Question No.	Questions	
1.	The sum of the characteristic roots of the matrix	
	3 7 6 2 24 3 is	
	2 24 3 is 0 1 -8	37
40	(1) 17 (2) 19 (3) 21 (4) 25	
2.	If the given matix A is	
noil	$A = \begin{bmatrix} \sin \theta & \cos \theta & -\sin \theta \\ -\cos \theta & \sin \theta & \cos \theta \end{bmatrix}, \text{ then } Adj A = $	
	(1) 3 (2) 4 (3) sin 20 (4) 0	
3.	Determinant of an orthogonal matrix is	
	(1) -1 (2) 1 (3) 0 (4) ± 1	
4.	The quadratic form ax ² + 2 h xy + by ² is positive definite iff	0
	(1) $a > 0, b > 0, h > 0$ (2) $a > 0, h^2 - ab > 0$	
	(3) $a > 0$, $ab - h^2 > 0$ (4) $a > 0$, $h^2 - ab = 0$	
5.	If α , β , γ are the roots of the equation $x^3 - px^2 + qx -$	r = 0,
	then $\sum \alpha^2 \beta^2 =$	
	(1) $q^2 - 2 pr$ (2) $p^2 - 2 qr$	
	(3) $r^2 - 2 pq$ (4) 0	

Question No.	Questions
6.	The least number of imaginary roots of the equation $x^8 + 5x^3 + 2x - 3 = 0$ i
	(1) 6 (2) 4 (3) 2 (4) 0
7.	$\lim_{x \to -\infty} \left(\sqrt{9 x^2 - x} + 3 x \right) =$ (1) 3 (2) $\frac{1}{3}$ (3) $\frac{1}{4}$ (4) $\frac{1}{6}$
	(3) $\frac{4}{6}$
8.	If $f(x) = a \sin x + b e + c x ^3$ and $f(x)$ is differentiable at $x = 0$, then (1) $a = 0$; $b \in R$, $c = 0$ (2) $a = 0$, $b = 0$; $c \in R$ (3) $a \in R$; $b = 0$, $c = 0$ (4) $a = 0$, $b = 0$; $c = 0$
9.	If a curve of nth degree has n asymptotes, then they cut the curve in how many points? (1) $n(n-1)$ (2) $n-2$ (3) $n(n-2)$ (4) n
10.	For the curve $r = a \sin n\theta$, radius of curvature at the pole is
-	(1) na (2) $\frac{\text{na}}{3}$
	(3) 2 na (4) $\frac{\text{na}}{2}$

PG-EE-2013-Maths & Maths with (2) Comp. Sc.-Code-A

Questio No.	Questions
11.	Length of the arc of the curve $x^2 + y^2 - 2$ ax = 0 in the first quadrant is
	$(1) \frac{\pi a}{4} \qquad (2) \frac{\pi a}{2}$
	(3) πα (4) 2 πα
12.	Area between the parabolas $y^2 = 4$ ax and $x^2 = 4$ ay is
	(1) $\frac{16}{3} a^2$ (2) $\frac{16}{5} a^2$ (3) $\frac{8}{3} a^2$ (4) $\frac{8}{5} a^2$
	(3) $\frac{8}{3} a^2$ (4) $\frac{8}{5} a^2$
13.	The number of arbitrary constants in the equation of a sphere are
	(1) 2 (2) 3 (3) 4 (4) 6
14.	Angle between the lines represented by $x^2 + 2 bxy - y^2 = 0$ is
	(1) π (2) $\frac{\pi}{2}$
	$(3) \frac{\pi}{3} \qquad \qquad (4) \frac{\pi}{4}$
15.	If a right circular cone has three mutually perpendicular generators, then
	semi-vertical angle of the cone is
	(1) $\frac{\pi}{4}$ (2) $\tan^{-1}\left(\frac{1}{\sqrt{2}}\right)$
	(1) $\frac{\pi}{4}$ (2) $\tan^{-1}\left(\frac{1}{\sqrt{2}}\right)$ (3) $\frac{\pi}{3}$ (4) $\tan^{-1}\left(\sqrt{2}\right)$

