Total No. of Printed Pages: 21

(DO NOT OPEN THIS QUESTION BOOKLET BEFORE TIME OR UNTIL YOU ARE ASKED TO DO SO)

A

Ph.D./URS-EE-Jan-2022

SUBJECT: Food Technology

SET-Y

Sr. No. Total Questions : 10

		51. NO
Time: 11/4 Hours	Max. Marks: 100	Total Questions : 100
Roll No. (in figures)	(in words)	
Name		
Mother's Name		
(Signature of the Candidate)		
(Signature of the Candidate)		(Signature of the Invigilator)

CANDIDATES MUST READ THE FOLLOWING INFORMATION/INSTRUCTIONS BEFORE STARTING THE QUESTION PAPER.

- 1. All questions are compulsory.
- 2. The candidates must return the question booklet as well as OMR Answer-Sheet to the Invigilator concerned before leaving the Examination Hall, failing which a case of use of unfairmeans / mis-behaviour will be registered against him / her, in addition to lodging of an FIR with the police. Further the answer-sheet of such a candidate will not be evaluated.
- 3. Keeping in view the transparency of the examination system, carbonless OMR Sheet is provided to the candidate so that a copy of OMR Sheet may be kept by the candidate.
- 4. Question Booklet along with answer key of all the A, B, C & D code will be got uploaded on the University website after the conduct of Entrance Examination. In case there is any discrepancy in the Question Booklet/Answer Key, the same may be brought to the notice of the Controller of Examination in writing/through E.Mail within 24 hours of uploading the same on the University Website. Thereafter, no complaint in any case, will be considered.
- 5. The candidate *must not* do any rough work or writing in the OMR Answer-Sheet. Rough work, if any, may be done in the question booklet itself. Answers *must not* be ticked in the question booklet.
- 6. There will be no negative marking. Each correct answer will be awarded one full mark. Cutting, erasing, overwriting and more than one answer in OMR Answer-Sheet will be treated as incorrect answer.
- 7. Use only Black or Blue Ball Point Pen of good quality in the OMR Answer-Sheet.
- 8. Before answering the questions, the candidates should ensure that they have been supplied correct and complete booklet. Complaints, if any, regarding misprinting etc. will not be entertained 30 minutes after starting of the examination.

,	The application of inter(s) in the image	didiyoto to .
	(1) to remove unwanted noise	
	(2) to sharpen the edges of objects	
	(3) Both above	
	(4) None of the above	
2.	With most modern equipment,	gray lavels are available
		gray levels are available.
	(1) 255	(2) 256
	(3) 251	(4) 225
3.	In a typical image having dimensions integer value ranging:	of 512 pixels X 512 pixels, each pixel has an
	(1) From 100 to 1000	(2) From 0 to 100
	(3) From 0 to 255	(4) From 0 to 521
4.	In binarization, the original gray level in	nage is changed from a continuum of:
	(1) Colours or gray levels into a black a	nd white image
	(2) Black and white levels into a colour	image
	(3) Black level into a colour image	
	(4) White level into a colour image	
5.	The mechanism of elastic can be describ	ed by:
	(1) Einstein theory	(2) Rubber elasticity theory
	(3) Plastic resilience system	(4) None of the above
PHD/	URS-EE-2022/(Food Tech.)(SET-Y)/(A)	P. T. O.

6.	The ability of two materials to resist se	eparation after their surfaces come into contact is
	known as :	paramon are area survives come into contact 18
	(1) Cohesion	(2) Tack
	(3) Adhesion	(4) Stickiness
7.	Low values for the second	
	Low values for the surface energy of th	e solid means :
	(1) Low adhesion	(2) High adhesion
	(3) Low cohesion	(4) High cohesion
8.	Differential Scanning Calorimetry is a to	echnique to measure
		to measure :
	(1) Electrical conductivity	(2) Impact energy
	(3) Thermal expansion	(4) Specific heat
	157 or 0 mort (15)	
9.	Kind of electron microscope which is us	ed to study internal structure of cells is:
	(1) scanning electron microscope	structure of cells is:
	very seaming electron interoscope	
	(2) transmission electron microscope	
	(3) light microscope	
	(4) compound microscope	
10.	Floatrons	
10. Electrons of Scanning Electron Microscope are reflected through:		
	(1) glass linnel	
		(2) specimen
	(3) metal-coated surfaces	(4) vacuum
PHD/I	RS-EE-2022/(Food Tech.)(SET-Y)/(A)	(4) vacuum chamber
	DE-2022/(Food Tech.)(SET-Y)/(A)	

PH

11.	ISO 9001:2008 is an update of an earlier	ISO:	
	(1) ISO 9000:2005	(2) ISO 9001:2000	
	(3) ISO 9000:2000	(4) ISO 9004:2000	
	Til. 1.4 Liter was a servent suin cinles	are defined in	
12.	The eight quality management principles	s are defined in .	
	(1) ISO 9000:2000	(2) ISO 9004:2000	
	(3) ISO 9000:2005	(4) Both (1) & (2)	
	The primary function of a QA departmen	at is to provide confidence for ?	
13.	The primary function of a QA departmen	it is to provide confidence	
	(1) Supplier	(2) Retailer	
	(3) Management and Consumer	(4) Wholesaler	
		the large and controlling t	he ·
14.	Good manufacturing practice means und	erstanding, analyzing and controlling is	
	(1) The manufacturing process	(2) Laboratory	
	(3) Distribution of food	(4) None of the above	
	What is the purpose of FSMS (Food Safe	ety Management System) ?	
15.	what is the purpose of 1 51125 (2	1 1 -f -sfo food	
	(1) To ensure the storage, distribution an	nd sale of sale food.	
	(2) To ensure the manufacture, distribut	ion and sale of safe food.	
	(3) To ensure the manufacture, storage a	and sale of safe food.	
	(4) To ensure the manufacture, storage,	distribution and sale of safe food.	
	(4) To ensure the manufacture,		
16.	Molecular sieves are regenerated by heat	ting to:	
	(1) <150°C	(2) >500°C	
		(4) >1000°C	
	(3) 200-330°C		P. T. O.
			1. 1. 0.

17	7. According to Poiseuille's law, the permeability for gas flow through a capillary		
	proportional to (μ =gas viscosity):		
	(1) μ	(2) 1/µ	
	(3) √μ	(4) μ^2	
18.	Particle density of an agricultural production	duce is 1.95 g/cc. The porosity of the bulk	
	36%. The bulk density of the produce is		
	(1) 1.10	(2) 1.25	
	(3) 1.75	(4) 1.85	
19.	The ratio between apertures in consecuti	ve screen in Tyler series is:	
	(1) 2	(2) 2 ^{1/2}	
	(3) 2 ^{1/4}	(4) Both (2) and (3)	
20.	Angle of nip is formed by the :		
	(1) particle to be ground with the roll		
	(2) tangents to the roll faces at the point of contact between a particle and rolls		
	(3) heap of material in free fall to the ro	lls	
	(4) None of these		
		THE REAL PROPERTY AND ADDRESS OF THE PARTY O	
21.		uce is 1.95 g/cc. The porosity of the bulk is	
	36 %. The bulk density of the produce is		
	(1) 1.10	(2) 1.25	
	(3) 1.75	(4) 1.85	
PHD/U	RS-EE-2022/(Food Tech.)(SET-Y)/(A)		

22.	Which one is a faster method for separating solid particles from a mixture of solids?		
	(1) Aspiration	(2) Cyclone separation	
	(3) Centrifugal separation	(4) Fluidization	
23.	The higher values of angle of internal fri	ction indicate that the material is:	
	(1) Cohesive	(2) Easy flowing	
	(3) Free flowing	(4) None of these	
24.	The differential speed of rolls used in wh	neat mill is:	
	(1) 1.5:1	(2) 2.5:1	
	(3) 4.5:1	(4) 3.5:1	
25.	Which of the following law is used material?	to predict energy requirement for grinding a	
	(1) Raoult's law	(2) Newton's law	
	(3) Kick's law	(4) Stoke's law	
26.	Moisture content of wheat on dry basis i	s 25%, what will be on wet basis?	
	(1) 20%	(2) 28%	
	(3) 24%	(4) 26%	
27.	Watson law, which gives a relationship	between the concentration of bactericide 'C'	
	and the time necessary to accomplish a s	tandard destruction, is given by:	
	(1) Ct = constant	(2) C/t = constant	
	(3) $C^2t = constant$	(4) $C^n t = constant$	
HD/U	URS-EE-2022/(Food Tech.)(SET-Y)/(A)	P. T. O	

	ac 1 mater	ial are used to indicate:		
28.	28. Transmittance properties of food material are used to indicate:			
	(1) Extent of processing in biscuits			
	(2) Core defects in fruits			
	(3) Bruised fruits			
	(4) All of these			
29.	During the discharge of the solids of bir	ns and hoppers, the angle comes into play is:		
	(1) angle of friction	(2) dynamic angle of friction		
	(3) angle of repose	(4) angle of rotation		
		and a smoon .		
30.	Dielectric constant of a food material de	epends upon .		
	(1) Temperature	(2) Moisture content		
	(3) Density	(4) Electrical conductivity		
31.	Plank's equation describing freezing of the following was <i>not</i> one of these assur	food was derived from a few assumptions and apptions:		
	(1) Pseudo-steady state condition			
	(2) A definite freezing point			
	(3) Freezing starts at the freezing point			
	(4) None of the above			
		-ingis:		
32.	Temperature commonly used for air free			
	(1) -23°C to -30°C	(2) -180C to -40°C		
	(3) -40°C to -42°C	(4) 23°C to 30°C		
HD/U	RS-EE-2022/(Food Tech.)(SET-Y)/(A)	THE THE PART OF THE PARTY OF TH		

33.	Coefficient of	performance of	f a	refri	gerator	is	given	by	
-----	----------------	----------------	-----	-------	---------	----	-------	----	--

- (1) Heat removed by the evaporator divided by the heat rejected by the condenser
- (2) Heat removed by the evaporator divided by the compressor work
- (3) Heat rejected by the condenser divided by compressor work
- (4) None of the above

34. Pick out the correct relationship between Ri (internal reflux ratio) and Ro (external reflux ratio):

(1) (1+Ro)=Ro/Ri

(2) (1-Ro)=Ro/Ri

(3) (1+Ro)=Ro/Ri

(4) (1-Ri)=Ro/Ri

35. In case of gases, the binary diffusivity is proportional to (where p=pressure):

(1) p

(2) 1/p

 $(3) 1/\sqrt{p}$

(4) √p

36. In extraction, as the temperature increases, the area of heterogeneity (area covered by binodal curve):

(1) Decreases

(2) Increases

(3) Remain unchanged

(4) None of these

37. Azeotropic distillation is employed to separate:

- (1) Constant boiling mixture
- (2) High boiling mixture
- (3) Mixture with very high relative volatility
- (4) Heat sensitive materials

38.	The non-dimensional number of mass transfer which is function of Prandtl number and		
	Schmidt number is:		
	(1) Sherwood number	(2) Lewis number	
	(3) Nusselt number	(4) Grates number	
39.	In which model, monolayer value comes	s into function:	
	(1) BET model	(2) Kelvin model	
	(3) GAB model	(4) Henderson model	
40.	Constant rate of drying is directly propo	rtional to:	
	(1) Convective heat transfer coefficient		
	(2) Latent heat of vaporization		
	(3) Wet bulb temperature		
	(4) None of the above		
41.	Infrared wavelength is represented by w	hich of the following?	
	$(1) 10^{-4} \text{ cm}$	$(2) 10^{-5} \text{ cm}$	
	(3) 10 ⁻⁶ cm	(4) 10^{-2} cm	
42.	Which of the following methods can't be	e used to calculate thermal process time?	
	(1) General method	(2) Runga- Kutta method	
	(3) Formula method	(4) Hayakawa method	

