Perzijalvol)

Total No. of Printed Pages: 29

(NOT TO BE OPENED BEFORE TIME OR TILL ASKED TO DO SO)

PHDURS-EE-2013

SUBJECT: Chemistry

A	
Time: 11/4 Hours	Max. Mark
Candidate's Name	

mbe.	V	-	-	_

10013

A		Sr. No
Time: 11/4 Hours	Max. Marks : 100	Total Questions: 100
Candidate's Name	Date	of Birth
Father's Name	Mother's Name	
Roll No. (in figures)	(in words)	
Date of Examination	Option Attempt (Ur	nder Part-II)
(Signature of the Candidate)		(Signature of the Invigilator)

CANDIDATES MUST READ THE FOLLOWING INFORMATION/INSTRUCTIONS BEFORE STARTING THE QUESTION PAPER.

- 1. Part-I (Question No. 1 to 40) is compulsory. Part-II (Question Nos. 41 to 100) is Optional. From Part-II, the candidate is to attempt 60 questions from any One Option out of the three Optional parts i.e. either from Option "A" or "B" or "C". All questions carry equal marks.
- 2. All the candidates must return the question booklet as well as OMR Answer-Sheet to the Invigilator concerned before leaving the Examination Hall, failing which a case of use of unfair-means/misbehaviour will be registered against him/her, in addition to lodging of an FIR with the police. Further the answer-sheet of such a candidate will not be evaluated.
- 3. In case there is any discrepancy in any question(s) in the Question Booklet, the same may be brought to the notice of the Controller of Examinations in writing within two hours after the test is over. No such complaint(s) will be entertained thereafter.
- 4. The candidate must not do any rough work or writing in the OMR Answer-Sheet. Rough work, if any, may be done in the question booklet itself. Answers Must Not be ticked in the question booklet.
- Only black or blue ball point pen is to be used in the OMR Answer-Sheet.
- 6. For each correct answer, the candidate will get full credit. Cutting, erasing, overwriting and more than one answer in OMR Answer-Sheet will be treated as incorrect answer. There will be No Negative marking.
- 7. Before answering the questions, the candidates should ensure that they have been supplied correct and complete booklet. Complaints, if any, regarding misprinting etc. will not be entertained 30 minutes after starting of the examination.

PART - I (COMPULSORY)

1.	The geometry of IF_8^- ion is:
	(1) Pyramidal (2) Tetrahedral
	(3) Trigonal bipyramidal (4) Square antiprismatic
2.	Which of the following statement is false?
	(1) $\left[Cu(en)_2\right]^{2+}$ is more stable than $\left[Cu(NH_3)_4\right]^{2+}$
	(2) $[FeF]^{2+}$ is stable than $[FeCl]^{2+}$
	(3) $\left[Fe(CN)_6\right]^{4-}$ is less stable in comparison to $\left[Fe(CN)_6\right]^{3-}$
	(4) $\left[Cu(NH_3)_4\right]^{2+}$ is less stable than $\left[Cd(NH_3)_4\right]^{2+}$
3.	The coordination numbers of Ti(N) and O^{2-} in rutile are, respectively:
	(1) 6 and 3 (2) 3 and 6 (3) 2 and 4 (4) 4 and 2
4.	Recemization of a chiral complex such as $[Cr(ox)_3]^{3-}$ is least likely to occur by :
	(1) a dissociative pathway
	(2) a pathway involving a 5-coordinate species in which one ox^{2-} ligand is monodentate
	(3) the Ray-Dutt twist mechanism
	(4) the Bailer twist mechanism
5.	In the base-catalysed substitution of Cl^- by OH^- in $[Co(NH_3)_5Cl]^{2+}$ under strongly basic conditions, the first step in the mechanism is:
	(1) conversion of an ammine to amido ligand
	(2) substitution of Cl ⁻ by [OH] ⁻
	(3) dissociation of Cl ⁻ to give a 5-coordinate intermediate
	(4) association of [OH] ⁻ to give a 7-coordinate intermediate
6.	In tetrahedral complexes, which orbital is involved in σ as well as π bond according to MO theory :
	(1) e (2) t_2 (3) a_2 (4) b

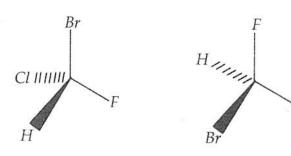
7.	The term symbol for	or ground state of N	iis:			
	(1) ${}^{7}S_{3}$	(2) ${}^{3}F_{4}$	(3)	$^{3}P_{0}$	(4)	$^{7}F_{2}$
8.	octanedral field?					ution is quenched in
	(1) $t_2 g^4 e g^2$	(2) $t_2 g^6 e g^1$	(3)	t_2g^4	(4)	$t_2g^5eg^2$
9.	Which of the follow	ving does not posses	ss bri	dged CO ?		
	(1) $CO_2(CO)_8$	(2) $Fe_3(CO)_{12}$	(3)	$Os_3(CO)_{12}$	(4)	$Fe_2(CO)_9$
10.	Which of the follow	ving will have highe	est C(O stretching freq	uenc	ry ?
	(1) $Cr(CO)_6$	(2) $Mn(CO)_6^+$	(3)	$V(CO)_6^-$	(4)	$Fe(CO)_4^{2-}$
11.	At 25°C which of th	ne following substar	nce ha	as the lowest mo	lar e	entropy?
	(1) N_2 (gas)			$C_6H_6(l)$		
12.	The unit of the rate	and rate constant a	re the	e same for a reac	tion	of order :
	(1) 0	(2) 1	(3)	$\frac{1}{2}$	(4)	2
13.	(2) product of mol(3) sum of viscosit	ivalent conductance	ance	9		
14.	In Rice-Herzfeld m	echanism of decom	posit	tion of acetaldeh	yde,	, the order of reaction
	is: (1) 1/2	(2) 1	(3)	3/2	(4)	2
15.	Clausius-Clapeyron	n equation is given l	oy:			
	(1) $\log \frac{p_2}{p_1} = \frac{\Delta H_{va}}{2.303}$	$\frac{p}{R} \left[\frac{T_2 - T_1}{T_1 \times T_2} \right]$	(2)	$\log \frac{p_1}{p_2} = \frac{\Delta H_{va}}{2.303}$	$\frac{p}{R} \left[\frac{T}{T} \right]$	$\left[\frac{T_1-T_2}{T_1\times T_2}\right]$
	(3) $\log \frac{p_2}{p_1} = \frac{\Delta H_{vap}}{2.303}$	$\frac{1}{2} \left[\frac{T_1 - T_2}{T_1 + T_2} \right]$	(4)	$\log \frac{p_2}{p_1} = \frac{\Delta H_{vap}}{2.303}$	$\frac{r}{T_1}$	$\begin{bmatrix} +T_2 \\ -T_2 \end{bmatrix}$