Question No.	Questions Questions
16.	If a/bc and (a, b) = 1, then a/c is the statement of
	(1) Gauss theorem
	(2) Wilson theorem
	(3) Fermat's theorem
	(4) Chinese Remainder theorem
17.	Which of the following congruences have solution?
	(1) $x^2 \equiv -2 \pmod{61}$ (2) $x^2 \equiv 2 \pmod{61}$
	(3) $x^2 \equiv -2 \pmod{59}$ (4) $x^2 \equiv 2 \pmod{59}$
18.	The highest power of 2 dividing 533 is
	(0) FOO
1	(1) 528 (2) 529 (3) 530 (4) 532
19.	If $\sin^{-1} x + \sin^{-1} y = \frac{2\pi}{3}$, then $\cos^{-1} x + \cos^{-1} y =$
10.	3 A 161
	(1) $\frac{\pi}{2}$ (2) $\frac{\pi}{3}$
red) to	(3) $\frac{\pi}{6}$ (4) $\frac{2\pi}{3}$ and to share instance in the state of th
20.	If $\cosh x = 2$, then $x = \frac{1}{2}$
	(1) $\log (2-\sqrt{5})$ (2) $\log (2-\sqrt{3})$ (3) $\log (2+\sqrt{5})$ (4) $\log (2+\sqrt{3})$
	(3) $\log (2+\sqrt{5})$ (4) $\log (2+\sqrt{3})$

PG-EE-2013-Maths & Maths with (4) Comp. Sc.-Code-A

Questio No.	Questions
21.	If $x_r = \cos \frac{\pi}{2^r} + i \sin \frac{\pi}{2^r}$, then $x_1 x_2 x_3 \dots x_n \dots \infty =$
	(1) $\frac{\pi}{2}$ (2) $-\frac{\pi}{2}$
	(3) 1 (4) -1
22.	The value of Wronskion W (x, x ² , x ³) is
	(1) $3 x^3$ (2) $3 x^2$
	(3) $2 x^3$ (4) $2 x^2$
23.	Which of the following is not an integrating factor of $x dy = y dx$?
	$(1) \frac{x}{y} $ (2) $\frac{1}{xy}$
	(3) $\frac{1}{x^2}$ (4) $\frac{1}{x^2 + y^2}$
24.	The orthogonal trajectory of the family $x^2 - y^2 = c$ are given by
	$(1) \frac{x}{y} = c \qquad (2) xy = c$
	(3) $x - y = c$ (4) $x^2 + y^2 = c$
25.	If $y(x) = x \cos 2x$ is a particular solution of $\frac{d^2y}{dx^2} + ay = -4 \sin 2x$,
	then a =
	(1) 2 (2) -4 (3) 4 (4) 3

PG-EE-2013-Maths & Maths with (5) Comp. Sc.-Code-A

Question No.	Questions
26.	The magnitude of maximum directional derivative of
	ϕ (x, y, z) = $x^2 - 2y^2 + 4z^2$ at the point (1, 1, -1) is
	(1) $\sqrt{21}$ (2) $3\sqrt{21}$
	(3) $2\sqrt{21}$ (4) 21
27.	If \vec{f} and \vec{g} are irrotational, then $\vec{f} \times \vec{g}$ is
	(1) 0 (2) solenoidal
	(3) irrotational (4) constant
28.	If $\hat{\mathbf{n}}$ is outward unit normal drawn to a closed surface S, having volume V
	then $\iiint_{V} \operatorname{div}(\hat{\mathbf{n}}) dV =$
	(1) 2 V (2) V (3) 2 S (4) S
29.	In an orthogonal curvilinear system, which one of the following statements
	is correct?
	(1) $\operatorname{div}\left(\operatorname{curl}\vec{\mathbf{f}}\right) = 0$
4	(2) $\operatorname{curl}\left(\operatorname{curl}\vec{\mathbf{f}}\right) = \vec{0}$
	(3) $\operatorname{curl}\left(\operatorname{div}\vec{\mathbf{f}}\right) = 0$
	(4) $\operatorname{div}\left(\operatorname{grad}\phi\right)=0$
30.	Using Stoke's theorem, ∮ (yz dx +xz dy + xy dz), where c is the curve
	$x^2 + y^2 = 1$, $z = y^2$; is
	(1) 2 (2) 1 (3) $\frac{1}{2}$ (4) 0

