Total No. of Printed Pages: 13

(NOT TO BE OPENED BEFORE TIME OR TILL ASKED TO DO SO)

PHDURS-EE-2013 SUBJECT: Botany

	*	
\mathbf{H}		

В		10042 Sr. No.
Time: 11/4 Hours	Max. Marks: 100	Total Questions: 100
Candidate's Name	<u> </u>	Date of Birth
Father's Name	Mother's Na	me
Roll No. (in figures)	(in words)	1
Date of Examination	**************************************	· · · · · · · · · · · · · · · · · · ·
(Signature of the Candidate)		(Signature of the Invigilator)

CANDIDATES MUST READ THE FOLLOWING INFORMATION/INSTRUCTIONS BEFORE STARTING THE QUESTION PAPER.

- 1. All questions are compulsory and carry equal marks.
- 2. All the candidates must return the question booklet as well as OMR Answer-Sheet to the Invigilator concerned before leaving the Examination Hall, failing which a case of use of unfair-means/misbehaviour will be registered against him/her, in addition to lodging of an FIR with the police. Further the answer-sheet of such a candidate will not be evaluated.
- 3. In case there is any discrepancy in any question(s) in the Question Booklet, the same may be brought to the notice of the Controller of Examinations in writing within two hours after the test is over. No such complaint(s) will be entertained thereafter.
- 4. The candidate must not do any rough work or writing in the OMR Answer-Sheet. Rough work, if any, may be done in the question booklet itself. Answers Should Not be ticked in the question booklet.
- 5. Use black or blue ball point pen only in the OMR Answer-Sheet.
- 6. For each correct answer, the candidate will get full credit. Cutting, erasing, overwriting and more than one answer in OMR Answer-Sheet will be treated as incorrect answer. There will be No Negative marking.
- 7. Before answering the questions, the candidates should ensure that they have been supplied correct and complete booklet. Complaints, if any, regarding misprinting etc. will not be entertained 30 minutes after starting of the examination.

PHDURS-EE-2013/Botany/(B)

.a

ganso you fi

2

 $\bar{\epsilon}$

	1.	 (1) nuclear lamina to cytoplasmic kinas (2) extracellular matrix to cytoskeleton (3) focal adhesion to hemidesmosomes (4) microtubule to actin filaments 	ses	onnect:
	2.	Apospory is the development of gameto	ophy	rtic plant body from:
		(1) Cells of nucellus		Synergids
	*	(3) Haploid female gametophyte	(4)	Microspores
	3.	Which of the following specialized tissu	ıe is	known as integumentary tapetum?
		(1) Endothelium	(2)	Endothecium
		(3) Middle layer	(4)	Epidermis .
	4.	Which one of the following is <i>correct</i> ma	atch	:
		(1) Geitonogamy – Vallisneria		Heterostyly – Primula
		(3) Exothecium – Hibiscus		Anemophily – Adansonia
	5.	An ovule which becomes curved as a re to the funicle is:	esult	nucellus and embryo sac lie at right angle
		(1) Hemitropous	(2)	Campylotropous
		(3) Anatropous	(4)	Orthotropous
	6.	In which type of tapetum do the protop the developing microspore in the anther	plast r ?	of tapetal cells mix or fuse and surround
		(1) Glandular tapetum	(2)	Secretory tapetum
		(3) Amoeboid tapetum	(4)	All of the above
	7.	Which one of the following protein is n electron transport chain?	ot a	transmembrane protein in photosynthetic
		(1) LHC	(2)	PS II
		(3) Ferrodoxin	(4)	ATP synthase
	8.	The experimental material that Van Nie was:	el us	ed to show that oxygen comes from water
		(1) Chlorella pyrenoidosa	(2)	Scendesmus
		(3) Blue green algae	(4)	Chromatium Vinosum
PH	DU	RS-EE-2013/Botany/(B)		P. T. O
		9 = 2		