- 16. Which quantum number does not arise from solution of Schrodinger equation?
 - (1) Principal quantum number
- (2) Spin quantum number
- (3) Magnetic quantum number
- (4) Azimuthal quantum number
- 17. If length of the one dimensional box is halved, the energy of the partide will become :
 - (1) Half

(2) Doubled

(3) Four times

- (4) One fourth
- **18.** The degeneracy of energy level with energy equal to $\frac{6h^2}{8na^2}$ is:
 - (1) 2
- (2) 3
- (3) 6
- (4) 9


- 19. Unit of equivalent conductivity is:
 - (1) ohm $cm^2 eq^{-1}$

(2) $ohm^{-1} cm^2 eq^{-1}$

(3) ohm cm $^{-2}$ eq $^{-1}$

- (4) $ohm^{-1} cm^{-2}eq^{-1}$
- **20.** If K = equilibrium constant, Q = reaction quotient and G = Gibb's free energy, which of the following is true for a spontaneous reaction?
 - (1) $\Delta G < \Delta G^{\circ}$
- (2) $\Delta G > \Delta G^{\circ}$
- (3) K > Q
- (4) K < Q

21. The two compounds shown below are:

(1) diasteromers

(2) enantiomers

(3) identical

- (4) conformational isomers
- **22.** Which of the following is *not true* about enantiomers? They have the same:
 - (1) Melting Point

(2) Boiling Point

(3) Specific rotation

(4) Density

23.	When benzyl chloride is treated with e along with benzyl cyanide. The most like	than cely 1	nolic KCN, benzyl ethyl, ether is produced mechanism for the reaction would be:
	$(1) SN^2$	(2)	SN^1
	(3) SN^i	(4)	Both SN^1 and SN^2
24.	The carbene which adds stereo specifica	ally t	to a double bond is in the state.
	(1) singlet (2) doublet	(3)	triplet (4) free radical
25.	The compound which would undergo lower than that of benzene is :	nitra	ation at ortho and para position with rates
	(1) Cinnamic acid (2) Toluene	(3)	Phenol (4) Benzoic acid
26.	M-effect is:		No.
	(1) Resonance effect	(2)	Inductive effect
	(3) No bond resonance	(4)	Electromeric effect
27.	The type of linkage present in porcion i	s:	
	(1) H-bonding	(2)	Covalent linkage
	(3) Ionic bond	(4)	Coordinate bond
28.	Epimers differ in :		
	(1) C-1	(2)	C-2
	(3) $C-1$ and $C-2$	(4)	None of the above
29.	In the conversion of a Grignard reaused is:	gent	t into an aldehyde the other component
	(1) ethyl formate (2) ethyl acetate	(3)	ethyl cyanide (4) CO_2
30.	Sulphonation of benzene differs from rethat the reaction :	nost	other electrophilic substitution reaction in
	(1) is reversible		
	(2) occurs with explosive violence		
	(3) requires elevated temperature		
	(4) requires Lewis acid catalyst		
	nt in		

31.	The wave length of de-Broglie's wave 1.66×10^{-27} kg and kinetic energy of 5×	e associated with a moving proton of mass 10^{-27} J is:
	(1) $162.65 \times 10^{-8} \mathrm{m}$	(2) $16.265 \times 10^{-8} \mathrm{m}$
	(3) 16.265 m	(4) 1.6265 m
32.	The pure rotational spectrum of gaseo lines separated by 20.80 cm ⁻¹ . The value	us HCl consists of a series of equally spaced e of rotational constant is :
	(1) 20.80 cm^{-1} (2) 10.40 cm^{-1}	(3) 5.20 cm^{-1} (4) 2 cm^{-1}
33.	Which of the following molecules has lo	west vibrational stretching frequency?
	(1) ${}^{1}H$ ${}^{35}Cl$ (2) ${}^{2}D$ ${}^{35}Cl$	
34.	The proton nmr spectrum of propane w	ill consist of :
	(1) a triplet and a singlet	(2) a triplet and a quartet
	(3) a doublet and a sixtet	(4) a triplet and a septet
35.	To check that a secondary alcohol has be	een completely oxidized to a ketone you can :
	(1) check out the IR spectrum has absor	ptions at 3500 cm^{-1} and 1650 cm^{-1}
	(2) check out the IR spectrum has no ab	sorptions at 3500 cm^{-1} and 1650 cm^{-1}
	(3) check out the IR spectrum has no ab	sorptions at 3500 cm^{-1}
	(4) check out the IR spectrum has no ab	sorptions around 1650 cm ⁻¹
36.	The β -isomer of hydrated trisglycinato of two bands.	cobalt (III) is in colour consisting
	(1) Red (2) Violet	(3) Yellow (4) Blue
37.	Which listed below gives only spin activ	e nuclei ?
	(1) ^{1}H , ^{13}C , ^{19}F	$(2)^{-2}H$, ^{12}C , ^{19}F
		,, -, -

(4) ${}^{1}H$, ${}^{12}C$, ${}^{19}F$

(3) ${}^{1}H$, ${}^{2}H$, ${}^{12}C$

38.	The position of the characteristic car	bonyl stretching abs	orption bands in the IR
	spectrum of and are observ	red at :	
	(1) $1715 \text{ cm}^{-1} \text{ and } 1680 \text{ cm}^{-1}$	(2) 1680 cm ⁻¹ and	1715 cm ⁻¹
	(3) 1740 cm ⁻¹ and 1715 cm ⁻¹	(4) 1715 cm ⁻¹ and	
39.	The lowest energy transition for table	52	p
00.	The lowest energy transition for tetrahe (1) ${}^3A_2 \rightarrow T_1$ (2) ${}^4T_1 \rightarrow {}^4A_2$		
40.	The cis isomers often havetransitions than trans isomers.	molar absorpt	ivity values for $d \rightarrow d$
	(1) Larger (2) Smaller	(3) Equal	(4) None of the above
	PAR	T – II	
		ONAL)	
	OPTION – A : INOR	IGANIC CHEMISTRY	1
41.	In CO_2 molecule, the band at 1340 cm (doublet) at :	n ⁻¹ due to fermireso	nance, has band maxima
	(1) 1286 and 1388 cm ⁻¹	(2) 1276 and 1398 c	cm^{-1}
	(3) 1277 and 1397 cm ⁻¹	(4) None of these	
42.	In AB_5 type TBP molecules, the number	er of IR active stretchi	ng vibrations are :
	(1) Three (2) Four	(3) Two	(4) Five
43.	In thiocynato complexes, the $C \equiv N$ isothiocynato complexes.	stretching frequenci	es are than in
	(1) Higher (2) Lower	(3) Similar	(4) None of these
44.	Value of 'g' for an atom having ground	state term symbol ² I	P _{3/2} will be:
	(1) 2.0 (2) 1.33	(3) 1.73	(4) 2.25
45.	In EPR spectrum of bis (salicyladimin major peak consists of :	e) copper (II), the hy	perfine structure of each
	(1) Nine subpeaks	(2) Fifteen subpeak	KS
DIADA	(3) Eleven subpeaks	(4) Ten subpeaks	
rnut	JRS-EE-2013/Chemistry/(A)		

