Sr. No. 40258

Opened to check the Jumbling

Total No. of Printed pages: 26

(NOT TO BE OPENED BEFORE TIME OR TILL ASKED TO DO SO)

BPH-EE-2013

Cod

B

Time: 14 hours (75 minutes)	Total Questions 130	Max. Marks: 100
Candidate's Name	Date of Birth	4
Father's Name	Mother's Name	
Roll No. (in figure)	(in words)	:
Date of Exam.:		
(Signature of the Invigilator)	. (Signatu	re of the candidate)

CANDIDATES MUST READ THE FOLLOWING INSTRUCTIONS BEFORE STARTING THE QUESTION PAPER & FOLLOW THEM.

- 1. All questions under Part-A and Part-B are compulsory. Part-C is optional. The candidates may attempt either Optional Part-C (i) OR Optional Part-C (ii). All questions carry equal marks i.e. one mark each.
- 2. The candidate MUST return this question book-let and the OMR Answer-Sheet to the Invigilator concerned before leaving the Examination Hall, failing which a case of use of unfair-means/misbehaviour will be registered against him/her, in addition to lodging of an FIR with the police. Further the answer-sheet of such candidate will not be evaluated.
- 3. The candidate MUST NOT do any rough work OR writing in the OMR Answer-Sheet. Rough work, if any, may be done in the question book-let itself.
- 4. In case there is any discrepancy in any question(s) in the Question Book-let, the same may be brought to the notice of the Controller of Examinations in writing within two hours after the test is over. No such complaint(s) will be entertained thereafter.
- 5. Use only blue or black ball point pen of good quality in the OMR Answer-Sheet.
- 6. There will be no negative marking. Each correct answer will be awarded one mark. Cutting, erasing, overwriting and more than one answer in the OMR Answer-Sheet will be treated as wrong answer.
- 7. BEFORE ANSWERING THE QUESTIONS, THE CANDIDATES SHOULD ENSURE THAT THEY HAVE BEEN SUPPLIED CORRECT & COMPLETE QUESTION BOOK-LETS. COMPLAINTS, IF ANY, REGARDING MISPRINTING ETC. WILL NOT BE ENTERTAINED 30 MINUTES AFTER THE START OF EXAMINATION.

Part-A (Physics)

Question No.	Questions		
	The electromagnetic damping experienced by a metal mass moving in a magnetic field is due to (1) Alternating current (2) Eddy current (3) Magnetic field (4) Alternating potential produced in metallic mass		
2.	The value of current at resonance in a series LCR circuit is affected by the value of (1) R only (2) C only (3) L only (4) L, C and R		
3.	In which of the following regions of electromagnetic spectrum will the vibrational motion of molecules give rise to absorption? (1) Ultraviolet (2) Microwave (3) Infrared (4) Radio waves		
4.	If the refracting angle of a prism is 60° and the minimum deviation 30°, the angle of incidence will be (1) 30° (2) 45° (3) 60° (4) 90°		
5.	The impurity concentration in a normal diode is equal to (1) 1 in 10 ⁹ Parts (2) 1 in 10 ⁶ parts		
	(3) $1 \text{ in } 10^3 \text{ parts}$ (4) $1 \text{ in } 10^2 \text{ parts}$		

Questic No.	Questions
6.	Four bulbs marked 40 W, 250 V are connected in series with 250 V mains the total power consumed is (1) 10 W (2) 40 W (3) 320 W (4) 160 W
7.	The resistance of an ideal voltmeter is (1) zero (2) infinite (3) $>1k\Omega$ (4) $>1\Omega$
8.	A dip needle in a plane perpendicular to magnetic meridian will be (1) Vertical (2) Horizontal (3) at an angle 45° to the horizontal (4) at an angle of dip to the horizontal
9.	A power line lies along the east west direction and carries a current of 10 ampere. The force per metre due to earth's magnetic field of 10 ⁻⁴ T is (1) 10 ⁻⁵ N (2) 10 ⁻⁴ N (3) 10 ⁻³ N (4) 10 ⁻² N
10.	The maximum energy of a deutron coming out of a cyclotron accelerator is 20 MeV. The maximum energy of protons that can be obtained is (1) 10 MeV (2) 20 MeV (3) 30 MeV (4) 40 MeV