43. If the value of Z is around 115° C, then Q_{10} will be:

(1) 1.22

(2) 2.11

(3) 1.586

(4) 5.18

44. Thermal death time model equations for microbial inactivation at different temperatures can be expressed as:

(1) $\log \frac{F}{F_0} = \frac{T - T_0}{Z}$

(2) $\log \frac{D}{D_0} = \frac{T - T_0}{Z}$

(3) $\log \frac{t_0}{t_T} = -\frac{T - T_0}{Z}$

(4) All of these

45. Kg of steam/kg of water vapour removed in an evaporator is called:

(1) Efficiency

(2) Effectiveness

(3) Steam use ratio

(4) Specific steam consumption

46. Radiation heat transfer is characterized by:

- (1) Energy transport as a result of bulk fluid motion
- (2) Thermal energy transfer as vibrational energy in the lattice structure of the material
- (3) Movement of discrete packets of energy as electromagnetic wanes
- (4) Circulation of fluid motion depends on buoyancy effects

47. The time temperature combination for HTST pasteurization of 71.1°C for 15 sec is selected on the basis of :

(1) Coxiella burnetii

(2) E. coli

(3) B. subtilis

(4) C. botulinum

PHD/URS-EE-2022/(Food Tech.)(SET-Y)/(A)

P. T. O.

- 48. Stationary phase is described as:
 - (1) no further increase in the cell population after a maximum value
 - (2) deceleration of growth and division rate after the growth rate reaches a maximum
 - (3) acceleration of growth and division rate after the growth rate reaches a maximum
 - (4) deceleration of growth and division rate after the growth rate reaches a minimum
- 49. The function of the disengagement zone in an airlift fermenter is to:
 - (1) prevent CO₂ rich bubbles from entering the downcomer
 - (2) reduce the velocity of the bubbles
 - (3) reduce liquid loss as aerosols
 - (4) all of the above
- **50.** The monod model predicts that the specific growth rate:
 - (1) will decrease with the conc. of the growth limiting substrate
 - (2) will increase with the conc. of the growth limiting substrate until it reaches a maximum value
 - (3) will increase with the conc. of the growth limiting substrate
 - (4) does not depend on growth limiting substrate
- 51. Which one of the following cannot be the unit of convective heat transfer coefficient?
 - (1) $W/m^2.K$

(2) kW/m².K

(3) Btu/ft³.h.°C

(4) kcal/m².h.°C

52. The emissive power of a body depends on:

(1) Nature of body

- (2) Physical nature
- (3) Temperature of body
- (4) All of the above

53. Licensing and registering authority have the power to

(1) Registration

- (2) Licensing
- (3) Cancellation of License
- (4) All of the above

54. The Global Food Safety Initiative was created by the:

- (1) Food and Drug Administration
- (2) British Retail Consortium (BRC)
- (3) Global Food Business Forum
- (4) World Health Organization (WHO)

55. In a concentric double pipe heat exchanger one fluid undergoes phase change:

- (1) Two fluids should opposite to each other
- (2) Two fluids should flow parallel to each other
- (3) Two fluids should flow normal to each other
- (4) The direction of flow of the two fluids are of no consequences

56. For a perfectly black body:

- (1) $\alpha = 1$, $\epsilon = 0$, $\tau = 0$
- (2) $\alpha = \varepsilon = 0$, P = 1

(3) $\alpha = \tau = 0$, $\varepsilon = 1$

(4) None of these

PHD/URS-EE-2022/(Food Tech.)(SET-Y)/(A)

P. T. O.

57.	For laminar flow (in flow inside pipes) S	herwood number shows the same trends as:
	(1) Nusselt number	(2) Reynolds number
	(3) Stanton number	(4) Prandtl number
58.	Effect of temperature on the reaction rat	e is given by:
	(1) Arrhenius equation	(2) Gibbs Helmholtz equation
	(3) Kirchoff's law	(4) None of the above
59.	Which of the following is true about ISO	2002 method for Salmonella detection?
	(1) Selenite cystine (SC) broth is novobiocin broth (MKTTn)	replaced by Muller Kauffmann tetrathionate
	(2) Rappaport Vassiliadis (RV) broth h (RVS broth	as been replaced by Rappaport Vassiliadis Soya
	(3) XLD is the first isolation medium r	ather than BGA
	(4) All of these	
60.	What are the intrinsic factors for the mi	crobial growth?
	(1) pH	(2) Moisture
	(3) Oxidation-Reduction Potential	(4) All of these
61.	Among the following which group of f	at is unsaturated?
	(1) Oleic, Linoleic	(2) Butyric, Lauric
	(3) Caproic, Butyric	(4) Styrene, Lauric
PHD/	URS-EE-2022/(Food Tech.)(SET-Y)/(A	

62.	When vapor pressure of water at surface is more than vapor pressure of atmosphere:		
	(1) Water starts boiling	(2) Water escapes	
	(3) No effect	(4) None of the above	
63.	Which is major phenol substrate for phenol	nolase action in enzymatic browning reaction?	
	(1) Caffeic acid	(2) Chlorogenic acid	
	(3) Phenol oxidase	(4) Tyrosine	
64.	Phenomenon of osmosis causes membrane.	of true liquid separated by chemical	
	(1) Change in relative density		
	(2) Change in specific gravity		
	(3) Change in relative volume		
	(4) Change in relative viscosity		
65.	A liquid freeze when its vapor pressure i	s equal to :	
	(1) Vapor pressure of solid		
	(2) Vapor pressure of atmosphere		
	(3) Vapor pressure of liquid		
	(4) None of the above		
66.	The final browning pigment of enzymatic	e browning reaction is:	
	(1) Melanin	(2) O-diphenol	
	(3) Orthoquinone	(4) Caffeic acid	
PHD/U	TRS-EE-2022/(Food Tech.)(SET-Y)/(A)	P. T. O.	

67.	. Water activity of the solution having lo	w solute concentration can be obtained from
	$(1) \ a_w = X_w$	(2) $a_w = LN X_w$
	(3) $LN_{aw} = X_w$	$(4) a_w = 1/X_w$
68.	Water can be best described as:	
	(1) Pseudoplastic, Thixotropic	(2) Dilatent, Rheopectic
	(3) Dilatent, Pseudoplastic	(4) Newtonian
69.	Freeze burn is a defect which generally	occurs in frozen foods due to:
	(1) Dehydration	(2) Osmosis
	(3) Thermal conductivity	(4) Rehydration
70.	Most commonly used material for micr	owave oven packaging is made up of:
	(1) Wood	(2) Paper
	(3) Plastic	(4) Aluminum foil
71.	A keto acid involved in carbohydrate n	netabolism is:
	(1) Citric acid	(2) Pyruvic acid
	(3) Succinic acid	(4) Tricarboxylic acid
72.	Carbohydrate free human diet leads to	
	(1) Addition's disease	(2) Hyper adrenalism
	(3) Hypothyroidism	(4) Ketosis
PHD/U	JRS-EE-2022/(Food Tech.)(SET-Y)/(A	

73.	The most common simple proteins which	h act as reserve proteins in plants are:	
	(1) Albumins	(2) Globulins	
	(3) Glutelins	(4) Prolamins	
74.	The parts of the body protein that can be test is known as:	e replaced by 100 parts of the protein fed in the	
	(1) Biological value		
	(2) Chemical score		
	(3) Digestibility coefficient		
	(4) Protein Efficiency Ratio		
75.	Riboflavin is rapidly destroyed in:		
	(1) Acid medium		
	(2) Alkaline medium		
	(3) Neutral medium		
	(4) All the above		
76.	Consumption of raw eggs by adults may	lead to:	
	(1) Biotin deficiency		
	(2) Calcium deficiency		
	(3) Folic acid deficiency		
	(4) Phosphorus deficiency		

77.	Monosaccharides constituting lactose are	2:
	(1) Galactose-galactose	
	(2) Galactose-glucose	
	(3) Glucose-glucose	
	(4) Glucose-fructose	
78.	Differential speed ratio of the pairs of br	reak rolls of Buhler mill is:
	(1) 3:1	(2) 2.5:1
	(3) 1.5:1	(4) 1:1
79.	One refrigeration ton is equivalent to:	
	(1) 1000 kg/day	
	(2) 1000 Btu/day	
	(3) 12000 kg/hour	
	(4) 12000 Btu/hour	
80.	Cleaning of cereals by aspiration is base	ed on:
	(1) Aerodynamic properties	
	(2) Hydrodynamic properties	

PHD/URS-EE-2022/(Food Tech.)(SET-Y)/(A)

(3) Magnetic properties

(4) Thermal properties

81.	Alcohol ppt. test determines :	
	(1) Adulteration of milk	
	(2) Percentage of fat in milk	
	(3) Milk acidity	
	(4) Heat stability of milk	
82.	Food that exhibits Newtonian flow beha	viour best among the following is:
	(1) Dairy cream	(2) Fruit purees
	(3) Milk	(4) Protein concentrate
83.	Permeability of plastic packaging films to	to gases is given by:
	(1) Bear's law	(2) Fick's law
	(3) Fink's law	(4) Flemming's law
84.	Rate of sedimentation of particles during	fruit juice clarification is governed by:
	(1) Fick's law	(2) Kick's law
	(3) Ostwald's law	(4) Stoke's law
85,	Working fluid employed in heat pump cy	vcle is:
	(1) Ammonia gas	(2) Freon gas
	(3) Steam	(4) Hot water
PHD/U	RS-EE-2022/(Food Tech.)(SET-Y)/(A)	P. T. O.

86.	The relationship between moisture content and water activity of foods is given by:		
	(1) BET equation	(2) Fourier's equation	
	(3) Stefan's Law	(4) Plank's equation	
87.	The pigments responsible for the red and	d purple colour of fruits and vegetables are:	
	(1) Myoglobin	(2) Oxymyoglobin	
	(3) Anthocyanins	(4) Pheophytins	
88.	The sole pigments in vegetables such as	s potato and yellow skinned onion are:	
	(1) Myoglobin	(2) Anthocyanins	
	(3) Pheophytins	(4) Flavonoids	
89.	The delayed bitterness in oranges and g	grapefruits is due to :	
	(1) Terpene limonin	(2) Hesperidin	
	(3) Allicin	(4) Naringin	
90.	The most common flavonoid in the pee	els of oranges and lemons is :	
	(1) Terpene limonin	(2) Hesperidin	
	(3) Allicin	(4) Naringin	
91.	The characteristic odour of garlic is du	e to:	
	(1) Naringin	(2) Allicin	
	(3) Hesperidin	(4) Thioglucosides	
PHD	URS-EE-2022/(Food Tech.)(SET-Y)/(A	A)	

92.	The flavour components of the cabbage and cauliflower are due to:		
	(1) Naringin	(2) Allicin	
	(3) Hesperidin	(4) Thioglucosides	
93.	The formation of brown colour in fruit following enzyme on phenolic substance	s and vegetables when cut is due to the action of ces.	
	(1) Tyrosinase	(2) Amylase	
	(3) Phenolase	(4) Peroxidase	
94.	The enzyme which hydrolyzes sucrose	into glucose and fructose is:	
	(1) α-amylase	(2) β-amylase	
	(3) Cellulase	(4) Invertase	
95.	The haziness noticed in fruit juices and	wines can be removed using:	
	(1) Cellulase	(2) Pectinase	
	(3) Invertase	(4) α-amylase	
96.	The enzyme which decomposes hydrog	en peroxide to water is:	
	(1) Cellulase	(2) Lipase	
	(3) Catalase	(4) α-amylase	
97.	The enzyme which bleaches the flour to	produce a very white crumb is:	
	(1) Invertase	(2) Lipoxygenases	
Tre-	(3) Catalase	(4) Pectinase	
aD/C	RS-EE-2022/(Food Tech.)(SET-Y)/(A	P. T. O.	

98.	A mole of non-ionizin	z solute in a litt	e of water	depresses its	freezing	point by	į
-----	-----------------------	--------------------	------------	---------------	----------	----------	---

(1) 5.58°C

(2) 3.72°C

(3) 2.24°C

(4) 1.80°C

99. The gas used for flushing the processed and packaged food is:

(1) Hydrogen

(2) Nitrogen

(3) Carbon dioxide

(4) Oxygen

100. Heat conduction in glass is due to:

- (1) Electromagnetic waves
- (2) Elastic impact of molecules
- (3) Motion of electrons
- (4) Mixing motion of different layers of gas

Total No. of Printed Pages: 21

(DO NOT OPEN THIS QUESTION BOOKLET BEFORE TIME OR UNTIL YOU ARE ASKED TO DO SO)

В

Ph.D./URS-EE-Jan-2022

SUBJECT: Food Technology

SET-Y

10002

		Sr. No
Time: 11/4 Hours	Max. Marks : 100	Total Questions: 100
Roll No. (in figures)	(in words)	
Name	Father's Name	
Mother's Name	Date of Examination_	
(Signature of the Candidate)		(Signature of the Invigilator)

CANDIDATES MUST READ THE FOLLOWING INFORMATION/INSTRUCTIONS BEFORE STARTING THE QUESTION PAPER.

