(DO NOT OPENTHIS QUESTION BOOKLET BEFORETIME OR UNTIL YOU ARE ASKED TO DO SO)

PG-EE-2013 Five Year Mathematics (Hons.)

de C

Code

Time: 1¼ hours	Max. Marks: 100	Total Questions: 100
Roll No(in	figure)	(in words)
Name	Father's Name	
Mother's Name	Date of Examination	on:
(Signature of the candidate)	(Sig	gnature of the Invigilator)

CANDIDATES MUST READ THE FOLLOWING INFORMATION/INSTRUCTIONS BEFORE STARTING THE QUESTION PAPER.

- 1. All questions are compulsory and carry equal marks.
- 2. The candidate must return the Question book-let as well as OMR answer-sheet to the Invigilator concerned before leaving the Examination Hall, failing which a case of use of unfair-means/misbehaviour will be registered against him/her, in addition to lodging of an FIR with the police. Further the answer-sheet of such a candidate will not be evaluated.
- 3. In case there is any discrepancy in any question(s) in the Question Booklet, the same may be brought to the notice of the Controller of Examinations in writing within two hours after the test is over. No such complaint(s) will be entertained thereafter.
- The candidate MUST NOT do any rough work or writing in the OMR Answer-Sheet. Rough work, if any, may be done in the question book-let itself. Answers MUST NOT be ticked in the Question book-let.
- and the only blue or black **BALL POINT PEN** of good quality in the OMR Answer-Sheet.
- be no negative marking. Each correct answer will be awarded one full mark.

 The state of the sta
- ERING THE QUESTIONS, THE CANDIDATES SHOULD ENSURE
 EAVE BEEN SUPPLIED CORRECT AND COMPLETE BOOK-LET.

 ANY, REGARDING MISPRINTING ETC. WILL NOT BE
 MINUTES AFTER STARTING OF THE EXAMINATION.

Question No.	Questions
1.	For any real numbers x and y, $\cos x = \cos y$ implies (1) $x = n \pi + (-1)^n y$, where $n \in \mathbb{Z}$ (2) $x = n \pi \pm y$, where $n \in \mathbb{Z}$ (3) $x = n \pi + y$, where $n \in \mathbb{Z}$ (4) $x = (2n + 1) \frac{\pi}{2} + y$, where $n \in \mathbb{Z}$
2.	If the roots of the quadratic equation $x^2 + p + q = 0$ are tan 30° and tan 15°, then the value of $2 + q - p$ is (1) 0 (2) 1 (3) 2 (4) 3
3.	If $\cos^{-1} x + \cos^{-1} y = \frac{2\pi}{2}$, then $\sin^{-1} x + \sin^{-1} y$ is equal to (1) $\frac{2\pi}{3}$ (2) $\frac{\pi}{3}$ (3) $\frac{\pi}{6}$ (4) π
4.	Principal value of $\cot^{-1}\left(-\frac{1}{\sqrt{3}}\right)$ is
	(1) $\frac{2\pi}{3}$ (2) $\frac{\pi}{3}$ (3) $-\frac{2\pi}{3}$ (4) $-\frac{\pi}{3}$
5.	$\tan^{-1}\left(\frac{x}{y}\right) - \tan^{-1}\frac{x-y}{x+y} \text{ is equal to}$ (1) $\frac{\pi}{2}$ (2) $\frac{\pi}{3}$ (3) $\frac{\pi}{4}$ (4) $-\frac{3\pi}{4}$

PG-EE-2013-Math (Hons) 5 Yrs. (1) Code-C

Question No.	Questions
6.	$3\cos^{-1}x - \pi x - \frac{\pi}{2} = 0$ has
	(1) one solution (2) one and only one solution
	(3) no solution (4) more than one solution
7.	A set S is said to be an inductive set if
g 738 a	(1) $x + 1 \in S$ implies $x \in S$ and $1 \notin S$
	(2) $x + 1 \in S$ implies $x \in S$ and $1 \in S$
	(3) $x \in S$ implies $1 \in S$
	(4) $1 \in S$ and $x + 1 \in S$ whenever $x \in S$
8.	If $\left(\frac{1+i}{1-i}\right)^x = 1$ and n is any positive integer then
	(1) $x = 2 n$ (2) $x = 4 n + 1$
	(3) $3 = 2 n + 1$ (4) $x = 4 n$
9.	The argument of complex number $\frac{1}{1+i}$ is
	(1) $\frac{\pi}{4}$ (2) $-\frac{\pi}{4}$ (3) $\frac{\pi}{2}$ (4) $-\frac{\pi}{2}$
10.	A linear inequality in two variables is known as
	(1) boundary of the half plane
	(2) line
	(3) halfplane
	(4) feasible region
	(1) 10 10 10 10 10 10 10 10 10 10 10 10 10

