Total No. of Printed Pages: 13

(DO NOT OPEN THIS QUESTION BOOKLET BEFORE TIME OR UNTIL YOU ARE ASKED TO DO SO)

PG-EE-2013
SUBJECT: Physics

C	(8)	Sr. No. 10703
Time : 11/4 Hours	Max. Marks : 100	Total Questions: 100
Roll No. (in figures)	(in words)	
Name	Father's Name	1.17
Mother's Name	Date of Examination	
(Signature of the Candidate)		(Signature of the Invigilator)
CANDIDATES MUST READ TH	E FOLLOWING INFORMATI	ON/INSTRUCTIONS BEFORE

CANDIDATES MUST READ THE FOLLOWING INFORMATION/INSTRUCTIONS BEFORE STARTING THE QUESTION PAPER.

- 1. All questions are compulsory and carry equal marks.
- 2. The candidates *must return* the question booklet as well as OMR Answer-Sheet to the Invigilator concerned before leaving the Examination Hall, failing which a case of use of unfair-means/misbehaviour will be registered against him/her, in addition to lodging of an FIR with the police. Further the answer-sheet of such a candidate will not be evaluated.
- 3. In case there is any discrepancy in any question(s) in the Question Booklet, the same may be brought to the notice of the Controller of Examinations in writing within two hours after the test is over. No such complaint(s) will be entertained thereafter.
- 4. The candidate must not do any rough work or writing in the OMR Answer-Sheet. Rough work, if any, may be done in the question booklet itself. Answers Must Not be ticked in the question booklet.
- 5. Use only black or blue ball point pen of good quality in the OMR Answer-Sheet.
- 6. There will be no negative marking. Each correct answer will be awarded one full mark. Cutting, erasing, overwriting and more than one answer in OMR Answer-Sheet will be treated as incorrect answer.
- 7. Before answering the questions, the candidates should ensure that they have been supplied correct and complete booklet, containing 100 questions (Sr. No. 1 to 100). Complaints, if any, regarding misprinting etc. will not be entertained 30 minutes after starting of the examination.

PG-EE-2013/Physics/(C)

11/1/10

2.	The second section is a second section of the second section in the second section is a second section of the second section in the second section is a second section of the second section in the second section is a second section of the second section in the second section is a second section of the second section in the second section is a second section of the second section of the second section is a second section of the	apacitance in an amp			
Service Service	(1) lower cut off f		(2) mid band from		
	(3) upper cut off f	requency	(4) output resis	tance	
3.	The base omitter v	oltage of an ideal sil	icon transistor is:		
	(1) 0 V	(2) 0.7 V	(3) 0.3 V	(4) 1.0 V	
4.	The state of the s	μF is used in a trans or resonant circuit, th		λ wavelength. If the inductors:	
	(1) 292 m	(2) 400 m	(3) 334 m	(4) 446 m	
5.		40 sin 50 t is applied required to produce		to produce ΔH heat in time time is:	
	(1) 14 A	(2) 20 A	(3) 10 A	(4) None of these	
6.		mf 1.5 V connected voltage developed ac		y of a step-up transformer of will be:	f
	(1) 30 V	(2) 5 V	(3) zero	(4) 2.5 V	
. 7.	ABCD is parallelog and D; choose the (1) $\vec{c} + \vec{b} = \vec{d} - \vec{a}$ (3) $\vec{b} - \vec{c} = \vec{d} - \vec{a}$		and \vec{d} are position of \vec{c} (2) $\vec{c} - \vec{b} = \vec{d} - \vec{a}$ (4) None of these		
8.		$+c\hat{k}$ acts upon a boosition, the new coord		ne body starts from rest with will be:	
	$(1) \frac{at^2}{2m}, \frac{bt^2}{2m}, \frac{ct^2}{2m}$	$(2) \frac{at^2}{2m}, \frac{2bt^2}{m}, \frac{ct^2}{2m}$	$(3) \ \frac{at^2}{m}, \frac{bt^2}{m}, \frac{ct^2}{2n}$	$\frac{d^2}{dt} \qquad (4) \frac{at^2}{m}, \frac{bt^2}{m}, \frac{ct^2}{m}$	
9.	cm. The distance		from the centre o	of charge Q and radius $10\sqrt{2}$ f ring, where acceleration of	
	(1) 10 cm	(2) 20 cm	(3) 16 cm	(4) infinity	
10.	If a point charge q	is placed at one corr	ner of a cube, the fl	ux linked with the cube is:	
	$(1) \frac{q}{\epsilon_0}$	$(2) \frac{q}{2 \in_0}$	$(3) \frac{q}{3 \in_0}$	$(4) \frac{q}{8 \in_0}$	
PG-EE	-2013/(Physics)/(C)			P. T. 0).