- 1. All questions are compulsory.
- 2. The candidates *must return* the question booklet as well as OMR Answer-Sheet to the Invigilator concerned before leaving the Examination Hall, failing which a case of use of unfairmeans / mis-behaviour will be registered against him / her, in addition to lodging of an FIR with the police. Further the answer-sheet of such a candidate will not be evaluated.
- 3. Keeping in view the transparency of the examination system, carbonless OMR Sheet is provided to the candidate so that a copy of OMR Sheet may be kept by the candidate.
- 4. Question Booklet along with answer key of all the A, B, C & D code will be got uploaded on the University website after the conduct of Entrance Examination. In case there is any discrepancy in the Question Booklet/Answer Key, the same may be brought to the notice of the Controller of Examination in writing/through E.Mail within 24 hours of uploading the same on the University Website. Thereafter, no complaint in any case, will be considered.
- 5. The candidate *must not* do any rough work or writing in the OMR Answer-Sheet. Rough work, if any, may be done in the question booklet itself. Answers *must not* be ticked in the question booklet.
- 6. There will be no negative marking. Each correct answer will be awarded one full mark. Cutting, erasing, overwriting and more than one answer in OMR Answer-Sheet will be treated as incorrect answer.
- 7. Use only Black or Blue Ball Point Pen of good quality in the OMR Answer-Sheet.
- 8. Before answering the questions, the candidates should ensure that they have been supplied correct and complete booklet. Complaints, if any, regarding misprinting etc. will not be entertained 30 minutes after starting of the examination.

PHD/URS-EE-2022/(Food Tech.)(SET-Y)/(B)

T V III

- 1. Infrared wavelength is represented by which of the following?
 - (1) 10⁻⁴ cm
- (2) 10^{-5} cm
- (3) 10⁻⁶ cm
- (4) 10^{-2} cm
- Which of the following methods can't be used to calculate thermal process time?
 - (1) General method

(2) Runga- Kutta method

(3) Formula method

- (4) Hayakawa method
- If the value of Z is around 115°C, then Q₁₀ will be:
 - (1) 1.22
- (2) 2.11
- (3) 1.586

- (4) 5.18
- Thermal death time model equations for microbial inactivation at different temperatures can be expressed as:

 - (1) $\log \frac{F}{F_0} = \frac{T T_0}{Z}$ (2) $\log \frac{D}{D_0} = \frac{T T_0}{Z}$
 - (3) $\log \frac{t_0}{t_T} = -\frac{T T_0}{Z}$ (4) All of these et and the efficiency as the state of the section of
- 5. Kg of steam/kg of water vapour removed in an evaporator is called:
 - (1) Efficiency
 - (2) Effectiveness
 - (3) Steam use ratio
 - (4) Specific steam consumption

6.	Radiation heat transfer is characterized by:
	(1) Energy transport as a result of bulk fluid motion
	(2) Thermal energy transfer as vibrational energy in the lattice structure of the material
	(3) Movement of discrete packets of energy as electromagnetic wanes
	(4) Circulation of fluid motion depends on buoyancy effects
7.	The time temperature combination for HTST pasteurization of 71.1°C for 15 sec i selected on the basis of :
	(1) Coxiella burnetii (2) E. coli
	(3) B. subtilis (4) C. botulinum
8.	Stationary phase is described as:
	(1) no further increase in the cell population after a maximum value
•	(2) deceleration of growth and division rate after the growth rate reaches a maximum
	(3) acceleration of growth and division rate after the growth rate reaches a maximum
	(4) deceleration of growth and division rate after the growth rate reaches a minimum
9.	The function of the disengagement zone in an airlift fermenter is to:
	(1) prevent CO ₂ rich bubbles from entering the downcomer
	(2) reduce the velocity of the bubbles
	(3) reduce liquid loss as aerosols

(4) all of the above

10.	The monod model predicts that the specific growth rate:			
	(1) will decrease with the conc. of the gr	owth limiting substrate		
	(2) will increase with the conc. of the growth limiting substrate until it reaches a maximum value			
	(3) will increase with the conc. of the growth limiting substrate			
	(4) does not depend on growth limiting substrate			
11.	Particle density of an agricultural prod	uce is 1.95 g/cc. The porosity of the bulk is		
	36 %. The bulk density of the produce is			
	(1) 1.10	(2) 1.25		
	(3) 1.75	(4) 1.85		
12.	Which one is a faster method for separate	ing solid particles from a mixture of solids?		
	(1) Aspiration	(2) Cyclone separation		
	(3) Centrifugal separation	(4) Fluidization		
13.	The higher values of angle of internal fr	iction indicate that the material is:		
	(1) Cohesive	(2) Easy flowing		
	(3) Free flowing	(4) None of these		
14.	The differential speed of rolls used in v	wheat mill is:		
	(1) 1.5:1	(2) 2.5:1		
	(3) 4.5:1	(4) 3.5:1		
PHD/	URS-EE-2022/(Food Tech.)(SET-Y)/(I	B) = T = P. T.		
L Elder				

15.	material ?	law is used to pr			
	(1) Raoult's law		Newton's law	F 1.02	
	(3) Kick's law	(4)	Stoke's law	and the second	
16.	Moisture content of whea	at on dry basis is 259	, what will be o	n wet basis?	
	(1) 20%			uri i di Maria 1911 - El	
	(3) 24%	(4)			
	Factor of the state of	, ,			1 17
17.					
	and the time necessary to				
	(1) Ct = constant	(2)	C/t = constant		
	(3) $C^2t = constant$	(4)	C ⁿ t = constant	p = 1	2. 10
18.	Transmittance properties	of food material are	used to indicate		为。 是针
	(1) Extent of processing				
	(2) Core defects in fruits		n ja	magama . 1	
	(3) Bruised fruits				
	(4) All of these	(I) 7 (1) (9)	in the April of	That may to	SP
		4 64 11		17. 14.	
19.	During the discharge of the	ne solids of bins and	hoppers, the ang	gle comes into pl	lay is :
	(1) angle of friction	-10 A - 1		Tul Walt & 1,1	
	(2) dynamic angle of fric	tion that the large	e Marke	in salit	7 4
	(3) angle of repose				
	(4) angle of rotation				
	,				THE SE

20.	Dielectric constant of a food material depends upon:		
	(1) Temperature	(2) Moisture content	
	(3) Density	(4) Electrical conductivity	
	The application of filter(a) in the in-		
21.	The application of filter(s) in the image	analysis is:	
	(1) to remove unwanted noise		
	(2) to sharpen the edges of objects		
	(3) Both above		
	(4) None of the above		
22.	With most modern equipment,	. gray levels are available.	
	(1) 255	(2) 256	
	(3) 251	(4) 225	
	Y a mained image having dimensions	of 512 pivole V 512 pivole each pivel has an	
23.	integer value ranging:	of 512 pixels X 512 pixels, each pixel has an	
	-	(0) 7	
	(1) From 100 to 1000	(2) From 0 to 100	
	(3) From 0 to 255	(4) From 0 to 521	
	Y 11 tasks the original army level in	rage is abanged from a continuum of t	
24.	In binarization, the original gray level in	nage is changed from a continuum of .	
	(1) Colours or gray levels into a black a	nd white image	
	(2) Black and white levels into a colour	image	
	(3) Black level into a colour image		
	(4) White level into a colour image		

28,	The mechanism of clastic can be descri-	bed by :	
	(1) Einstein theory	(2) Rubber elasticity the	ory
	(3) Plastic resilience system	(4) None of the above	
26.	The ability of two materials to resist se	paration after their surface	s come into contac
	known as:		
	(1) Cohesion	(2) Tack	
	(3) Adhesion	(4) Stickiness	
27.	Low values for the surface energy of th	e solid means :	
	(1) Low adhesion	(2) High adhesion	
	(3) Low cohesion	(4) High cohesion	
28.	Differential Scanning Calorimetry is a	technique to measure :	
	(1) Electrical conductivity	(2) Impact energy	
	(3) Thermal expansion	(4) Specific heat	
29.	Kind of electron microscope which is u	sed to study internal struc	eture of cells is:
	(1) scanning electron microscope		
	(2) transmission electron microscope		
	(3) light microscope		
	(4) compound microscope		

P. T. O.

30.	Electrons of Scanning Electron Microscope are reflected through:			
	(1) glass funnel	(2) specimen		
	(3) metal-coated surfaces	(4) vacuum chamber		
31.	The characteristic odour of garlic is due	to:		
	(1) Naringin	(2) Allicin		
	(3) Hesperidin	(4) Thioglucosides		
32.	2. The flavour components of the cabbage and cauliflower are due to:			
	(1) Naringin	(2) Allicin		
	(3) Hesperidin	(4) Thioglucosides		
33.	The formation of brown colour in fruits and vegetables when cut is due to the action of following enzyme on phenolic substances.			ion of
	(1) Tyrosinase	(2) Amylase		
	(3) Phenolase	(4) Peroxidase		. 2-
34.	1. The enzyme which hydrolyzes sucrose into glucose and fructose is:			
	(1) α-amylase	(2) β-amylase		
	(3) Cellulase	(4) Invertase		
35.	35. The haziness noticed in fruit juices and wines can be removed using:			*
	(1) Cellulase	(2) Pectinase		
	(3) Invertase	(4) α-amylase		
PHD/	URS-EE-2022/(Food Tech.)(SET-Y)/(B		101 . 25	P. T. O

36.	The enzyme which decomposes hydrogen peroxide to water is:		
	(1) Cellulase	(2) Lipase	
	(3) Catalase	(4) α-amylase	
37.	The enzyme which bleaches the flour to	produce a very white crumb is:	
	(1) Invertase	(2) Lipoxygenases	
	(3) Catalase	(4) Pectinase	
38.	A mole of non-ionizing solute in a litre	of water depresses its freezing point by	
	(1) 5.58°C	(2) 3.72°C	
	(3) 2.24°C	(4) 1.80°C	
39.	The gas used for flushing the processed	d and packaged food is:	
	(1) Hydrogen	(2) Nitrogen	
	(3) Carbon dioxide	(4) Oxygen	
40.	Heat conduction in glass is due to:		
	(1) Electromagnetic waves		
	(2) Elastic impact of molecules		
	(3) Motion of electrons		
	(4) Mixing motion of different layers	of gas	
41.	Among the following which group of	fat is unsaturated?	
	(1) Oleic, Linoleic	(2) Butyric, Lauric	
	(3) Caproic, Butyric	(4) Styrene, Lauric	

42.	When vapor pressure of water at surface is more than vapor pressure of atmosphere:		
	(1) Water starts boiling	(2) Water escapes	
	(3) No effect	(4) None of the above	
43.	Which is major phenol substrate for ph	enolase action in enzymatic browning reaction?	
	(1) Caffeic acid	(2) Chlorogenic acid	
	(3) Phenol oxidase	(4) Tyrosine	
44.	Phenomenon of osmosis causes of true liquid separated by chemical membrane.		
	(1) Change in relative density		
	(2) Change in specific gravity		
	(3) Change in relative volume		
	(4) Change in relative viscosity		
45.	A liquid freeze when its vapor pressure	e is equal to:	
	(1) Vapor pressure of solid		
	(2) Vapor pressure of atmosphere	in the second of	
	(3) Vapor pressure of liquid		
	(4) None of the above		
46.	The final browning pigment of enzym	atic browning reaction is:	
	(1) Melanin	(2) O-diphenol	
	(3) Orthoquinone	(4) Caffeic acid	
		PTC	