Question No.		Questi	ons	
11.	The magnitude of electric field strength E such that an electron placed in it would experience an electric force equal to its weight is given by			
	(1) mge	(2)	mg e	
	(3) $\frac{e}{mg}$	(4)	$\frac{e^2g}{2m}$	
12.	The electric potential at the surface of an atomic nucleus (z=50) of radius 9 Fermi is			
	(1) 80 Volt	(2)	8×10 ⁶	
	(3) 9V	(4)	9×10 ⁵ V	
13.	A charge Q is distri	buted uniform	ly in a sphere (solid). Then the electric
13.	A charge Q is distributed at any point r v (1) r ^{1/2} (3) r	where $r < R$ (R) (2)		
13.	field at any point r (1) $r^{\frac{1}{2}}$	where r < R (R (2) (4) is of an electrical d E is zero tential V is zero V is zero	is radius of sph r^{-1} r^{-2} c dipole ;	
	field at any point r (1) r 1/2 (3) r At a point on the ax (1) The electric field (2) The electric point (3) Neither E nor 1/2	where r < R (R (2) (4) is of an electric ld E is zero tential V is zero V is zero re zero	is radius of sph r-1 r-2 c dipole;	ere) varies as
14.	field at any point ry (1) r ^{1/2} (3) r At a point on the ax (1) The electric field (2) The electric point (3) Neither E nor Y (4) Both E and V and	where r < R (R (2) (4) is of an electric ld E is zero tential V is zero V is zero re zero	is radius of sph r-1 r-2 c dipole;	ere) varies as

Question No.	Questions			
16.	Awhat temperature is the r.m.s. velocity of a hydrogen molecule equal to that of an oxygen molecule at 47°C?			
	(1) 80 K (3) 3 K (4) 20 K			
17.	A material has Poisson's ratio 0.5. If a uniform rot of this material suffer a longitudinal strain of 2×10^{-3} , what percentage increase in volume take place?			
	(1) 2% (2) 2.5% (3) 5% (4) 0%			
18.	A metallic sphere cools from 50°C to 40°C in 300 sec. If the room temperature is 20°C, then its temperature in next 5 minutes will be			
	(1) 38°C (2) 33.3°C (3) 30°C (4) 36°C			
19.	PV diagram of a diatomic gas is a straight line passing through origin. The molar heat capacity of the gas in the process will be			
	(1) 4 R (2) 3 R 5			
20	(3) $\frac{1}{3}$ R (4) $\frac{1}{2}$ R			
20.	An elastic string has a length l when tension in it is 5N. Its length is h when tension is 4N. On subjecting the string to a tension of 9N, its length will be			
	(1) $l+h$ (2) $l-h$ (3) $5l-4h$ (4) $\frac{l+h}{l-l}$			

Question No.	Questions
21.	A ball is dropped from the top of a tower of height h, it covers a distance $h/2$ in the last second of its motion. How long the ball remains in air? Take $g=10 m s^{-2}$
	(1) $2 \pm \sqrt{2} \sec$ (2) $\sqrt{2} \sec$ (3) $2 \sec$ (4) $2\frac{1}{2} \sec$
22.	Two particles are projected simultaneously in the same vertical plane, from the same point, both with different speeds and at different angles with horizontal. The path followed by one, as seen by the other, is (1) a vertical line (2) a parabola (3) a hyperbola (4) a straight making a constant angle (≠ 90°) with the horizontal
23.	A bullet fired into a target loses half its velocity after penetrating 25 cm. How much further will it penetrate before coming to rest? (1) $\sqrt{26}$ cm (2) 25 cm. (3) 8.3 cm. (4) 75 cm.
24.	A small ball describes a horizontal circle on the smooth inner surface of a conical funnel. If the height of the plane of the circle above the vertex be 10 cm; what is the speed of the particle? (1) 2 m/s (2) 4 m/s (3) 16 m/s (4) 1 m/s

Code-I

Question No.	Questions
25.	A body is projected vertically upwards from the surface of a planet of radius R with a velocity equal to half the escape velocity of the planet. The maximum height attained by the body is (1) $\frac{R}{2}$ (2) $\frac{R}{3}$ (3) $\frac{R}{5}$ (4) $\frac{R}{4}$
26.	Under the action of a force $F = Cx$, the position of a body changes from 0 tx. The work done is
	(1) $\frac{1}{2} Cx^2$ (2) Cx^2 (3) Cx (4) $\frac{1}{2} Cx$
27.	The angle turned by a body undergoing circular motion depends on time a $\theta = \theta_0 + \theta_1 t + \theta_2 t^2$. Then the angular acceleration of the body is (1) θ_1 (2) θ_2 (3) $2\theta_1$ (4) $2\theta_2$
28.	A rocket of mass 1000 kg exhaust gases at a rate of 4kg/s with a velocity 3000 m/s. The thrust developed on the rocket is (1) 12000 N (2) 120 N (3) 800 N (4) 200 N
29.	If λ is the wavelength of hydrogen atom from the transition $n=3$ to $n=3$ then what is the wavelength of doubly ionized lithium ion for the same transition (1) $\frac{\lambda}{3}$ (2) 3λ
	(3) $\frac{\lambda}{Q}$ (4) 9λ