46.	46. Quadrupole splitting is <i>not</i> observed in the MB spectru	ım of :
	(1) $Fe(CO)_5$ (2) $FeSO_4$ (3) $K_3[Fe(CN)_5]$	(4) FeCl ₃
47.	47. The radical anion $[ON(SO_3)_2]^{2-}$ shows in ESR:	
	(1) A triplet hyperfine structure from nitrogen	
	(2) Hyperfine splitting of 13.05 gauss	8
	(3) No splitting due to S and O	
	(4) All of the above	
48.	48. Which is <i>correct</i> order of chemical shift (δ) decrease in	MB spectra ?
	2	$^{2-} > N^{3-} > Cl^{-}$
	(3) $Cl^- > CN^- > O^{2-} > N^{3-}$ (4) $CN^- > N$	$^{3-} > O^{2-} > CI^{-}$
49.	49. Which does <i>not</i> apply to mass spectrometry?	
	(1) Magnetic field (2) Accelerati	on potential
	(2) 15:	and fragmentation
50.		4
	(1) Polymer softening (2) Desorption	n
	(3) Sublimation (4) Loss of mo	
51.		note it is a second of the sec
01.	(1) I	
	(1) Long-range forces (2) Short-range	
	(3) Pion cloud only (4) None of the	e above
52.	52. Which nuclear model can best explain that all elemen than 92 are radioactive?	ts with atomic number greater
	(1) Liquid Drop Model (2) Shell Mod	el
	(3) Collective Model (4) All of thes	e
53.	53. What is the total binding energy of ${}_{3}^{6}Li$ nucleus having	atomic mass 6.0170 amu ?
	(Mass of proton = 1.00727 a.m.u. and mass of neutron =	
	the second of th	,

(3) 28.69 MeV

(2) 27.89 MeV

(1) 28.82 MeV

(4) 27.69 MeV

54.	Spallation reactions are in	nitiated by high	spe	ed:		
	(1) Protons		-	α-particles		
	(3) Both Protons and α -p	particles	(4)	None of these		
55.	$^{27}_{13}Al$ is a stable Isotope. I	It is expected to	disi	ntegrate by :		
	(1) α – emission (2)	β^- emission	(3)	β^+ emission	(4)	Proton emission
56.	The radioactivity detecto	or based on light	em	ission is :		
	(1) Cloud Chamber		(2)	Ionization Chan	nber	N.
	(3) Scintillation Counter		(4)	Solid State Dete	ctor	
57.	To which element, Neutr	ron Activation A	nal	ysis is applicable	?	
	(1) Magnesium (2)	Niobium	(3)	Vanadium	(4)	Copper
58.	The sensitivity of NAA c	depends upon :				
	(1) Atomic cross section	1. T.	(2)	Flux of particles	3	
	(3) Half life of Nuclide	*		All of these		
59.	lonization Chamber uses	s lower operatin	g vo	oltage than :		
	(1) Proportional Counte			Solid ion Cham	ber	
	(3) Scintillation Counter	r	(4)	All of these		
60.	Which of the following N	Nuclei is <i>not</i> dou	ubly	magic?		
	(1) ${}^{4}_{2}He$ (2)	¹⁶ ₈ O	(3)	²⁰⁸ ₈₂ Pb	(4)	²³⁸ ₉₂ U
61.	The metal species preser	nt in Nitrogenas	e is	· ·		
	(1) Zinc (2)	Molybdenum	(3)	Tungsten	(4)	Lead
62.	Which of the following i	s used in Psycho	otro	pic drugs ?		
	(1) Sodium fluoride	•		Lithium carbon	ate	
	(3) Barium sulphide		(4)	Zinc oxide		
63.	CYTOCHROM P-450 en	zvme contains r	neta	al:		
####		Copper		Cobalt	(4)	Iron
		1.1	1-7		(-/	

P. T. O.

64	Deficiency of <i>Zn</i> causes the disease: (1) Convulsions (3) Dwarfism	(2) Liver necrosis(4) Kinky-hair syndrome
65.	Oxymyoglobin contains: (1) Oxygen in hole of Porphyrin (2) Oxygen bonded to Mg (3) Oxygen at trans position to histidir (4) Oxygen not present at all	ne chain
66.	Photochemical Smog is caused by : (1) Oxides of Nitrogen (3) Carbon monoxide	(2) Hydrocarbons(4) Oxides of N, Hydrocarbons and CO
67.	Ozone depletion in Antarctica is due to (1) Acrolin (3) SO_2 and SO_3	the formation of : (2) Peroxyacetylnitrate (4) Chlorine nitrate
68.	Silicoses is caused by: (1) Acid rain (3) Inhalation of aerosols	(2) Depletion of Ozone(4) Inhalation of SO₂
69.	Catechol type siderophore is: (1) Ferrichrome (3) Ferrioxamine	(2) Enterobactin(4) None of these
70.	In the resting state, the level of Ca^{2+} not (1) Very low	ear the muscle fibre is: (2) Very high
71.	(3) Medium The heptacity of tropylium ion is: (1) n^5 (2) n^1	(4) No change (3) n^7 (4) n^3
72.	Fluxional behaviour in a molecule can be	
	(1) IR spectroscopy (3) NMP spectroscopy	(2) X-rays
PHDU	(3) NMR spectroscopy JRS-EE-2013/Chemistry/(A)	(4) UV-Vis spectroscopy
	J	P. T. C

- 73. Ziegler-Natta catalyst is:
 - (1) $TiCl_4 AlEt_3$

(2) $RhCl(PPh_3)_3$

(3) $CO_2(CO)_8$

- (4) $PdCl_{1}^{2}$
- 74. Electrophilic Carbene ligands are also called:
 - (1) Fischer Carbene

- (2) Schrock Carbene
- (3) Homonuclear Carbene
- (4) Heteronuclear Carbene
- In Ferrocene, which metal orbital interacts with the composite ring orbitals C_pE_{1g} of ligand for the formation of covalent bonds:
 - (1) 4 pz, 4 px

(2) 3 dxz, 3 dyz

(3) 3 dxy, $3d_{x^2-y^2}$

- (4) $(DS)_{x}$, $(DS)_{y}$
- The C = C infrared absorption peak of $\left[Mn(n^3 C_3H_5)(CO)_4\right]$ appears at:
 - (1) 1620 cm^{-1}

