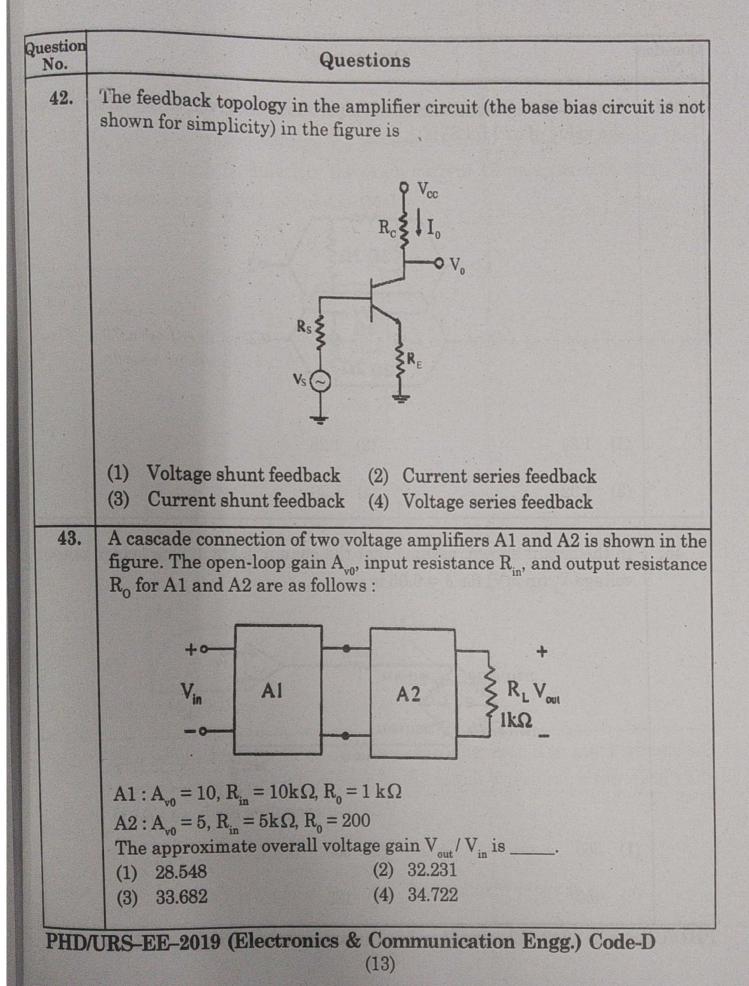

uestion No.	Questions
12.	A TRIAC is equivalent to two SCRs in
	(1) parallel (2) series
	(3) inverse parallel (4) none of the above
13.	The V-I Characteristics for a TRIAC in the first and third quadrants are essentially identical to those of in the first quadrant.
	(1) Transistor (2) SCR
	(3) UJT (4) None of the above
14.	A device that does not have gate terminal is
	(1) TRIAC (2) FET
	(3) SCR (4) DIAC
15.	In an unregulated power supply, if input ac voltage increases, the output voltage
	(1) Increases (2) Decreases
	(3) Unchanged (4) Becomes zero
16.	SMPS is based on the principle of
	(1) Phase control (2) Integral control
	(3) Chopper (4) MOSFET
17.	. Piezoelectric crystals
	(1) float on water
	(2) dissolve in water
	(3) are not soluble in water
	(4) absorb water
PHI	D/URS-EE-2019 (Electronics & Communication Engg.) Code-D (3)

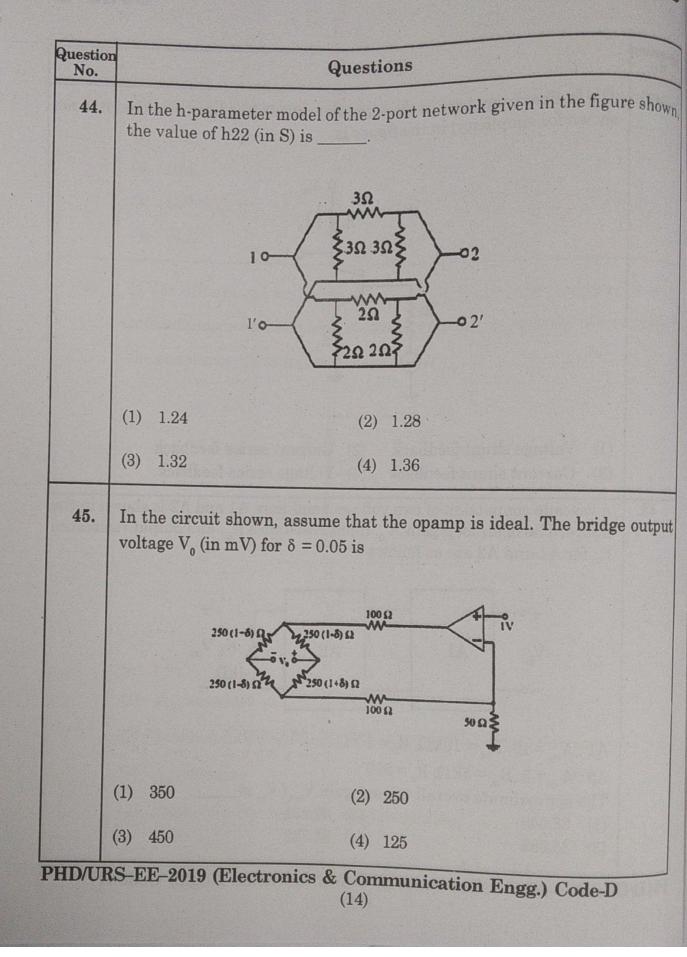
uestion No.	Questions					
18.	Operation of a thermocouple is governed by					
	(1) Peltier effect					
	(2) Seebeck effect					
	(3) Thomson Effect					
	(4) All of the mentioned					
19.	A spectrum analyser is used to measure					
	(1) frequency					
	(2) loss angle of dielectric					
	(3) harmonics					
	(4) insulating resistance					
20.	Oscilloscope is a					
	(1) Ohmmeter (2) Ammeter					
	(3) Voltmeter (4) Multimeter					
21.	A rectangular waveguide of internal dimensions $a \times b(a > b)$, the cut- frequency for the TE ₁₁ mode is the arithmetic mean of the cut-					
	frequencies for TE_{10} mode and TE_{20} mode. If $a = \sqrt{5}$ cm the value b(in cm) is					
	(1) 1 cm					
	(2) 2 cm					
	(3) 4 cm					
	(4) 8 cm					
ПЛП	S-EE-2019 (Electronics & Communication Engg.) Code-D					