PG-EE-2013-Math (Hons) 5 Yrs. (2) Code-C

Question No.	Questions
11.	If $\vec{r} = x \hat{i} + y \hat{j} + z \hat{k}$, the equation of the plane through $(3, 4, -1)$ which is parallel to the plane $2x - 3y + 5z + 7 = 0$ is (1) $\vec{r} \cdot (2 \hat{i} - 3 \hat{j} + 5 \hat{k}) + 11 = 0$ (2) $\vec{r} \cdot (3 \hat{i} + 4 \hat{j} - \hat{k}) + 11 = 0$ (3) $\vec{r} \cdot (3 \hat{i} - 4 \hat{j} - \hat{k}) + 7 = 0$ (4) $\vec{r} \cdot (2 \hat{i} - 3 \hat{j} + 5 \hat{k}) - 7 = 0$
13.	The constants in a linear programming problem are (1) linear (2) quadratic (3) cubic (4) biquadratic The common region determined by all the constants including non-negative constraints of a linear programming problem is called the (1) optimal solution (2) feasible solution (3) infeasible solution (4) unbounded solution
	The corner points of the feasible region determined by the following system of linear inequalities: $2 \times y \leq 10$, $x + 3 \times y \leq 15$; $x, y \geq 0$ are $(0, 0)$, $(5, 0)$, $(3, 4)$ and $(0, 5)$. Let $Z = px + qy$, where $p, q > 0$. Condition on p and q so that the maximum of Z occurs at both $(3, 4)$ and $(0, 5)$ is $(1) p = q \qquad (2) p = 2 q$ $(3) q = 3 p \qquad (4) p = 3 q$

PG-EE-2013-Math (Hons) 5 Yrs. (3) Code-C FE

Question No.	Questions
15.	If A and B be two events such that $P(A) = 0.4$, $P(A \cup B) = 0.8$. If A and B
	are independent events, then the probability P (B) is
	(1) $\frac{2}{5}$ (2) $\frac{3}{5}$
	(3) $\frac{1}{5}$ (4) $\frac{2}{3}$
16.	If A and B are two events such that 0 < P (B) < 1, then
	(1) $P(A \overline{B}) + P(\overline{A} \overline{B}) = 1$
	(2) $P(A B) + P(A \overline{B}) = 1$
	(3) $P(\overline{A} B) + P(A \overline{B}) = 1$
	(4) None of these
17.	If the standard deviation of the binomial distribution $(q + p)^{16}$ is 2, then
	mean of the distribution is
	(1) 6 (2) 8 (3) 10 (4) 12
18.	A fair coin is tossed repeatedly. If head and tail appear alternatively
	on first 5 tosses, then the probability that head appears on the sixth
	toss is
6.1 (b)	(1) $\frac{1}{2}$ (2) $\frac{1}{32}$ (3) $\frac{1}{64}$ (4) $\frac{5}{64}$
19.	A and B toss a coin alternatively till one of them gets a head and wins the
	game. If A begins the game, the probability that B wins the game is
	(1) $\frac{1}{2}$ (2) $\frac{1}{3}$ (3) $\frac{1}{4}$ (4) $\frac{2}{3}$

PG-EE-2013-Math (Hons) 5 Yrs. (4) Code-C

Question No.	Questions	PA I
20.	Posteriori probability for an event is obtained using	. 82 -
	(1) Additive law of probability	
	(2) Multiplication theorem of probability	
	(3) Bayes' theorem	
	(4) Classical definition of probability	
21.	Choose the servest and the ser	10 1
41.	Choose the correct answer:	
	$\int \frac{20 x^{19} + 20^x \log_e 20}{x^{20} + 20^x} dx equals$	
6,	(a) polynomial of degree 4 in case of	
	(1) $x^{20} + 20^x + c$	
digerg (1	(2) $\log \left(\frac{1}{x^{20} + 20^x}\right) + c$	25.
	(3) $\log (20 x^{19} + 20^x \log_e 20) + c$	
	(4) $\log (x^{20} + 20^x) + c$	
22.	The value of $\sqrt{2} \int \frac{\sin x}{\sin \left(x - \frac{\pi}{4}\right)} dx$ is	26
and (2,	(1) $x + \log \left \cos \left(x - \frac{\pi}{4} \right) \right + c$ (2) $x - \log \left \sin \left(x - \frac{\pi}{4} \right) \right + c$	27.
	(3) $x + \log \left \sin \left(x - \frac{\pi}{4} \right) \right + c$ (4) $x - \log \left \cos \left(x - \frac{\pi}{4} \right) \right + c$	