- (2) 1570 cm^{-1} (3) 1505 cm^{-1} (4) 1520 cm^{-1}
- 77. Which metal alkyne complex is $4e^-$ donor?
 - (1) $Pt^{II}Cl_2$ (p-toluidine) $Bu^+C = C Bu^+$
 - (2) $Pt^0(PPh_3)_2(Ph C \equiv C Ph)$
 - (3) $[C_2H_2CO_2(CO)_6]$
 - (4) None of the above
- 78. Transition metal alkene complexes are readily attacked by:
 - (1) Electrophile
 - (2) Nucleophile
 - (3) Both Electrophile and Nucleophile
 - (4) No reaction with electrophile & nucleophile
- **79.** Which of the following does *not* obey EAN rule?
 - (1) $V(CO)_3(\pi C_5H_5)(R_2C = CR_2)_2$ (2) $Co(CO)_2(\pi C_5H_5)$
- - (3) $Fe(\sigma C_5H_5)(\pi C_5H_5)(CO)_3$ (4) $Cr(C_6H_6)(CO)_3$

80.	Proton NMR spectrum of $(n^1Cp)(n^5Cp)Fe(CO)_2$ at ambient temperature shows:
	(1) Two singlets of almost equal intensity
	(2) A singlet and a multiplet of equal intensity
	(3) One singlet of high intensity
	(4) Two multiplets of equal intensity
81.	The current due to supporting electrolyte is called:
	(1) Residual Current (2) Diffusion Current
	(3) Migration Current (4) Alternate Current
00	
82.	In anodic stripping voltametry, the concentration of metal ions is in the range of:
	(1) 10^{-3} to 10^{-6} m (2) 10^{-4} to 10^{-7} m
	(3) 10^{-5} to 10^{-8} m (4) 10^{-5} to 10^{-10} m
83.	The half wave potential for Cu^{2+} in 1 M NaOH is:
	(1) -1.12 V (2) -0.41 V (3) -1.53 V (4) -1.46 V
84.	The diffusion current in polarography is given by:
	(1) $i_d = i_l - i_r$ (2) $i_d = i_l + i_r$ (3) $i_d = 2i_l - i_r$ (4) $i_d = i_l - 2i_r$
85.	Ion-selective membrane used in ion selective electrodes are:
	(1) Glass membranes (2) Crystalline membranes
	(3) Ion exchange resin membranes (4) All of the above
272	
86.	The detection limit for anodic stripping voltametry is:
	(1) 10^{-2} to 10^{-4} m (2) 10^{-4} to 10^{-6} m
	(3) 10^{-9} to 10^{-10} m (4) 10^{-5} to 10^{-7} m
37.	Which of the following can be used as end point detection technique in Coulometric titrations?
	(1) Potentiometry (2) Amperometry
	(3) Conductometry (4) Potentio, ampero and conductometry
38.	A rotating Pt electrode is preferred over DME in the titration involving :
	(1) Bromine (2) Ag^+ ion
	(3) Fe^{2+} ion (4) Br, Ag^{+} and Fe^{2+} all

89.	In nuclear medicine imaging, radiopharmaceuticals are taken:			
	(1) Intravenously	(2) Orally		
	(3) Both I and II	(4) Neither I nor II		
90.	The mode of decay in radio Iodine-131	is:		
	(1) α -decay (2) β -decay	(3) γ-decay (4) Neutron decay		
91.	The increased concentration of K^+ in expression of K^- in expression K^+ in K^+ in expression K^+ in K^+	xtra cellular fluid causes :		
	(1) Hypokalemia	(2) Hyperkalemia		
	(3) Addison's disease	(4) Dysphea		
92.	Liver necrosis disease is caused by defice	ciency of :		
	(1) Calcium (2) Chromium	(3) Selenium (4) Cobalt		
93.	Cancer causing chemicals are:			
	(1) Oxines & Azo compounds	(2) Urethanes & nitrosoamines		
	(3) Alkylating agents	(4) All of these		
94.	Which iron salt has minimum interferen	nce with tetracyclin drug absorption in gut?		
	(1) Ferrous sulphate	(2) Ferrous fumerate		
	(3) Ferrous succinate	(4) Ferric – EDTA		
95.	Which of the following is a antiviral dr	ug?		
	(1) 1-methyl-2-mercaptoimidazole			
	(2) 1-methylisatin-3-thiosemicarbazon			
	(3) 2-formyl-pyridine thiosemicarbazo(4) Aspirin	ne		
00	2000 19			
96.	1-methyl-2-mercaptoimidazole is used			
	(1) Anti thyroid activity	(2) Anti cancer activity		
	(3) Anti bacterial activity	(4) Anti malarial activity		
97.	The concentration of Lithium in Plasma	a should be :		
	(1) 2.0 m mol/litre	(2) $0.4 - 1.6 \text{ m mol/litre}$		
	(3) $0.6 - 1.2 \text{ m mol/litre}$	(4) $2.0 - 2.4 \text{ m mol/litre}$		

98.	Chemical name of V	itam	oin B_{12} is:				
	(1) Cyanocobalamii	n					
	(2) Hydroxycobalar	min					
	(3) Methylcobalami	in					
	(4) Cyano-, hydrox	y – a	nd methyl cobal	lami	n		
99.	Recommended Diet	ry al	lowances for a r	nale	(19-70 years) for	r Vitamin C is :	
			90 mg		20 mg	(4) 5.0 mg	
100.	Source for polypher	olic	antioxidants are	e foc	od such as:		
	(1) fresh fruits and	vege	etables	(2)	whole wheat ce	reals and tea	20
	(3) vegetable oils			(4)	eggs		
	j.	OPT	ION – B : PHYS	SICA	L CHEMISTRY		
41.	The radius of $^{27}_{13}Al$ r	nucle	eous is :				
	(1) 4.5×10^{-15} m			(2)	$4.5 \times 10^{-14} \text{ m}$		
	(3) 4.5×10^{-16} m			(4)	$4.5 \times 10^{-13} \text{ m}$		
42.	Let a molecule AB_6 changed to AB_5C w			nt g	group. The point	t group that result	if it is
	(1) D_{4h}	(2)	C_{2v}	(3)	C_{4v}	(4) None of these	
43.	Water molecule belo	ongs	to point group	:			
	(1) C_{3v}	(2)	C_{2v}	(3)	D_{4h}	(4) D_{2h}	
44.	The hyperfine splitt unpaired electron is			ized	to map the mol	ecular orbital occu	pied by
	$(1) a = Q^e$	(2)	A = Q/e	(3)	a = Q + e	(4) A = Q - e	
	where e is the unpair	ired	density on a car	bon	atom.		
45.	The Mössbauer spec	ctra	of $K_4Fe(CN)_6$ a	nd [$[K_3Fe(CN)_5NO]$	consist of, respecti	vely:
	(1) one line each			(2)	two lines each		
	(3) two and four lin	nes		(4)	one and two lin	nes	
HDI	IDS EE 2012/Chamic	tway//	(A)				ртс