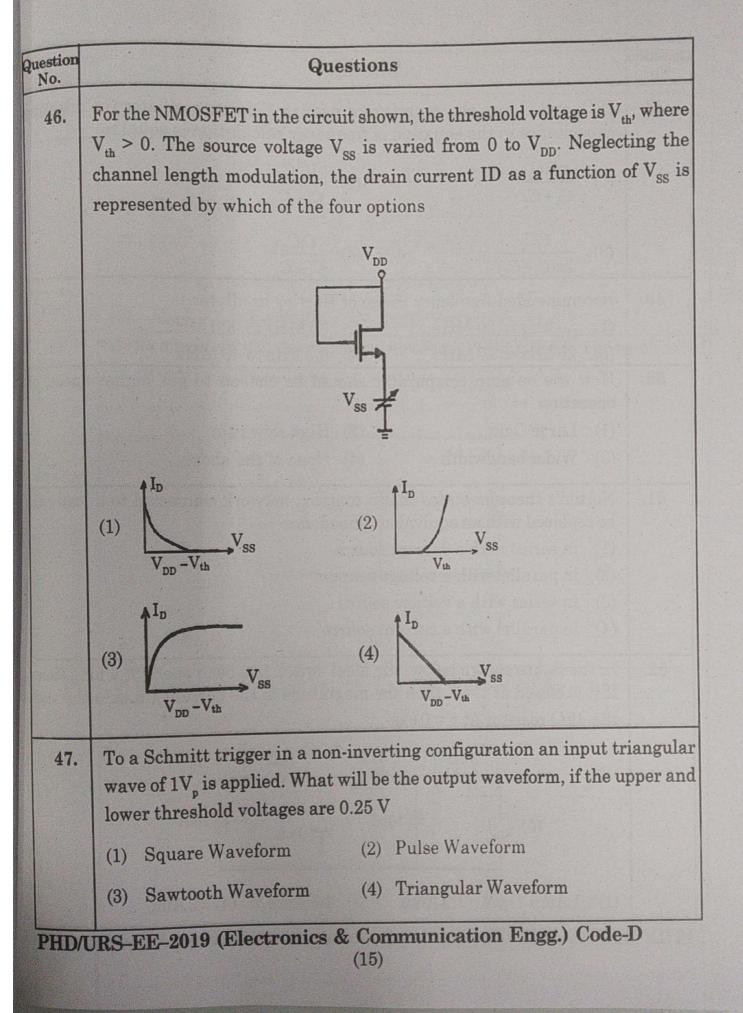

Question No.	Questions					
22.	Consider a straight, infinitely long, current carrying conductor lying of the z-axis. Which one of the following plots (111 linear scale) qualitatively represents the dependence of H_{ϕ} oil r, where H_{ϕ} is the magnitude of the azimuthal component of magnetic field outside the conductor and r is the radial distance from the conductor					
	H _{\$}					
	(1) (2) r					
	(3) H_{ϕ} (4) H_{ϕ} (4) r (4) r					
23.	 A helix is used in a travelling wave tube to (1) Increase the speed of electron beam (2) Decrease the speed of electron beam (3) Increase the speed of electromagnetic wave along the axis of the tube (4) Decrease the speed of electromagnetic wave along the axis of the tube 					
24.	Which one of the following diodes provides high range of variable resistance					
	 (1) PN Junction Silicon Diode (2) Schottky Diode (3) Varactor Diode (4) PIN Diode 					
25.	Which one of the following diodes will be most suitable for making high power transmitter					
	 (1) PN Junction Diode (2) GUNN Diode (3) Tunnel Diode (4) Schottky Diode 					


uestion No.	QuestionsTwo identical transmitting and receiving antennas with gain of 15 dBi a2.45 GHz are separated by a distance of 3 km. If the transmitted power is20W, the power received will be					
26.						
	(1)	-112.8 dBm		(2)) –78.4 dBm	
	(3)	-52.8 dBm		(4)) –36.8 dBm	
27.	The is	phase veloci	ty of electrom	agn	etic waves in a hollow metal waveguid	
	(1)	Equal to gro	up velocity			
	(2) Greater than velocity of light in free space					
	(3) Lesser than velocity of light in free space					
	(4)	Equal to vel	ocity of light	in fr	ee space	
28.	A lossless $\lambda/2$ line having characteristic impedance = 70.7Ω is terminated with 100Ω . The input impedance of this line is					
	(1)	50Ω		(2)	70.7Ω	
	(3)	100Ω		(4)	200Ω	
Contraction and the second	The electric field component of a plane wave travelling in a lossless dielectric medium is given by					
	E(z , 1	$t) = 2\cos(10^8 t)$	$-\frac{z}{\sqrt{2}}$) V/m. T	he w	vavelength (in m) for the wave is	
and the second of		8.89		(2)	7.28	
	(1)				6.23	