9.	Discovery of Emerson effect showed the existence of:
2) 2) 2) 2)	 (1) Photorespiration (2) Light and dark reaction in photosynthesis (3) Photophosphorylation (4) Two distinct pigment system
10.	In CAM plants, CO ₂ acceptor in the night is: (1) RUBP (2) OAA (3) PGA (4) PEP
11.	Connecting link between respiration (TCA cycle) and protein synthesis is : (1) Citric acid (2) α ketoglutaric acid (3) Succinic acid (4) Fumaric acid
12.	Protein helping in opening of DNA double helix in form of replication fork is: (1) DNA gyrase (2) DNA polymerase I (3) DNA ligase (4) DNA topoisomerase
13.	A decrease in photosynthetic rate with increased availability of oxygen is called : (1) Warbing effect (2) Richmond Lang effect (3) Blackman's law of limiting factors (4) Emerson's enhancement effects
14.	The plant part which consists of two generations one within the other is: (1) Embryo (2) Germinating pollen grain (3) Unfertilized ovule (4) Seed
15.	Plasmodesmata connections help in: (1) Cytoplasmic streaming (2) Synchronous mitotic division (3) Locomotion of unicellular organisms (4) Movement of substances between cells
16.	Which of the following biochemical reactions is most commonly utilized by living cells to propagate intracellular signals? (1) acylation (2) phosphorylation (3) methylation (4) decarboxylation
17.	Ribozymes: (1) are any ribonucleoprotein particle (2) are enzymes whose catalytic function resides in RNA subunits (3) require a protein factor to form a peptide bond (4) All of the above
PHDU	JRS-EE-2013/Botany/(B)

	18.	(1)	MP is a : second messan proton pump	ger		precursor for D first messanger	*	
	19.	Intracellular receptors: (1) usually binds hydrophobic ligands (2) may be located in the cytosolor nucleus in unbound state (3) when bound to their ligand regulate gene transcription (4) All of the above						
	20.	(1)	e P21 and P15 pr cdk inhibitors oncogenes	roteins are example	(2)	cyclins growth factors		
	21.	Ho (1)		brils combine to for		bril of cellulose 200	? (4) 250	
	22.		e parallel iayerin Maximum ligh Maximum expe	ng of membranes in t absorption osure of enzymes t absorption so that	chlor	oplast is suited f	for:	
	23.	a.b.c.d.(1)	Both 70s and 80 9 + 2 organizat show cyter last	ion of flagella mic streaming exed with histones	to con (2)		orrect	
	24.	Wh (1)		wing is <i>not</i> consider	red as			
	25.	(1)	portant site for f Lysosome Golgi apparatu	formation of glycop as		Vacuole	s is:	
PI	HDU	RS-	EE-2013/Botany	v/(B)				P. T. O.

26.	In Eubacteria, a cellular component that resembles eukaryotic cell is :		
	(1) Cell wall	(2)	Plasma membrane
	(3) Nucleus	(4)	Ribosomes
27.	Synaptonemal complex was discovered	in :	
	(1) 1956 (2) 1950	(3)	1935 (4) 1980
28.	How many electrons, protons and photo one molecule of oxygen?	ons a	are involved in the lysis of water to evolve
	(1) $4e^-$, $4H^+$ and 4 photons	(2)	4 e ⁻ , 4 H ⁺ and 8 photons
	(3) $2e^{-}$, $2H^{+}$ and 8 photons	(4)	2 e ⁻ , 2 H ⁺ and 4 photons
29.	Which of the given enzymes of glycolys a regulatory role?	is ca	talyzes and irreversible reaction and have
	(1) Hexokinase (2) Aldolase	(3)	Isomerase (4) Mutase
30.	Plant requires magnesium for:		
	(1) Protein synthesis	(2)	Chlorophyll synthesis
	(3) Cell wall development	(4)	Holding cells together
31.	The high solubility of amino acids in wa	ater	is due to :
	(1) presence of side chain	(2)	dipolar ion structure
	(3) unipolarity	(4)	hydrophilic nature of amino groups
32.	Which is the most common approach globular proteins?	h to	determine the precise 3-D structure of
	(1) Circular dichroism	(2)	Mass spectroscopy
	(3) Infrared spectroscopy	(4)	X-ray diffraction
33.	Which of the following contributes ni rings?	trog	en atoms to both purine and pyrimidine
	(1) Aspartate	(2)	Carbamoyl phosphate
	(3) Carbon dioxide	(4)	Glutamine
34.	If a solution of double stranded DNA absorbance will:	A is	heated above its melting temperature, its
	(1) decrease	(2)	increase
	(3) remain unchanged	(4	initially increase and then decrease
PHDU	JRS-EE-2013/Botany/(B)		