draft de

Question No.	Questions			
30.	The dimensions of pressure gradient are			
	(1) $ML^{-2}T^{-2}$ (2) $ML^{-2}T^{-1}$			
	(3) $ML^{-1}T^{-1}$ (4) $ML^{-1}T^{-2}$			
31.	The period of oscillations of a mass 1.6 kg suspended from a spring is 2 seconds. If along with it another mass m kg is also suspended, the period of oscillations increases by one second. The mass m is			
	(1) 1 kg (2) 2 kg			
	(3) $1.6 \mathrm{kg}$ (4) $2.6 \mathrm{kg}$			
32.	Two coherent sources must have the same			
	(1) Amplitude (2) Phase difference only			
	(3) Frequency only (4) Phase difference and frequency			
33.	When a source is going away from a stationary observer with a velocity equal to that of sound in air, the frequency heard by observer will be (1) Same (2) Double			
	(3) Half (4) One third			
34.	Ultrasonic waves are produced by			
	(1) Piezoelectric effect (2) Pettiro's effect			
	(3) Dopplers effect (4) None of these			
35.	Fundamental frequency of a sonometer wire is n. If the length, tension and diameter of the wire are tripled, the new fundamental frequency is			
	(1) $\frac{n}{\sqrt{3}}$ (2) $\frac{n}{3}$			
	(3) $n\sqrt{3}$ (4) $\frac{n}{3\sqrt{3}}$			

Part-B (Chemistry)

	CH ₃ CHO Trinitrotoluene		
(2) (4) niline (2)	CH ₃ CHO		
niline (2)			
	Trinitrotoluene		
	Trinitrotoluene		
quid (4)			
	2, 4, 6 – trinitrophenol		
ollowing acid is a Vita	amin?		
acid (2)	Ascorbic acid		
id (4)	Saccharic acid		
The commercial name of polyacrylonitrile is			
(2)	Orlon		
(4)	Bakelite		
sweetener (2)	tranquilizer		
amine (4)	antifertility drug		
lete hydrolysis gives			
(2)	XeO_2		
	XeO_4		
	acid (2) id (4) al name of polyacrylo (2) (4) sweetener (2) amine (4) lete hydrolysis gives (2)		

Question No.	Questions
42.	When one mol $\operatorname{CrC} l_3.6 \ \operatorname{H_2O}$ is treated with excess of AgNO_3 , 3 mol of $\operatorname{AgC} l$ are obtained. The formula of the complex is: (1) $[\operatorname{CrC} l_3 \ (\operatorname{H_2O})_3]. \ 3 \ \operatorname{H_2O}$ (2) $[\operatorname{Cr} \ (\operatorname{H_2O})_6] \ \operatorname{C} l_3$ (3) $[\operatorname{CrC} l_2 \ (\operatorname{H_2O})_4] \ \operatorname{C} l. \ 2 \ \operatorname{H_2O}$ (4) $[\operatorname{CrC} l \ (\operatorname{H_2O})_5] \ \operatorname{C} l_2.\operatorname{H_2O}$
43.	Electronic configuration of a transition element X in + 3 oxidation state is [Ar] 3 d ⁵ , what is its atomic number? (1) 25 (2) 26 (3) 27 (4) 24
44.	Ethylidene chloride is a / an (1) vic-dihalide (2) gem-dihalide (3) allylic halide (4) vinylic halide
45.	Phenol is less acidic than (1) ethanol (2) o-nitrophenol (3) o-methyl phenol (4) o-methoxyphenol
46.	The colloidal solution of gelatin is known as (1) Solvent loving (2) Reversible (3) Hydrophilic (4) All of the above
47.	Flux used in the metallurgy of iron is (1) SiO_2 (2) $CaCO_3$ (3) Felspar (4) Flit

Question No.	Questions
48.	Which of the following acids forms three series of Salts? $ (1) H_3 PO_2 \qquad \qquad (2) H_3 BO_3 \\ (3) H_3 PO_4 \qquad \qquad (4) H_3 PO_3 $
49.	Oxygen molecules shows: (1) Diamagnetism (2) Paramagnetism (3) Ferromagnetism (4) Ferrimagnetism
50.	Identify the molecular formula of tear gas: $(1) \text{COC}l_2 \qquad \qquad (2) \text{CC}l_3 \text{NO}_2$ $(3) \text{CC}l_3 \text{CHO} \qquad \qquad (4) \text{None of above}$
51.	A solid compound 'X' on heating gives CO_2 gas and a residue. The residue mixed with water forms 'Y'. On passing an excess of CO_2 through 'Y' in water, a clear solution 'Z' is obtained. On boiling 'Z' compound 'X' is reformed The compound 'X' is (1) $Ca (HCO_3)_2$ (2) $Ca CO_3$ (3) $Na_2 CO_3$ (4) $K_2 CO_3$
52	 The wrong statement about fullerene is (1) It has 5-membered Carbon ring (2) It has 6-membered Carbon ring (3) It has sp² hybridization (4) It has 5-membered rings more than 6-membered rings