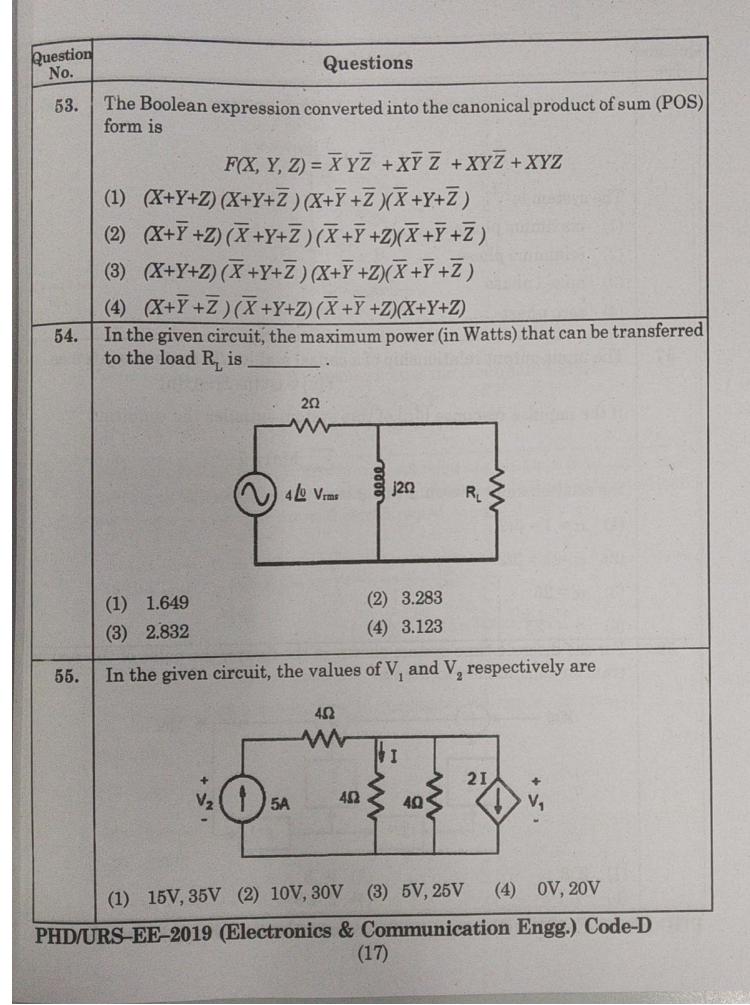



Question No.		Questions	
34.	$A \rightarrow B, B \rightarrow C, C \rightarrow D$ is	er circuit configured for right-shift operation, is shown below. If the present state of the shift re- ne number of clock cycles required to reach the	gister
	K	IL	
	D _{in} Cl	A B C D	
	(1) 10	(2) 11	
	(3) 12	(4) 8	
35.	for the Boolean fun	lowing gives the simplified sum of products expre ction $F=m_0 + m_1 + m_2 + m_3 + m_5$ where 'm _x ' are g to the inputs A, B and C with A as the MSB and	e min
	(1) $\overline{A}B + \overline{A}\overline{B}\overline{C} + \overline{A}\overline{B}\overline{C}$	ABC	
te.	(2) $\overline{A} \overline{C} + \overline{A} B + A$	BC	
	(3) $\overline{A} \overline{C} + A\overline{B} + A$	Β̄ C	
	(4) $\overline{A}BC + \overline{A}\overline{C} + A$. B C	