PG-EE-2013-Math (Hons) 5 Yrs. (5)

O-ebo0

Question No.	Questions
23.	The function $f(x) = \int \frac{x-2}{x^2 - 7x + 12} dx$
	(1) decreases on R
	(2) increases on $R - (2, 3)$
	(3) increases on $(2, 3) \cup (4, \infty)$
	$(4) (2, \infty)$
24.	$f(x) = \int \frac{dx}{\sin^4 x} is a$
	(1) polynomial of degree 3 in cot x
	(2) polynomial of degree 4 in cot x
	(3) polynomial of degree 4 in cosec x
	(4) polynomial of degree 3 in cosec x
25.	The value of the integral $\int_{-\frac{1}{2}}^{\frac{1}{2}} \left([x] + \log \frac{1+x}{1-x} \right) dx$, where [x] is the greatest integral function of x, is
	(1) $\frac{1}{2}$ (2) 0 (3) $-\frac{1}{2}$ (4) $2\log\frac{1}{2}$
26.	The value of $\int_0^1 \cot^{-1} \left(\frac{2x-1}{1+x-x^2} \right) dx$ is
	(1) 1 (2) 0 (3) $\frac{\pi}{4}$ (4) $\frac{\pi}{2}$
27.	Suppose that the graph of $y = f(x)$ contains the points $(0, 4)$ and $(2, 7)$.
	If f' is continuous, then $\int_{0}^{2} f'(x) dx$ is equal to
	(1) 11 (2) 7 (3) 4 (4) 3

PG-EE-2013-Math (Hons) 5 Yrs. (6) Code-C

Question No.	Questions
28.	The area of the region bounded by the curves $y = x-2 $, $x = 1$, $x = 3$ and the x-axis is
	(1) 4 (2) 3 (3) 2 (4) 1
29.	Area lying in the first quadrant bounded by the circle $x^2 + y^2 = 4$ and the lines $x = 0$ and $x = 2$ is
	(1) π (2) $\frac{\pi}{2}$ (3) $\frac{\pi}{3}$ (4) $\frac{\pi}{4}$
30.	Let $f(x) = \int_{1}^{x} e^{-t^{2}/2} (1-t^{2}) dt$, then f has
	(1) maximum at $x = 0$ (2) maximum at $x = -1$
	(3) maximum at $x = -1$ (4) no critical point
31.	A, B are symmetric matrices of same order, then BA – AB is a (1) symmetric matrix
	(2) skew-symmetric matrix
	(3) zero matrix
	(4) Identity matrix
32.	Let $A^2 - A + 1 = 0$ and $ A \neq 0$, the inverse of A is
	(1) I-A (2) A-I
	(3) A + I (4) A
33.	If A and B are two matrices such that $AB = B$ and $BA = A$, then $A^2 - B^2$ is equal to
33	(1) 0 (2) A+B (3) A-B (4) AB

PG-EE-2013-Math (Hons) 5 Yrs. Code-C (7)

Question No.	Questions Questions
34.	Let A be a square matrix of order 3×3 , then $ 5A $ is equal to (1) $5 A $ (2) $25 A $ (3) $125 A $ (4) $15 A $
35.	Let A be a non-singular square matrix of order 3×3 and $ A = 3$. Then $ \operatorname{adj} A $ is equal to
bagh	(1) 3 (2) 9 (2) 9 (3) 27 (4) 81 (4) 81
36.	If A is an invertible matrix of order 3 and det $(A) = 3$, then det (A^{-1}) is equal to
	(1) $\frac{1}{3}$ (2) 3 (3) 9 (4) 0
37.	The value of k for which the system of equations $x + k y - 3 z = 0$ $3 x + k y - 2 z = 0$ $2 x + 3 y - 4 z = 0$ has a non-trival solution is
	(1) $\frac{21}{10}$ (2) 2 (3) $\frac{31}{10}$ (4) 4
38.	Minor of an element of a determinant of order 4 is a determinant of order (1) 4 (2) 3 (3) 2 (4) 1
39.	Let A and B are square matrices of the same order with $ A = 3$ and $ B = -5$, then $ AB $ is (1) $\frac{5}{3}$ (2) 15 (3) -15 (4) None of these