PG-EE-2013-Maths & Maths with (6) Comp. Sc.-Code-A

Question No.	Questions		
31.	The value of 'c' of Lagrange's mean value theorem for $f(x) = x(x - in [1, 2])$ is given by		
	(1) $\frac{2}{3}$ (2) $\frac{3}{4}$ (3) $\frac{3}{2}$ (4) $\frac{4}{3}$		
32.	Which of the following functions is not uniformly continuous in $[2, \infty)$,		
	(1) $\sin x$ (2) e^x (3) $\frac{1}{x}$ (4) $\frac{1}{x^2}$		
33.	For what value of k, the function		
	$f(x, y) = \begin{cases} \frac{\sin^{-1}(xy-2)}{\tan^{-1}(3xy-6)}, & (x, y) \neq (1, 2) \\ K, & (x, y) = (1, 2) \end{cases}$		
	K , $(x, y) = (1, 2)$		
	is continuous?		
	(1) 2 (2) $\frac{1}{2}$ (3) $\frac{1}{3}$ (4) $\frac{1}{4}$		
34.	The function $f(x, y) = 2 x^4 - 3 x^2 y + y^2 has$		
	(1) maxima at (0, 0) (2) neither maxima nor minima at (0, 0)		
	(3) minima at (0, 0) (4) doubtful case at (0, 0)		
35.	A unit vector perpendicular to the tangent and normal at a point of a		
	space curve is called		
	(1) Principal normal (2) Involute		
	(3) Standard normal (4) Binormal		

PG-EE-2013-Maths & Maths with (7) Comp. Sc.-Code-A

Question No.	The second second	Questions	
36.	The partial differential e	quation of all spheres whos	e centre lie
	on z-axis is	The state of the s	
	(1) qx - py = 0	(2) px - qy = 0	
	(3) $qx + py = 0$	(4) px + qy = 0	
37.	Solution of $px + qy = z$ is		
	$(1) f\left(\frac{x}{y}, \frac{y}{z}\right) = 0$	(2) $f(xy, yz) = 0$	
	(3) $f(x^2, y^2) = 0$	(4) $f(x, y + z) = 0$	
38.	The differential equation f_{xx}	$+2 f_{xy} + 4 f_{yy} = 0$	
	(1) parabolic	(2) hyperbolic	
	(3) linear	(4) elliptic	
39.	The partial differential ed	quation of the transverse vi	brations of a
	string is		1422 18
	(1) $\frac{\partial^2 y}{\partial t^2} = c^2 \frac{\partial^2 y}{\partial x^2}$		
	(2) $\frac{\partial^2 y}{\partial t^2} = c^2 \frac{\partial y}{\partial x}$		v v
	(1) $\frac{\partial^2 y}{\partial t^2} = c^2 \frac{\partial^2 y}{\partial x^2}$ (2) $\frac{\partial^2 y}{\partial t^2} = c^2 \frac{\partial y}{\partial x}$ (3) $\frac{\partial^2 y}{\partial t^2} = c^2 \frac{\partial^3 y}{\partial x^3}$ (4) $\frac{\partial y}{\partial t} = c^2 \frac{\partial y}{\partial x}$		
	(4) $\frac{\partial y}{\partial t} = c^2 \frac{\partial y}{\partial x}$		

Question No.	Questions	
40.	The solution of $\frac{\partial^2 \mathbf{z}}{\partial \mathbf{x}^2} + \frac{\partial^2 \mathbf{z}}{\partial \mathbf{y}^2} = \frac{\mathbf{z}}{\mathbf{a}}$ is	
	(1) $z = e^{y/a} f(x + y)$ (2) $z = e^{y/a} f(x - y)$ (3) $z = e^{a} f(x - y)$ (4) $z = e^{x/a} f(x + y)$	
	(3) $z = e^{-x} f(x + y)$ (4) $z = e^{-x} f(x + y)$	
41.	Absolute units of moment in S. I. system is	
	(1) Kg. m (2) Dyne centimeter	
	(3) Newton meter (4) gm. cm.	
42.	The centre of gravity of a thin uniform triangular lamina divides every median in the ratio	
	(1) 2:1 (2) 1:2 (3) 2:3 (4) 3:2	
43.	The line of action of a force such that axis of the couple is coincident with	
	this line, is called	
	(1) screw (2) central line	
	(3) wrench (4) central axis	
44.	The constant ratio which the limiting friction bears to the normal	
	reaction is called	
	(1) Limiting Reaction (2) Co-efficient of Friction	
	(3) Statical Friction (4) Saturated Friction	