35.	N-Glyosyl linkage joins 1st carbon of pentose sugar with:				
	(1) N-9 of pyrimidine (2) N-9 of purine				
	(3) N-3 of pyrimidine (4) N-3 of purine				
36.	Which of the following enzyme is correctly paired with its allosteric effector? (1) hexokinase – ATP (2) phosphofructokinase – glucose-6-phosphate (3) pyruvate kinase – alanine (4) glucokinase – fructose 2, 6 biphosphate				
37.	Which one of the following is <i>not true</i> about monosaccharides? They are: (1) colourless (2) soluble in water (3) sweet in taste (4) soluble in non-polar solvent				
38.	 All of the following statement about the biological role of fatty acids is correct except: (1) fatty acid is essential component of plasma membrane (2) fatty acid are stored as triacylglycerols in body (3) fatty acid acts as intracellular second messanger (4) fatty acids mainly contain odd number of carbons 				
39.	An uncompetitive inhibitor of enzyme binds to: (1) the active site of enzymes (2) sites other than the active site (3) enzyme substrate complex (4) any other site and modifies part of an enzyme				
40.	Which one of the following vitamins does not act as precursor for coenzymes? (1) Biotin (2) Thiamine (3) Folic acid (4) Ascorbic acid				
41.	The unusual property of Taq polymerase that is critical to the PCR is its: (1) ability to use dNTPs as substrate (2) ability to use ddNTPs as substrate (3) thermostability (4) ability to use RNAs as template				
42.	An electron microscope gives higher magnification than a light microscope because: (1) electrons have more energy than light particles (2) velocity of electrons is less than that of light (3) wavelength of electrons used is smaller as compared to visible light (4) electron microscope uses more powerful lense				
PHDU	P. T. O.				

	43.	Which of the following technique is rel	levant to functional genomics study?			
		(1) yeast two hybrid analysis	(2) DNA Microarray			
		(3) SAGE	(4) All of the above			
	44.	RFLP analysis is a technique that:				
			ic DNA restriction fragments in genomic DNA			
		(2) used to determine the transcription				
		(3) measures the transfer frequency of				
		(4) used to amplify genes for producing	, ,			
	45.	Dendogram in numerical taxonomy re	presents :			
	70.	(1) Phenetic similarities	(2) Phyogenetic similarities			
		(3) Evolutionary similarities	(4) No smilarity			
	40					
	46.		<u> </u>			
	~	(1) Southern blotting	(2) Northern blotting			
		(3) Microarray	(4) RT-PCR			
	47.	An oligonucleotide DNA sequence tagged with fluorescent tag used to identifunknown gene by hybridization is termed as:				
		(1) probe	(2) reporter gene			
		(3) ligand	(4) cDNA			
	48.	Silencing of mRNA has been used in p	producing transgenic plants resistant to:			
		(1) White rusts	(2) Bacterial blights			
		(3) Bollworms	(4) Nematodes			
	49.	Which of the following is <i>not</i> correctly	match?			
		,	cts as shuttle vector			
	7		hemical modification of bases			
		(3) Dideoxy terminators – Sa	anger Method			
		20 20 15 15 15 15 15 15 15 15 15 15 15 15 15	on-radioactive label			
	50.	ELISA is used to detect viruses and the	ev kev reagent is :			
		(1) Alkaline phosphatase	(2) Catalase			
		(3) DNA probe	(4) RANase			
D	יזכונו	# 00 m = 0				
1	טעוו	URS-EE-2013/Botany/(B)				