(3) $3.0 \times 10^{15} m^{-3}$ (4) $4.2 \times 10^8 m^{-3}$

1. Intrinsic carrier concentration in a semiconductor at 0 K is:

(1) $10^{19} m^{-3}$ (2) zero

C

11.	If a convex lens with refractive i	ndex 1.33, the change	m and refractive in e in focal length wi	dex 1.5 is immersed i l be :	n liquid
	(1) 62.2 cm	(2) 5.82 cm	(3) 58.2 cm	(4) 6.22 cm	
12.	20% of a radioac after 30 days wi		ys in 10 days. The a	mount of original mate	erial left
	(1) 51.2%	(2) 62.6%	(3) 15%	(4) 21.27%	
13.	The amount of		er nucleon of the 1.6 MeV is:	rectant in the thermo	onuclear
	(1) 21.6 MeV	(2) 7.2 MeV	(3) 3.6 MeV	(4) 1.8 MeV	
14.		gies are in ratio 1:8	of a proton and an (2) kinetic ene (4) velocities a	x-particle will be 1 : 2 i rgies are in ratio 8 : 1 are in ratio 8 : 1	f their :
15.	Bremsstrahlung	; is produced when:			
	(1) electrons m	ove with uniform sp	eed		
		avel past the nucleus			
		accelerated by the n			
	(4) electrons tr	avel through electric	field of a nucleus		5
16.	Transuranium e			and the state of t	
		ig atomic number les			
		ng atomic number mo			
		ig atomic number greatsotopes of uranium			
17.		position with an ele	ctron results in :		
		of a neutron at rest n of both and total m	ass appearing as et	ergy	
		of an X-ray photon	moo appoint 8		
		article with high ene	rgy		
10				s longer than its half li	fe period
18.	is:	of a radioactive ato			
	(1) 2/5	(2) 2 × 5	$(3) 2^{-5}$	$(4) 2^5$	
PG-E	E-2013/(Physics)/	(C)		- Skalednik	

PG-EE-2013/(Physics)/(C)

P. T. O.

19.	Graphite and heavy water act as m	oderator in a nuclear reactor and their function is	:
(1) to slow down neutrons to thermal energies			
	(2) to absorb neutrons & stop the o	chain reaction (S)	
	(3) to cool the reactor	Market State active at Security 18 (1) the second	
	(4) to control the energy released i	n the reactor	
20.	Out of the following, the one which is:	ch can pass through a steel slab of 20 cm thickness	SS
	(1) α rays (2) β rays	(4). UV rays	
21.	The Bravis Lattice, formed by all pare either all odd or all even is:	oints with set of integers (n_1, n_2, n_3) when n_1, n_2, n_3	13
	(1) simple cubic	(2) fcc	
	(3) bcc	(4) hexagonal	
22.	In the Debye theory, a solid is regard	rded as:	
	(1) an isotropic discrete	(2) an anisotropic discrete	
	(3) an isotropic continuum	(4) an anisotropic continuum	
23.	A phonon is the quantum of:	Real Statute of Telling to the Valley Will have	
	(1) Electromagnetic wave	(2) Elastic wave	
	(3) Polarisation wave	(4) Magnetisation wave	
24.	For a fcc crystal, the first Brillouin 2	zone is:	
	(1) Truncated Octahedron	(2) Regular Rhombic dodecahedron	
	(3) Rectangular parallelopiped	(4) Cube	
25.	Larmor frequency is given as:		
	$(1) \frac{eB}{m} \qquad (2) \frac{eB}{2m}$	$(3) \frac{em}{B} \qquad \qquad (4) \frac{em}{2B}$	
26.	The density of carriers in an intrins	sic semiconductors is proportional to :	
	(1) $\exp(-Eg/kT)$	(2) $\exp(-2Eg/kT)$	
	(3) $\exp\left(-Eg/kT^2\right)$	(4) $\exp\left(-Eg/2kT\right)$	