Question No.		Que	estions	
53.	The chemical composition of cryolite mineral is			
	(1) $A\ell_2O_3$	(2)	$\dot{A}\ell_2O_3.12~H_2O$	
	(3) $KA\ell Si_3O_8$	(4)	$Na_3 A\ell F_6$	
54.	$CH_3 - CHC\ell - CH_2 - CH_3$ has	a ch	iral centre, which one of the following	
	represents its R configuration	?		
	$\begin{array}{ccc} & & & & & & \\ & & C_2H_5 & & & \\ & & & & \\ 1 & & & C\ell & & \\ \end{array}$		C_2H_5	
	$(1) H - \overset{\prime}{C} - CH_3$	(2)	C_2H_5 $C\ell$ - C - CH_3	
	Ce		H	
	CH_3		$\mathrm{C_2H}_5$	
	(3) H - C - C \(\ell \)	(4)	C_2H_5 $H_3C-C-C\ell$	
	$^{1}_{\mathrm{C}_{2}}\mathrm{H}_{_{5}}$		H	
55.	Wurtz reaction is best used for making:			
	(1) Unbranched alkanes	(2)	Symmetrical alkanes	
	(3) Unsymmetrical alkanes	(4)	n-alkanes with odd number of carbons	
56.	A gas occupies 2 litres at STP. It is provided 300 J heat so that its volume			
	becomes 2.5 litres at 1 atm. Ca	lcula	ate change in its internal energy	
	(1) 300 J	(2)	249.35 J	
	(3) 498.70 J	(4)	600 J	

Question No.		Qu	estions			
57.	What should be the solubility product of $\mathrm{A}\ell_2\left(\mathrm{SO}_4\right)_3$					
	(1) $27 \mathrm{S}^4$	(2)	$72~\mathrm{S}^5$			
	(3) $108 \mathrm{S}^4$	(4)	$108{ m S}^{5}$			
58.	Which of the following arrange	ement	ts represent increasing oxidation	nu		
	of the central atom?					
	(1) ClO_3^- , CrO_4^{2-} , MnO_4^- , Cr	(1) ClO_3^- , CrO_4^{2-} , MnO_4^- , CrO_2^-				
	(2) $\operatorname{CrO}_{2}^{-}$, $\operatorname{ClO}_{3}^{-}$, $\operatorname{MnO}_{4}^{-}$, CrO	2- 4				
	(3) CrO_4^{2-} , MnO_4^- , CrO_2^- , ClO_3^-					
	(4) CrO_2^- , ClO_3^- , CrO_4^{2-} , Mn	O_4^-		e .		
59.	In solid ice, oxygen atom is surrounded:					
	(1) tetrahedrally by 4 hydrogen atoms					
	(2) octahedrally by 2 oxygen and 4 hydrogen atoms					
1	(3) tetrahedrally by 2 hydrogen and 2 oxygen atoms					
	(4) octahedrally by 6 hydrogen atoms					
60.	The paramagnetic species is:	The paramagnetic species is:				
	(1) KO ₂	(2)	SiO_2			
	(3) TiO ₂	(4)	BaO_2			
61.	1. The total numbers of protons in 10.0 g of CaCO ₃ is		0.0 g of CaCO ₃ is			
	(1) 1.5057×10^{24}	(2)	2.0478×10^{24}			
	(3) 3.0115×10^{24}	(4)	4.0956×10^{24}			

Question No.	Questions
62.	Which of the following sets of quantum numbers are correct?
	(1) $n = 1, \ell = 1, m = +2$
	(2) $n = 2$, $\ell = 2$, $m = +1$
	(3) $n = 3, \ell = 2, m = -2$
	(4) $n = 3$, $\ell = 4$, $m = -2$
63.	Among halogens the correct order of electron gain enthalpy is:
	$(1) \mathbf{F} > \mathbf{C}l > \mathbf{Br} > \mathbf{I}$
	$(2) \mathbf{F} < \mathbf{C}l < \mathbf{Br} < \mathbf{I}$
	(3) F < Cl < Br > I
	$(4) \mathbf{F} < \mathbf{C}l > \mathbf{Br} > \mathbf{I}$
64.	The hybrid states of central atom in diborane, diamond and graphite are
	respectively:
	(1) sp^2 , sp^3 , sp^2 (2) sp^3 , sp^3 , sp^2
	(3) sp^3 , sp^3 , sp^3 (4) sp , sp^2 , sp^3
65.	Which pair of the gaseous diffuse through a small jet with same rate of
	diffusion at same P and T?
	(1) NO, CO (2) NO, CO ₂
	(3) NH ₃ , PH ₃ (4) NO, C ₂ H ₆