P. T. O.

51. Similarities in organisms with different genotype	pe indicate :
	acroevolution
(3) Convergent evolution (4) Di	vergent evolution
52. Prebiotic environment was different from prese	ent environment and was devoid of
-	
0 1	- Company of the Comp
	leolithic age
(3) Mesolitnic age (4) No	one of these
54. Shotgun approach is used for the construction of	of:
(1) cDNA library (2) Ge	enomic library
(3) Both (4) No	one
55. DNA finger printing process involves :	
999 PS 2 0 1/	generate oligonucleotides
(3) UNTR loci (4) RF	
56. A transgenic food crop that may help in solv	ing the problem of night blindness in
developing country is:	ing the problem of hight dimuness in
(1) Golden rice (2) Fla	avr Savr tomatoes
(3) Starlink Maize (4) Bt.	. soyabean
57. A genetically engineered micro-organism use species of :	ed in bioremediation of oil spills is a
(1) Trichoderma (2) Xanthomonas (3) Ba	cillus (4) Pseudomonas
58. What role do opines play in crown gall diseases	s?
W 182	he <i>Agrobacterium</i>
(3) attachment of <i>Agrobacterium</i> to the plants	
(4) induction of the expression of Vir genes	
59. Which gene isolated from <i>Bacillus thruingie</i> population of corn borer?	nsis is known to control the insect
(1) HLA-gene (2) Cr	ry I Ab-gene
(3) Cry I Ac-gene (4) Cr	y II Ab-gene
HDURS-EE-2013/Botany/(B)	P. T. C
52 53 54 55 55	(1) Microevolution (2) Ma (3) Convergent evolution (4) Di 2. Prebiotic environment was different from prese (1) CO ₂ (2) atmosphere (3) O ₂ 3. The beginning of plant cultivation is considered (1) Neolithic age (2) Pa (3) Mesolithic age (4) No (4) Shotgun approach is used for the construction of (1) cDNA library (2) Ge (3) Both (4) No (5) DNA finger printing process involves: (1) chain terminators (2) de (3) UNTR loci (4) RF (3) A transgenic food crop that may help in solv developing country is: (1) Golden rice (2) Fla (3) Starlink Maize (4) Bt (7) A genetically engineered micro-organism uses species of: (1) Trichoderma (2) Xanthomonas (3) Ba (3) What role do opines play in crown gall diseases (1) transfer of T-DNA to plant cells (2) source of carbon, nitrogen and energy for the construction of the expression of Vir genes (4) Induction of the expression of Vir genes (5) Which gene isolated from Bacillus thruinging population of corn borer? (1) HLA-gene (2) Cr (3) Cry I Ac-gene (4) Cr