47	Weter activity of the solution having low	v solute concentration can be obtained from:	
47.	(1) $a_w = X_w$	(2) $a_w = LN X_w$	
	$(3) LN_{aw} = X_{w}$	(4) $a_w = 1/X_w$	
48.	Water can be best described as:		
	(1) Pseudoplastic, Thixotropic		
	(2) Dilatent, Rheopectic		
	(3) Dilatent, Pseudoplastic		
	(4) Newtonian		
49.	Freeze burn is a defect which generally	occurs in frozen foods due to:	
	(1) Dehydration	(2) Osmosis	
	(3) Thermal conductivity	(4) Rehydration	
50.	. Most commonly used material for microwave oven packaging is made up of :		
	(1) Wood	(2) Paper	
	(3) Plastic	(4) Aluminum foil	
51.	1		
	the following was <i>not</i> one of these assur	mptions:	
	(1) Pseudo-steady state condition		
	(2) A definite freezing point		
	(3) Freezing starts at the freezing point		
	(4) None of the above		
PHD/	URS-EE-2022/(Food Tech.)(SET-Y)/(B)		

52. Temperature commonly used for air freezing is:

	(1) −23°C to −30°C	(2) $-180C$ to $-40^{\circ}C$	
	(3) -40°C to -42°C	(4) 23°C to 30°C	
53	Coefficient of performance of a refri	gerator is given by:	
	(1) Heat removed by the evaporator	divided by the heat rejected by the condenser	
	(2) Heat removed by the evaporator	divided by the compressor work	
	(3) Heat rejected by the condenser divided by compressor work		
	(4) None of the above		
		•	
54.	. Pick out the correct relationship between Ri (internal reflux ratio) and Ro (external		
	reflux ratio):		
	(1) (1+Ro)=Ro/Ri	(2) (1–Ro)=Ro/Ri	
	(3) (1+Ro)=Ro/Ri	(4) (1–Ri)=Ro/Ri	
55.	5. In case of gases, the binary diffusivity is proportional to (where p=pressure):		
	(1) p	(2) 1/p	
	(3) 1∕√p	(4) √p	
56.	In extraction, as the temperature incre	eases, the area of heterogeneity (area covered by	
	binodal curve):		
	(1) Decreases	(2) Increases	
	(3) Remain unchanged	(4) None of these	
ID/U	RS-EE-2022/(Food Tech.)(SET-Y)/()	В)	

57.	Azeotropic distillation is emp	loyed to separate:	
	(1) Constant boiling mixture		
	(2) High boiling mixture		
	(3) Mixture with very high re	elative volatility	
	(4) Heat sensitive materials		
58.	The non-dimensional number	of mass transfer which is function of Prandtl number an	
	Schmidt number is:		
	(1) Sherwood number	(2) Lewis number	
	(3) Nusselt number	(4) Grates number	
59.	In which model, monolayer value comes into function:		
	(1) BET model	(2) Kelvin model	
	(3) GAB model	(4) Henderson model	
60.	Constant rate of drying is dir	ectly proportional to:	
	(1) Convective heat transfer	coefficient	
	(2) Latent heat of vaporizati	on	
	(3) Wet bulb temperature		
	(4) None of the above		
61.	A keto acid involved in carbohydrate metabolism is:		
	(1) Citric acid	(2) Pyruvic acid	
	(3) Succinic acid	(4) Tricarboxylic acid	
PHD/	URS-EE-2022/(Food Tech.)(SET-Y)/(B)	

Carbohydrate free human diet leads to:

	(1) Addition's disease		
	(2) Hyper adrenalism		
	(3) Hypothyroidism		
	(4) Ketosis		ta sugar a series
63.	The most common simple proteins w	which act as reserve pr	oteins in plants are:
	(1) Albumins	(2) Globulins	
	(3) Glutelins	(4) Prolamins	
64.	The parts of the body protein that cattest is known as:	an be replaced by 100	parts of the protein fed in the
	(1) Biological value		r parties of
	(2) Chemical score		
	(3) Digestibility coefficient		
	(4) Protein Efficiency Ratio		
65.	Riboflavin is rapidly destroyed in:		
	(1) Acid medium		
	(2) Alkaline medium		
	(3) Neutral medium		
	(4) All the above		
PHD/(URS-EE-2022/(Food Tech.)(SET-Y))/(B)	P. T. C

66	66. Consumption of raw eggs by adults m	ay lead to:
	(1) Biotin deficiency	
	(2) Calcium deficiency	
	(3) Folic acid deficiency	
	(4) Phosphorus deficiency	
67	67. Monosaccharides constituting lactose	are:
	(1) Galactose-galactose	
	(2) Galactose-glucose	
	(3) Glucose-glucose	
	(4) Glucose-fructose	
68	8. Differential speed ratio of the pairs of	break rolls of Buhler mill is:
	(1) 3:1	(2) 2.5:1
	(3) 1.5:1	(4) 1:1
69.	9. One refrigeration ton is equivalent to	tani u tani
	(1) 1000 kg/day	
	(2) 1000 Btu/day	
	(3) 12000 kg/hour	

(4) 12000 Btu/hour

70	Cleaning of cereals by aspiration is bas	ed or	130		
	(1) Aerodynamic properties				
	(2) Hydrodynamic properties				
	(3) Magnetic properties				
	(4) Thermal properties				
71.	Alcohol ppt. test determines:				
	(1) Adulteration of milk				
	(2) Percentage of fat in milk			personal territorial	
	(3) Milk acidity			4 (** - =	
	(4) Heat stability of milk				
72.	Food that exhibits Newtonian flow beha	aviou	r best among the	following is :	
	(1) Dairy cream	(2)	Fruit purces		
	(3) Milk	(4)	Protein concentr	ate	
73.	Permeability of plastic packaging films	to ga	ses is given by:		
	(1) Bear's law	(2)	Fick's law	(4) (1)	
	(3) Fink's law	(4)	Flemming's law		
74.	Rate of sedimentation of particles during	g fru	it juice clarificatio	on is governed by:	
	(1) Fick's law	(2)	Kick's law	endigeton tidak	
	(3) Ostwald's law	(4)	Stoke's law		

75.	Working fluid employed in heat pump cy	yala is:
	(1) Ammonia gas	(2) Freon gus
	(3) Steam	(4) Hot water
76.	The relationship between moisture conto	ent and water activity of foods is given by:
	(1) BET equation	(2) Fourier's equation
	(3) Stefan's Law	(4) Plank's equation
77.	The pigments responsible for the red and	d purple colour of fruits and vegetables are:
	(1) Myoglobin	(2) Oxymyoglobin
	(3) Anthocyanins	(4) Pheophytins
78.	The sole pigments in vegetables such as	potato and yellow skinned onion are:
	(1) Myoglobin	(2) Anthocyanins
	(3) Pheophytins	(4) Flavonoids
79.	The delayed bitterness in oranges and g	rapefruits is due to:
	(1) Terpene limonin	(2) Hesperidin
	(3) Allicin	(4) Naringin
80.	The most common flavonoid in the peel	s of oranges and lemons is:
	(1) Terpene limonin	(2) Hesperidin
	(3) Allicin	(4) Naringin
PHD/	URS-EE-2022/(Food Tech.)(SET-Y)/(B) The state of the

3			17
o1.	ISO 9001:2008 is an update of an earlier ISO		
, D'	(1) ISO 9000:2005	1SO 9001:2000	
	(4)	ISO 9004:2000	
82.	The eight quality management principles are	defined in	
	(1) ISO 9000:2000	ISO 9004:2000	
	(2) 180 9000.2003	Both (1) & (2)	
83.	The primary function of a QA department is		
	(1) Supplier (2)	Retailer	
	(3) Management and Consumer (4)	Wholesaler	
84.	Good manufacturing practice means underst	anding, analyzing and controlling the	4
	(1) The manufacturing process) Laboratory	
	(3) Distribution of food (4	None of the above	
85.	What is the purpose of FSMS (Food Safety	Management System) ?	
	(1) To ensure the storage, distribution and		
	(2) To ensure the manufacture, distribution	and sale of safe food.	
	(3) To ensure the manufacture, storage and	sale of safe food.	
	(4) To ensure the manufacture, storage, dis	stribution and sale of safe food.	
86.	Molecular sieves are regenerated by heatin	g to : "	
	(1) <150°C		
	(3) 200-330°C	4) >1000°C	

					desaugh a conti	
87.	According to P	oiseuille's law, the po	ermeability	for gas flo	w through a capillar	y i
		μ =gas viscosity):				
	(1) μ		(2) 1/μ			
	(3) √μ				Annuit in all	
88.	Particle density	of an agricultural pro	oduce is 1.	95 g/cc. The	e porosity of the bul	k i
	36%. The bulk of	lensity of the produce i	s:			
	(1) 1.10	e is terro a so in the d	(2) 1.25	est the artific	en moral g	
	(3) 1.75				mercy (1)	
89.	The ratio between	en apertures in consecu	tive screen	in Tyler seri	ies is:	
	(1) 2 (1)	n gnisyljan, pro k o	(2) 21/2			
	$(3) 2^{1/4}$	gradina di si natusi ni especiali	(4) Both	(2) and (3)	r (= im sil) (fi) 	
90.	Angle of nip is f	formed by the :			e go y na se native na	
	(1) particle to b	e ground with the roll			The same of the sa	
	(2) tangents to t	he roll faces at the poin				
	(3) heap of mate	erial in free fall to the r	olls	winds here, r	14. 14. 14. 14. 14. 14. 14. 14. 14. 14.	
	(4) None of the	se, uninderal		tor.	ti aurin i i i i	
91.	Which one of the	e following cannot be t	he unit of o	convective h	eat transfer coefficient	?
	(1) W/m ² .K	1920	(2) kW/	m².K		
	(3) Btu/ft ³ .h.°C	OF DUALITY	(4) kcal	/m².h.°C		

92.	The emissive power of a body depends on:	
	(1) Nature of body (2	Physical nature
	(3) Temperature of body (4)) All of the above
93.	Licensing and registering authority have th	e power to
	(1) Registration (2	2) Licensing
	(3) Cancellation of License (4)	All of the above
94.	4. The Global Food Safety Initiative was creat	ated by the:
	(1) Food and Drug Administration	
	(2) British Retail Consortium (BRC)	
į ,	(3) Global Food Business Forum	
	(4) World Health Organization (WHO)	
9	95. In a concentric double pipe heat exchange	er one fluid undergoes phase change:
	(1) Two fluids should opposite to each o	
	(2) Two fluids should flow parallel to ea	ch other

96. For a perfectly black body:

(1)
$$\alpha = 1, \epsilon = 0, \tau = 0$$

(2)
$$\alpha = \varepsilon = 0$$
, $P = 1$

(3)
$$\alpha = \tau = 0, \epsilon = 1$$

(4) None of these

(3) Two fluids should flow normal to each other

(4) The direction of flow of the two fluids are of no consequences

		shorwood number shows the same trends as:
97.	For laminar flow (in flow inside pipes)	Sherwood number shows the same trends as: (2) Reynolds number
	(1) Nusselt number	(4) Prandtl number
	(3) Stanton number	(4) Prandu nom
98.	Effect of temperature on the reaction rat (1) Arrhenius equation (3) Kirchoff's law	c is given by: (2) Gibbs Helmholtz equation (4) None of the above
99.	Which of the following is true about ISO	2002 method for Salmonella detection?
33.	(1) Selenite cystine (SC) broth is novobiocin broth (MKTTn)	replaced by Muller Kauffmann tetrathionate
	(2) Rappaport Vassiliadis (RV) broth h	as been replaced by Rappaport Vassiliadis Soya
	(RVS broth (3) XLD is the first isolation medium ra	ather than BGA
	(4) All of these	random and the standard of
100.		crobial growth?
	(1) pH	the state of the s
	(2) Moisture	in the second of the disposition in the
	(3) Oxidation-Reduction Potential	egter delagropher de la
	(4) All of these	

Total No. of Printed Pages: 21

(PO NOT OPEN THIS QUESTION BOOKLET BEFORE TIME OR UNTIL YOU ARE ASKED TO DO SO)

Ph.D./URS-EE-Jan-2022

SUBJECT: Food Technology

S	-	T-	Y

10007

		Sr. No
Time: 11/4 Hours Roll No. (in figures)	Max. Marks : 100 (in words)	Total Questions : 100
Name	Father's Name	
Mother's Name	Date of Examination	
(Signature of the Candidate)		(Signature of the Invigilator)
(Signature of the Candidate)		

CANDIDATES MUST READ THE FOLLOWING INFORMATION/INSTRUCTIONS BEFORE STARTING THE QUESTION PAPER.