27.	Which	of the	following	is	incorrect	?	
-----	-------	--------	-----------	----	-----------	---	--

- (1) GaAs LED emits red light
- (2) GaP LED emits either red or green light
- (3) LED emits no light when reverse biased
- (4) LED arrays can display alphanumerics

The negative part of the output signal in a transistor circuit is clipped, if Q-point moves:

- (1) towards the saturation point.
- (2) towards the cut-off point
- (3) towards the centre of load line
- (4) None of the above

The emitter resistor R_E bypassed by a capacitor:

- (1) reduces the voltage gain
- (2) stabilises the Q point
- (3) increases the voltage gain
- (4) causes thermal runaway
- The number of atoms in 100 g of a fcc crystal with density 10 gcm⁻³ and cell edge 200 pm is equal to:
 - $(1) 3 \times 10^{25}$
- $(2) 5 \times 10^{24}$
- (3) 1×10^{25} Harmon (4) 2×10^{25}

The average value of p_x^2 for the particle in a box of length *L* is:

- (1) mE
- (2) 2 mE
- (3) 3 mE
- The ground state energy of an electron in an one dimensional box of length 1 Å is approximately:
 - (1) $6.04 \times 10^{-12} J$

- (2) $6.04 \times 10^{-14} J$ (3) $6.04 \times 10^{-16} J$ (4) $6.04 \times 10^{-18} J$

(1) $E_{000} = 0$

(2) $E_{111} = \frac{3\pi^2\hbar^2}{2m}$

(3) $E_{111} = \frac{3\pi\hbar^2}{2ma^2}$

(4) $E_{111} = \frac{3\pi^2\hbar^2}{2ma^2}$

34. In Zeeman effect, one applies:

- (1) external electric field only
- (2) external magnetic field only
- (3) both electric and magnetic fields simultaneously
- (4) both electric and magnetic fields sequentially

PG-EE-2013/(Physics)/(C)

PG-EE-2013/(Physics)/(C)

P. T. O.

35.	The Lande g-factor for the level $3D_3$ is:	As the season ollowing as a share
	(1) $\frac{2}{3}$ (2) $\frac{3}{2}$ (3)	$\frac{3}{4}$ be ratify $\frac{4}{3}$
	3	* mils eithe
36.	. The three nodes of a harmonic oscillator are l	ocated at: Hgil on
	(1) $0, \pm \frac{2}{3}$ (2) $0, \pm \sqrt{\frac{2}{3}}$	$+1,0,-1$ $qaib (4) 0, \pm \sqrt{\frac{3}{2}}$
37.	A medium in which the group velocity V_g i	s independent of 'k' is known as:
	(1) Denser Medium	
	(3) Dispersive Medium (4)	
38.	An electron with energy E incident upon a thickness <i>l</i> , then the transmission coefficient:	potential barrier V , such that $V > E$ and
	(1) is zero	See that end
	(2) is proportional to l ²	
	(3) increases exponentially with thickness	and the discussion of purpose of force
	(4) decreases exponentially with thickness	(2)
39.	The probability of locating a particle inside normal state is approximately:	the classical limits for an oscillator in its
	(1) 16% (2) 32% (3)	64% (4) 84%
40.	Longitudinal waves cannot:	
	(1) have a unique wavelength (2)	transmit energy
	(3) have a unique wave velocity (4)	be polarised
41.	I. A cubical block of mass M and edge a s inclination θ with a uniform velocity. The about its centre has a magnitude:	slides down a rough inclined plane of torque of the normal force on the block
	(1) Zero (2) Mga (3)	$Mga \sin \theta$ (4) $\frac{1}{2} Mga \sin \theta$
42.		di
	(A) L = Iw (B)	$\frac{dL}{dt} = \Gamma$
	In non-inertial trames.	
		(A) is true but (B) is false
	(3) (B) is true but (A) is false (4)	both (A) and (B) are false

