Real Analysis

M.A. (Previous)

Directorate of Distance Education
Maharshi Dayanand University

ROHTAK - 124 001



Copyright © 2003, Maharshi Dayanand University, ROHTAK
All Rights Reserved. No part of this publication may be reproduced or stored in a retrieval system or
transmitted in any form or by any means; electronic, mechanical, photocopying, recording or otherwise,
without the written permission of the copyright holder.

Maharshi Dayanand University
ROHTAK —124 001

Developed & Produced by EXCEL BOOKS PVT. LTD., A-45 Naraina, Phase 1, New Delhi-110028



Chapter 1
Chapter 2

Chapter 3

Chapter 4

Chapter 5

Contents

Sequences and Series of Functions
Functions of Several Variables

Part A — The Riemann - Stieltjes Integral
Part B — Theory of Measure and Integration
Measurable Functions and Lebesgue Integral
Part A — “Differentiation and Integration

Part B — Measure Space

33

74

98

114

152

167



CONTENTS

CHAPTER 1 :

CHAPTER 2

CHAPTER 3

CHAPTER 4

CHAPTER 5

SEQUENCES AND SERIES OF FUNCTIONS

:FUNCTIONS OF SEVERAL VARIABLES

: PART A THE RIEMANN - STIELTJES INTEGRAL

PART B THEORY OF MEASURE AND INTEGRATION

: MEASURABLE FUNCTIONS AND LEBESGUE

INTEGRAL

:PART A “DIFFERENTIATION AND INTEGRATION

PART B MEASURE SPACE

33

74
98

114

152
167



1

SEQUENCES AND SERIES OF FUNCTIONS

1.1. The object of this chapter is to consider sequences whose terms are functions rather than real
numbers. There sequences are useful in obtaining approximations to a given function. We shall
study two different notations of convergence for a sequence of functions: Pointwise convergence
and uniform convergence

Pointwise and Uniform Convergence of Sequences of functions

Definition. Let A c R and suppose that for each neN there is a function f, : A—>R. Then <f,> is
called a sequence of functions on A. For each x €A, this sequence gives rise to a sequence of
real numbers, namely the sequence < f(x) > .

Definition. Let Ac R and let <f, > be a sequence of functions on A. Let Ay — A and suppose f
: Ao — R. Then the sequence <f,> is said to converge on Ay to f if for each xcA,, the sequence
<fn(X)> converges to f(x) in R.

In such a case f is called the limit function on Aq of the sequence <f,>.
When such a function f exists, we say that the sequence <f,> is convergent on Ao or that
<f,> converges pointwise on Ag to f and we write f(x) = lim fy(x), xeAq. Similarly, it Zf,(X)
nN—w

converges for every xe Ay, and if
()= 3 fu(x), xeAo,
n=1

the function f is called the sum of the series X f,..

The question arises : If each function of a sequence <f,> has certain property, such as
continuity, differentiability or integrality, then to what extent is this property transferred to the
limit function? For example, if each function f, is continuous at a point Xo, is the limit function f
also continuous at xo? In general, it is not true. Thus pointwise convergence is not so strong
concept which transfers above mentioned property to the limit function. Therefore some stronger
methods of convergence are needed. One of these method is the notion of uniform convergence.
We know that f,, is continuous at X if

lim fo(x) = fo(Xo)
X—)XO

On the other hand, fis continuous at Xg if

(1.1.1) lim f(x) = f(xo)
X—)XO

But (1.1.1) can be written as

(1.1.2) lim lim f,x)= lim lim f,(x)
X=X N—o0 n—oo X=X

Thus our question of continuity reduces to “can we interchange the limit symbols in (1.1.2)2” or “Is the order in which limit
processes are carried out immaterial”. The following examples show that the limit symbols cannot in general be interchanged.



Example. A sequence of continuous functions whose limit function is discontinuous: Let

2n

X
fa(x) = L ,XxeR,n=1,2,...
we note that

0 if | x |<1

. 1 .

lim f.(x)=f(x) = < = if | x|=1

n—o 2
1 if | [>1

Each f, is continuous on R but the limit function f is discontinuous at x = 1 and x = —1.