Question No.	Questions
45.	Minimum distance between two forces which are equivalent to given system (R, K) and inclined at a given angle 2α is
	(1) $\frac{K}{R} \sin \alpha$ (2) $\frac{K}{R} \cos \alpha$
	(3) $\frac{K}{R} \cot \alpha$ (4) $\frac{R}{K} \cot \alpha$
46.	If p and q are positive real numbers, then the series
	$\frac{2p}{1^q} + \frac{3p}{2^q} + \frac{4p}{3^q} + \cdots $ is convergent for
	(1) $p < q + 1$ (2) $p < q - 1$
	(3) $p = q$ (4) $p < q$
47.	If $a_n = \frac{\cos (n \pi/2)}{n}$, then the sequence $\{a_n\}$ is
	(1) Convergent to 0 (2) Convergent to 1
	(3) Convergent to $\frac{1}{2}$ (4) diverges
48.	The limit superior and limit inferior of $\left\{\frac{(-1)^n}{n^2}\right\}$ are respectively equal to
	(1) 1, 0 (2) -1, 1 (3) 0, 0 (4) 0, 1
	(3) 0, 0 (4) 0, 1

PG-EE-2013-Maths & Maths with (10) Comp. Sc.-Code-A

Question No.	Questions	
49.	If δ_n denotes the sum of n terms of the series $1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\cdots+\frac{1}{$	$\frac{1}{\sqrt{n}}$ + · · · ·
50.	If m is fixed positive integer, then $\lim_{n \to \infty} \frac{1}{n} \left[(m+1) (m+2) \cdot \dots \cdot (m+n) \right]^{\frac{1}{n}} =$	
	(1) $\frac{1}{e}$ (2) e (3) $\frac{2}{e}$ (4) $\frac{3}{e}$	
51.	$L\left\{e^{at} t^{n}\right\} =$ $(1) \frac{n}{(s-a)^{n+1}}$ $(2) \frac{\Gamma(n)}{(s-a)^{n}}$ $(3) \frac{\underline{\ln}}{(s-a)^{n}}$ $(4) \frac{\underline{\ln}}{(s-a)^{n+1}}$	
	$(3) \frac{\lfloor \underline{n}}{(s-a)^n} \qquad (4) \frac{\lfloor \underline{n}}{(s-a)^{n+1}}$	
52.	$L^{1}\left\{\frac{1}{(s-4)^{3}}\right\} =$	
	(1) $t^2 e^{4t}$ (2) $\frac{1}{2} t^2 e^{4t}$ (3) $\frac{1}{2} t e^{4t}$ (4) $t e^{4t}$	

PG-EE-2013-Maths & Maths with (11) Comp. Sc.-Code-A

Question No.	Questions
53.	Generating function for Bessel function $J_n(x)$ is
	(1) $e^{x}\left(\frac{1}{t}-t\right)$ (2) $e^{\frac{x}{2}}\left(\frac{1}{t}-t\right)$ (3) $e^{x}\left(t-\frac{1}{t}\right)$ (4) $e^{\frac{x}{2}}\left(t-\frac{1}{t}\right)$
	(3) $e^{x}\left(t-\frac{1}{t}\right)$ (4) $e^{\frac{x}{2}}\left(t-\frac{1}{t}\right)$
54.	$\left\{J_{\frac{1}{2}}(x)\right\}^{2} + \left\{J - \frac{1}{2}(x)\right\}^{2} =$
	(1) $\frac{\pi x}{2}$ (2) $\frac{2}{\pi x}$ (3) $\frac{\sqrt{2}}{\pi x}$ (4) $\frac{2}{\sqrt{\pi x}}$
	$(3) \frac{\sqrt{2}}{\pi x} \qquad (4) \frac{2}{\sqrt{\pi x}}$
55.	If $P_n(x)$ is Legendre polynomial of degree n , then $P_2(x) = n$
	(1) $\frac{1}{2} (3 x^2 - 1)$ (2) $\frac{1}{2} (3 x^2 + 1)$
	(3) $\frac{3}{2} x^2 - 1$ (4) $x^2 - \frac{1}{2}$
56.	Maximum size of a float variable is
	(1) 2 bytes (2) 3 bytes
	(3) 4 bytes (4) 8 bytes
57.	Which of following Keyword is used for the storage class 2
	(1) auto (2) printf
	(3) external (4) scanf