Code

Question No.	Questions			
66.	Which of the following gases is not a green house gas?			
	(1) CO (2) O ₃			
	(3) CH ₄ (4) H ₂ O vapour			
67.	The edge length of face centred unit cubic cell is 508 pm. The radius of			
	atom will be			
	(1) 179.6 pm (2) 288 pm			
	(3) 618 pm (4) 398 pm			
68.	The freezing point of 1 molal NaCl solution assuming NaCl to be 10			
Co.	dissociated in water is: (Kf = 1.86 K Molality ⁻¹)			
ACAMA CENTRAL CONTRACTOR CONTRACT	(1) $-1.86 ^{\circ}\text{C}$ (2) $-3.72 ^{\circ}\text{C}$			
	(3) +1.86 °C (4) +3.72 °C			
69.	While charging the lead storage battery			
accumum and a company of the company	(1) Pb SO ₄ anode is reduced to Pb			
APA And Province Company of State Company	(2) Pb SO ₄ cathode is reduced to Pb			
Na.Link.Constitution (Constitution (Constitu	(3) Pb SO ₄ cathode is oxidized to PbO ₉			
and the second s	(4) Pb SO ₄ anode is oxidized to PbO ₂			
70.	Which of the following is a unit of zero order reaction?			
Acquisition	(1) $\text{mol } L^{-1} S^{-1}$ (2) $L \text{mol}^{-1} S^{-1}$			
No. of Contract of	(3) $L^{-1} \text{ mol}^{-1} S^{-1}$ (4) $L \text{ mol} S$			

Part-C Option (i) (Mathematics)

Question No.	Questions
71.	The value of $\int_1^6 e^{\sqrt{x}} dx$ is
	(1) $4 e^3$ (2) $6 e^3$
	(3) $2 e^3$ (4) $3 e^3$
72.	The area of the figure bounded by $y = \sin x$, $y = \cos x$ in the first quadrant is
	(1) $2(\sqrt{2}+1)$. (2) $2(\sqrt{2}-1)$
	(3) $2(\sqrt{3}-1)$ (4) $\sqrt{2}-1$
73.	The solution of the differential equation $y \frac{dy}{dx} = x - 1$ satisfying $y(1) = 1$ is
	(1) $y^2 = x^2 - 2x + 2$ (2) $y^2 = x^2 - 2x + 1$
•	(3) $y = x^2 - 2x + 2$ (4) $y^2 = x^2 + 2x + 2$
74.	If \vec{a} and \vec{b} are two unit vectors inclined at an angle θ such that $\vec{a} + \vec{b}$ is a unit vector, then θ is equal to
	$(1) \frac{\pi}{3} \qquad \qquad (2) \frac{3\pi}{2}$
	(3) $\frac{2\pi}{3}$ (4) $\frac{\pi}{4}$
	If α , β , γ are the angles which a directed line makes with the positive directions of the coordinate areas, then $\sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma =$
	(1) 0 (2) 2 (3) 1 (4) 3

Question No.		Questions
76.	$\cos^{-1}\frac{1}{2} + 3\sin^{-1}\frac{1}{2} =$	
	$(1) \frac{\pi}{6}$ $(3) \frac{3\pi}{4}$	(2) $\frac{4\pi}{3}$ (4) $\frac{5\pi}{6}$
	$(3) \frac{3\pi}{4}$	$(4) \frac{5\pi}{6}$
77.	If w is one of the cube roots o	f unity, then
	$\begin{vmatrix} 1 & w & w^{2} \\ w & 1 & w^{2} \\ w^{2} & w & 1 \end{vmatrix} =$	
	(1) w^2 (3) 0	(2) w (4) 1
78.	If $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ x & y & -1 \end{bmatrix}$, then $A^2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix}$	
	(1) I ₃ (3) -A	(2) A (4) I ₂
79.	If $f(x) = \begin{cases} mx+1, & x \le \frac{\pi}{2} \\ \sin x + n, & x > \frac{\pi}{2} \end{cases}$	
	and $f(x)$ is continuous at $x =$	$\frac{\pi}{2}$, then
	$(1) \mathbf{m} = \frac{\mathbf{n}\pi}{2} + 1$	$(2) \mathbf{m} = \mathbf{n} = \frac{\pi}{2}$
Name and the second sec	(3) $n = m \frac{\pi}{2}$	(4) $m = 1, n = 0$