Example. A double sequence in which limit process cannot be interchanged. Form =1, 2,...,n =

consider the double sequence
m

m+n

Sin =

For every fixed n, we have
lims,,=1
N—o0
and so
lim lim s,,=1
N—00 M—w
On the other hand, for ever fixed m, we have

1
1+

lim S, = lim

N—o0 nN—o0

=0

n
m
and so

lim lims,,=0

m—o0 N—o0

Hence lim lim S, = lim lim S,
N—o M—w Mm—o0 N—o0

1,2,3,

Example. A sequence of functions for which limit of the integral is not equal to integral of the limit: Let

f.(x) = n? (1-x)", xeR,n=1,2, ....
If0<x<1,then
f6)= lim £, =0
N—o

and so
fo fx)dx=0
But Ié f,(x) dx = n? Ié x(1-x)" dx
_nt o
n+1 n+2
(n+)(n+2)
and so

lim [o () dx=1
N—o0

Hence

..., letus



lim fg f00 dx# [g (1imf,(x)) dx.

Example. A sequence of differentiable functions [f,] with limit O for which [f,'] diverges: Let
sinnx

f.(X) \/ﬁ ifxeR,n=1, 2,
Then limf,(x)=0V x.

N—
But f(x) = \/ﬁ oS nx
and so I!|_>m f.’(x) does not exist for any x.

Definition. A sequence of functions {f} is said to converge uniformly to a function f on a set E if for every > 0 there
exists an integer N (depending only on <) such that n > N implies

(1.1.3) [f(x) — f(x)| < € for all xeE.
If each term of the sequence <f.,> is real-valued, then the expression (1.1.3) can be written as
fX) — e <f,(X) <f(X) + €

for all n > N and for all xeE. This shows that the entire graph of f, lies between a “band” of height 2e situated
symmetrically about the graph of f.

Definition. A series % f,(X) is said to converge uniformly on E if the sequence {S,} of partial sums defined by
n
Su(x) = 2. fi(x)
i=1

converges uniformly on E.

Examples. (1) Consider the sequence <S,> defined by S,(x) = in any interval [a, b],a> 0. Then

. . 1
S(x)= lims,(x)= lim ——=0
N—0 n—wo X 4N

For convergence we must have

(1.1.4) ISh(X) =S(X) < e, n >ng
1
or ———0|<e,n>ng
X+Nn
1
or <e
X+n
or X+n>=—
€
or n>=—-x
€

1 1
If we select ny as integer next higher to — , then (1.1.4) is satisfied for m(integer) greater than — which does not
S S

depend on xe[a, b]. Hence the sequence <S,> is uniformly convergent to S(x) in [a, b].

2. Consider the sequence <f,> defined by



X
fa(X) = ,x=0
1+ nx
Then
f(x)= lim =0 forall x> 0.
n—e 1+ NX

Then <f,> converges pointwise to 0 for all x> 0. Let € >0, then for convergence we must have

Ifa(X) = f()[ < €, n>ng

X
or —0l<e,n>ng
1+nx
X
<e
1+ nx
X<e+nxe
or nx e >Xx—e
X—¢€
or n>
Xe
or n>—m =—
X e =

1
If ng is taken as integer greater than — , then
S

[fa(X) — f(X)) < € ¥ n>ngand V xe[0, «)
Hence <f,> converges uniformly to f on [0, «).
3. Consider the sequence <f,> defined by

fax)=x" 0<x<1.

Then

fx) = lim x"=
nN—o

0 if 0<x<1
1 if x=1

Let € > 0 be given. Then for convergence we must have
Ifa(x) = ()] < €, n>no

or X' <e

;)
or — | >—
X €



or n>

1
Thus we should take n, to be an integer next higher to log 1/ €/ log— . If we take x = 1, then m does not exist. Thus
X

the sequence in question is not uniformly convergent to f in the interval which contains 1.

4. Consider the sequence < f,, > defined by

fa(X) = X 0<x<a
" 1an?2 T
Then if x =0, then f.(x) =0
and so f(x)= limf,(x)=0
N—o
If x # 0, then
09 = lim 9 = lim — >
N now 14+n2x2

Thus f is continuous at x = 0. For convergence we must have

[fa(x) = fO)[ < €, n>ng

nx <
or ——<c
1+n%x?
nx
or 1+n°x* - —>0
S
1 1]/1
or x> _——+_—.|——4
e 2\e

Thus we can find an upper bound for n in any interval 0 < a < x < b, but the upper bound is infinite if the interval
includes 0. Hence the given sequence in non-uniformly convergent in any interval which includes the origin. So 0 is
the point of non-uniform convergence for this sequence.