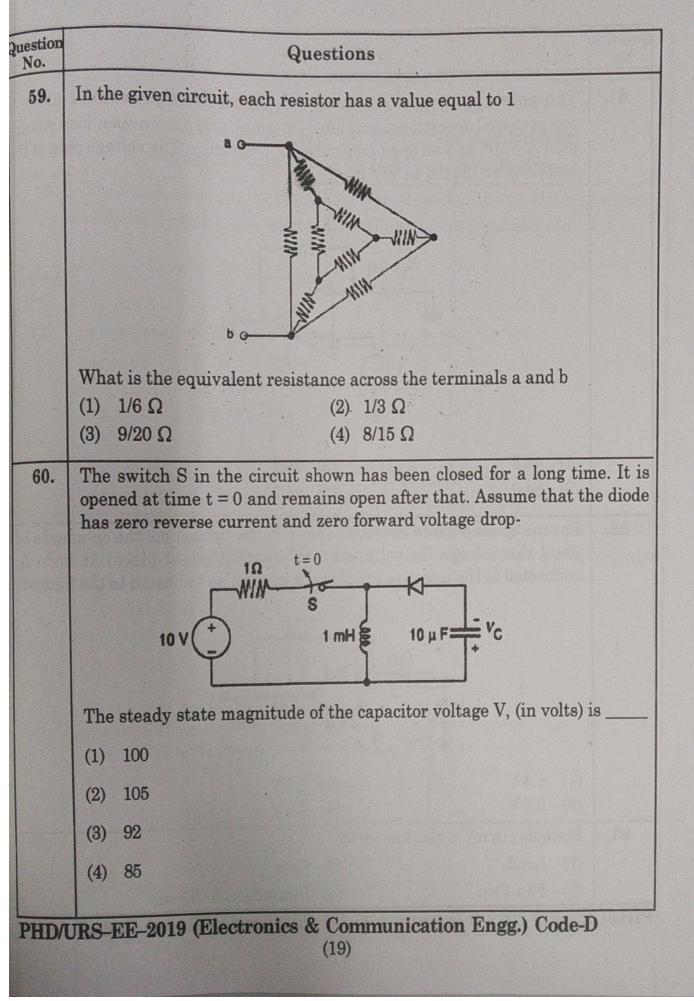


Scanned by CamScanner

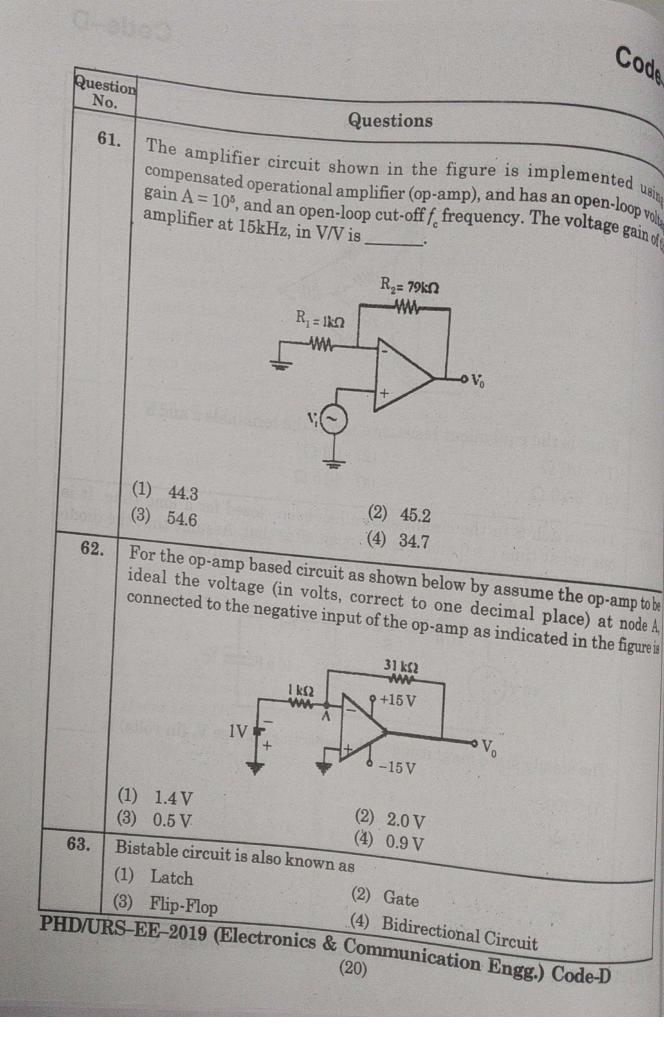


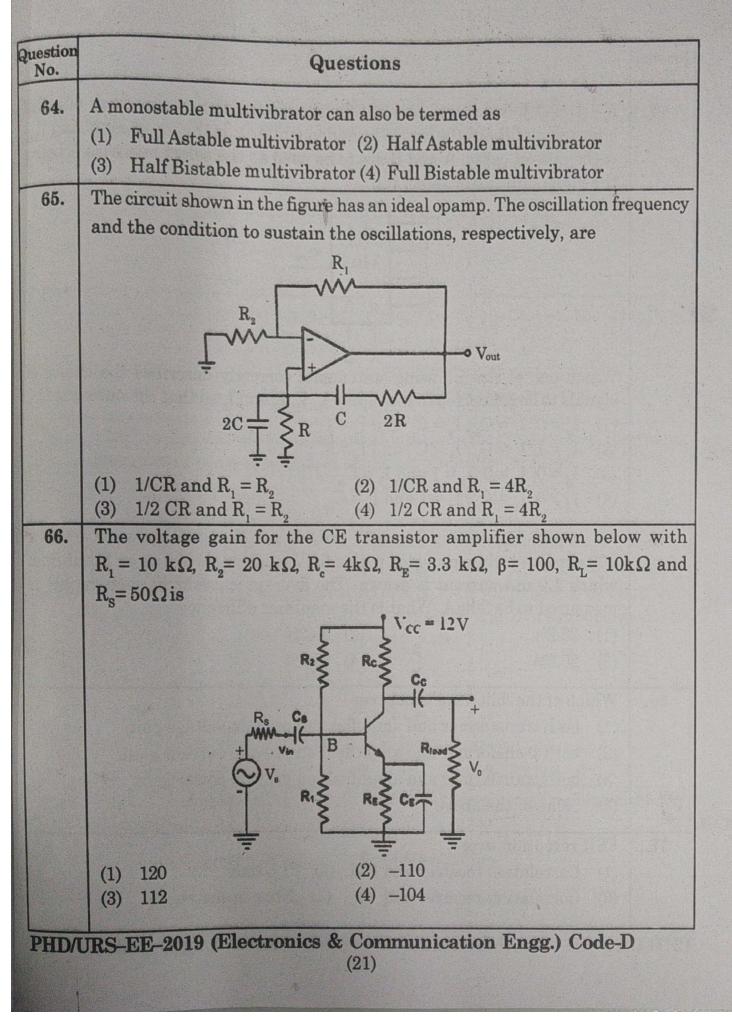
Code-0

uestion No.	Questions
48.	If C_1 and C_2 are the capacitance used in Colpitts oscillator the effect capacitance in the equation of frequency calculation is equal to
	(1) $\frac{\pi C_1 C_2}{C_1 + C_2}$ (2) $\frac{3C_1 C_2}{C_1 + C_2}$
	(3) $\frac{C_1 C_2}{2\pi (C_1 + C_2)}$ (4) $\frac{C_1 C_2}{C_1 + C_2}$
49.	Recommended frequency range of Hartley oscillator is
	(1) $30 \text{ kHz to } 30 \text{ MHz}$ (2) $30 \text{ MHz to } 300 \text{ MHz}$
50.	(3) 20 kHz to 20 MHz (4) 0.5 kHz to 40 MHz
50.	How the op-amp comparator should be chosen to get higher spee operation
	(1) Large Gain (2) High slew rate
	(3) Wider bandwidth (4) None of the above
	 Norton's theorem states that a complex network connected to a load be replaced with an equivalent impedance (1) in series with a current source (2) in parallel with a voltage source (3) in series with a voltage source (4) in parallel with a current source