- 1. All questions are compulsory.
- 2. The candidates must return the question booklet as well as OMR Answer-Sheet to the Invigilator concerned before leaving the Examination Hall, failing which a case of use of unfairmeans / mis-behaviour will be registered against him / her, in addition to lodging of an FIR with the police. Further the answer-sheet of such a candidate will not be evaluated.
- 3. Keeping in view the transparency of the examination system, carbonless OMR Sheet is provided to the candidate so that a copy of OMR Sheet may be kept by the candidate.
- 4. Question Booklet along with answer key of all the A, B, C & D code will be got uploaded on the University website after the conduct of Entrance Examination. In case there is any discrepancy in the Question Booklet/Answer Key, the same may be brought to the notice of the Controller of Examination in writing/through E.Mail within 24 hours of uploading the same on the University Website. Thereafter, no complaint in any case, will be considered.
- The candidate must not do any rough work or writing in the OMR Answer-Sheet. Rough work, if any, may be done in the question booklet itself. Answers must not be ticked in the question booklet.
- 6. There will be no negative marking. Each correct answer will be awarded one full mark. Cutting, erasing, overwriting and more than one answer in OMR Answer-Sheet will be treated as incorrect answer.
- 7. Use only Black or Blue Ball Point Pen of good quality in the OMR Answer-Sheet.
- 8. Before answering the questions, the candidates should ensure that they have been supplied correct and complete booklet. Complaints, if any, regarding misprinting etc. will not be entertained 30 minutes after starting of the examination.

PHD/URS-EE-2022/(Food Tech.)(SET-Y)/(C)

-

1.	ISO 9001:2008 is an update of an e	earlier ISO :
	(1) ISO 9000:2005	(2) ISO 9001:2000
	(3) ISO 9000:2000	(4) ISO 9004:2000
2.	The eight quality management prin	nciples are defined in :
	(1) ISO 9000:2000	(2) ISO 9004:2000
	(3) ISO 9000:2005	(4) Both (1) & (2)
3.	The primary function of a QA dep	artment is to provide confidence for ?
	(1) Supplier	(2) Retailer
	(3) Management and Consumer	(4) Wholesaler
4.	Good manufacturing practice mea	ans understanding, analyzing and controlling the:
	(1) The manufacturing process	(2) Laboratory
	(3) Distribution of food	(4) None of the above
5.	What is the purpose of FSMS (Fo	ood Safety Management System) ?
	(1) To ensure the storage, distrib	ution and sale of safe food.
	(2) To ensure the manufacture, d	istribution and sale of safe food.
1	(3) To ensure the manufacture, s	torage and sale of safe food.
	(4) To ensure the manufacture, s	torage, distribution and sale of safe food.
6	. Molecular sieves are regenerated	by heating to:
	(1) <150°C	(2) >500°C
	(3) 200-330°C	(4) >1000°C

7.	According to Poiscuille's law, the I	permeability for gas flow through a capillary is
	proportional to (μ ≋gas viscosity) :	
	(1) μ	(2) 1/μ
	(3) √μ	(4) μ^2
8.	Particle density of an agricultural pr	roduce is 1.95 g/cc. The porosity of the bulk is
	36%. The bulk density of the produce	is:
	(1) 1.10	(2) 1.25
	(3) 1.75	(4) 1.85
9.	The ratio between apertures in consecu	utive screen in Tyler series is:
	(1) 2	$(2) 2^{1/2}$
	(3) 2 ^{1/4}	(4) Both (2) and (3)
10.	Angle of nip is formed by the:	
	(1) particle to be ground with the roll	
	(2) tangents to the roll faces at the poi	nt of contact between a particle and rolls
	(3) heap of material in free fall to the	rolls
	(4) None of these	
1.	The characteristic odour of garlic is du	e to:
	(1) Naringin	(2) Allicin
	(3) Hesperidin	(4) Thioglucosides

12	The flavour componer	s of the cabbage and cauliflower are due to:
,	(1) Naringin	(2) Allicin
	(3) Hesperidin	(4) Thioglucosides
13.	The formation of bro- following enzyme on	n colour in fruits and vegetables when cut is due to the action of shenolic substances.
	(1) Tyrosinase	(2) Amylase
	(3) Phenolase	(4) Peroxidase
14.	The enzyme which h	drolyzes sucrose into glucose and fructose is:
	(1) α-amylase	(2) β-amylase
	(3) Cellulase	(4) Invertase
15	, The haziness notice	in fruit juices and wines can be removed using:
	(1) Cellulase	(2) Pectinase
	(3) Invertase	(4) α-amylase
16	6. The enzyme which	lecomposes hydrogen peroxide to water is:
	(1) Cellulase	(2) Lipase
	(3) Catalase	(4) α-amylase
17. The enzyme which bleaches the flour to produce a very white crumb is:		
	(1) Invertase	(2) Lipoxygenases
	(3) Catalase	(4) Pectinase
PH	D/URS-EE-2022/(Fo	l Tech.)(SET-Y)/(C)

18	A mole of non-ionizing solute in a litre of water depresses its freezing point by:		
	(1) 5.58°C	(2) 3.72°C	
	(3) 2.24°C	(4) 1.80°C	
19.	The gas used for flushing the processed	and packaged food is:	
	(1) Hydrogen	(2) Nitrogen	
	(3) Carbon dioxide	(4) Oxygen	
20.	Heat conduction in glass is due to:	programme to the second second	
	(1) Electromagnetic waves		
	(2) Elastic impact of molecules		
	(3) Motion of electrons		
	(4) Mixing motion of different layers of	f gas	
21.	A keto acid involved in carbohydrate me	etabolism is:	
	(1) Citric acid	(2) Pyruvic acid	
	(3) Succinic acid	(4) Tricarboxylic acid	
22.	Carbohydrate free human diet leads to:		
	(1) Addition's disease	(2) Hyper adrenalism	
	(3) Hypothyroidism	(4) Ketosis	

		toing in plants are:
23.	The most common simple proteins which act as reserve proteins in plants are:	
2.5	(1) Albumins	(2) Globulins
	(3) Glutelins	(4) Prolamins
		e replaced by 100 parts of the protein fed in the
24.	The parts of the body protein that can be	e replaced by too participation of the second of the secon
	test is known as:	
	(1) Biological value	
	(2) Chemical score	
	(3) Digestibility coefficient	
	(4) Protein Efficiency Ratio	
		3. 24 May 7 May 1 May 1 May 2 May 1
25.	Riboflavin is rapidly destroyed in:	
	(1) Acid medium	
	(2) Alkaline medium	Landson Training
	(3) Neutral medium	14 - 414 477 48 - 4"
	(4) All the above	
		to the control of the
26.	Consumption of raw eggs by adults may	y lead to .
	(1) Biotin deficiency	en the second second second
	(2) Calcium deficiency	
	(3) Folic acid deficiency	
	(4) Phosphorus deficiency	

27.	Monosaccharides constituting factose	are:	
	(1) Galactose-galactose		
	(2) Galactose-glucose		
, ,	(3) Glucose-glucose		July Var A Del
	(4) Glucose-fructose		
28.	Differential speed ratio of the pairs of	break rolls of B	uhler mill is:
	(1) 3:1	(2) 2.5:1	and Alakin
	(3) 1.5:1	(4) 1:1	av istaa T
29.	One refrigeration ton is equivalent to:		gu Efvetki
	(1) 1000 kg/day	N and	nathan ber
	(2) 1000 Btu/day		a strandiland
	(3) 12000 kg/hour		molen brought
	(4) 12000 Btu/hour		
30.	Cleaning of cereals by aspiration is base	ed on :	en las rollinges er
	(1) Aerodynamic properties		A TAL ANTEN
	(2) Hydrodynamic properties		the application
	(3) Magnetic properties		
	(4) Thermal properties		

31.	Which one of the following cannot be the unit of convective heat transfer coefficient?	
	(1) $W/m^2.K$ (2) $kW/m^2.K$	
	(3) Btu/ft³.h.°C (4) kcal/m².h.°C	
32.	The emissive power of a body depends on:	
	(1) Nature of body (2) Physical nature	
	(3) Temperature of body (4) All of the above	
33.	Licensing and registering authority have the power to	
	(1) Registration (2) Licensing	
	(3) Cancellation of License (4) All of the above	
34.	The Global Food Safety Initiative was created by the:	
	(1) Food and Drug Administration	
	(2) British Retail Consortium (BRC)	
HTP.	(3) Global Food Business Forum	
	(4) World Health Organization (WHO)	
35	i. In a concentric double pipe heat exchanger one fluid undergoes phase change:	
	(1) Two fluids should opposite to each other	
	(2) Two fluids should flow parallel to each other	
	(3) Two fluids should flow normal to each other	
	(4) The direction of flow of the two fluids are of no consequences	

36.	For a perfectly black body: (1) $\alpha = 1$, $\varepsilon = 0$, $\tau = 0$ (2) $\alpha = \varepsilon = 0$, $P = 1$ (3) $\alpha = \tau = 0$, $\varepsilon = 1$ (4) None of these For laminar flow (in flow inside pipes) Sherwood number shows the same trends as: (1) Nusselt number (2) Reynolds number (3) Stanton number (4) Prandtl number
38.	Effect of temperature on the reaction rate is given by: (1) Arrhenius equation (2) Gibbs Helmholtz equation (3) Kirchoff's law (4) None of the above
39.	Which of the following is <i>true</i> about ISO 2002 method for Salmonella detection?
	 Selenite cystine (SC) broth is replaced by Muller Kauffmann tetrathionate novobiocin broth (MKTTn) Rappaport Vassiliadis (RV) broth has been replaced by Rappaport Vassiliadis Soya
	(RVS broth
	(3) XLD is the first isolation medium rather than BGA (4) All of these (4) All of these
40.	What are the intrinsic factors for the microbial growth?
	(1) pH
	(3) Oxidation-Reduction Potential (4) All of these

- plank's equation describing freezing of food was derived from a few assumptions and the following was **not** one of these assumptions:
 - (1) Pseudo-steady state condition
 - (2) A definite freezing point
 - (3) Freezing starts at the freezing point
 - (4) None of the above
- 42. Temperature commonly used for air freezing is:
 - (1) -23°C to -30°C

(2) -180C to -40°C

(3) -40°C to -42°C

- (4) 23°C to 30°C
- 43. Coefficient of performance of a refrigerator is given by:
 - (1) Heat removed by the evaporator divided by the heat rejected by the condenser
 - (2) Heat removed by the evaporator divided by the compressor work
 - (3) Heat rejected by the condenser divided by compressor work
 - (4) None of the above
- 44. Pick out the correct relationship between Ri (internal reflux ratio) and Ro (external reflux ratio):
 - (1) (1+Ro)=Ro/Ri

(2) (1-Ro)=Ro/Ri

(3) (1+Ro)=Ro/Ri

(4) (1–Ri)=Ro/Ri

45.	45. In case of gases, the binary diffusivity is propo	ortional to (where p=pressure);
	(1) p (2) 1	/p
	(3) 1√p (4) √	p = 1 = (1
46.	extraction, as the temperature increases, the	e area of heterogeneity (area covered
	binodal curve):	
	(1) Decreases (2) In	acreases
	(3) Remain unchanged (4) N	one of these
47.	7. Azeotropic distillation is employed to separate:	> 100 E 31
	(1) Constant boiling mixture	The west of the Production
	(2) High boiling mixture	
	(3) Mixture with very high relative volatility	and the terms of the second of
	(4) Heat sensitive materials	The transferred least right
1 8.	and non dimensional number of mass transfer w	
	Schmidt number is:	gue e ja lagn bold f.
	(1) Sherwood number (2) Lev	wis number
	(3) Nusselt number (4) Gra	ates number
9.	9. In which model, monolayer value comes into fun	ection:
MAN STATE	(1) BET model (2) Kel	lvin model
	(3) GAB model (4) Her	nderson model

50.	Constant rate of drying is directly proportional to:	
	(1) Convective heat transfer coefficient	
	(2) Latent heat of vaporization	
	(3) Wet bulb temperature	
	(4) None of the above	
51.	. Particle density of an agricultural produ	ice is 1.95 g/cc. The porosity of the bulk is
	36 %. The bulk density of the produce is	:
	(1) 1.10	(2) 1.25
	(3) 1.75	(4) 1.85
52.	. Which one is a faster method for separating solid particles from a mixture of solids?	
	(1) Aspiration	(2) Cyclone separation
	(3) Centrifugal separation	(4) Fluidization
53.	3. The higher values of angle of internal fri	ction indicate that the material is:
	(1) Cohesive	(2) Easy flowing
	(3) Free flowing	(4) None of these
54.	4. The differential speed of rolls used in w	heat mill is :
	(1) 1.5:1	(2) 2.5:1
	(3) 45 · 1	(4) 25.1

12		the second
55.	. Which of the following law is used	to predict energy requirement for grinding
	material ?	(2) Newton's law
	(1) Recult's law	
	(3) Kick's law	(4) Stoke's law
56.	Moisture content of wheat on dry basis	is 25%, what will be on wet basis ?
٠٠.	(1) 20%	(2) 28%
	(3) 24%	(4) 26%
		p between the concentration of bactericide
57.	Watson law, which gives a relationshi and the time necessary to accomplish a	standard destruction, is given by:
	(1) Ct = constant	(2) $C/t = constant$
	(3) $C^2t = constant$	(4) $C^n t = constant$
58.	Transmittance properties of food materi	al are used to indicate:
	(1) Extent of processing in biscuits	
	(2) Core defects in fruits	
	(3) Bruised fruits	
	(4) All of these	
59.	During the discharge of the solids of bin	s and hoppers, the angle comes into play is:
	(1) angle of friction	
	(2) dynamic angle of friction	
	(3) angle of repose	
	(4) angle of rotation	

Dielectric constant of a food material depends upon ; 60.