46.	The power output is:	of a laser in which a	2.0 J pulse can be de	elivered in one nanosecond
	(1) 2.0 GW	(2) 0.20 GW	(3) 20.0 GW	(4) 0.02 GW
47.	The Miller indices (1) (236)	of crystal plane which (2) (326)	ch cut through the ci	rystal axis at (2 <i>a</i> , 3 <i>b</i> , <i>c</i>) are : (4) (362)
48.	(1) positive ions ar(2) positive ions ar	pear in crystals, in we re much larger than re equal to negative are much larger than ove	the negative ions ions in size	
49.	The coordination n (1) 1	number of an atom in (2) 6	n a face–centred cubi	ic unit cell is : (4) 12
50.	The probability factors of: (1) Enthalpy	ctor in collision the		es should be interpreted in (4) Viscosity
51.	NMR transition is The chemical shift (1) 1.32	shifted from the re		Iz spectrometer by 529 Hz. (4) 7.58
52.	If activation energy (1) infinity where <i>A</i> is the frequency	(2) A	n is zero, then rate o	onstant will be equal to: (4) A^{-1}
53.	incorrect?(1) Gaseous atoms(2) Atoms are ioni(3) Atoms are ioni	s are ionized by bom ized so they can be a ized so they can be o	nbarding them with laccelerated	n in mass spectrometer is high energy electrons
54.	The region of an i as: (1) Thumb print regions.		where many absorp (2) Hand print re	etions takes place is known
	(3) Finger print re	gion	(4) Foot print reg	rion

- 55. No diffraction would result, if:
 - (1) $\lambda < < 2d$
- (2) $\lambda > 2d$
- (3) $\lambda \simeq 2d$
- (4) $\lambda < < d$
- **56.** Select the correction equation from the following:
 - $(1) \ \left(\frac{\partial V}{\partial T}\right)_S = \frac{C_v}{T} \left(\frac{\partial T}{\partial P}\right)_V$

(2) $\left(\frac{\partial S}{\partial V}\right)_T = \frac{C_p}{T} \left(\frac{\partial T}{\partial V}\right)_P$

(3) $\left(\frac{\partial V}{\partial T}\right)_V = \frac{C_v}{T} \left(\frac{\partial T}{\partial P}\right)_V$

- (4) $\left(\frac{\partial S}{\partial V}\right)_P = \frac{C_p}{T} \left(\frac{\partial T}{\partial V}\right)_P$
- **57.** Which of the following is *not* a state function?
 - (1) Work
- (2) Heat
- (3) Enthalpy
- (4) Entropy
- **58.** The fundamental vibrational frequency of a molecule is 1035 cm⁻¹. Its force constant would be:
 - (1) $4\pi^2 c\mu^2 (1035) \times 10^4$

(2) $4\pi^2 c^2 \mu^2 (1035)^2 \times 10^2$

(3) $4\pi^2c^2\mu(1035)^2\times10^4$

- (4) $4\pi^2 c^2 \mu (1035)^2 \times 10^2$
- **59.** The pH of a solution is 6. Acid is added to decrease the pH to 4. The increase in hydrogen ion concentration is :
 - (1) Hundred times

(2) Two times

(3) Thousand times

- (4) Ten times
- **60.** The quantum yield of photochemical gas reaction 2 $HI \rightleftharpoons H_2 + I_2$ at wavelength 2400 Å is:
 - (1) 0.20
- $(2) 10^3$
- (3) 10
- (4) 2

- **61.** Which of the following statement is *correct*?
 - (1) A triple point is invariant
 - (2) A triple point is monovariant
 - (3) A triple point is also called incongruent melting point
 - (4) Eutectic point is same as triple point
- 62. Mean free path of a gas molecule is:
 - (1) independent of pressure
 - (2) inversely proportional to temperature
 - (3) directly proportional to pressure
 - (4) None of these

- Van't Hoff equation ; (at $c \rightarrow o$) for predicting molar mass of a polymer solution reduces to:
 - (1) $\lim_{C \to 0} \left(\frac{\pi}{C} \right) = \frac{R}{M}$

(2) $\lim_{C \to 0} \left(\frac{\pi}{C} \right) = \frac{T}{M}$

(3) $\lim_{c \to 0} \left(\frac{\pi}{c} \right) = \frac{RT}{M}$

(4) $\lim_{C \to 0} \left(\frac{\pi}{C} \right) = \frac{RM}{T}$

Where π is the osmotic pressure.

- The heterogeneity of the polymer sample is called its:
 - (1) Polydispersity index

- (2) Monodispersity
- (3) Average molecular mass
- (4) Polydispersity
- Oriental polarizability α , is related to temperature T, as:
 - (1) $\alpha = \frac{\mu}{2kT}$
- (2) $\alpha = \frac{\mu^2}{2kT}$ (3) $\alpha = \frac{\mu}{kT}$

where all the symbols have usual significance.

- 66. $\psi_{21(-1)}$ represents:
 - (1) 2s orbital

- (2) $2p_x$ orbital (3) $2p_y$ orbital (4) $2p_z$ orbital
- The average of a measurable property px, can be determined by employing relation:
 - $(1) < p_x > = \frac{\int \hat{p}_x \phi \phi^{@} d\tau}{\int \phi \phi^{@} d\tau}$

 $(2) < p_x > = \frac{\int \phi \, \hat{p}_x \phi^{@} d\tau}{\int \phi \phi^{@} d\tau}$

(3) $\langle \hat{p}_{\chi} \rangle = \frac{\int \phi \phi^{@} \hat{p}_{\chi} d\tau}{\int \phi \phi^{@} d\tau}$

(4) None of the above

- **68.** $\left| x, \frac{d}{dx} \right|$ will yield :
 - (1) zero
- (2) 1
- (3) -1
- (4) 2

69. The Hamiltonian operator for a Helium atom is expressed by :

(1)
$$\hat{H} = \frac{-h^2}{2m} (\nabla_1^2 + \nabla_2^2) + \frac{e^2}{r_{12}}$$

(2)
$$\hat{H} = \frac{-h^2}{2m} \left(\nabla_1^2 + \nabla_2^2 \right) + \frac{ze^2}{r_1} + \frac{ze^2}{r_2}$$

(3)
$$\hat{H} = \frac{-h^2}{2m} \left(\nabla_1^2 + \nabla_2^2 \right) - \frac{ze^2}{r_1} - \frac{ze^2}{r_2} + \frac{e^2}{r_{12}}$$

(4)
$$\hat{H} = \frac{-h^2}{2m} \left(\nabla_1^2 + \nabla_2^2 \right) - \frac{e^2}{r_{12}} + \frac{ze^2}{r_1} + \frac{ze^2}{r_2}$$

where ∇_1 and ∇_2 are Laplacien operators for electrons 1 and 2 respectively. All other symbols have usual significance.