Question No.	Questions	Монувания на на на применя по почения на			
80.	0. The maximum value of xy subject to $x + y = 12$ is				
	(1) 16 (2) 18 (3) 24	(4) 36			
81.	If $X = \{1, 2, 3,\}, Y = \{3, 4\}, Z = \{4, 5, 6\}$ then	$X \cup (Y \cap Z)$ is			
	(1) {4, 5} (2) {1, 2, 5	, 6}			
	(3) {1, 2, 3, 4} (4) {1, 3, 6}	}			
82.	Let $\dot{A} = \{(a, b) : a^2 + b^2 = 1, a, b \in R\}$. Then	Ais			
	(1) symmetric (2) antisyr	nmetric			
	(3) reflexive (4) transit	ive			
83.	If $f(x) = 2 x^n + K$, $f(2) = 26$ and $f(4) = 138$,	then $f(3) =$			
STATE OF THE STATE	(1) 86 (2) 32				
	(3) 56 (4) 64				
84.	If $\sin \theta + \cos \theta = \sqrt{2} \cos \theta$, then $\cos \theta - \sin \theta =$				
PT COMMISSION OF THE PARTY OF T	$(1) -\sqrt{2}\cos\theta \qquad \qquad (2) \sqrt{2}\left(\cos\theta\right)$	$s \theta + \sin \theta$			
	$(3) -\sqrt{2}\sin\theta \qquad (4) \sqrt{2}\sin\theta$	θ			
85.	If $\frac{\sin (x+y)}{\sin (x-y)} = \frac{a+b}{a-b}$, then $\frac{\tan x}{\tan y} =$				
A STATE OF THE STA	$(1) \frac{b}{a} \qquad \qquad (2) \frac{a}{b}$				
	$(3) \frac{a-b}{a+b} \qquad (4) ab$				

Question No.	Questions		
86.	If $\frac{1}{b+c}$, $\frac{1}{c+a}$, $\frac{1}{a+b}$ are in A.P., then		
	(1) a^2 , b^2 , c^2 are in A.P.		
	(2) a, b, c are in A.P.		
	(3) $\frac{1}{a}$, $\frac{1}{b}$, $\frac{1}{c}$ are in A.P.		
	(4) a, b, c are in G.P.		
87.	The nearest point on the	line $3 \times -4 y = 25$ from the origin is	
	(1) $(3, -4)$	(2) (4, -3)	
	(3) (3, 4)	(4) (4, 3)	
88.	The area of the circle point (4, 6) is	centred at (1, 2) and passing through t	
	(1) 16 π	(2) 25 π	
	(3) 36 π	(4) 49 π	
89.	The ratio in which xy-pla	ne divides the join of $(1, 2, 3)$ and $(4, 2, 1)$ is	
	(1) 2:1 internally	(2) 1:2 externally	
	(3) 1:3 internally	(4) 3:1 externally	
90.	$\lim_{x \to -\infty} \left(2 x + \sqrt{4 x^2 - x} \right)$		

IS and the second

(1) 2

(3) $\frac{1}{2}$

(2) 4

(4) $\frac{1}{4}$

Question No.		Questions	
91.	If $ z ^2 + 1 = z^2 - 1 $, then z lies on		
	(1) circle	(2) ellipse	
	(3) parabola	(4) none of these	
92.	The inequalities 3 x -	$y \ge 3$, $4x - y > 4$ have	
	(1) solution for all x		
	(2) solution for all y	And the state of t	
	(3) solution for posit	ive x and y	
	(4) no solution for po	ositive x and y	
93.	Three dice are rolled.	The number of possible outcomes in which at least	
	one die shows 3 is		
	(1) 36	(2) 42	
[] [*** -p1	(3) 81	(4) 91	
94.	If ${}^{n}P_{r} = 120 {}^{n}C_{r}$, then	the value of r is	
	(1) 3	(2) 4	
	(3) 5	(4) 6	
95.	In the expansion of $\left(x^3 - \frac{1}{x^2}\right)^{15}$, the constant term is		
	(1) ¹⁵ C ₉		
	(3) 0	$(2) ^{-15}C_{9}$ $(4) \frac{3}{2}$	

Question No.		Ques	stions
96.	If $y = \sqrt{\sin x + \sqrt{\sin x + \sqrt{\sin x}}}$	in x +	${-\infty}$ then $\frac{dy}{dx} =$
	$(1) \frac{2 y - 1}{\cos x}$	(2)	$\frac{\cos x}{2 x - 1}$
	$(3) \frac{\cos x}{2y-1}$	(4)	$\frac{2 \times -1}{\cos x}$
97.			d divisible by 4 are written in revers umbers will be at 10th place?
do aprocessor and a second	(1) 24	(2)	28
	(3) 32	(4)	36
98.	Each observation of a rather the variance of the		nose variance is σ^2 is multiplied by I s
	(1) σ^2	(2)	$K \sigma^2$
	(3) $K^2 \sigma^2$	(4)	$K + \sigma^2$
99.	Three identical dice are	rolled. The	e probability that the same number w
	appear on each of them		
	$(1) \frac{1}{36}$	(2)	$\frac{1}{18}$
	(3) $\frac{1}{12}$	(4)	$\frac{1}{6}$
100.	A speaks truth in 70%	% cases ar	nd B speaks truth in 80% cases. To thing while describing single event is
A STATE OF THE STA	$\begin{array}{c c} \text{probability that they sa} \\ (1) 0.58 \end{array}$	(2)	