	In the figure shown below, the ideal switch has been open for a long time If it is closed at t = 0, then the magnitude of the current (in mA) through the 4k Ω resistor at t = 0+ is $5k\Omega \qquad 4k\Omega \qquad 1k\Omega$ $10V \qquad 5k\Omega \qquad 4k\Omega \qquad 1k\Omega$ $10V \qquad 10\mu F \qquad t=0$ mH (1) 1 Amp (2) 1.2 Amp
A DECK MANUAL PROPERTY OF A DECK	(1) 1 Amp (2) 1.2 Amp (3) 1.5 Amp (4) 2 Amp
	S-EE-2019 (Electronics & Communication Engg.) Code-D


Code-D Question No. Questions Questio 56. An FIR system is described by the system function No. $H(z) = 1 + 1 + \frac{7}{2}z^{-1} + \frac{3}{2}z^{-2}$ The system is (1) maximum phase minimum phase (2)(3)mixed phase (4) zero phase 57. The input-output relationship of a causal stable LTI system is given as $Y[n] = \alpha y[n-1] + \beta x[n]$ If the impulse response h[n] of this system satisfies the condition $\sum_{n=0}^{\infty} h(n) = 2$ the relationship between α and β is (1) $\alpha = 1 - \beta/2$ (2) $\alpha = 1 + \beta/2$ (3) $\alpha = 2\beta$ (4) $\alpha = -2\beta$ For the discrete-time system shown in the figure, the poles of the system 58. transfer function are located at X[n] Y[n]5 6 6 Z-1 Z-1 (1) 2, 3 (2) 1/2, 3 (3) 1/2, 1/3 (4) 2, 1/3 PHD/URS-EE-2019 (Electronics & Communication Engg.) Code-D

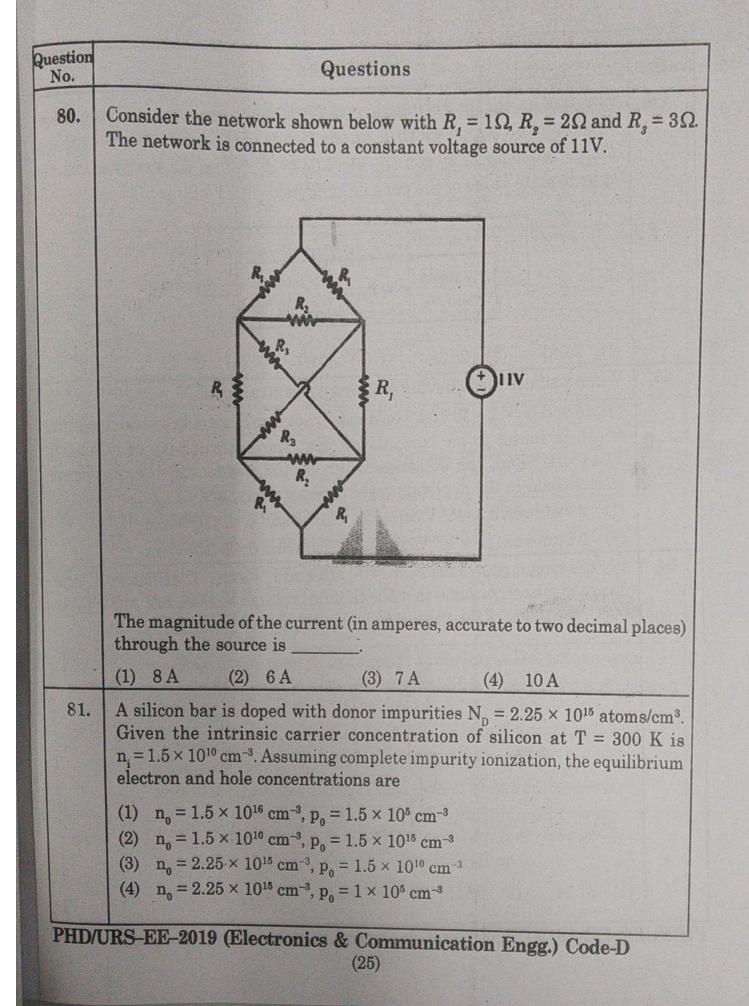
(18)