70. The Eigen value is/can:

(1) always positive

(2) always negative

(3) be zero

(4) be positive as well as negative

71. Marcus refined the RRK theory by taking into consideration:

- (1) vibrations of the energized molecule
- (2) rotations of the energized molecule
- (3) all vibrations and rotation of the energized molecule
- (4) None of these

which in turn led to RRKM theory

72. The steric factor, P is related to Entropy of activation, $\Delta S^{\#}$ by :

(1)
$$P = \frac{RT}{ZNh} \cdot e^{\Delta S^{\#}/R}$$

(2)
$$P = \frac{RT}{7Nh} \cdot e^{-\Delta S^{\#}/R}$$

(3)
$$P = \frac{RT}{h} \cdot e^{\Delta S^{\#}/R}$$

(4)
$$P = \frac{R}{ZNh} \cdot e^{\Delta S^{\#}/RT}$$

73. The Gibbs adsorption equation is:

(1)
$$\Gamma = \frac{-RT}{C} \cdot \frac{dc}{dr}$$

(2)
$$\Gamma = \frac{-CT}{R} \cdot \frac{dr}{dc}$$

(3)
$$\Gamma = \frac{-C}{RT} \cdot \frac{dr}{dc}$$

(4)
$$\Gamma = \frac{-CT}{R} \cdot \frac{dc}{dr}$$

where all the notations have usual significance.

74. The cell potential is a:

- (1) Thermodynamic property
- (2) Colligative property

(3) Extensive property

(4) Intensive property

75. How many normal modes of vibration are possible for benzene molecule?

- (1) 6
- (2) 30
- (3) 12
- (4) 8

76. Synthetic fibres like nylon-66 are very strong because:

- (1) They have linear molecules consisting of very long chains
- (2) They have high molecular weights and high melting points
- (3) They have a high degree of cross-linking by strong carbon-carbon bond
- (4) They have linear molecules interlinked with forces like hydrogen bonding

77. Polyethene is:

(1) Thermosetting

(2) Thermoplastic

(3) Both (1) and (2)

(4) None of these

78. A solid acts as an adsorbent because it has:

(1) a definite shape

- (2) a high lattice energy
- (3) unsaturated valencies
- (4) small pores in it

79. According to Langmuir adsorption isotherm, the amount of gas adsorbed at very high pressure:

- (1) goes on decreasing with pressure
- (2) goes on increasing with pressure
- (3) increases first and decreases later with pressure
- (4) reaches a constant limiting value

- 80. Lyophilic sols are more stable than lyophobic sols because:
 - (1) The colloidal particles are solvated
 - (2) The colloidal particles have positive charge
 - (3) The colloidal particles have no charge
 - (4) There are strong electrostatic repulsions between the negatively charged colloidal particles
- **81.** Which statement corresponds to the case where the chemical shift difference between two coupling protons is less than five times the coupling constant?
 - (1) An Ax pattern is observed
 - (2) An AB pattern is observed
 - (3) A first order spectrum is expected
 - (4) An undistorted binomial pattern is expected
- 82. Which of the following statement is false about NMR experiment?
 - (1) The energy difference between two spin states depends on the strength of magnetic field
 - (2) When energy absorption occurs, the nuclei are said to be in resonance with the electromagnetic radiation
 - (3) The energy required to flip the spin of a proton is in the infrared region of the electromagnetic radiation
 - (4) None of these
- **83.** The number of microstates for distributing three atoms among energy states, having three quanta of energy are :
 - (1) 1
- (2) 6

- (3) 10
- (4) 3
- 84. The rotational energy possessed by atom having one degree of atom is:
 - (1) RT
- (2) kT
- (3) $\frac{1}{2}RT$
- $(4) \quad \frac{1}{2}kT$
- **85.** Translational partition function, q_t is expressed by :
 - (1) $q_t = \frac{(2\pi mkT)^{3/2}V}{RT}$

(2) $\frac{(2\pi mkT)^{3/2}}{RT}$

(3) $q_t = \frac{(2\pi mRT)^{3/2}V}{RT}$

(4) $\frac{(2\pi mRT)^{3/2}}{T}$

The step down ladder operator is:

- $(1) \quad \hat{J}_{+} = \hat{J}_{x} + \hat{J}_{y} \qquad (2) \quad \hat{J}_{+} = \hat{J}_{x} \hat{J}_{y} \qquad (3) \quad \hat{J}_{-} = \hat{J}_{x} + i\hat{J}_{y} \qquad (4) \quad \hat{J}_{-} = \hat{J}_{x} i\hat{J}_{y}$

where all the symbols have usual significance.

87. Molecules orbital theory:

- (1) underestimates the importance of covalent structures
- (2) overestimates the importance of ionic structures
- (3) puts equal importance on both ionic and covalent structures
- (4) None of the above

88. Operators \hat{A} and \hat{B} are said to be commutative, if :

(1) $\hat{A} + \hat{B} = 0$

(2) $\hat{A} - \hat{B} = 0$

(3) $\hat{A} \hat{B} + \hat{B} \hat{A} = 0$

(4) $\hat{A} \hat{B} - \hat{B} \hat{A} = 0$

89. Which of the following is *correct*?

(1) $\left[\hat{L}^2, \hat{L}_z\right] > 0$

(2) $\left[\hat{L}^2, \hat{L}_z\right] < 0$

 $(3) \quad \left[\hat{L}^2, \hat{L}_z\right] = 0$

(4) $\left[\hat{L}^2, \hat{L}_z\right] = i\hbar \hat{L}_x$

90. Which of the following is *true*?

- (1) $q_{tr} \gg q_{rot} \gg q_{vib} \gg q_{elect}$
- (2) $q_{tr} \gg q_{vib} > q_{rot} > q_{elect}$
- (3) $q_{tr} \ll q_{rot} \ll q_{vib} \ll q_{elect}$
- (4) $q_{tr} < q_{vib} < q_{rot} < q_{elect}$

where q_{tr} , q_{rot} , q_{vib} and q_{elect} are translational, rotational, vibrational and electronic partition function.

91. When *Pt* and *Co* are electrically connected, which one gets corroded?

- (1) Pt
- (2) Co
- (3) Cannot decide (4) None

92. Pipes of different materials, such as copper and steels, should not be embedded in a trench in close proximity to avoid:

- (1) deposition of copper on steel pipe
- (2) depassivation of steel
- (3) corrosion of copper pipes
- (4) galvanic corrosion

93. If moisture and dirt entrapment is a major problem, it would be good prac-				good practice to:		
	(1) Spot weld	(2) Skip weld		Stitch weld		Butt weld
94.	The number of α	and β particles em	itted b	$^{218}_{ot}$ Ra in char	nging	to a stable isotope of
	$_{82}^{206}Pb$ will be:	8 6 8		7 81		to a stable isotope of
	(1) 3 and 2	(2) 2 and 4	(3)	3 and 4	(4)	3 and 1
95.	Milk is a/an:					
	(1) Emulsion	(2) Gel	(3)	Suspension	(4)	Pure solution
96.	At temperature ne	ar absolute zero, ga	aseous	particles posse	ss onl	v :
	(1) Translational			Vibrational en		<i>2</i> *
	(3) Rotational ene	ergy		Rotational and	-	ational energy
97.	Lattice strength of	various types of cr				
		nt > metallic > mole		,		
		etallic > ionic > mol				
		alent > ionic > mole				
		ic > metallic > mol				
98.	The energy per mo	ole of light having w	vavele	ngth of 85 nm is	s:	
	(1) $1.207 \times 10^6 \text{ J m}$	ole ⁻¹		$1.307 \times 10^6 \text{J m}$		
	(3) $1.407 \times 10^6 \text{ J m}$	ole ⁻¹		$1.507 \times 10^6 \mathrm{J} \mathrm{m}$		
99.	Which of the foll photographic films	owing has been a	used i	n the manufa	cture	of non-inflammable
	(1) Cellulose nitra	te	(2)	Cellulose xant	hate	
	(3) Cellulose percl	nlorate	(4)	Cellulose aceta	ate	
100.	Which of the follow	ving is an irreversib	ole cell	?		
	$(1) Zn/Zn^{2+}/Ag$			$Zn/H_2SO_4/I$	Ag	
	(3) $Zn/Zn^{2+}//C$	d^{2+} / Cd		$Cd/Cd^{2+}//K$		$_{12}Cl_{2}(s)/Hg$