S

(3) 0.64

(4) 0.76

Quest No	ion	Questions Code—				
10	1. Vinegar is obtained from mol	Vinegar is obtained from mollasses with the help of:				
	(1) Aspergillus (3) Acetobacter	(2) Rhizopus (4) Penicillium				
102	(1) 18 ATP	for the synthesis of one glucose molecule in (2) 20 ATP				
103.	(3) 28 ATP	(4) 30 ATP				
	What are the natural reservoi (1) Rock (3) Sea water	(2) Animal bones (4) Plants				
104.	The tropical forests in India are	e located in :				
	(1) Haryana	(2) Himachal Pradesh				
	Tashmir	(4) Andamans				
105.	Which of the following is an eye	disease?				
	(1) Measles (3) Glaucoma	(2) Bronchitis				
06.	The protective covering of brain i	(4) Diabetes				
	(1) Pleura	(2) Meninges				
1	3) Pericardium 5-2013-Code-R (21)	(4) Peritonium				

Code

Question No.	n Questions				
107.	Fertilization of ova in human takes place in:				
	(1) Uterus	(2)	Vagina		
	(3) Fallopian tube	(4)	Ovary		
108.	Carbon monoxide poisoning is	due to the	formation of :		
	(1) Methane	(2)	Carbonic acid		
	(3) Carboxy haemoglobin	(4)	Oxy-haemoglobin		
109.	Abnormal secondary growth is found in:				
	(1) Cucurbita	(2)	Dracaena		
	(3) Triticum	(4)	Sugarcane		
110.	Which is the causative organism of Typhoid?				
	(1) Salmonella typhi				
	(2) Mycobacterium typhi	Wage s om	Blackson i bore of all		
	(3) Plasmodium falciparum				
	(4) All of the above				
111.	Hydroponics is:				
	(1) Soil less culture	(2)	Water less culture		
	(3) Air less culture	(4)	Nutrient less culture		
112.	Bt crop grown by the farmers in India is:				
	(1) Maize	(2)	Wheat		
	(3) Cotton	(4)	Tomato		

Question No.	stion Questions				
113.	Age of tree can be estimated b	у;			
	(1) Height and girth	(2)	Biomass		
	(3) Cork .	(4)	Number of Annual rings		
114.	In DNA, adenine normally pai	r with	onesig pirakiju (1901). Romana oliopistika		
	(1) Guanine	(2)	Cytosine		
	(3) Thymine	(4)	Uracil		
115.	The genotypic ratio of monohy	ybrid cross i	s:		
	(1) 3:1	(2)	9:3:3:1		
	(3) 1:1	(4)	1:2:1		
116.	Down syndrome is usually the result of an extra chromosome :				
	(1) 15	(2)	17		
	(3) 19	(4)	21		
117.	The two strands of DNA are j	oined by :			
	(1) Covalent Bond	(2)	Ionic Bond		
	(3) Hydrogen Bond	(4)	Phosphodiester Bond		
118.	Which is the most primitive g	roup of alga	ne ?		
	(1) Green algae	(2)	Blue green algae		
	(3) Red algae	(4)	Brown algae		
	refile otrejošnosti (k				

Ques	나를 하는 것이 없는 그는 가는 사람들은 사람들이 되었다면 가장 하는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이다.	
13	Questions 19. During cell cycle DNA synthesis takes place in: (1) Prophase (2) S phase	
12	(4) (32 nhasa	
121	Gene therapy is: (1) Method to determine blood group (2) Method to replace a defective gene with a healthy gene (3) Method to determine evolution (4) All of the above	
122. 123.	Hardy-Weinberg law in a population represents (1) Allele frequency (2) Heterozygote frequency (3) Genotype frequency (4) Homozygote frequency A mother of blood group O has a group O child, the father coblood type.	
94	(1) A or B or O (2) A or B (3) O only (4) A B only	
	Interspecific hybrids proved very useful for: (1) Gene function (2) Gene mapping (3) Gene structure (4) Genetic manipulation	