(1) Temperature

(2) Moisture content

(3) Density

(4) Electrical conductivity

Infrared wavelength is represented by which of the following?

- (1) 10⁻⁴ cm
- (2) 10⁻⁵ cm

 (4) 10⁻² cm
- (3) 10⁻⁶ cm

Which of the following methods can't be used to calculate thermal process time?

(1) General method

(2) Runga- Kutta method

(3) Formula method

(4) Hayakawa method

If the value of Z is around 115°C, then Q₁₀ will be from the state of the state o

- 4 1 . m. merali, a diament (2) 2.11
- the partition of the allegange of the large and the second by a second of maintains.
 - (4) 5.18

Thermal death time model equations for microbial inactivation at different temperatures can be expressed as:

- (1) $\log \frac{F}{F_0} = \frac{T T_0}{Z}$ (2) $\log \frac{D}{D_0} = \frac{T T_0}{Z}$

(3) $\log \frac{t_0}{t_T} = -\frac{T - T_0}{Z}$

(4) All of these

65.	Kg of steam/kg of water vapour remove	d in an evaporator is called:
	(1) Efficiency	(2) Effectiveness
	(3) Steam use ratio	(4) Specific steam consumption
	Migratusian kedalati.	
66.	Radiation heat transfer is characterized	by:
	(1) Energy transport as a result of bulk	fluid motion
	(2) Thermal energy transfer as vibration	nal energy in the lattice structure of the material
	(3) Movement of discrete packets of en	ergy as electromagnetic wanes
	(4) Circulation of fluid motion depends	on buoyancy effects
67.	The time temperature combination for selected on the basis of:	HTST pasteurization of 71.1°C for 15 sec is
	(1) Coxiella burnetii	(2) E. coli
	(3) B. subtilis bodgen manhogett the	(4) C. botulinum
68.	Stationary phase is described as	Dien Gebergen von Stander in 1975.
00.	(1) no further increase in the cell popul	
	CA	40 2 1/
	(2) deceleration of growth and division rate after the growth rate reaches a maxim	
		rate after the growth rate reaches a maximum
建 版 5/1	(4) deceleration of growth and division	rate after the growth rate reaches a minimum
69.	The function of the disengagement zone	in an airlift fermenter is to:
	(1) prevent CO ₂ rich bubbles from enter	ring the downcomer
	(2) reduce the velocity of the bubbles	
	(3) reduce liquid loss as aerosols	*** *** *** *** *** *** *** *** *** **
	(4) all of the above	
PHD/	JRS-EE-2022/(Food Tech.)(SET-Y)/(C)	Media Tary dark best Aggel 33 等的数据图

70.	The monod model predicts that the specific growth rate:	
	(1) will decrease with the conc. of the growth limiting substrate	
	(2) will increase with the conc. of the growth limiting substrate until it reaches maximum value	
	(3) will increase with the conc. of the gr	owth limiting substrate
	(4) does not depend on growth limiting	the Maria and the second
71.	Among the following which group of fat	
	(1) Oleic, Linoleic	(2) Butyric, Lauric
	(3) Caproic, Butyric	(4) Styrene, Lauric
72.	When vapor pressure of water at surface	is more than vapor pressure of atmosphere:
	(1) Water starts boiling	(2) Water escapes
	(3) No effect	(4) None of the above
73.	Which is major phenol substrate for phe	nolase action in enzymatic browning reaction?
	(1) Caffeic acid	(2) Chlorogenic acid
	(3) Phenol oxidase	(4) Tyrosine
74.	Phenomenon of osmosis causes membrane.	of true liquid separated by chemical
	(1) Change in relative density	
	(2) Change in specific gravity	allower as all lighty the event for a
	(3) Change in relative volume	man value in the
	(4) Change in relative viscosity	
PHD	URS-EE-2022/(Food Tech.)(SET-Y)/(C). 1 - 1 - P. T. O.

	(1) Vapor pressure of solid	
	(2) Vapor pressure of atmosphere	The second of th
	(3) Vapor pressure of liquid (4) None of the above	
76.	The final browning pigment of enzyma	tic browning reaction is:
	(1) Melanin	(2) O-diphenol
	(3) Orthoquinone	(4) Caffeic acid
77.	Water activity of the solution having lov	w solute concentration can be obtained from:
	$(1) \ \mathbf{a_w} = \mathbf{X_w}$	$(2) \ a_{w} = LN \ X_{w}$
	(3) $LN_{aw} = X_w$	(4) $a_w = 1/X_w$
78.	Water can be best described as:	elda oli varetie v joaj je sva vodij≇e vod
	(1) Pseudoplastic, Thixotropic	and the second of the second
	(2) Dilatent, Rheopectic	
le, ol ettei	(3) Dilatent, Pseudoplastic	tan si maya. Nyan ilay kambi
	(4) Newtonian	
79.	Freeze burn is a defect which generally	occurs in frozen foods due to:
	(1) Dehydration	(2) Osmosis
	(3) Thermal conductivity	(4) Rehydration
PHD/	URS-EE-2022/(Food Tech.)(SET-Y)/(C) in the second of the second

A liquid freeze when its vapor pressure is equal to:

F. T. O.

80.	Most commonly used material for microwave oven packaging is made up of :	
	(1) Wood	(2) Paper
	(3) Plastic	(4) Aluminum foil
81.	The application of filter(s) in the image	analysis is:
	(1) to remove unwanted noise	
	(2) to sharpen the edges of objects	
	(3) Both above	
	(4) None of the above	
82.	With most modern equipment,	gray levels are available.
	(1) 255	(2) 256
	(3) 251	(4) 225
83.	In a typical image having dimensions of 512 pixels X 512 pixels, each pixel has an integer value ranging:	
	(1) From 100 to 1000	(2) From 0 to 100
	(3) From 0 to 255	(4) From 0 to 521
84.	In binarization, the original gray level in	nage is changed from a continuum of:
	(1) Colours or gray levels into a black a	nd white image
	(2) Black and white levels into a colour	image
	(3) Black level into a colour image	
	(4) White level into a colour image	

B5.	The mechanism of elastic can be describ	ed by:
	(1) Einstein theory	(2) Rubber elasticity theory
	(3) Plastic resilience system	(4) None of the above
86.	The ability of two materials to resist sep	paration after their surfaces come into contact is
	known as:	en i i i de la compania de la compa
	(1) Cohesion	(2) Tack
	(3) Adhesion	(4) Stickiness
87.	Low values for the second	no e la casa de la cas
07.	Low values for the surface energy of the	e solid means :
	(1) Low adhesion	(2) High adhesion
	(3) Low cohesion	(4) High cohesion
88.	Differential Scanning Calorimetry is a t	echnique to measure :
	(1) Electrical conductivity	(2) Impact energy
	(3) Thermal expansion	(4) Specific heat
89.	Kind of electron microscope which is u	sed to study internal structure of cells is:
	(1) scanning electron microscope	
	(2) transmission electron microscope	
	(3) light microscope	
	(4) compound microscope	

90.	Electrons of Scanning Electron Microscope are reflected through;		
	(1) glass funnel	(2) specimen	
	(3) metal-coated surfaces	(4) vacuum chamber	
91.	Alcohol ppt. test determines:		
	(1) Adulteration of milk		
	(2) Percentage of fat in milk		
	(3) Milk acidity		
	(4) Heat stability of milk		
92.	Food that exhibits Newtonian flow behaviour best among the following is:		
	(1) Dairy cream	(2) Fruit purees	
	(3) Milk	(4) Protein concentrate	
93.	Permeability of plastic packaging films to gases is given by:		
	(1) Bear's law	(2) Fick's law	
	(3) Fink's law	(4) Flemming's law	
94.	Rate of sedimentation of particles during fruit juice clarification is governed by:		
	(1) Fick's law	(2) Kick's law	
	(3) Ostwald's law	(4) Stoke's law	

95.	Working fluid employed in heat pump cycle is:		
	(1) Ammonia gas	(2) Freon gas	
	(3) Steam	(4) Hot water	
96.	The relationship between moisture conte	ent and water activity of foods is given by:	
	(1) BET equation	(2) Fourier's equation	
	(3) Stefan's Law	(4) Plank's equation	
97.	The pigments responsible for the red and	d purple colour of fruits and vegetables are	
	(1) Myoglobin	(2) Oxymyoglobin	
	(3) Anthocyanins	(4) Pheophytins	
98.	The sole pigments in vegetables such as	potato and yellow skinned onion are:	
	(1) Myoglobin	(2) Anthocyanins	
	(3) Pheophytins	(4) Flavonoids	
99.	The delayed bitterness in oranges and grapefruits is due to:		
	(1) Terpene limonin	(2) Hesperidin	
	(3) Allicin	(4) Naringin	
00.	The most common flavonoid in the peel	s of oranges and lemons is:	
٠,٠.	(1) Terpene limonin	(2) Hesperidin	
	(3) Allicin	(4) Naringin	
	7-7		

Total No. of Printed Pages: 21

(DO NOT OPEN THIS QUESTION BOOKLET BEFORE TIME OR UNTIL YOU ARE ASKED TO DO SO)

D

Ph.D./URS-EE-Jan-2022

SUBJECT: Food Technology

S	ET	-Y
1000000		

10008

		-4000
		Sr. No
Time: 11/4 Hours	Max. Marks: 100	Total Questions: 100
Roll No. (in figures)	(in words)	
Name	Father's Name	
Mother's Name	Date of Examination_	
(Signature of the Candidate)		(Signature of the Invigilator)

CANDIDATES MUST READ THE FOLLOWING INFORMATION/INSTRUCTIONS BEFORE STARTING THE QUESTION PAPER.

- 1. All questions are compulsory.
- 2. The candidates *must return* the question booklet as well as OMR Answer-Sheet to the Invigilator concerned before leaving the Examination Hall, failing which a case of use of unfairmeans / mis-behaviour will be registered against him / her, in addition to lodging of an FIR with the police. Further the answer-sheet of such a candidate will not be evaluated.
- 3. Keeping in view the transparency of the examination system, carbonless OMR Sheet is provided to the candidate so that a copy of OMR Sheet may be kept by the candidate.
- 4. Question Booklet along with answer key of all the A, B, C & D code will be got uploaded on the University website after the conduct of Entrance Examination. In case there is any discrepancy in the Question Booklet/Answer Key, the same may be brought to the notice of the Controller of Examination in writing/through E.Mail within 24 hours of uploading the same on the University Website. Thereafter, no complaint in any case, will be considered.
- 5. The candidate *must not* do any rough work or writing in the OMR Answer-Sheet. Rough work, if any, may be done in the question booklet itself. Answers *must not* be ticked in the question booklet.
- 6. There will be no negative marking. Each correct answer will be awarded one full mark. Cutting, erasing, overwriting and more than one answer in OMR Answer-Sheet will be treated as incorrect answer.
- 7. Use only Black or Blue Ball Point Pen of good quality in the OMR Answer-Sheet.
- 8. Before answering the questions, the candidates should ensure that they have been supplied correct and complete booklet. Complaints, if any, regarding misprinting etc. will not be entertained 30 minutes after starting of the examination.