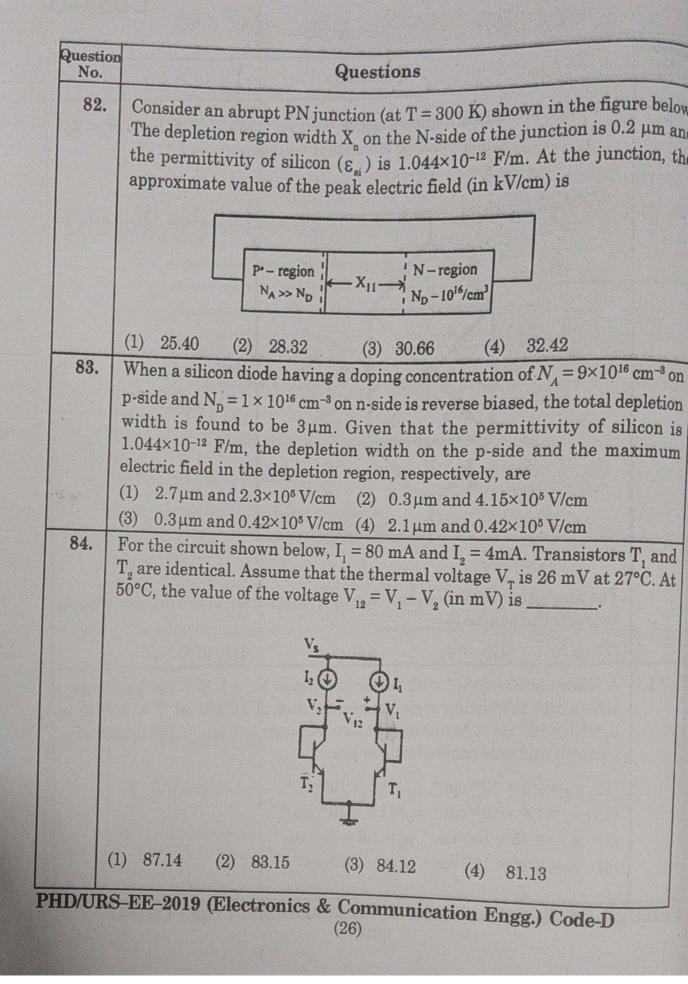

Scanned by CamScanner


59.