PG-EE-2013 -Math (Hons) 5 Yrs. Code-6

PG-EE-2013-Math (Hons) 5 Yrs. (8) Code-C

Question No.	Questions	
40. Matrix equation of a system of linear equations is AX = B and A		
	matrix, then the system of equations is called inconsistent if	
	(1) $(adj A) B = 0$ (2) $Adj A = 0$	
	(3) $B = 0$ (4) $(adj A) B \neq 0$	
41.	Let the generator of a double-napped right circular cone be inclined to its	
	vertical axis at an angle α . A plane cuts the nappe (other than the vertex)	
	of the cone making an angle β with the vertical axis of the cone. The	
2 A A A A A A A A A A A A A A A A A A A	section so obtained on this intersection is parabola if	
	(1) $\beta = 90^{\circ}$ (2) $\alpha < \beta < 90^{\circ}$	
	(3) $\beta = \alpha$ (4) $0 \le \beta < \alpha$	
42.	In an ellipse, the distance between the foci is 6 and minor axis is 8, then	
	the eccentricity is	
	(1) $\frac{3}{4}$ (2) $\frac{3}{5}$ (3) $\frac{4}{5}$ (4) $\frac{2}{3}$	
	4 (2) 5 (3) 5 (4) $\frac{1}{3}$	
43.	Length of latus rectum of the hyperbola $\frac{y^2}{9} - \frac{x^2}{27} = 1$ is	
	(1) 18 (2) $2\sqrt{3}$ (3) 6 (4) $\frac{2}{3}$	

PG-EE-2013-Math (Hons) 5 Yrs. Code-C (9)

Question No.	Questions	
44.	Ratio in which the line segment joining the points $(4, 8, 10)$ and $(6, 10, -8)$ is divided by the xz-plane is	
	(1) 2:3 externally (2) 2:3 internally	
	(3) 4:5 externally (4) 5:4 internally	
45.	If the origin is the centroid of a triangle PQR and the co-ordinates of its two vertices P and Q are $(-4, 2, 6)$ and $(-4, -16, -10)$ respectively, then the co-ordinates of the vertex R are	
	(1) $\left(-\frac{8}{3}, -\frac{14}{3}, -\frac{4}{3}\right)$ (2) $(-8, -14, -4)$	
	(3) $\left(\frac{8}{3}, \frac{14}{3}, \frac{4}{3}\right)$ (4) $(8, 14, 4)$	
46.	$\lim_{x \to 0} \frac{\sqrt{1 - \cos 2x}}{\sqrt{2}x}$	
	 (1) exists and it equals to 1 (2) exists and it equals to -1 	
	(3) exists and it equals to 0 (4) does not exist	
47.	If $\lim_{x \to 0} \frac{\sin px}{\tan 3x} = 4$, then the value of p is	
	(1) $\frac{3}{4}$ (2) $\frac{4}{3}$ (3) 12 (4) 4	

PG-EE-2013-Math (Hons) 5 Yrs. (10) Code-C

Question No.	Questions
48.	The derivative of an even function is always
4075	(1) an odd function (2) an even function
	(3) does not exist (4) None of these
49.	If $f'(3) = 2$, then $\lim_{h \to 0} \frac{f(3+h^2) - f(3-h^2)}{2h^2}$ is
	(1) 1 *(2) 2 (3) 0 (4) $\frac{1}{2}$
50.	Which of the following sentences is not a statement?
	(1) There are 35 days in a month
	(2) The sum of 5 and 7 is greater than 10
	(3) Mathematics is difficult
	(4) All real numbers are complex numbers
51.	IQ of a person is given by the formula $IQ = \frac{MA}{CA} \times 100$, where MA
	is mental age and CA is chronological age. If $84 \le IQ \le 144$ for a group
Sign	of 12 years old children, the range of their mental age is
	(1) $7 \leq MA \leq 12$
	(2) $10.08 \le MA \le 17.28$
	(3) $0 \le MA \le 12$
	$(4) 0 \leq MA \leq 7$