43.	The radius of gyration of a uniform disc about a line perpendicular to the disc equal
	its radius (r). The distance of the line from the centre is:

	/ 1
(1)	r
(1)	\J2

(2)
$$\frac{r}{2}$$

$$(2) \quad \frac{r}{2} \qquad \qquad (3) \quad \frac{r}{2\sqrt{2}}$$

$$(4) \quad \frac{r}{4}$$

The centre of a wheel rolling on a plane surface moves with a speed v_0 . A particle on the rim of the wheel at the same level as centre will be moving at speed:

(1) Zero

(3) $\sqrt{2}v_{0}$

 $(4) 2v_0$

As the wavelength is increased from violet to red, the luminosity:

(1) continuously increases (2) continuously decreases

(3) increases then decreases

(4) decreases then increases

A pair is constrained to move along the inner surface of a hemisphere, then the 46. number of degrees of freedom of the particle is:

(1) One

(2) Two

(3) Three

(4) Four

The dimensions of generalized force are similar as that of:

(1) Work

(2) Force

(3) Length

Angular displacement (4)

The canonical momenta, for a charged particle in an electromagnetic field is:

(1) $mv - \frac{qA}{c}$ (2) $mv + \frac{qA}{c}$ (3) $mv - \frac{q^2A}{mc^2}$ (4) $_2mv^2 - \frac{mc^2}{qA}$

49. If a coordinate is cyclic, then its Hamiltonian reduces the number of variables in one form to:

(1) 2

(2) 4

(3) 6

(4) 8

All functions whose Poisson's bracket with Hamiltonian vanish must be:

(1) constant of motion

(2) involving time explicitly

(3) both (1) and (2)

(4) None of these

51. γ-rays are deflected by :

(1) an electric field but not by a magnetic field

(2) a magnetic field but not by an electric field

(3) both electric and magnetic fields

(4) neither an electric nor a magnetic field

\$ - 10 c	
52.	The principle of controlled chain reaction is used in:
	(1) Atomic Energy Reactor (2) Atom Bomb
	(3) in the core of the Sun (4) Artificial Radioactivity
53.	A dip needle in a plane perpendicular to magnetic meridian will be:
	(1) Vertical (2) Horizontal
	(3) at an angle of 45° to the horizontal (4) at an angle of dip to the horizontal
54.	Liquid oxygen remains suspended between two pole faces of a magnet because it is: (1) Diamagnetic (2) Paramagnetic (3) Ferromagnetic (4) Antiferromagnetic
55.	Speed of electromagnetic waves travelling in a medium with relative permeability 1.3 and relative permittivity 2.14 will be:
	(1) $13.6 \times 10^6 \mathrm{ms^{-1}}$ (2) $1.8 \times 10^6 \mathrm{ms^{-1}}$ (3) $3.6 \times 10^7 \mathrm{ms^{-1}}$ (4) $1.8 \times 10^8 \mathrm{ms^{-1}}$
56.	A lamp radiates power P_0 uniformally in all directions; the magnitude of electric field strength E_0 at a distance r from it is:
	(1) $E_0 = \frac{P_0}{2\pi \epsilon_0 cr^2}$ (2) $\left(\frac{P_0}{2\pi \epsilon_0 cr^2}\right)^{1/2}$
	(3) $\left(\frac{P_0}{4\pi \in_0 cr^2}\right)^{1/2}$ (4) $\left(\frac{P_0}{8\pi \in_0 cr^2}\right)^{1/2}$
57.	A solenoid has 2000 turns wound over a length of 0.3 m. The area of cross section is 1.2×10^{-3} m ² . Around its central portion a coil of 300 turns is wound. If initial current 2 Amp in the solenoid is reversed in 0.25 sec, the emf induced will be:
	(1) $6 \times 10^{-4} V$ (2) 48 mV (3) $6 \times 10^{-2} V$ (4) 48 kV
58.	The tunnel diode has thickness of depletion layer approximately:
	(1) 8.2×10^{-8} m (2) 1.0×10^{-9} m (3) 0.1×10^{-7} m (4) 8.1×10^{-5} m
59	. The feedback network of a phase shift oscillator usually consists of :
	(1) LC Circuit (2) RC Circuit (3) RL Circuit (4) a transistor
60	In an astable multivibrator, which of the following is true?