PG-EE-2013-Maths & Maths with (12) Comp. Sc.-Code-A

Questio No.	Questions	
58.	The continue statement cannot be used with	
	(1) while (2) for	
	(3) switch (4) do	
59.	The bitwise AND operator is used for	
	(1) shifting bits (2) sorting	
	(3) comparison (4) masking	
60.	Number of real roots of the equation $x^{2n} - 1 = 0$ is	
	(1) 2 (2) n (3) 2 n (4) n-1	
61.	The integral $\int_0^1 x^{m-1} (1-x)^{n-1} dx$ is convergent, when	
	(1) $n > 0, m = 0$ (2) $m > 0, n = 0$	
	(3) $m > 0, n > 0$ (4) $m = 0, n > 1$	
62.	Let f be a bounded function defined on the bounded interval [a, b]. Then	
	f is Riemann integral on [a, b] iff	
	(1) $\int_{\underline{a}}^{b} \mathbf{f} \leq \int_{\underline{a}}^{\overline{b}} \mathbf{f}$ (2) $\int_{\underline{a}}^{b} \mathbf{f} = \int_{\underline{a}}^{\overline{b}} \mathbf{f}$ (3) $\int_{\underline{a}}^{b} \mathbf{f} \geq \int_{\underline{a}}^{\overline{b}} \mathbf{f}$ (4) $\int_{\underline{a}}^{b} \mathbf{f} + \int_{\underline{a}}^{\overline{b}} \mathbf{f} = 0$	
	(3) $\int_{a}^{b} f \ge \int_{a}^{\bar{b}} f$ (4) $\int_{a}^{b} f + \int_{a}^{\bar{b}} f = 0$	
63.	The integral $\int_{0}^{\infty} x^{n-1} e^{-x} dx$ is divergent, when	
	(1) $n > 0$ (2) $n \le 0$ (3) $n > 1$ (4) $n = \frac{1}{2}$	

PG-EE-2013-Maths & Maths with (13) Comp. Sc.-Code-A

Questions
If A is an open set and B is a closed set in R ⁿ , then
(1) B-A is null set (2) B-A is semi-open set
(3) B-A is open set (4) B-A is closed set
Which of the following is not correct about the cantor ternary set?
(1) It is dense (2) It is closed
(3) It is uncountable (4) It is perfect set
The complement of non-empty open set of metric space is
(1) null set (2) open set
(3) closed set (4) semi-open set
If X is a complete metric space, E is non-empty open subset of X, then
(1) E is of first category (2) E is of second category
(3) E is a null set (4) None of these
If G is a set of integers and $a.b \equiv a - b$, then G is
(1) semi-group (2) non-group
(3) monoid (4) quasi-group
If $G = \{1, -1, i, -i\}$ is a multiplicative group, then order of $-i$ is
(1) 5 (2) 4 (3) 3 (4) 2

PG-EE-2013-Maths & Maths with (14) Comp. Sc.-Code-A

Question No.	Questions
70.	Every group of prime order is
	(1) abelian (2) sub-group
	(3) normal group (4) cyclic
71.	The number of abelian groups upto isomorphism of order 105 is
	(1) 5 (2) 7 (3) 45 (4) 49
72.	A communicative division ring is
	(1) group (2) vector space
anto	(3) field :(4) integral domain
73.	Ring of polynomial over a field is a
	(1) prime field (2) unique factorization domain
	(3) irreducible (4) integral domain
74.	If integral domain D is of finite characteristic, then its characteristic is
	(1) prime number (2) natural number
	(3) even number (4) odd number
75.	Number of prime ideals of Z ₁₀ is
	(1) 4 (2) 3 (3) 2 (4) 1
76.	Starting with $x_0 = 1$, the next approximation x_1 to $2^{\frac{1}{3}}$ obtained by
	Newton's method is
	(1) $\frac{4}{3}$ (2) $\frac{5}{3}$ (3) $\frac{5}{4}$ (4) $\frac{6}{5}$

PG-EE-2013-Maths & Maths with (15) Comp. Sc.-Code-A

Question No.	Questions
77.	In Simpson's $\frac{1}{3}$ rd rule, the curve $y = f(x)$ is assumed to be a
	(1) circle (2) hyperbola
	(3) parabola (4) straight line
78.	Gauss quadrature formula is used for
	(1) Numerical integration (2) Numerical differentiation
	(3) Interpolation (4) Solution of equations
79. Let $f(0) = 1$, $f(1) = 2.72$, then the trapezoidal rule gives a	
	value of $\int_0^1 f(x) dx$ as
	(1) 3.72 (2) 1.86
	(3) 1.76 (4) 0.92
80.	Normal distribution becomes standard normal distribution when
	(1) $\mu = 0$, $\sigma = 0$ (2) $\mu = 1$, $\sigma = 0$
	(3) $\mu = 1, \ \sigma = 1$ (4) $\mu = 0, \ \sigma = 1$
81.	In Binomial distribution the parameter n ranges over the
	(1) positive real numbers
	(2) positive rational numbers
	(3) positive integers
	(4) integers