PG-EE-2013-Math (Hons) 5 Yrs. (11) Code-C TE S

Question No.	Questions		
52.	Number of different signals that can be generated by arranging at least 3 flags in order (one below the other) on a vertical staff, if five different flags are available, is (1) 15 (2) 125 (3) 243 (4) 300		
53.	The least positive integer n for which $^{\rm n-1}{\rm C_3} + ^{\rm n-1}{\rm C_4} < {\rm ^nC_5} \ {\rm is}$		
	(1) 4 (2) 5 (3) 9 (4) 10		
54.	If letters of the word RADHIK are arranged in all positive ways and are written out as in a dictionary, then the word RADHIK appears at serial number		
	(1) 600 (2) 601 (3) 120 (4) 121		
55.	For a positive integer n, the value of $^{n}C_{0} - ^{n}C_{1} + ^{n}C_{2} - \cdots + (-1)^{n} \cdot ^{n}C_{n}$ is (1) 0 (2) 1 (3) -1 (4) 2^{n}		
56.	The remainder when 2 ³⁰⁰ is divided by 9 is		
	(1) 0 (2) 1 (3) 2 (4) 8		
57.	If the length of sides of a right triangle are in A. P., then the sines of acute angles of the triangle are (1) $\frac{1}{3}$, $\frac{2}{3}$ (2) $\sqrt{\frac{3}{5}}$, $\sqrt{\frac{2}{3}}$ (3) $\sqrt{\frac{1}{3}}$, $\sqrt{\frac{2}{3}}$ (4) $\frac{3}{5}$, $\frac{4}{5}$		

PG-EE-2013-Math (Hons) 5 Yrs. (12) Code-C

Question No.	Questions
58.	If the sum of the series $3 + \frac{3}{x} + \frac{9}{x^2} + \frac{27}{x^3} + \cdots$ is finite, then
	(1) -3 < x < 3 (2) -1 < x < 1
	(3) $ x > 9$ (4) $ x > 3$
59.	If three points (h, 0), (a, b) and (0, k) lie on a line, then
	(1) $\frac{a}{h} - \frac{b}{k} = 1$ (2) $\frac{a}{h} + \frac{b}{k} = 1$
	(3) $\frac{b}{k} - \frac{a}{h} = 1$ (4) $\frac{a}{h} + \frac{b}{k} = -1$
60.	The value (s) of k for which the line $(k-3) x - (4-k^2) y + k^2 - 7 k + 6 = 0$ is
M	parallel to y-axis is
10000	(1) 3 (2) ± 3 (3) 6, 1 (4) ± 2
61.	Negation of $p \rightarrow q$ is
	$(1) \sim p \vee q \qquad (2) p \wedge (\sim q)$
	(1) $\sim p \vee q$ (2) $p \wedge (\sim q)$ (3) $\sim q \rightarrow \sim p$ (4) $p \vee (\sim q)$
62.	Five observations are given as 25, 25, 25, 25 and 25. The mean and standard
	deviation of these observations are respectively
	(1) 5 and 5 (2) 25 and 5
	(3) 25 and 25 (4) 25 and 0

PG-EE-2013-Math (Hons) 5 Yrs. (13) Code-C

 63. If the median of 11 observations is 20 and if the observation than the median are increased by 5, then the median data will be (1) 20 (2) 25 (3) 25 + 20/11 (4) 25 - 20/11 64. An event is called a simple event if it has (1) only two sample points of a sample space (2) more than two sample points of a sample space (3) only one sample point of a sample space (4) No sample point of a sample space 65. If A and B are two mutually exclusive events, then which of may not be true (1) occurrence of any one of them excludes the occurother event. 	
data will be (1) 20 (2) 25 (3) 25 + \frac{20}{11} (4) 25 - \frac{20}{11} 64. An event is called a simple event if it has (1) only two sample points of a sample space (2) more than two sample points of a sample space (3) only one sample point of a sample space (4) No sample point of a sample space (5) If A and B are two mutually exclusive events, then which of may not be true (1) occurrence of any one of them excludes the occurrence	n of the new
 (1) 20 (2) 25 (3) 25 + 20/11 (4) 25 - 20/11 64. An event is called a simple event if it has (1) only two sample points of a sample space (2) more than two sample points of a sample space (3) only one sample point of a sample space (4) No sample point of a sample space (5. If A and B are two mutually exclusive events, then which of may not be true (1) occurence of any one of them excludes the occur 	
 (3) 25 + 20/11 (4) 25 - 20/11 64. An event is called a simple event if it has (1) only two sample points of a sample space (2) more than two sample points of a sample space (3) only one sample point of a sample space (4) No sample point of a sample space 65. If A and B are two mutually exclusive events, then which of may not be true (1) occurrence of any one of them excludes the occurrence 	
64. An event is called a simple event if it has (1) only two sample points of a sample space (2) more than two sample points of a sample space (3) only one sample point of a sample space (4) No sample point of a sample space 65. If A and B are two mutually exclusive events, then which of may not be true (1) occurrence of any one of them excludes the occu	
 (1) only two sample points of a sample space (2) more than two sample points of a sample space (3) only one sample point of a sample space (4) No sample point of a sample space 65. If A and B are two mutually exclusive events, then which of may not be true (1) occurence of any one of them excludes the occu 	
 (2) more than two sample points of a sample space (3) only one sample point of a sample space (4) No sample point of a sample space 65. If A and B are two mutually exclusive events, then which of may not be true (1) occurrence of any one of them excludes the occurrence 	
 (3) only one sample point of a sample space (4) No sample point of a sample space 65. If A and B are two mutually exclusive events, then which of may not be true (1) occurence of any one of them excludes the occu 	
(4) No sample point of a sample space 65. If A and B are two mutually exclusive events, then which of may not be true (1) occurrence of any one of them excludes the occurrence.	
65. If A and B are two mutually exclusive events, then which of may not be true (1) occurrence of any one of them excludes the occu	08
may not be true (1) occurrence of any one of them excludes the occu	
(1) occurence of any one of them excludes the occu	the following
	rence of the
(2) A and B cannot occur simultaneously	
(3) A and B are disjoint	
(4) A and B are equally likely	
66. Which of the following probabilities are not consistently defi	ned ?
(1) $P(A) = 0.5$, $P(B) = 0.7$, $P(A \cup B) = 0.6$	
(2) $P(A) = 0.5, P(B) = 0.7, P(A \cap B) = 0.4$	
(3) $P(A) = 0.5$, $P(B) = 0.4$, $P(A \cup B) = 0.8$	The state of the s
(4) $P(A) = 0.6, P(B) = 0.7, P(A \cup B) = 0.8$	