(1) $\beta = 1$ (2) $\beta > 1$ (3) $\beta < 1$

(4) $\beta A = 1$

PG-EE-2013/(Physics)/(C)

01.	III IIIOIIOI GATELLE	
	(1) Linear momentum is conserved	(2) Torque of such a force is zero
	(3) Angular momentum is conserved	(4) Both (2) and (3)
62.	If constraint forces do work and total constraints are named as:	al mechanical energy is not conserved then
	(1) Bilateral Constraint	(2) Unilateral Constraint
	(3) Dissipative Constraint	(4) None of these
63.	charged to q coulombs, then, the require	
	(1) $\dot{q} + \frac{q}{LC} = 0$ (2) $\dot{q} + qLC = 0$	
64.	Which of the following is <i>true</i> for wo adiabatic expansion?	ork done by a perfect gas during quasi-station
	(1) $W = C_p(T_1 - T_2)$	(2) $W = C_v (T_1 - T_2)$
	(3) $W = V(T_1 - T_2)$	(4) W= zero
65.	The specific heat of saturated steam is a	always:
	(1) Positive (2) Zero	(3) Negative (4) Infinite
66.	In case of a perfect gas, the value of Jou	ale-Thomson coefficient is:
al su	(1) 0 (2) 1	(3) $\frac{3}{2}$ (4) $\frac{1}{3}$
67.	(1) directly proportional to pressure a	nd inversely to (temperature) ²
	(2) inversely proportional to pressure	and directly to (temperature) ²
	(3) directly proportional to pressure a	
	(4) inversely proportional to pressure	and directly to (temperature) 2
68	. According to Maxwell-Boltzmann's of probability of molecule to have zero v	listribution of velocities for gas molecules, the elocity is:
	(1) nil (2) maximum	(3) $\frac{1}{2}$ (4) very small

61. In motion under central force, which of the following is *true*?

- 69. Which of the following is correct expression for Clapeyron's latent heat relation?
 - $(1) \quad \frac{dP}{dt} = \frac{L}{T(V_0 V_1)}$

 $(2) \quad \frac{dL}{dt} = \frac{P}{T(V_1 - V_2)}$

 $(3) \quad \frac{dV}{dt} = \frac{L}{V(P_1 - P_2)}$

- (4) $\frac{dP}{dt} = \frac{L(V_2 V_1)}{T}$
- The correct relation between internal energy and canonical partition function is:
 - (1) $u = -kT \log Z$

(2) $u = -\frac{\partial}{\partial T} (\log Z)$

- (1) $u = -kT \log Z$ (3) $u = -kT^2 \frac{\partial}{\partial T} (\log Z)$ (4) $u = -kT^{3/2} \frac{\partial}{\partial T} (\log Z)$
- Which of the following is not a Maxwell's thermodynamical equation?
 - $(1) \quad \left(\frac{\partial S}{\partial P}\right)_T = -\left(\frac{\partial V}{\partial T}\right)_P \qquad (2) \quad \left(\frac{\partial S}{\partial V}\right)_T = \left(\frac{\partial P}{\partial T}\right)_V$