5. Consider the sequence <f,> defined by
f.x)=tan'nx,0<x<a
Then

T .
, — if x=0
fx)= limf,(x)=+2
nN—o .
0 if x=0
This the function f is discontinuous at x = 0.
For convergence, we must have for € >0,
[fn(X) = f()| < €, n>ng
or n/2 —tan tnx< e

or cotlnx< e 4 tan " nx+cotnx =m/2
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or nx >

tane

=5
or n> —
fane \ X

Thus no upper bound can be found for the function on the right if 0 is an end point of the interval. Hence the
convergence is non-uniform in any interval which includes 0. So, here 0 is the point of non-uniform convergence.

Definition. A sequence {f.} is said to be uniformly bounded on E if there exists a constant M > 0 such that [f,(X)| < M
for all x in E and all n.

The number M is called a uniform bound for {f,}.
For example, the sequence <f,> defined by
faX) =sinnx, xe R
is uniformly bounded. Infact,
[fa(x)] = | sinnx | <1 for all x ¢ R and all neN.

If each individual function is bounded and it f,—f uniformly on E, than it can be shown that {f,} is uniformly bounded
on E. This result generally helps us to conclude that a sequence is not uniformly convergent.

We now find necessary and sufficient condition for uniform convergence of a sequence of functions.

Theorem 1. (Cauchy criterion for uniform convergence). The sequence of functions {f.}, defined on E, converges
uniformly if and only if for every >0 there exists an integer N such that m > N, n> N, xeE imply

[fa(X) — fm(X)| < €

Proof. Suppose first that <f,> converges uniformly on E to f. Then to each € > 0 there exists an integer N such that n
> N implies

[fa(x) — f(x)| < e/2 forall xe E
Similarly for m > N implies
[fn(X) —f(X)| < €/2 forall xe E
Hence, forn> N, m > N, we have
[fa(X) = fm ()] = [fa(X) = f(X) + f(X) — fm(X)]
< fa(x) = FO] + [fm(X) = F(X)]
<el2+€/2 =€ forall xeE
Hence the condition is necessary.
Conversely, suppose that Cauchy condition is satisfied, that is,

(1.1.5) [fa(X) — fn(X)| < €, n,m>Nandxzs E.
This implies that <f,(x)> is a Cauchy sequence of real numbers and so is convergent. Let f(x) = lim f,(x), xsE. We
n—o0

shall show that f,—f uniformly on E. Let € >0 be given. We can choose N such that (1.1.5) is satisfied. Fix n, and let
m—co in (1.1.5). Since f,(x)—>f(x) as m—o, this yields

[fa(x) — f(X)] < €, n >N, xeE
Hence f,—f uniformly on E.

1.2. Tests for Uniform Convergence.
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Theorem 2. Suppose lim f,(x) = f(x), x ¢ E and let M, = lub [f,(x) — f(x)|. Then f,—f uniformly on E if and only if
n—»o xeE

M,—0 as n—c0. (This result is known as M, — Test for uniform convergence)

Proof. We have

lub [f,(x) —f(x)| = M,—0 as n—w.
xeE

Hence lim [f,(x) -f(x)| =0V xe E
N—

Hence to each >0, there exists an integer N such that n>N, x & E imply

Ifa(x) —f(X)| < €
Hence f,—f uniformly on E.
Weierstrass contributed a very convenient test for he uniform convergence of infinite series of functions.
Theorem 3. (Weierstrass M-test). Let <f,> be a sequence of functions defined on E and suppose

[f.()| < M, (xeE,n=1, 2, 3,...),
where M, is independent of x. Then X f, converges uniformly as well as absolutely on E if = M, converges.
Proof. Absolute convergence follows immediately from comparison test.