PG-EE-2013-Math (Hons) 5 Yrs. (14) Code-C

Question No.	Questions	
67.	The probability that a student will pass the final examination in both English and Hindi is 0.5 and the probability of passing neither is 0.2. If the probability of passing the English examination is 0.75, the probability of passing the Hindi examination is (1) 1 (2) 0.55 (3) 0.05 (4) 0.45	
68.	The number of all possible matrices of order 3 × 3 with each entry 1 or 2 is	
+ 00	(1) 18 (2) 27 (3) 256 (4) 512	
69.	 Which of the following is not true for a square matrix A? (1) A can be expressed as the sum of a symmetric and a skew symmetric matrix (2) If A is skew symmetric matrix, then all its diagonal elements are zero (3) A + A' is a skew symmetric matrix (4) A is symmetric if A' = A. 	
70.	If $A = \begin{bmatrix} \cos 2\alpha & -\sin 2\alpha \\ \sin 2\alpha & \cos 2\alpha \end{bmatrix}$, then $A + A' = I$, if the value of α is	
	$(1) \frac{\pi}{6} \qquad \qquad (2) \frac{\pi}{3}$	
	$(3) \pi \qquad \qquad (4) \frac{3\pi}{2}$	

PG-EE-2013-Math (Hons) 5 Yrs. (15) Code-C

Question No.	Questions
71.	Let h (x) = min $\{x, x^2\}$ for every real number x. Then
	(1) h is continuous for all x
	(2) h is differentiable for all x
	(3) $h'(x) = 0 \text{ for all } x > 1$
	(4) h is differentiable at two values of x, that is, 0 and 1
72.	Let a function f be defined by $f(x) = \frac{x - x }{x}$ for $x \neq 0$ and $f(0) = 2$.
	Then f is
-aug	(1) continuous nowhere
	(2) continuous everywhere
	(3) continuous for all x except at x = 1
	(4) continuous for all x except at $x = 0$
73.	$\frac{d}{dx} \left[\tan^{-1} \left(\sec x + \tan x \right) \right]$ is equal to
	(1) 0 (2) sec x - tan x
	(3) $\frac{1}{2}$ (4) 2
74.	If $x = \log t$ and $y = t^2 - 1$, then $\frac{d^2y}{dx^2}$ at $t = 2$ is
	(1) 8 (2) 16 (3) 4 (4) 2