PG-EE-2013-Maths & Maths with (16) Comp. Sc.-Code-A

Questio	n
No.	Questions
82.	The Jacobi's iteration method for the set of equations $x_1 + ax_2 = 2$, $ax_1 + x_2 = 7 \left(a \neq \frac{1}{\sqrt{2}} \right)$ converges for
	(1) $a = 1$ (2) $ a < \frac{1}{\sqrt{2}}$
	(3) $a = \frac{1}{\sqrt{2}}$ (4) $\frac{1}{\sqrt{2}} < a < \frac{3}{\sqrt{2}}$
83.	$\int_0^2 (8-x^3)^{-\frac{1}{3}} dx =$
	(1) $\beta\left(\frac{1}{3}, \frac{2}{3}\right)$ (2) $\frac{1}{2}\beta\left(\frac{1}{3}, \frac{2}{3}\right)$
	(3) $\frac{2}{3} \beta \left(\frac{1}{3}, \frac{2}{3}\right)$ (4) $\frac{1}{3} \beta \left(\frac{1}{3}, \frac{2}{3}\right)$
84.	If f (x) is an even function of x in $[-\pi, \pi]$, then Fourier series of f (x) consists of terms
	(1) with sines only (2) with cosines only
	(3) with constants (4) with sines and cosines both
85.	n 1-n =
	$\frac{\pi}{\sin n\pi} \qquad (2) \frac{\sin n\pi}{\pi}$
	$(3) \frac{2}{\sin n\pi} \qquad \qquad (4) \frac{\pi}{\sin \frac{n\pi}{2}}$

Question No.	Questions	
86.	The function $f(z) = z ^2$ is	
	(1) everywhere analytic (2) nowhere analytic	
	(3) analytic at $z = 0$ (4) not defined at $z = 0$	
87.	If $f(z) = a(x, y) + i v(x, y)$ is analytic, then $f'(z) =$	
	(1) $\frac{\partial u}{\partial x} - i \frac{\partial u}{\partial y}$ (2) $\frac{\partial u}{\partial x} - i \frac{\partial v}{\partial x}$	
	(3) $\frac{\partial \mathbf{u}}{\partial \mathbf{y}} + \mathbf{i} \frac{\partial \mathbf{v}}{\partial \mathbf{x}}$ (4) $\frac{\partial \mathbf{u}}{\partial \mathbf{y}} - \mathbf{i} \frac{\partial \mathbf{v}}{\partial \mathbf{x}}$	
88.	Fixed point of the mapping $w = \frac{3z-4}{z-1}$ is	
	(1) $z = 2$ (2) $z = 4$	
	(3) $z = 3$ (4) $z = 1$	
89.	If V is the vector space of all polynomials of degree ≤ n over R,	
	dim V is	
	(1) n-1 (2) n	
	(3) n+1 (4) n ²	
90.	A bijective linear transformation is called	
	(1) monomorphism (2) homomorphism	
	(3) isomorphism (4) epimorphism	

PG-EE-2013-Maths & Maths with (18) Comp. Sc.-Code-A

Questio No.	Questions		
91.	Dimension of $Q(\sqrt{2})$ over Q is		
	(1) 4 (2) 2 (3) 1 (4) 3		
92.	Which of the following is an orthogonal set?		
	(1) $\{(1,0,1), (1,0,-1), (-1,0,1)\}$		
	(2) $\{(1,0,1), (1,0,-1), (0,1,0)\}$		
	(3) $\{(1,0,1), (1,0,-1), (0,2,3)\}$		
	(4) none of these		
93.	Let u, v be orthogonal set in an inner product space V. Then u-v is		
	(1) 0 (2) $\sqrt{3}$ (3) 2 (4) $\sqrt{2}$		
94.	Let $u = (1, 0, i), v = (2, 0, 1 + i)$. Then $< u, v > is$		
	(1) $1+i$ (2) $1-i$ (3) $2+i$ (4) $-1+i$		
95.	Tangential velocity of a particle at a point is		
	$(1) \frac{dx}{dt} \qquad \qquad (2) \frac{dy}{dt}$		
	$(3) \frac{dt}{ds} \qquad (4) \frac{ds}{dt}$		
96.	A person weighing 70 Kg. is in a lift ascending with an acceleration		
	of 1.4 m/sec ² . The thrust of his feet on the lift is		
	(1) 584 N (2) 780 N (3) 784 N (4) 980 N		