To prove uniform convergence, we note that
m m
Sn() =S¥l = | X fo(X) =X f,
i=1 i=1

= | frr(X) + fra(x) +.. .4+ (X))
<M1 + Mo +...+ My,
But since X M, is convergent, given € > 0, there exists N (independent of x) such that
[Mpi1 + Mpsot.. . +M| < €, n>N
Hence
ISm(X) = Sn(X)| < €,n>N, x €E
and so X f,(x) converges uniformly by Cauchy criterion for uniform convergence.
Lemma (Abel’s Lemma). If vy, v,,..., v, be positive and decreasing, the sum
Up Vi + Uy Vo +...+ Uy vy
lies between A vy and B vy, where A and B are the greatest and least of the quantities

Uq, Uy + Uy, U + Uy + Uz,..., U + U, +...+un

Proof. Write

S,=up+Uuy+...tu,
Therefore

U =S, Up=S,-S4,...,u, =S, — Sp1
Hence

n
YUV = UVy + UpVo L Uy
i=1

=S V1 +(S55-S1) Vo + (S3—Sp) Vs +...+ (Sn =Sp-1) Vi
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=51 (V1= Vo) + Sp(Va — V3) +...+ Sy 1(Vn1 —Vi) + Sy Vi
=A [Vl—V2+V2—V3+...+ Vn-1 — Vn +Vn]
=Av;
Similarly, we can show that
n
> uvi>Bwv,
i=1
Hence the result follows.

n
Theorem. 4. (Abel’s Test) The series Y, Uy(X) Va(X) converges uniformly on E if
n=1

(i) {va(X)} is a positive decreasing sequence for all values of x ¢ E
(i) Z un(x) is uniformly convergent
(iii) v1(x) is bounded for all xeE, i.e., vi(x) < M.

Proof. Consider the series X un(X) vy(x), where {v,(x)} is a positive decreasing sequence for each xeE. By Abel’s
Lemma

Un(X) Va(X) + Ups1(X) Vst (X) +...+ up(X) Un(X)] < AVp(X)
where A is greatest of the magnitudes

[Un(X)] s [Un(X) + Ups1(X)]s- - -, [Un(X) + Upsr(X) +...+ un(X)|
clearly A is a function of x.

Since Z u,(x) is uniformly convergent, it follows that

€
[Un(X) + Upsa(X) +...+ up(X)| < M foralln> N, xeE

€
and so A < M for all n > N (independent of x) and for all x ¢ E. Also, since {v,(x)} in decreasing, vn(X) < vi(X) <M

since v4(X) is bounded for all x € E
Hence
| Un(X) Vn(X) + Ups1(X) Viaa(X) +... 4+ up(X) Vi(X)| < €

n
forn>Nandallx eEandso >, uy(X) Vq(X) is uniformly convergent.
n=1

n
Theorem. (Dirichlet’s test). The series Y, Uy(X) Vn(X) converges uniformly on E if
n=1
(i) {va(X)} is a positive decreasing sequence for all values of xeE, which tends to zero uniformly on E

(i) Z un(x) oscillates or converges in such a way that the moduli of its limits of oscillation remains less than a
fixed number M for all x ¢ E.

Proof. Consider the series Y.  un(X) Vq(X), where {v,(x)} is a positive decreasing sequence tending to zero uniformly
n=1
on E. By Abel’s Lemma

[Un(X) Va(X) + Uns1(X) Vie1 (%) +...F un(X) Vi (X) | < A Va(X),
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where A is greatest of the magnitudes

[Un()], [Un(X) + Vet (X)];.-- -5 [Un(X) + Uns1(X) ...+ um(X)]

and is a function of x.

Since X~ uy(x) converges or oscillates finitely in such a way that <M forall xc¢E,therefore. A is less

3 up (%)

than M. Furthermore since v,(X)—0 uniformly as n—w0, to each >0 there exists an integer N such that

IS
Vo(X) < — forall n > N and all xeE
M
Hence

1UnX) Un() + Vi1 () Vst (%) .4 tm(X) V()| < 5 M=e

0
foralln>Nand xeEand so Y.  uy(x) va(X) is uniformly convergent on E.

n=1
: .2 cosno
Examples. 1. Consider the series Y| . We observe that
n=1 nP
cosno 1
n” | nP
Also, we know that
» 1
D
=1 nP