OPTION - C : ORGANIC CHEMISTRY

41.	Which is <i>not</i> an anticancer drug?			
	(1) Vincristine	(2) Cyclophosphamide		
	(3) Doxorubicin	(4) Gabapentin		
42.	What kind of spectroscopy is FT NN	MR?		
	(1) Absorption (2) Emission	(3) Both of these (4) None		
43.	The presence of a bromine is indicat and M + 2 peaks in the intensity ratio	ed in a compound if its mass spectrum shows M		
	(1) 2:1 (2) 3:1			
44.	LAH in combination with AlCl ₃ can	be used to convert diarylketone (Ar_2CO) into :		
		(3) $ArCHOAr$ (4) $Ar - Ar$		
45.	1, 3-Dithiane is a structural equivalen	at of:		
	(1) Acylcarbanion	(2) Formylcarbanion		
	(3) Acyl carbonium ion	(4) Formylcarbonium ion		
46.	Select the right decreasing order of nu	scleophilicity :		
	0 0			
	(1) $CH_3 - CH_2 > NH_2 > CH \equiv C > C$	DH .		
	(2) $CH \equiv C > NH_2 > CH \equiv C > OH$			
	(3) $\stackrel{\Theta}{OH} > \stackrel{\Theta}{NH_2} > CH \equiv \stackrel{\Theta}{C} > CH_3 - CH$	H_2		
	(4) $\stackrel{\Theta}{NH_2} > CH \equiv \stackrel{\Theta}{C} > OH > CH_3 \stackrel{\Theta}{CH_2}$			
47.	The ratio $M \mid M + 2$ for the presence	of chlorine in a compound in its mass spectrum		
	is:	or another at a compound in its mass spectrum		
	(1) 3:1 (2) 1:2	(3) 4:2 (4) 2:1		
48.	Which is right about stretching frequency from intensity point of view?	nencies of $C = C$ and $C = O$ in i. r. spectroscopy		
	(1) $V_{C=O}$ is stronger than $V_{C=C}$			
	(2) $V_{C=O}$ is weaker than $V_{C=C}$			
	(3) $V_{C=O}$ and $V_{C=C}$ have equal inter-	nsity		
	(4) None of these			
PHDUI	RS-EE-2013/Chemistry/(A)			
1, (14)				

49. What is the decreasing order of chemical shifts for protons among these compounds?

- (1) Alkynes > Alkanes > Alkenes
- (2) Alkynes > Alkenes > Alkanes
- (3) Alkanes > Alkynes > Alkenes
- (4) Alkenes > Alkynes > Alkanes

Mass spectroscopy requires a minimum sample size of : 50.

- (1) Micrograms
- (2) Nanograms
- (3) Picograms
- (4) Grams

51. Internal reference for phosphorus-31 is:

- (1) $H_3PO_2(85\%)$ (2) $H_3PO_4(85\%)$ (3) $H_3PO_3(85\%)$
- (4) None of these

52. Oct-4-ene shows C = C frequency in its i. r. spectrum at:

- (1) $1680 1600 \text{ cm}^{-1} \text{ (vw)}$
- (2) $1680 1600 \text{ cm}^{-1}$ (s)
- (3) $1680 1600 \text{ cm}^{-1} \text{ (m)}$
- (4) No peak in this region

53. Continuous wave NMR spectroscopy involves:

- (1) simultaneous detection of all resonances
- (2) sequential detection of resonances of nuclei
- (3) first simultaneous followed by sequential detection of resonances
- (4) sometimes sequential and sometimes simultaneous detection of resonances

The C_{60} fullerene shows lesser number of peaks in the i. r. spectrum because:

- (1) It contains a graphite like structure
- (2) It is asymmetric
- (3) It contains sp^3 , sp^2 and sp carbons
- (4) It has a symmetrical structure

55. Carbonyl compounds exhibit the transition:

(1) $\sigma - \sigma^* 2 \pi - \pi^*$

- (2) $\sigma \pi^*$, $\pi \pi^*$, $n \pi^*$
- (3) $\sigma \sigma^*$, $n \sigma^*$, $\pi \pi^*$
- (4) None of these

56. By which of these, acetophenone can be converted to phenol:

- (1) m-CPBA followed by base catalyzed hydrolysis
- (2) Conc. HNO₃
- (3) Iodine and NaOH
- (4) singlet oxygen followed by base catalyzed hydrolysis

57.	Diazomethane wit	2000				
	(1) Pyrazole	(2) Pyrazoline	(3)	Piperidine	(4)	Pyrimidine
58.	Which is used for	treating Gout ?				
	(1) Reserpine	(2) Atropine	(3)	Colchine	(4)	None
59.	Cinnamoyl alcohol	l upon treatment wit	h leac	d tetraacetate g	ives :	
	(1) Acetophenone		(2)	Cinnamic acid		
	(3) Propanal		(4)	Cinnamaldehy	de	
60.	Which is a strong b	pase?				
	(1) Aniline		(2)	Cyclohexylam	ine	
	(3) Pyrrole			Quinoline		~
61.	In SN ² displaceme	ent on methyl bromic	de, wł	hich is most eff	ectiv	e ?
	(1) $C_2 H_5 O^{\Theta}$	(2) <i>HO</i> ^Θ		$C_6H_5O^{\Theta}$		CH_3COO^{Θ}
62.	Of these which read	cts fastest with N-bro	omosı	accinimide (NE	3S) ?	
	(1) Toluene	(2) Methane		Pyridine		Benzene
63.	Generally, an incre OH^{Θ} :	ease in solvent pola	rity fo	or the reaction	betr	ween alkylhalide and
	(1) Increases the ra	ate of SN^1 reaction				
	(2) Decreases the r	ate of SN^2 reaction				
	(3) Increases the ra	ate of SN^2 reaction				
	(4) Does not change	ge the rate of SN^1 an	d SN	² reactions		
64.	Which of these is th	ne best leaving group	?			
	(1) Chloride	(2) Fluoride	(3)	Tosylate	(4)	None
35.	Of these which is le	east reactive ?				
	(1) CH_2N_2	(2) $CH_2 = C = O$	(3) :	: CH ₂	(4)	·ĊH ₂