- (3) $\left(\frac{\partial P}{\partial V}\right) = \left(\frac{\partial S}{\partial T}\right)$
- (4) $\left(\frac{\partial T}{\partial P}\right)_{S} = \left(\frac{\partial V}{\partial S}\right)_{R}$
- The correct relation between C_p and C_v for a Vander Waals gas is:
 - $(1) \quad C_p C_V = R$

- (2) $C_{p} = \frac{C_{V}}{P}$
- $(3) \quad C_v C_V = R \left(1 + \frac{2a}{VRT} \right)$
- (4) $C_p C_V = \frac{TE}{V} \alpha^2 V^2$
- Bragg's angle for the first and fourth order reflections are θ_1 and θ_4 . Then $\sin \theta_1 / \sin \theta_4$ is:
 - (1) 1
- (2) 4
- (3) $\frac{1}{2}$ (4) $\frac{1}{4}$
- The expectation value of position of a particle described by wave function $\psi = \sqrt{2}x$ between 0 < x < 1 is given by: (2) $\frac{1}{2}$ (3) $\frac{3}{2}$ (4) $\frac{3}{4}$

- The energy of a γ ray photon corresponding to 1 $\overset{\circ}{A}$ is approximately :
 - (1) 1.24 keV
- (2) 12.4 keV
- (3) 124 keV
- (4) 1.24 MeV
- For an ideal gas, if the volume remaining constant then which one among following is correct?
 - (1) $C_{y} = 0$

- (2) $C_V = \left(\frac{dH}{dT}\right)_V$ (3) $C_V = \left(\frac{du}{dT}\right)_V$ (4) $C_V = \left(\frac{dQ}{dT}\right)_P$

77. Which of the following relations for logic circu	it is incorrect?
--	------------------

- (2) $\overline{AB} = \overline{A} + \overline{B}$
- (3) A + A = A
- $(4) \quad A + B = AB$

78. The wavefunction considered to be confined within a box of length
$$L$$
 is $\psi(x) = \sqrt{\frac{2}{L}} \sin \frac{\pi x}{L}$ in the region $0 < x < L$. The probability of locating the particle in the region $0 < x < \frac{L}{2}$ is:

- (1) 0
- (2) $\frac{1}{2}$ (3) 1
- $(4) \frac{1}{4}$

- (1) Real
- (2) Imaginary (3) $\frac{1}{2}$
- (4) Complex

80. If
$$H = \frac{p^2}{2m} + V(x)$$
, then [x,H] results:

- (1) $\frac{i\hbar p}{m}$ (2) $\frac{i\hbar}{m}$ (3) $-\frac{\hbar p}{im}$ (4) $\frac{\ln p}{m}$

(1) decreases

(2) increases

(3) does not change

(4) changes

- (1) $tan^{-1}(2)$

- (2) $\tan^{-1}\left(\frac{1}{3}\right)$ (3) $\cos^{-1}\left(\frac{2}{\sqrt{5}}\right)$ (4) $\cos^{-1}\left(\frac{1}{\sqrt{5}}\right)$

- $(1) 10^{\circ}$
- (2) 60°
- (3) 98°
- (4) 30°

84. A meniscus lens has convex surface of curvature 20 cm and concave surface 30 cm. If the lens is made of glass (
$$\mu = 1.5$$
) the focal length will be :

- $(1) 4 \, \text{cm}$
- (2) + 4 cm
- $(3) 120 \, \text{cm}$
- (4) + 120 cm

- 85. A long sighted person can not see objects clearly at a distance less than 40 cm from his eye. The power of the lens needed to read an object at 25 cm is :
 - (1) 2.5 D
- (2) + 2.5 D
- (3) 6.25 D
- In Young's experiment performed with light of wavelength 550 nm, the angular width of a fringe formed on a distant screen is 0.1°. Separation between the two slits is nearly:
 - (1) 0.31 mm