00.	Mensiem culture is practised in north	culture to get:			
	(1) Somaclonal variation	(2) Haploids			
	(3) Virus free plants	(4) Slow-growing callus			
61.	Which one of the following correctly is	represents an organism and its ecological niche?			
	(1) Vallisenaria and pond				
	(2) Desert locust (Schistocerca) and de	esert			
	(3) Plant lice (aphids) and leaf	अ			
	(4) Vultures and dense forest				
62.	Which one of the following is correlational park?	ectly matched for an endangered animal and a			
	(1) Great Indian Bustard – Keoladeo	National Park			
	(2) Lion – Corbett National Park				
	(3) Rhinoceros – Kaziranga National	Park			
	(4) Wild Ass – Dudhwa National Par	rk			
63.	The zone of a lake lying below the light compensation depth is:				
	(1) Photic zone	(2) Profundal zone			
	(3) Disphotic zone	(4) Euphotic zone			
64.	The transitional zone where two diffe	erent communities meet is called :			
	(1) Border (2) Ecotone	(3) Ecotype (4) Niche			
65.	Which are direct ecological factors wh	hich determine vegetation of an area ?			
	(1) altitude, soil texture and wind				
	(2) rain, soil and altitude				
	(3) soil, organisms, precipitation and	d altitude			
	(4) temperature, light, soil, air and hu	umidity			
66.	Which of the following is most impor	rtant for speciation ?			
	(1) Seasonal isolation	(2) Reproductive isolation			
	(3) Behavioural isolation	(4) Tropical isolation			
67.	The first step towards succession is:				
	(1) Ecesis (2) Migration	(3) Nudation (4) Competition			
HDU	RS-EE-2013/Botany/(B)				

68.	Which one is linked to evolution?				
	(1) Extinction (2) Competition	(3)	Variation	(4)	Reproduction
69.	Abiogenesis is the: (1) origin of life from non-living materia (2) origin of life from living organism (3) origin of viruses and microbes (4) None	ıl			
70.	The phenomenon of genetic drift is most	like	ely to occur in po	pul	ations that are :
	(1) small and inbred	(2)	undergoing gen	e flo	ow
	(3) allopatric	(4)	large and panm	ictic	
71.	A tautomeric shift causing the substitution	on c	of one purine for	а ру	ridine is called :
	(1) transversion (2) translocation	(3)	transition	(4)	inversion
72.	A common test to find the genotype of a (1) crossing of one F ₁ progeny with femal (2) studying the sexual behaviour of F ₁ p (3) crossing of one F ₁ progeny with male (4) crossing of one F ₂ progeny with male	ale p prog e pa	parent genies rent		
73.	DNA elements that can switch their posi-	tior	are called :		
	(1) Cistrons (2) Transposons	(3)	Exons	(4)	Introns
74.	Retting of fibers is done by:				
	(1) Azotobacter (2) Clostridium	(3)	Rhizobium	(4)	Pseudomonas
75.	Motile stages are <i>not</i> found in life cycle of	of:			
	(1) Red algae and green algae	(2)	Red algae and b	orow	n algae
	(3) Red algae and blue green algae	(4)	Green algae and	d bro	own algae
76.	Bryophyte shows an advancement over, (1) having multicelluar sporophytic gen (2) having parasitic sporophyte (3) having zygotic meiosis (4) None of the above	_			

94.	$NADH_2$ generated in glycolysis produces ATP in ETS in the presence of oxygen. In the absence of oxygen, this $NADH_2$ functions as :				
	(1) Oxidising agent (2)	Phosphorylating agent			
	(3) Reducing agent (4)	Carboxylating agent			
95.	molecules are formed from ADP?				
	(1) Glycolysis				
	(2) Krebs cycle				
	(3) Conversion of pyruvic acid to acetyle Co	A			
	(4) Electron transport chain				
96.	. A competitive inhibitor of succinic dehydrog	enase is :			
	(1) α -ketoglutarate (2)	Malate			
	(3) Malonate (4)	Oxaloacetate			
97.	 DCMU, a herbicide kills the plant by: (1) inhibiting photolysis of water as it is a str (2) inhibiting CO₂ function as it is strong inh (3) checking respiration (4) destroying chloroplast 				
98.	. Nitrogen fixation in the roots nodules of Alm	us is brought about by :			
		Bradyrhizobium (4) Clostridium			
99.	(1) Fibre crops (2)	growth and productivity in : Oil seed crops Cereals			
100.	. By which action a seed coat becomes permea	ble to water ?			
		Stratification			
	(3) Vernalization (4)	All of the above			