1.	A keto acid involved in carbohydrate r	netaholism is -
	(1) Citric acid	(2) Pyruvic acid
	(3) Succinic acid	(4) Tricarboxylic acid
2.	Carbohydrate free human diet leads to	
	(1) Addition's disease	(2) Hyper adrenalism
	(3) Hypothyroidism	(4) Ketosis
3. The most common simple proteins which act as reserve proteins in plants are		hich act as reserve proteins in plants are
	(1) Albumins	(2) Globulins
	(3) Glutelins	(4) Prolamins
4.	test is known as :	n be replaced by 100 parts of the protein fed in
	(1) Biological value (2) Chemical score	
	(3) Digestibility coefficient (4) Protein Efficiency Ratio	
5.	Riboflavin is rapidly destroyed in:	
	(1) Acid medium	
	(2) Alkaline medium	
	(3) Neutral medium	
	(4) All the above	

6	Consumption of raw eggs by adults may lead to:
	(1) Biotin deficiency
	(2) Calcium deficiency
	(3) Folic acid deficiency
	(4) Phosphorus deficiency
7	Managarah 'I
7.	Monosaccharides constituting lactose are :
	(1) Galactose-galactose
	(2) Galactose-glucose
	(3) Glucose-glucose
	(4) Glucose-fructose
8.	Differential speed ratio of the pairs of break rolls of Buhler mill is :
	(1) 3:1 (2) 2.5:1
	(3) 1.5:1
9.	One refrigeration ton is equivalent to:
	(1) 1000 kg/day
	(2) 1000 Btu/day

(3) 12000 kg/hour

(4) 12000 Btu/hour

10.	Cleaning of cereals by aspiration is based on:	
	(1) Aerodynamic properties	
	(2) Hydrodynamic properties	
	(3) Magnetic properties	
	(4) Thermal properties	
11.	Which one of the following cannot be the unit of convective heat transfer coefficient	
	(1) W/m ² .K	(2) kW/m ² .K
	(3) Btu/ft ³ .h.°C	(4) kcal/m ² .h.°C
. 9	As a second production of the second	term short our an with amount at 150
12.	2. The emissive power of a body depends on:	
	(1) Nature of body	(2) Physical nature
	(3) Temperature of body	(4) All of the above
13.	Licensing and registering authority have the power to	
	(1) Registration	(2) Licensing
	(3) Cancellation of License	(4) All of the above
14.	The Global Food Safety Initiative was o	reated by the:
	(1) Food and Drug Administration	
	(2) British Retail Consortium (BRC)	
	(3) Global Food Business Forum	
	(4) World Health Organization (WHO)	and the Leavest and the Leaves

- 15. In a concentric double pipe heat exchanger one fluid undergoes phase change:
 - (1) Two fluids should opposite to each other
 - (2) Two fluids should flow parallel to each other
 - (3) Two fluids should flow normal to each other
 - (4) The direction of flow of the two fluids are of no consequences
- **16.** For a perfectly black body:

(1) $\alpha = 1$, $\epsilon = 0$, $\tau = 0$

(2) $\alpha = \varepsilon = 0$, P = 1

(3) $\alpha = \tau = 0$, $\varepsilon = 1$

(4) None of these

17. For laminar flow (in flow inside pipes) Sherwood number shows the same trends as:

(1) Nusselt number

(2) Reynolds number

(3) Stanton number

(4) Prandtl number

18. Effect of temperature on the reaction rate is given by:

(1) Arrhenius equation

(2) Gibbs Helmholtz equation

(3) Kirchoff's law

(4) None of the above

- 19. Which of the following is true about ISO 2002 method for Salmonella detection?
 - (1) Selenite cystine (SC) broth is replaced by Muller Kauffmann tetrathionate novobiocin broth (MKTTn)
 - (2) Rappaport Vassiliadis (RV) broth has been replaced by Rappaport Vassiliadis Soya (RVS broth
 - (3) XLD is the first isolation medium rather than BGA
 - (4) All of these

- 20. What are the intrinsic factors for the microbial growth?
 - (1) pH
 - (2) Moisture
 - (3) Oxidation-Reduction Potential
 - (4) All of these
- 21. Plank's equation describing freezing of food was derived from a few assumptions and the following was *not* one of these assumptions:
 - (1) Pseudo-steady state condition
 - (2) A definite freezing point
 - (3) Freezing starts at the freezing point
 - (4) None of the above
- 22. Temperature commonly used for air freezing is:
 - (1) -23°C to -30°C

(2) -180C to -40°C

(3) -40°C to -42°C

- (4) 23°C to 30°C
- 23. Coefficient of performance of a refrigerator is given by:
 - (1) Heat removed by the evaporator divided by the heat rejected by the condenser
 - (2) Heat removed by the evaporator divided by the compressor work
 - (3) Heat rejected by the condenser divided by compressor work
 - (4) None of the above

0	seletionship betwee	n Ri (internal reflux ratio) and Ro (external
24.	reflux ratio):	
	(1) (1+Ro)=Ro/Ri	(2) (1–Ro)=Ro/Ri
	(3) (1+Ro)=Ro/Ri	(4) (1–Ri)=Ro/Ri
25.	In case of gases, the binary diffusivity is p	proportional to (where p=pressure):
25.		(2) 1/p
		(4) √p
26.	. In extraction, as the temperature increases, the area of heterogeneity (area covered by	
	binodal curve):	(2) Increases
	(1) Decreases(3) Remain unchanged	(4) None of these
27.	Azeotropic distillation is employed to se	parate:
	(1) Constant boiling mixture	
	(2) High boiling mixture	
	(3) Mixture with very high relative vola	tility
	(4) Heat sensitive materials	
28.	8. The non-dimensional number of mass transfer which is function of Prandtl number as Schmidt number is:	
	(1) Sherwood number	(2) Lewis number
	(3) Nusselt number	(4) Grates number
PHD/	URS-EE-2022/(Food Tech.)(SET-Y)/(D	

P. T. O.

29.	In which model, monolayer value comes into function:		
	(1) BET model	(2) Kelvin model	
	(3) GAB model	(4) Henderson model	
30.	Constant rate of drying is directly proportional to:		
	(1) Convective heat transfer coefficient		
	(2) Latent heat of vaporization		
	(3) Wet bulb temperature		
	(4) None of the above		
-	YGG 0001 0000 :	100	
31.	ISO 9001:2008 is an update of an earlier	150:	
	(1) ISO 9000:2005	(2) ISO 9001:2000	
	(3) ISO 9000:2000	(4) ISO 9004:2000	
32.	The eight quality management principles	s are defined in :	
JZ.	The eight quanty management principle.		
	(1) ISO 9000:2000	(2) ISO 9004:2000	
	(3) ISO 9000:2005	(4) Both (1) & (2)	
33.	The primary function of a QA departme	nt is to provide confidence for ?	
	(1) Supplier		
	(2) Retailer		
	(3) Management and Consumer		
	(4) Wholesaler		
PHD/	URS-EE-2022/(Food Tech.)(SET-Y)/(D		

34.	Good manufacturing practice means und	erstanding, analyzing and controlling the:	
	(1) The manufacturing process	(2) Laboratory	
	(3) Distribution of food	(4) None of the above	
35.	What is the purpose of FSMS (Food Safe	ety Management System) ?	
	(1) To ensure the storage, distribution a	nd sale of safe food.	
	(2) To ensure the manufacture, distribut	ion and sale of safe food.	
	(3) To ensure the manufacture, storage		
	(4) To ensure the manufacture, storage, distribution and sale of safe food.		
36.	Molecular sieves are regenerated by hea	ating to:	
	(1) <150°C	(2) >500°C	
	(3) 200-330°C	(4) >1000°C	
37.	According to Poiseuille's law, the permeability for gas flow through a capillary proportional to $(\mu = \text{gas viscosity})$:		
	(1) µ	(2) 1/µ	
	(3) √μ	(4) μ^2	
38.	Particle density of an agricultural pro-	oduce is 1.95 g/cc. The porosity of the bulk	
	36%. The bulk density of the produce is:		
	(1) 1.10	(2) 1.25	
	(3) 1.75	(4) 1.85	
PHD/	URS-EE-2022/(Food Tech.)(SET-Y)/(I	0)	

39.	The ratio between apertures in consecuti	ve screen in Tyler series is:	
	(1) 2	(2) 21/2	
	(3) 2 ^{1/4}	(4) Both (2) and (3)	
40.	Angle of nip is formed by the :		
	(1) particle to be ground with the roll		
	(2) tangents to the roll faces at the point	of contact between a particle and rolls	
	(3) heap of material in free fall to the ro	lls	
	(4) None of these		
41.	The characteristic odour of garlic is due	to:	
	(1) Naringin	(2) Allicin	
	(3) Hesperidin	(4) Thioglucosides	
42.	The flavour components of the cabbage	and cauliflower are due to:	
	(1) Naringin	(2) Allicin	
	(3) Hesperidin	(4) Thioglucosides	
43.	The formation of brown colour in fruits following enzyme on phenolic substance		tion of
	(1) Tyrosinase	(2) Amylase	
	(3) Phenolase	(4) Peroxidase	
PHD/U	RS-EE-2022/(Food Tech.)(SET-Y)/(D)		P. T. O.

44.	The enzyme which hydrolyzes sucrose i	nto glucose and fructose is:
	(1) α-amylase	(2) β-amylase
	(3) Cellulase	(4) Invertase
		and using :
45.	The haziness noticed in fruit juices and	wines can be removed using.
	(1) Cellulase	(2) Pectinase
	(3) Invertase	(4) α-amylase
46.	The enzyme which decomposes hydroge	en peroxide to water is:
	(1) Cellulase	(2) Lipase
	(3) Catalase	(4) α-amylase
47.	The enzyme which bleaches the flour to	produce a very white crumb is:
	(1) Invertase	(2) Lipoxygenases
	(3) Catalase	(4) Pectinase
48.	A male of non-ionizing solute in a liture	
40.	A mole of non-ionizing solute in a fifre of	of water depresses its freezing point by:
	(1) 5.58°C	(2) 3.72°C
	(3) 2.24°C	(4) 1.80°C
49.	The gas used for flushing the processed a	and packaged food is
	(1) Hydrogen	(2) Nitrogen
	(3) Carbon dioxide	(4) Oxygen
PHD/U	JRS-EE-2022/(Food Tech.)(SET-Y)/(D)	

50.	Heat conduction in glass is due to:	
	(1) Electromagnetic waves	
	(2) Elastic impact of molecules	
	(3) Motion of electrons	
	(4) Mixing motion of different layers of	of gas
51.	Among the following which group of fa	at is unsaturated ?
	(1) Oleic, Linoleic	(2) Butyric, Lauric
	(3) Caproic, Butyric	(4) Styrene, Lauric
52.	When vapor pressure of water at surface	e is more than vapor pressure of atmosphere:
	(1) Water starts boiling	(2) Water escapes
	(3) No effect	(4) None of the above
53.	Which is major phenol substrate for phe	enolase action in enzymatic browning reaction?
	(1) Caffeic acid	(2) Chlorogenic acid
	(3) Phenol oxidase	(4) Tyrosine
54.	Phenomenon of osmosis causes membrane.	of true liquid separated by chemical
	(1) Change in relative density	
	(2) Change in specific gravity	
	(3) Change in relative volume	
	(4) Change in relative viscosity	
PHD/I	URS-EE-2022/(Food Tech.)(SET-Y)/(D)	PTO

55.	A liquid freeze when its vapor pressure is equal to:			
	(1) Vapor pressure of solid			
	(2) Vapor pressure of atmosphere			