(2) 0.51 mm

(3) 0.71 mm

- (4) 0.81 mm
- A thin film of water ($\mu = 4/3$) is 3100 Å thick. If it is illuminated by white light at normal incidence, the colour of film in reflected light will be:
 - (1) Blue
- (2) Green
- (3) Yellow
- (4) Red
- Light is incident normally on a diffraction grating through which the first order diffraction is seen at 32°. The second order diffraction will be seen at:
 - (1) 48°

(2) 64°

(3) 80°

- (4) No second order diffraction in this case
- For a beam of light incident on a glass plate at an angle of incidence 60°, the reflected ray is polarized. The angle of refraction for an angle of incidence 45° is:

 - (1) $\sin^{-1}\frac{\sqrt{3}}{2}$ (2) $\cos^{-1}\frac{\sqrt{3}}{2}$ (3) $\sin^{-1}\frac{1}{\sqrt{6}}$ (4) $\sin^{-1}\frac{1}{\sqrt{3}}$
- The focal length of a plano convex lens is 0.3 m and its convex surface is silvered. For 90. $\mu = 7/4$ for the lens, the radius of curvature of convex surface is :
 - (1) 0.45 m
- (2) 1.05 m
- (3) 3 m
- 91. A magnet is cut into four equal parts by cutting it parallel to its length. What will be time period of each part, if the time period of original magnet in the same field is T_0 ?
 - (1) $T_0 / \sqrt{2}$
- (2) $T_0/2$ (3) $T_0/4$ (4) $4T_0$
- 92. If at a certain instant, the magnetic induction of the electromagnetic wave in vacuum is 6.7×10^{-12} T, then the magnitude of electric field intensity will be:
 - (1) $2 \times 10^{-3} N/C$

(2) $3 \times 10^{-3} N/C$

(3) $4 \times 10^{-3} N/C$

 $(4) 1 \times 10^{-3} N/C$

93.	Calculate the stress for one litties compressed isothermally to			of 72 cm of Hg, when it
	(1) $9.88 \times 10^3 Nm^{-2}$ (3) $1.088 \times 10^3 Nm^{-2}$	(2)	$10.88 \times 10^{3} Nm^{-2}$ $2 \times 10^{3} Nm^{-2}$	
94.	At what temperature, pressure molecules increases by 10% of			ne rms speed of a gas

95. Three moles of oxygen are mixed with two moles of helium. The ratio of specific heats at constant pressure and constant volume for this mixture will be:

(3) 557.3 k

(4) 27.3° c

(1) 6.7 (2) 1.5 (3) 3.7 (4) 2.7

(2) 57.3 °c

96. The first diffraction minimum due to single slit diffraction is θ for an incident radiation with $\lambda = 5000 \text{ Å}$. If the width of the slit is 1×10^{-4} cm, then value of θ is :

(1) 30° (2) 45° (3) 60° (4) 15°

97. A ruby laser produces radiations of wavelength 662.6 nm in pulses of duration $10^{-9} s$. If the laser produces 0.39 J of energy per pulse, how many photons are produced in each pulse?

(1) 1.3×10^9 (2) 1.3×10^{18} (3) 1.3×10^{27} (4) 3.9×10^{18}

98. Consider a system of two identical particles. One of the particles is at rest and the other has an acceleration \vec{a} . The centre of mass has an acceleration:

(1) Zero (2) $\frac{\vec{a}}{2}$ (3) \vec{a} (4) $2\vec{a}$

99. If $I_1 \& I_2$ be the moment of inertia of two bodies of identical geometrical shape, the first made of Aluminium & the second of Iron, then:

(1) $I_1 > I_2$

(1) 57.3 k

(2) $I_1 = I_2$

(3) $I_1 < I_2$

(4) relation in $I_1 \& I_2$ depends on actual shapes of the bodies

100. A thin circular ring of mass M and radius r is rotating about its axis with an angular speed w. Two particles of mass m each are now attached at diametrically opposite points. The angular speed of the ring becomes :

(1) $\frac{wM}{M+m}$ (2) $\frac{wM}{M+2m}$ (3) $\frac{w(M-2m)}{M+2m}$ (4) $\frac{w(M+2m)}{M}$