Code-D

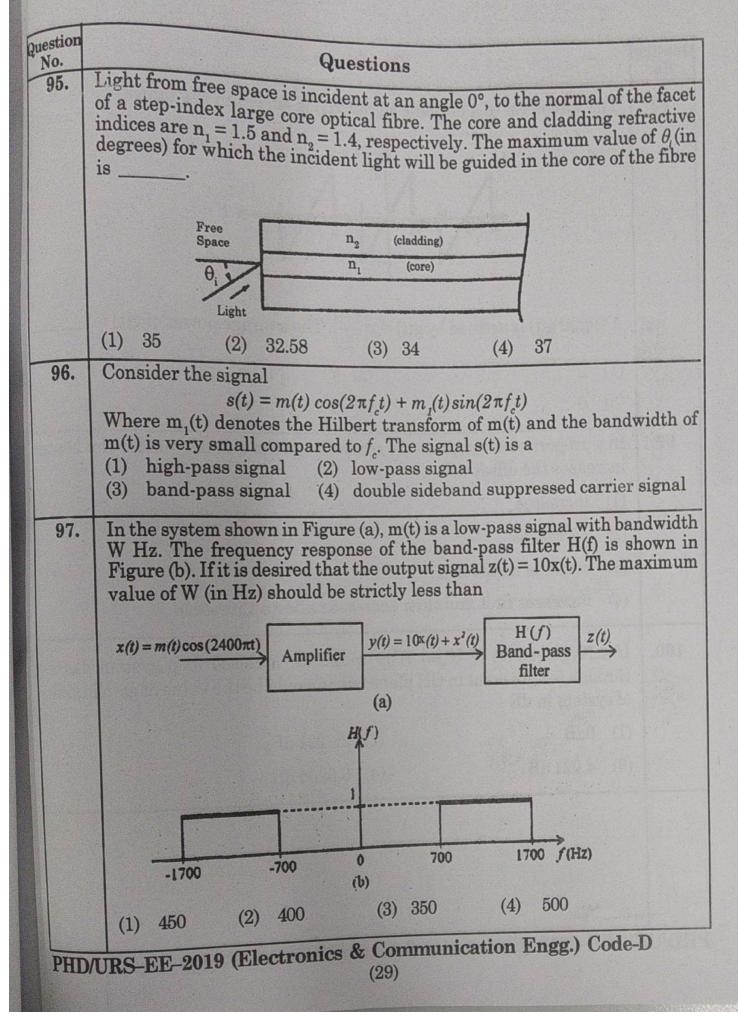
Scanned by CamScanner



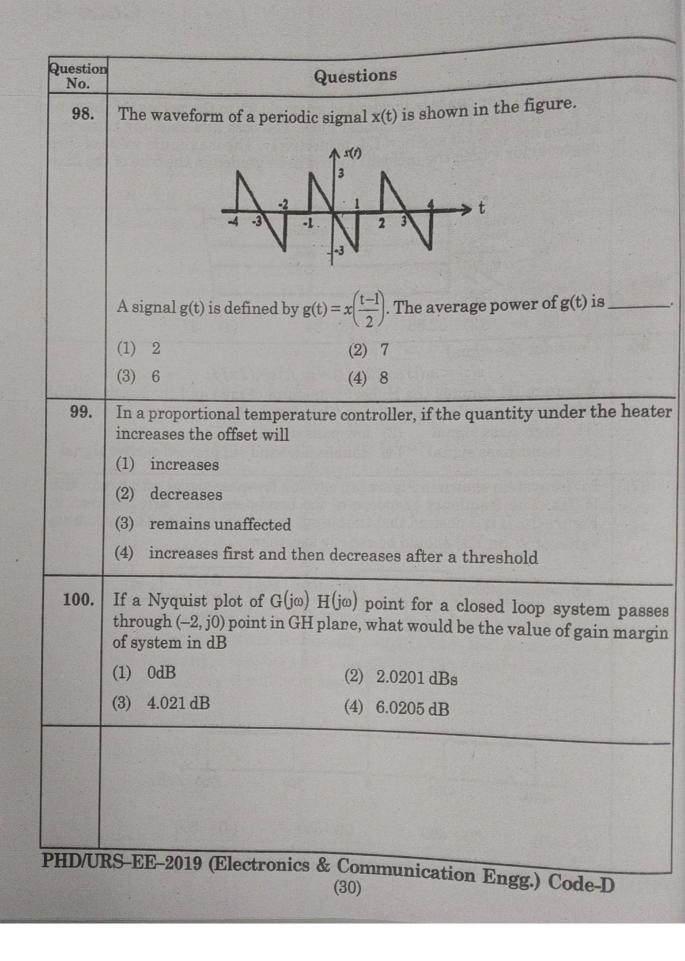

Questions
A 4:1 multiplexer is to be used for generating the output carry of a ful adder. A and B are the bits to be added while C _{in} is the input carry and C is the output carry. A and B are to be used as the select bits with A being the more significant select bit.
$I_0 - 4:1$ $I_1 - 1:1$ $I_2 - 1:1$ $I_3 - S_1 S_0$
A B Which one of the following statements correctly describes the choice of signals to be connected to the inputs I_0 , I_1 , I_2 and I_3 so that the output is C (1) $I_0 = 0$, $I_1 = C_{in}$, $I_2 = C_{in}$ and $I_3 = 1$ (2) $I_0 = 1$, $I_1 = C_{in}$, $I_2 = C_{in}$ and $I_3 = 1$ (3) $I_0 = 0$, $I_1 = 0$, $I_2 = 1$ and $I_3 = C_{in}$ (4) $I_0 = 0$, $I_1 = C_{in}$, $I_2 = 1$ and $I_3 = C_{in}$
An amplifier operating from +3V provide a 2.2V peak sine wave across100 ohm load when provided with a 0.2V peak sine wave as an input frowhich 1.0 mA current is drawn. The average current in each supplymeasured to be 20mA. What is the amplifier efficiency(1) 25.2%(2) 30.2%(3) 20.2%(4) 35.2%
 Which of the following is not true (1) both transformer and amplifier can provide voltage gain. (2) both transformer and amplifier can provide current gain. (3) both transformer and amplifier can provide power gain. (4) None of the above

No.	uestion No. Questions				
71.	When 8051 wakes up then 0×00 is loaded to which register				
	(1) DPTR	(2) SP			
	(3) PC	(4) PSW			
72.	On power up, the 8051 uses which RAM locations for register R0-R7				
	(1) 00-2F	(2) 00-7F			
	(3) 00-07	(4) 00-0F			
73.	In 8086 microprocessor during comparison operation, the result of comparing or subtraction is stored in				
	(1) memory	(2) registers			
	(3) stack	(4) none of the above			
75.	respectively. The noisy of	 (2) Code Segment (4) Extra Segment s values -0.5 and 0.5 with probabilities ¼ servation of X is Y = X + Z, where Z has use the interval (-1, 1). X and Z are independent. 	niform		
	☆ [-	0.5, $Y < \alpha$			
	$X = \{$	$\begin{array}{ll} 0.5, & Y < \alpha \\ 0.5, & Y \ge \alpha \end{array}$			
	·	0.5, $Y \ge \alpha$ rate to two decimal places) is			
	then the value of α (accu				
76.	then the value of α (accu (1) 0.5 (2) 0.25	rate to two decimal places) is	diodes		
76.	then the value of α (accu (1) 0.5 (2) 0.25 The phenomenon leading	rate to two decimal places) is (3) 0.4 (4) 0.7 o avalanche breakdown in reverse biased	diodes		

Code Question No. Questions Why VHF, UHF and microwave signals used in satellite communication 77. (1) More bandwidth (2)More spectrum space (3) Are not diffracted by ionosphere (4) Economically viable 78. The free space model of propagation refers to 1. Unobstructed line of sight between transmitter and receiver. 2. Satellite communication systems and microwave line of sight radio 3. Propagation along the ground surface. 1 and 2 are correct (1)1 and 3 are correct (2)2 and 3 are correct (3)(4)All are correct The material used to construct a variable reluctance stepper motor with 79. Paramagnetic (1)Ferromagnetic (2)(3)Diamagnetic Non-magnetic (4)PHD/URS-EE-2019 (Electronics & Communication Engg.) Code-D



Code_



uestion No.	n Questions				
85.	The internal quantum efficiency of LEDs decrease exponentially when the temperature				
	(1) decreases (2) increases				
	(3) remains constant (4) none of these				
86.	Which of the following is/are true				
	(i) Graphene is an extremely thin three dimensional form of carbon.				
	(ii) In aqueous solution, graphene can bind negatively charged ion.				
	(1) Only 1 (2) Only 2				
	(3) Both 1 and 2 (4) Neither 1 nor 2				
87.	Carbon nano tubes can store				
	(1) Nitrogen (2) Carbondioxide				
	(3) Hydrogen (4) Peroxides				
88.					
	(1) the chirality is single walled or multi-walled.				
	(2) the CNT is insulating or metallic.				
	(3) A direction that the graphene sheet is rolled up to form a tube.				
	(4) A direction that the CNT extends along				
89	. Graphene epitaxial growth by thermal annealing of SiC is completed by				
	(1) Silicon sublimation during annealing, while carbon atoms remain on				
	the surface.(2) Segregation to condense a carbon layer on top of surface.				
	the state to nomente silicon atoms				
	 (3) An oxidation process to remove sincer atoms. (4) A reduction process to rearrange carbon atoms on the surface. 				
9	0. Which one of the following is most famously known as solar grade silicon				
	(1) Crystalline Silicon (2) Crushed Silicon				
	(3) Powdered Silicon (4) Silicon				
DUI	D/URS-EE-2019 (Electronics & Communication Engg.) Code-D				
III	(27)				