(4) None of the above

(3) Vapor pressure of liquid

56. The final browning pigment of enzymatic browning reaction is:

(1) Melanin

(2) O-diphenol

(3) Orthoquinone

(4) Caffeic acid

57. Water activity of the solution having low solute concentration can be obtained from:

$$(1) \ a_w = X_w$$

(2)
$$a_w = LN X_w$$

(3)
$$LN_{aw} = X_w$$

(4)
$$a_w = 1/X_w$$

58. Water can be best described as:

(1) Pseudoplastic, Thixotropic

(2) Dilatent, Rheopectic

(3) Dilatent, Pseudoplastic

(4) Newtonian

59. Freeze burn is a defect which generally occurs in frozen foods due to:

(1) Dehydration

(2) Osmosis

(3) Thermal conductivity

(4) Rehydration

PHD/URS-EE-2022/(Food Tech.)(SET-Y)/(D)

6	0. Most commonly used n	naterial for microwave oven packaging is made up of :
	(1) Wood	(2) Paper
	(3) Plastic	(4) Aluminum foil
61	. Alcohol ppt. test determ	ines:
	(1) Adulteration of milk	
	(2) Percentage of fat in	milk
	(3) Milk acidity	
	(4) Heat stability of mil	k
62.	Food that exhibits Newto	onian flow behaviour best among the following is:
	(1) Dairy cream	(2) Fruit purees
	(3) Milk	(4) Protein concentrate
63.	Permeability of plastic po	ackaging films to gases is given by:
	(1) Bear's law	(2) Fick's law
	(3) Fink's law	(4) Flemming's law
64.	Rate of sedimentation of	particles during fruit juice clarification is governed by:
	(1) Fick's law	(2) Kick's law
	(3) Ostwald's law	(4) Stoke's law
65.	Working fluid employed i	n heat pump cycle is :
	(1) Ammonia gas	(2) Freon gas
	(3) Steam	(4) Hot water
PHD/U	RS-EE-2022/(Food Tech.)(SET-Y)/(D) P. T. O.

D

14		and water activity of foods is given by:
66.	The relationship between moisture con-	tent and water activity of foods is given by: (2) Fourier's equation
	(1) BET equation	(4) Plank's equation
	(3) Stefan's Law	
67.	The pigments responsible for the red a	nd purple colour of fruits and vegetables are:
	(1) Myoglobin	(Z) Oxymy z
	(3) Anthocyanins	(4) Pheophytins
	The improvement in vegetables such	as potato and yellow skinned onion are:
68.		(2) Anthocyanins
	(1) Myoglobin(3) Pheophytins	(4) Flavonoids
60	1 hittorness in oranges and	l grapefruits is due to :
69.	(1) Terpene limonin	(2) Hesperidin
	(3) Allicin	(4) Naringin
70.	The most common flavonoid in the p	peels of oranges and lemons is:
70.	(1) Terpene limonin	(2) Hesperidin
	(3) Allicin	(4) Naringin
71.	The application of filter(s) in the im	age analysis is:
	(1) to remove unwanted noise	
	(2) to sharpen the edges of objects	
	(3) Both above	
	(4) None of the above	
	(4) Will of the acc.	

PHD/URS-EE-2022/(Food Tech.)(SET-Y)/(D)

72.	With most modern eq	uipment,	. gray levels are available.	
	(1) 255		(2) 256	
	(3) 251		(4) 225	
73.	In a typical image ha		of 512 pixels X 512 pixels, each pixel has an	1
	(1) From 100 to 1000)	(2) From 0 to 100	
	(3) From 0 to 255		(4) From 0 to 521	
74.	In binarization, the or	riginal gray level in	nage is changed from a continuum of:	
	(1) Colours or gray le	evels into a black ar	nd white image	
	(2) Black and white I	levels into a colour	image	
	(3) Black level into a	colour image		
	(4) White level into a	a colour image		
75.	The mechanism of ela	astic can be describ	ped by :	
	(1) Einstein theory		(2) Rubber elasticity theory	
	(3) Plastic resilience	system	(4) None of the above	
76.	The ability of <i>two</i> maknown as:	terials to resist sep	paration after their surfaces come into contact	is
	(1) Cohesion		(2) Tack	
	(3) Adhesion		(4) Stickiness	
PHD/U	JRS-EE-2022/(Food T	Tech.)(SET-Y)/(D)	P. T	.0

77.	Low values for the surface energy of the	e solid means :
	(1) Low adhesion	(2) High adhesion
	(3) Low cohesion	(4) High cohesion
78.	Differential Scanning Calorimetry is a to	echnique to measure:
	(1) Electrical conductivity	(2) Impact energy
	(3) Thermal expansion	(4) Specific heat
79.	Kind of electron microscope which is us	ed to study internal structure of cells is:
	(1) scanning electron microscope	
	(2) transmission electron microscope	
	(3) light microscope	
	(4) compound microscope	
80.	Electrons of Scanning Electron Microsco	ope are reflected through:
	(1) glass funnel	(2) specimen
	(3) metal-coated surfaces	(4) vacuum chamber
81.	Particle density of an agricultural prod	uce is 1.95 g/cc. The porosity of the bulk
	36 %. The bulk density of the produce is	
	(1) 1.10	(2) 1.25
	(3) 1.75	(4) 1.85

PHD/URS-EE-2022/(Food Tech.)(SET-Y)/(D)

82	Which one is a faster method for separating solid particles from a mixture of solids?			
	(1) Aspiration	(2) Cyclone separation		
	(3) Centrifugal separation	(4) Fluidization		
83	. The higher values of angle of int	ernal friction indicate that the material is:		
	(1) Cohesive	(2) Easy flowing		
	(3) Free flowing	(4) None of these		
84.	The differential speed of rolls use	ed in wheat mill is:		
	(1) 1.5:1	(2) 2.5:1		
	(3) 4.5:1	(4) 3.5:1		
85.	Which of the following law is material?	used to predict energy requirement for grinding a		
	(1) Raoult's law	(2) Newton's law		
	(3) Kick's law	(4) Stoke's law		
86.	Moisture content of wheat on dry	basis is 25%, what will be on wet basis?		
	(1) 20%	(2) 28%		
	(3) 24%	(4) 26%		
87.	Watson law, which gives a relat	ionship between the concentration of bactericide 'C'		
	and the time necessary to accomp	lish a standard destruction, is given by:		
	(1) Ct = constant	(2) $C/t = constant$		
	(3) $C^2t = constant$	(4) $C^n t = constant$		
PHD/U	JRS-EE-2022/(Food Tech.)(SET-	Y)/(D) P. T. O		

88. Transmittance properties of food n	naterial are used to indicate :
(1) Extent of processing in biscuit	
(2) Core defects in fruits	
(3) Bruised fruits	
(4) All of these	
89. During the discharge of the solids	of bins and hoppers, the angle comes into play
(1) angle of friction	(2) dynamic angle of friction
(3) angle of repose	(4) angle of rotation
90. Dielectric constant of a food mate	erial depends upon :
(1) Temperature	(2) Moisture content
(3) Density	(4) Electrical conductivity
91. Infrared wavelength is represente	ed by which of the following?
$(1) 10^{-4} \text{ cm}$	$(2) 10^{-5} \text{ cm}$
(3) 10 ⁻⁶ cm	$(4) 10^{-2} \text{ cm}$
92. Which of the following methods	can't be used to calculate thermal process time?
(1) General method	(2) Runga- Kutta method
(3) Formula method	(4) Hayakawa method
PHD/URS-EE-2022/(Food Tech.)(SET	C-Y)/(D)

93. If the value of Z is around 115°C, then Q_{10} will be :

(1) 1.22

(2) 2.11

(3) 1.586

(4) 5.18

94. Thermal death time model equations for microbial inactivation at different temperatures can be expressed as:

 $(1) \log \frac{F}{F_0} = \frac{T - T_0}{Z}$

(2) $\log \frac{D}{D_0} = \frac{T - T_0}{Z}$

(3) $\log \frac{t_0}{t_T} = -\frac{T - T_0}{Z}$

(4) All of these

95. Kg of steam/kg of water vapour removed in an evaporator is called:

(1) Efficiency

(2) Effectiveness

(3) Steam use ratio

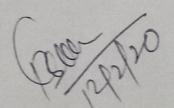
(4) Specific steam consumption

96. Radiation heat transfer is characterized by:

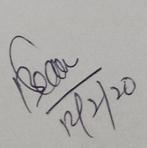
- (1) Energy transport as a result of bulk fluid motion
- (2) Thermal energy transfer as vibrational energy in the lattice structure of the material
- (3) Movement of discrete packets of energy as electromagnetic wanes
- (4) Circulation of fluid motion depends on buoyancy effects

97. The time temperature combination for HTST pasteurization of 71.1°C for 15 sec is selected on the basis of:

(1) Coxiella burnetii


(2) E. coli

(3) B. subtilis


(4) C. botulinum

- 98. Stationary phase is described as:
 - (1) no further increase in the cell population after a maximum value
 - (2) deceleration of growth and division rate after the growth rate reaches a maximum
 - (3) acceleration of growth and division rate after the growth rate reaches a maximum
 - (4) deceleration of growth and division rate after the growth rate reaches a minimum
- 99. The function of the disengagement zone in an airlift fermenter is to:
 - (1) prevent CO2 rich bubbles from entering the downcomer
 - (2) reduce the velocity of the bubbles
 - (3) reduce liquid loss as aerosols
 - (4) all of the above
- 100. The monod model predicts that the specific growth rate:
 - (1) will decrease with the conc. of the growth limiting substrate
 - (2) will increase with the conc. of the growth limiting substrate until it reaches a maximum value
 - (3) will increase with the conc. of the growth limiting substrate
 - (4) does not depend on growth limiting substrate

	ey of Entrand	2021-22		
Q. No.	A	В	C	D
1	3	1	2	2
2	2	2	4	4
3	3	1	3	4
4	1	4	1	1
5	2	4	4	2
6	2	3	2	3
7	1	1	2	2
8	4	1	2	2
9	2	4	4	4
10	3	2	2	1
11	2	2	2	3
12	4	3	4	4
13	3	1	3	4
14	1	2	4	3
15	4	3	2	4
16	2	1	3	1
17	2			1
		4	2	
18	2	2	4	1
19	4	2	2	4
20	2	2	2	4
21	2	3	2	1
22	3	2	4	2
23	1	3	4	2
24	2	1	1	1
25	3	2	2	2
	-			
26	1	2	3	1
27	4	1	2	1
28	2	4	2	1
29	2	2	4	1
30	2	3	1	1
31	1	2	3	2
32	2	4	4	4
33	2	3	4	3
34	1	4	3	1
35	2	2	4	4
			1	2
36	1	3		
7	1	2	1	2
8	1	4	1	2
9	1	2	4	4
			4	2
0	1	2		
1	1	4	1	2
2	2	2	2	4
			2	3
3	1	4		
4	4	3	1	4
5	4	1	2	2
			1	3
5	3	1		
7	1	1	1	2
	1	4	1	4
3				2
)	4	1	1	
	2	3	1	2

51	3	1	2	4
52	4	2	3	2
53	4	2	1	4
54	3	1	2	3
55	4	2	3	1
56	1	1	1	1
57	1	1	4	1 4
58 59	1	1	2 2	1
60	4	1 1	2	3
61	4	2	1	4
62	2	4	2	3
63	4	4	1	2
64	3	1	4	4
65	1	2	4	2
66	1	3	3	1
67	1	2	1	3
68	4	2	1	4
69	1	4	4	1
70	3	1	2	2
71	2	4	4	3
72	4	3	2	2
73	4	2	4	3
74	1	4	3	1
75	2	2	1	2
76	3	1	1	2
77	2	3	1	1
78	2	4	4	4
79	4	1	1	2
80	1	2	3	3
81	4	2	3	2
82	3	4	2	3
83	2	3	3	1
84	4	1	1	2
85	2	4	2	3
86	1	2	2	1
87	3		1	
		2		4
88	4		4	2
89	1	4	2	2
90	2	2	3	2
91	2	3	4	1
92	4	4	3	2
93	3	4	2	1
94	4	3	4	4
95	2	4	2	4
96	3	1	1	3
97	2	1	3	1
98	4	1	4	1
99	2	4	1	4
100	2	4	2	2
100	2	4		