Qı	uestion		Co)d						
	No.	Questions								
	125.	Systematics deals with:								
		(1) Classification of orga	nisms							
		(2) Identification of organ								
		(3) The kind and diversi	ty of all organisms and existing relation							
		among themselves	or an organisms and existing relation	nsh						
		140ffe of the above	기가 되는 것 같아 보는 것이 하는데 하는데 하는데 살아 되었다.							
	26.	Patients suffering from AIDS have following immune abnormalities. 1) T-cell deficiency								
		(1) T-cell deficiency								
	(4	Enlargement of spleen								
	(5	Neutrophil excess								
10	(4	D. C. excess								
127	7. W	hich of the following is ess Lymph	ential for black							
	and the second second		(2) Blood plately							
	+ (3)	D. C.	(4) W. D. G							
128.		e saliva helps in the digest	ion of.							
	1	Starch .	뭐꾸면 이 시시님은 아랫동안 그는 그리고 있다.							
	(3)	Fibres	(2) Proteins							
129.	Goit	re is caused by	(4) Fats							
	(1)	Over eating								
	(2)	Deficiency of Iron								
	(3)	Deficiency of Iodine								
-	(4)	Deficiency of Vitamins								
30.	Testo	sterone is secreted by:								
	(1) 1	listocyte	(2) Sertoli colle	1						
	(3) L	eydig cells	Corron cells							
		3-Code-B	(4) Primary spermatocyte	4						

SET CODE 1 - 2	: B 11 - 2	BPH-EE-2013		24/06/2		
2 - 1	12 - 2	21 - 1	31 - 2	24/06/2013 41 - 3	51 - 2	61 - 3
3 - 2	13 - 3	22 - 4 23 - 4	32 - 4	42 - 2	52 - 4	62 - 3
4 - 2	14 - 3	24 - 4	33 - 3	43 - 2	53 - 4	63 - 4
5 - 2	15 - 4	25 - 2	34 - 1	44 - 2	54 - 2	64 - 2
6 - 1	16 - 4	26 - 1	35 - 4 36 - 4	45 - 2	55 - 2	65 - 4
7 - 2	17 - 4	27 - 4	37 - 4	46 - 4	56 - 2	66 - 1
8 - 1	18 - 2	28 - 1	38 - 2	47 - 2	57 - 4	67 - 1
9 - 3	19 - 2	29 - 3	39 - 2	48 - 3	58 - 4	68 - 2
10 - 4	20 - 3	30 - 1	40 - 2	49 - 2	59 - 1	69 - 1
			_	50 - 2	60 - 1	70 - 1

	CODE :		BPH-EE-			LOGY)	24/06/2013					
		TI	- 1	21 -	2	31 -	41 -	51 -	61 -	71 -	81 -	91 -
	- 4	12	- 3	22 -	3	32 -	42 -	52 -	62 -	72 -	82 -	92 -
3	- 1	13	- 4	23 -	1	33 -	43 -	53 -	63 -	73 -	83 -	93 -
4	- 4	14	- 3	24 -	2	34 -	44 -	54 -	64 -	74 -	84 -	94 -
5	- 3	15	- 4	25 -	3	35 -	45 -	55 -	65 -	75 -	85 -	95 -
6	- 2	16	- 4	26 -	1	36 -	46 -	56 -	66 -	76 -	86 -	96 -
7	- 3	17	- 3	27 -	2	37 -	47 -	57 -	67 -	77 -	87 -	97 -
8	- 3	18	- 2	28 -	1	38 -	48 -	58 -	68 -	78 –	88 -	98 -
9	- 2	19	- 2⋅	29 -	3	39 -	49 -	59 -	69 -	79 -	89 -	99 -
10	- 1	20	- 1	30 -	3	40 -	50 -	60 -	70 -	80 -	90 -	100 -

À

1	CODE - 1		BPH 1 - 3	-EE-2013 21 -	4	(MATHEMATICS) 31 -		24/0	06/2013				
2	- 2	12	2 - 1	22 -	3	32 -	42		51 -	61 -	71 -	81 -	91 -
	- 1	13	- 4	23 -	4	33 -	43		52 -	62 -	72 -	82 -	92 -
4	- 3	14	- 4	24 -	3	34 -	44		53 –	63 -	73 –	83 -	93 -
5	- 2	15	- 2	25 -	2	35 -	45		54 ~	64 -	74 -	84 -	94 -
6	- 4	16	- 1	26 - :	3	36 -	46		55 –	65 –	75 –	85 -	95 –
7	- 3	17	- 1	27 - 2	2	37 -	47		56 -	66 -	76 -	86 -	96 -
8	- 1	18	- 2	28 - 3	3	38 -	48		57 –	67 –	77 –	87 -	97 –
9 .	- 3	19	- 4	29 - 1		20	49 -		58 -	68 –	78 -	88 -	98 -
10 -	4	20 -	- 4	30 - 2					59 –	69 -	79 -	89 -	99 -
						- •	50 -	e.	60 –	70 –	80 -	90 -	100 -