		25
66.	By adding sodium dodecyl sulfate dur to:	ring the electrophoresis of proteins, it is possible
	(1) determine a proteins isoelectric po	oint
	(2) determine an enzymes specific act	tivity
	(3) preserve a proteins native structur	(PE)
	(4) determine the amino acid composi	
67.	The triplet carbene with cis-alkene give	
	(1) cis-product	(2) trans-product
	(3) both cis and trans products	(4) no product
68.	DNFB is used to identify the N-termin called?	nal amino acid of peptides. What is this reagent
	(1) Van-Slyke Reagent	(2) Sorenson Reagent
	(3) Sanger's Reagent	(4) None of these
69.	Internal reference for F-19 is:	
	(1) NaF (2) CF ₄	(3) CFCl ₃ (4) NH ₄ F
70.		4-
70.	What is the internal reference for N- 15	; ?
	(1) Liq. NH_3 (2) NH_4OH	$(3) NH_4Cl \qquad (4) NH_4F$
71.	 What is <i>incorrect</i> for SN¹ reactions? (1) Rearrangement is possible (2) Rate is affected by solvent polarity (3) The strength of the nucleophile is in (4) The order of reactivity is 3° > 2° > 1 	mportant in determining the rate
72.	Number of orientations with respect to (1) 2 (2) 3	applied magnetic field for deuterium is: (3) 1 (4) 4
73.	Aspartic acid shows:	(1) 1
	(1) pKa_1	(2) nKa
	(3) pKa_1 and pKa_2	(2) pKa_2
		(4) pKa_1 , pKa_2 and pKa_3

74.	Which is incorrect regarding grading of sugars?						
	(1) Sucrose-1	(2)	Fructose-1.75	(3)	Lactose-6	(4)	Saccharin-3500
75.	In trimethylanilini	ım c	ation, the o, m ar	nd p	-protons are des	hiel	ded because of :
	(1) Resonance			(2)	Inductive effect	t	
	(3) Both of these			(4)	None of these		
76.	The protons of the	mide	dle carbon in ally	ıl ca	rbanion absorb a	ıt wl	nat ppm ?
	(1) 2.46		4.75		1.5		6.28
77.	Which of these enh	ance	s the absorption	of V	itamin A ?		
	(1) Vit. E	(2)	Vit. K	(3)	DMG	(4)	None
78.	The CH proton in is	sopre	opyl carbocation	abs	orbs at what ppi	m?	
	(1) 5.06		6.28		4.75		13.50
79.	What is the <i>correct</i> substitution?	ct de	ecreasing order	of 1	reactivity towar	ds e	electrophilic aromatic
	(1) Indole > Pyrrol(3) Pyrrole > Indol		•		Pyrrole > Pyrid Indole > Pyridi		
80.	Which is an Anti-ca	ncer	drug?				
	(1) Camptothecin	(2)	Captopril	(3)	Carprofen	(4)	Etodolac
81.	Which is a formylar	nion	equivalent?				
	(1) 1, 4-dithiane			(2)	Ethyl chlorofor	mate	2
	(3) Nitromethane			(4)	Acetylene		
82.	The CH proton in a	llyl c	carbocation abso	rbs a	at what ppm?		
	(1) 2.56	(2)	9.64	(3)	8.97	(4)	3.56
83.	The carboxypeptida (1) Zinc (II) and hy (2) Mg (II) and hyd (3) Zinc (II) and hyd (4) Mg (II) and hyd	drol roly drol	yzes COO bond zes COO bond yzes peptide bor	nd .			

84.	What is correct a	bout relaxation tim	nes?		
	(1) $T_2 = T_1$	(2) $T_2 > T_1$	(3) $T_2 < T_1$	(4) None of these	
85.	CMR spectrum of	of camphor shows h	now many peaks for	carbons?	
	(1) 10	(2) 9	(3) 8	(4) 7	
86.	Magic angle in d	egrees along z-dire	ction in NMR is:	3	
	(1) 45.1	(2) 54.7	(3) 135.3	(4) 125.3	
87.	Boltzmann popu	lation excess for pr	otons at 800 MHz at	298 K is :	
	(1) 16	(2) 32	(3) 48	(4) 128	
88.	ROH signal appe	ars at about what p	opm range in NMR ?		
	(1) 0.5 - 5.0		(2) 0.5	(4) 0.3 – 10.0	
89.	Which aromatic b	oand shows fine str	ucture in UV spectru	ım ?	
	(1) primary	(2) secondary	(3) tertiary	(4) none	
90.	What is incorrect	about electron imr	oact ionization techni		
	(1) It always lead	ls to the appearance	e of the parent peak	in the mass spectrum	
	(2) It is a "hard"	technique	parent peak	in the mass spectrum	
		ore fragmentation	of the parent peak ir	n comparison to the Chemical	
		potential of 50 – 70	eV for ionization		
91.			of a matrix in mass sp		
	(1) ESI + MALDI	about the use of			
	(3) EI + MALDI		(2) FAB + MAL		
1	NEO MARIE		(4) CI + MALD		
92.	The NH protons i	n coproporphyrin	absorb at about wha	t ppm ?	
	(1) + 1.0	(2) (-) 2.0	(3) (+) 3.0	(4) (-) 4.0	
93.	The general chem	ical shift range for	P-31 in ppm is :		
	(1) 0 - 500	(2) 0 - 600	(3) 0 - 700	(4) 0 – 1000	
94.	The number of ori	entations for B-11	with respect to appli	od field:	
	(1) 2	(2) 3	(3) 4	ed field is: (4) 5	
PHDUI	RS-EE-2013/Chem	istry/(A)	CNUCE III	1.47 V	

95.	Continuous wave NMR spectroscopy gives a spectrum which is:							
	(1) Frequency domain	(2) Time domain						
	(3) Both of these	(4) None of these						
96.	Which is a better Diels-Alder diene for	reaction with maleic anhydride?						
	(1) Furan (2) Pyrrole	(3) Thiophene (4) Pyridine						
97.	The thermal ring opening reactions of cyclobutenes are:							
	(1) Conrotatory							
	(2) Disrotatory							
	(3) Conrotatory or disrotatory depending upon the reaction temperature							
	(4) Cannot be predicted							
98.	Which is <i>not</i> used in treatment of arthr	itis?						
	(1) Glucosamine sulfate	(2) Chondroitin sulfate						
	(3) Methylsulfonyl methane	(4) Tosylchloride						
99.	Hexene-1 after reaction with metachlo Lithium aluminium hydride and then	roperbenzoic acid followed by treatment with with water in acidic medium gives:						
	(1) Hexane (2) Hexan-1-ol	(3) Hexan-2-ol (4) None						
100.	Betaine is an intermediate in :							
	(1) Wittig Reaction	(2) Stobbe Reaction						
	(3) Stephenson Reduction	(4) MPV Reduction						