No.	Questions
91.	Consider sinusoidal modulation in an AM system. Assuming no over- modulation, the modulation $index(\mu)$ when the maximum and minimum values of the envelope, respectively, are 3V and 1 V, is (1) 1.0 (2) 0.5 (3) 1.5 (4) 2.0
92.	Coherent orthogonal binary FSK modulation is used to transmit two equi-probable symbol waveforms $S_1(t) = \alpha \cos 2\pi f_1 t$ and $S_2(t) = \alpha \cos 2\pi f_2 t$, where $\alpha = 4mV$. Assume an AWGN channel with two-sided noise power spectral density $N_0/2 = 0.5 \times 10^{-12}$ W/Hz. Using an optimal receiver and the relation
	$Q(v) = \frac{1}{\sqrt{2\pi}} \int^{tb} e^{-v^2/2} du$
	the bit error probability for a data rate of 500 kbps is
	(1) Q(2) (2) Q($2\sqrt{2}$)
	(3) Q(4) (4) Q($4\sqrt{2}$)
93.	A sinusoidal signal of 2 kHz frequency is applied to a delta modulator
	The sampling rate and step-size Δ of the delta modulator are 20,000 sample per second and 0.1 V, respectively. To prevent slope overload, the maximum amplitude of the sinusoidal signal (in Volts) is (1) $1/2\pi$ (2) $1/\pi$ (3) $2/\pi$ (4) π
94.	per second and 0.1 V, respectively. To prevent slope overload, the maximum amplitude of the sinusoidal signal (in Volts) is (1) $1/2\pi$ (2) $1/\pi$
94.	per second and 0.1 V, respectively. To prevent slope overload, the maximum amplitude of the sinusoidal signal (in Volts) is (1) $1/2\pi$ (2) $1/\pi$ (3) $2/\pi$ (4) π The transmitted signal in a GSM system is of 200 kHz bandwidth and a users share a common bandwidth using TDMA. If at a given time 12 user are talking in a cell, the total bandwidth of the signal received by the bas
94.	per second and 0.1 V, respectively. To prevent slope overload, the maximum amplitude of the sinusoidal signal (in Volts) is (1) $1/2\pi$ (2) $1/\pi$ (3) $2/\pi$ (4) π The transmitted signal in a GSM system is of 200 kHz bandwidth and a users share a common bandwidth using TDMA. If at a given time 12 user are talking in a cell, the total bandwidth of the signal received by the bas station of the cell will be at least (in kHz)
94.	per second and 0.1 V, respectively. To prevent slope overload, the maximum amplitude of the sinusoidal signal (in Volts) is (1) $1/2\pi$ (2) $1/\pi$ (3) $2/\pi$ (4) π The transmitted signal in a GSM system is of 200 kHz bandwidth and 2 users share a common bandwidth using TDMA. If at a given time 12 user are talking in a cell, the total bandwidth of the signal received by the bas station of the cell will be at least (in kHz) (1) 300 kHz
94.	per second and 0.1 V, respectively. To prevent slope overload, the maximum amplitude of the sinusoidal signal (in Volts) is (1) $1/2\pi$ (2) $1/\pi$ (3) $2/\pi$ (4) π The transmitted signal in a GSM system is of 200 kHz bandwidth and a users share a common bandwidth using TDMA. If at a given time 12 user are talking in a cell, the total bandwidth of the signal received by the bas station of the cell will be at least (in kHz) (1) 300 kHz (2) 400 kHz

Scanned by CamScanner

<u> </u>		Answer Key of M.Phil/Ph	.D 2019 (ECE)	
Sr. No.	Set A	Set B	Set C	Set D
1	4	1	4	2
2	3	3	2	3
3	2	2	1	1
4	2	4	1	2
5	2	1	3	2
6	4	3	3	3
7	3	2	1	3
8	3	4	3	1
9	1	3	4	1
10	1	3	1	4
11	3	2	2	4
12	1	2	3	3
13	1	4	1	2
14	2	1	2	2
15	2	2	2	2
16	1	1	3	4
17	1	1	3	3
18	4	4	1	3
19	3	1	1	1
20	2	3	4	1
21	4	2	3	3
22	2	3	1	2
23	1	1	1	2
24		2		
25	13	2	2	1
26	3		2	2
27		3 3	1	4
	1		1	1
28	3	1	4	3
29	4	1	3	3
30	1	4	2	2
31	2	4	3	1
32	2	2	2	3
33	4	1	2	3
34	1	1	1	2
35	2	3	2	4
36	1	3	4	2
37	1	1	1	1
38	4	3	3	3
39	1	4	3	3
40	3	1	2	1
41	1	2	4	3
42	3 3	3	3 2	3
43	3	4	2	4
44	2 4	4	2	2
45	4	2	2	1
46	2	4	4	3
47	1	2	3	3
48	3	3	3	1
49	3	1	1	2
50	1	3	1	1

verigtien (18/11/19. (1/18/11/19

51	3	3	1	2
52	2	1	3	
53	2	1	2	2
54	1	2	4	4
55	2	2	1	1
56	4	1		2
57	1		3	1
58	3	1		1
59	3	4	4	4
60	2	3	3	1
61	3	2	3	3 2
62	3	3	1	3
63		2	3	
64	4	2	3	4
the second se	2	1.	2 4	4 2
65	1	2		4
66	3	4	2	2
67	3	1	3	3
68	1	3	3	1
69	2	2	1	3
70	1 2	4	3	4
71 72	3	3	3	2
73	4	2	4	1
74	4	2	2	1
75	2	2	1	3
76	4	4	3	3
77	2	3	3	1
78	3	3	1	3
79	1	1	2	4
80	3	1	1	1
81	2	3	2	1
82	3	3	3	3
83	1	4	4	2
84	2	2	4	4
85	2	1	2	1
86	3	3	4	3
87	3	3	2	2
88	1	1	3	4
89	1	2	1	3
90	4	1	3	3
91	1	1	2	3
92	3	3	2	1
93	2	3	4	1
94	4	2	1	2
95	1	4	2	2
96	3	2	1	1
97	2	1	1	1
98	4	3	4	4
99	3	3	1	3
100	3	1	3	2

Car 1/2/11/191

18/11/19.

Scanned with CamScanner