PG-EE-2013-Math (Hons) 5 Yrs. (16) Code-C

Question No.	Questions		
75.	If $y = \sin^{-1}\left(\frac{1-x^2}{1+x^2}\right)$, $0 < x < 1$; then $\frac{dy}{dx}$ is equal to		
	(1) $\frac{2}{\sqrt{1-x^2}}$ (2) $\frac{-2}{\sqrt{1-x^2}}$		
	(3) $\frac{2}{1+x^2}$ (4) $\frac{-2}{1+x^2}$		
76.	Let A and B be two points on the graph of function y = f(x) corresponding		
	to $x = a$ and $x = b$. If Lagrange's mean value theorem is applicable over the		
1	interval [a, b], then there exists at least one point on the graph between A		
	and B, the tangent at which is parallel to		
	(1) x-axis (2) y-axis		
() The last of the	(3) the chord AB (4) line $y = x$		
77.	The rate of change of the volume of a sphere with respect to its radius r		
	at $r = 6$ cm is		
	(1) 144 π (2) 48 π		
	(3) 432 π (4) 12 π		
78.	The points on the curve $y = x^3$ at which the slope of the tangent is equal to		
	the y-coordinate of the point are		
	(1) (0, 0), (1, 3) (2) (0, 0), (2, 8)		
	(3) (0, 0), (3, 27) (4) (0, 0), (4, 48)		

PG-EE-2013-Math (Hons) 5 Yrs. (17) Code-C

Question No.	Questions	
79.	The point on the curve $x^2 = 2$ y in the second quadrant which is nearest to	
	the point (0, 5) is	
	(1) $(-2,2)$ (2) $(-2\sqrt{2},4)$	
	(3) $\left(-1, \frac{1}{2}\right)$ (4) $\left(-\sqrt{2}, 1\right)$	
80.	If $\frac{d}{dx} f(x) = \sin 2 x - 4 e^{3x}$ such that $f(0) = \frac{7}{6}$, then $f(x)$ is	
ndy le-n	$(1) -\frac{1}{2}\cos 2x - \frac{4}{3}e^{3x} + 3$	
	(2) $\cos 2x - 4 e^{3x} - \frac{11}{6}$	
	(3) $\frac{1}{2}\cos 2x - \frac{4e^{3x}}{3} - 3$	
*	(4) $-\frac{1}{2}\cos 2x - \frac{4}{3}e^{3x} - 3$	
81.	If A, B, C are three non-empty sets such that $A \cap B = \phi$, $B \cap C = \phi$, then	
	$\begin{array}{cccc} (1) & A = C \\ (2) & A \neq C \\ \end{array}$	
00	(3) C (4) None of these	
82.	Two finite sets have m and n elements respectively. The total number of subsets of second set is 112 more than the total number of subsets of the first set. The values of m and n respectively are	
	(1) 7,8 (2) 4,7 (3) 6,8 (4) 3,7	

PG-EE-2013-Math (Hons) 5 Yrs. (18) Code-C

Question No.	Questions	
83.	The set of all second elements of the ordered pairs in a relation R from a set A to set B is called the	
	(1) domain of the relation R	
	(2) Range of the relation R	
	(3) co-domain of the relation R	
	(4) None of these	
84.	Let $R = \{(x, y) : x, y \in A, x + y = 7\}$, where $A = \{1, 2, 3, 4, 5, 6, 7\}$, then	
	(1) R is symmetric but not reflexive and not transitive	
	(2) R is an equivalence relation	
	(3) R is reflexive, symmetric but not transitive	
4	(4) R is not reflexive, not symmetric but is transitive	
85.	Domain and range respectively of the function $f(x) = \sqrt{4 - x^2}$ are	
	(1) $\{x:-2 \le x \le 2\}, \{x:-2 \le x \le 2\}$	
	(2) $\{x:-2 \le x \le 2\}, \{x:0 \le x \le 2\}$	
	(3) $\{x:0 \le x \le 2\}, \{x:-2 \le x \le 2\}$	
	(4) $\{x:0 \le x \le 2\}, \{x:0 \le x \le 2\}$	
86.	Let A = {1, 2, 3, 4}, B = {1, 5, 9, 11, 15, 16} and	
	$f = \{(1, 5), (2, 9), (3, 1), (4, 5), (2, 11)\}.$	
	Which of the following is true?	
	(1) f is a relation from A to B	
	(2) f is a function from A to B	
	(3) f is a relation from B to A	
	(4) f is a function from B to A	