PG-EE-2013-Maths & Maths with (19) Comp. Sc.-Code-A

Question No.	Questions		
97.	A particle is projected at such an angle that the horizontal range is three		
	times the greatest height. Then the angle of projection is		
	(1) $\tan^{-1} \frac{2}{3}$ (2) $\tan^{-1} \frac{4}{3}$ (3) $\tan^{-1} \frac{3}{2}$ (4) $\tan^{-1} \frac{5}{3}$		
	(3) $\tan^{-1} \frac{3}{2}$ (4) $\tan^{-1} \frac{5}{3}$		
98.	A body of mass m has momentum M. Its Kinetic energy will be		
	(1) $\frac{M^2}{2 \text{ m}}$ (2) $\frac{M^2}{\text{m}}$ (3) $\frac{1}{2} \text{ m M}^2$ (4) $\frac{1}{2} \text{ m M}$		
	(3) $\frac{1}{2} \text{ m M}^2$ (4) $\frac{1}{2} \text{ m M}$		
99.	The expression for frequency of a S. H. M. is		
	(1) $\vec{n} = \frac{m}{\sqrt{2\pi}}$ (2) $\vec{n} = \frac{\sqrt{m}}{2\pi}$		
	(3) $n = \sqrt{\frac{m}{2\pi}}$ (4) $n = \frac{m}{2\pi}$		
100.	The law of force towards the pole under the curve $r^2 = 2$ ap is		
	(1) $F \propto \frac{1}{r^2}$ (2) $F \propto \frac{1}{r^3}$		
	(1) $F \propto \frac{1}{r^2}$ (2) $F \propto \frac{1}{r^3}$ (3) $F \propto \frac{1}{r^5}$ (4) $F \propto \frac{1}{r^{\frac{3}{2}}}$		

(DO NOT OPENTHIS QUESTION BOOKLET BEFORETIME OR UNTIL YOU ARE ASKED TO DO SO)

PG-EE-2013

Mathematics & Math with Computer Sc.

Code

Time: 1¼ hours Max	. Marks: 100 Total Questions: 100
Roll No(in figure)	(in words)
Name	Father's Name
Mother's Name	Date of Examination :
(Signature of the candidate)	(Signature of the Invigilator)

CANDIDATES MUST READ THE FOLLOWING INFORMATION/INSTRUCTIONS BEFORE STARTING THE QUESTION PAPER.

- 1. All questions are compulsory and carry equal marks.
- 2. The candidate must return the Question book-let as well as OMR answer-sheet to the Invigilator concerned before leaving the Examination Hall, failing which a case of use of unfair-means / misbehaviour will be registered against him / her, in addition to lodging of an FIR with the police. Further the answer-sheet of such a candidate will not be evaluated.
- 3. In case there is any discrepancy in any question(s) in the Question Booklet, the same may be brought to the notice of the Controller of Examinations in writing within two hours after the test is over. No such complaint(s) will be entertained thereafter.
- 4. The candidate MUST NOT do any rough work or writing in the OMR Answer-Sheet. Rough work, if any, may be done in the question book-let itself. Answers MUST NOT be ticked in the Question book-let.
- 5. Use only blue or black BALL POINT PEN of good quality in the OMR Answer-Sheet.
- 6. There will be no negative marking. Each correct answer will be awarded one full mark. Cutting, erasing, overwriting and more than one answer in OMR Answer-Sheet will be treated as incorrect answer.
- 7. BEFORE ANSWERING THE QUESTIONS, THE CANDIDATES SHOULD ENSURE THAT THEY HAVE BEEN SUPPLIED CORRECT AND COMPLETE BOOK-LET. COMPLAINTS, IF ANY, REGARDING MISPRINTING ETC. WILL NOT BE ENTERTAINED 30 MINUTES AFTER STARTING OF THE EXAMINATION.