PG-EE-2013-Math (Hons) 5 Yrs. (19) Code-C

Question No.	Questions
87.	The function $f: N \to N$ given by $f(x) = 3x$ is
	(1) one-one and onto (2) one-one but not onto
	(3) onto but not one-one (4) Neither one-one nor onto
88.	Consider a binary operation $*$ on N defined as a $*$ b = $a^2 + b^2$. Choose the correct answer
Book	(1) * is both associative and commutative
	(2) * is associative but not commutative
	(3) * is commutative but not associative
	(4) * is neither commutative nor associative
89.	If $\cos 32^\circ = m$ and $\cos x = 2 m^2 - 1$; α , β are the values of x between 0° and 360°, then
	(1) $\alpha + \beta = 180^{\circ}$ (2) $\beta - \alpha = 200^{\circ}$
	(3) $\beta = 4 \alpha + 40^{\circ}$ (4) $\beta = 5 \alpha - 20^{\circ}$
90.	Which of the following is true for
	$\tan (x + y) = \frac{\tan x + \tan y}{1 - \tan x \tan y}?$
	(1) Angles x, y are odd multiple of $\frac{\pi}{2}$ and $(x + y)$ is multiple of π
	(2) Angles x, y are multiple of π and $(x + y)$ is odd multiple of $\frac{\pi}{2}$
	(3) None of the angles x, y and x + y is an odd multiple of $\frac{\pi}{2}$
	(4) None of the angles x, y and x + y is a multiple of π

PG-EE-2013-Math (Hons) 5 Yrs. (20) Code-C

0		code-c
Quest		,Ose
91	. The degree of the differential equation	ae
	$\left(\frac{\mathrm{d}^2 y}{\mathrm{d}x^2}\right)^{\frac{3}{2}} - \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^{\frac{1}{2}} - 4 = 0 \text{ is}$	
	(1) 6 (2) 4 (3) 3 (4) 2	
92.	The number of arbitrary constants in the particular solution of a	1:00
	equation of second order is	differential
	(1) 3 (2) 2 (3) 1 (4) 0	
93.	The general solution of the differential equation $\frac{dy}{dx} = e^{x-y}$ is	
The second	(1) $e^x - e^y = c$ (2) $e^x - e^y = c$	1 88 1
1	(3) $e^{-x} - e^{y} = c$ (4) $e^{x} + e^{y} = c$	
94.	Direction cosines of the vector $\hat{\mathbf{i}} + \hat{\mathbf{j}} - 2 \hat{\mathbf{k}}$ are	
	(1) $(1, 1, -2)$ (2) $\left(\frac{1}{2}, \frac{1}{2}, -1\right)$	
	(3) $\left(\frac{1}{2\sqrt{2}}, \frac{1}{2\sqrt{2}}, -\frac{1}{\sqrt{2}}\right)$ (4) $\left(\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, -\frac{2}{\sqrt{6}}\right)$.ee
95.	Projection of vector $2\hat{i} + 3\hat{j} + 2\hat{k}$ on the vector $\hat{i} + 2\hat{j} + \hat{k}$ is	
	9 /15	301
	(1) $\frac{2\sqrt{15}}{3}$ (2) $\frac{5}{3}\sqrt{6}$ (3) 10 (4) 6	

PG-EE-2013-Math (Hons) 5 Yrs. (21) Code-C

Question No.	Questions		
96.	If \vec{a} and \vec{b} are two unit vectors and θ is the angle between them. Then		
	$\vec{a} - \vec{b}$ is a unit vector if		
	$(1) \theta = \frac{\pi}{4} \qquad (2) \theta = \frac{\pi}{3}$		
	(3) $\theta = \frac{\pi}{2}$ (4) $\theta = \frac{2\pi}{3}$		
97.	$(\vec{a} + \vec{b}) \cdot (\vec{a} + \vec{b}) = \vec{a} ^2 + \vec{b} ^2$ if and only if		
	(1) $\vec{a} = \vec{b}$ (2) \vec{a} is parallel to \vec{b}		
	(3) \vec{a} , \vec{b} are perpendicular (4) $\vec{a} + \vec{b} = 0$		
98.	If a line makes angles 90°, 135°, 45° with the x, y and z-axis respectively,		
	then its direction cosines are		
	(1) $0, \frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}$ (2) $0, \frac{1}{2}, \frac{\sqrt{3}}{2}$		
	(3) $1, 0, 0$ (4) $0, -\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}$		
99.	Distance of the point $(0, 0, 0)$ from the plane $3x - 4y + 12z = 3$ is		
	(1) 0 (2) $\frac{1}{3}$ (3) $\frac{3}{13}$ (4) $\frac{3}{11}$		
100.	The angle between the lines $2x = 3y = -z$ and $6x = -y = -4z$ is		
	(1) $\frac{\pi}{4}$ (2) $\frac{\pi}{6}$ (3) 0 (4) $\frac{\pi}{2}$		

PG-EE-2013-Math (Hons) 5 Yrs. (22) Code-C