. . _ ___.cosnd
is convergent if p > 1. Hence, by Weierstrass M-Test, the series X

converges absolutely and uniformly for all

n
real values of 6 if p > 1.
- .2 sinnd . ,
Similarly, the series Y, converges absolutely and uniformly by Weierstrass’s M-Test.

n=1 n
2. Taking M, =", 0 <r < 1, it can be shown by Weierstrass’s M-Test that the series
% r"cosnd, = r"sinnd, X r" cos? nd, X r" sin® nd converge uniformly and absolutely
3. Consider i L xeR.
=t n(l+nx?)
We assume that x is +ve, for if x is negative, we can change signs of all the terms. We have
fn(x) = ;
n(l+nx?)
and ff(x)=0

implies nx? = 1. Thus maximum value of f,(x) is 37
2n
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1
Hence fa(x) < W

o0
372 is convergent, Weierstarss’ M-Test implies that | 2
n n=1 N(l+nx°)

Since X is uniformly convergent for all x €

R.

& X
4. Consider the series Y, 55 XE R. We have
n=1 (n + X )

fr)=s——
™ (n+x2)?

£ ()= (n+x2)% —2x(n+x?%)2x

and so
(n+x2)*

Thus f,'(X) = 0 gives
X'+ X%+ 2nx% —4nx®? — 4x* =0

-3 —2nx*+n*=0

or '+ 2’ —n*t =0
,_ N n
or X°= — orx=,/—
3 3
Also f,'(x) is —ve. Hence maximum value of f,(X) is 6nZ Since 2—2 is convergent, it follows by Weierstrass’s
n
M-Test that the given series is uniformly convergent.
2n
. apx" 2 a,X
5. The series > - and Y
n=1 1+X n=1 1+ X

converge uniformly for all real values of x is X a, is absolutely convergent. The solutions follow the same line as for
example 4.

6. Consider the series
(_1)n X2n
n® 1+x%

o0
2
n=1

n

We note that if p > 1, then = (

is absolutely convergent and is independent of x. Hence, by Weierstrass’s M-Test,
n

the given series is uniformly convergent for all xeR.

n

If 0 <p <1, the series X ( is convergent but not absolutely. Let

n

2n
Vn(X) = —

Then <v,(x)> is monotonically decreasing sequence for |x|, 1 because



Also

Hence, by Abel’s Test, the series .

6. Consider the series

2n X2n+2
Va(X) ~Van(X) = L x2n B 14 x 22
_ xa-x?)
A+ x2")(L+x*"*?)
2
X
vi(X) = <1.
RN
. (_1)n X2n
2n

=t nP 1+x

Xn

X ay. ,
1+x2"

under the condition that Za, is convergent. Let

Then

and so

Vi(X) =

Vo(x) | 14+x2M?

Vo (X)) x(@+x2")

Vo) @-x)E-x*"?)
Via(X) T x@+x2)

which is positive if 0 <x < 1. Hence

and so <v,(x)> is monotonically decreasing and positive. Also vy(X) =

n

series X a,.

Vi > Vst

1+x2"

_ _ nx"(1-x)

7. Consider the series Z a, —
1-X
nx"(1—x
wpy= 24X
1-x
Then
vo(x)  n 1-x"

V. (X) (n+Dx 1-x"

(+ve)

in uniformly convergent for 0 <p <1and |x| < 1.

X2

is uniformly convergent in (0, 1) if Z a, is convergent.

under the condition that ¥ a, is convergent. We have

15

is bounded. Hence, by Abel’s test, the
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) n . -
Since —— —0 as n—o, taking n sufficient large
n+1

Vo(x) _1- x"*
Vi (X) - 1-x"

>1lifo<x<1.

Hence < un(x)> is monotonically decreasing and positive. Hence, by Abel’s Test, the given series converges
uniformly in (0, 1).

1.3. Uniform Convergence and Continuity.

We know that if f and g are continuous functions, then f + g is also continuous and this result holds for the sum of
finite number of functions. The question arises “Is the sum of infinite number of continuous function a continuous
function?”. The answer is not necessary. The aim of this section is to obtain sufficient condition for the sum function
of an infinite series of continuous functions to be continuous.

Theorem. 6. Let <f,> be a sequence of continuous functions on a set E < R and suppose that <f,> converges
uniformly on E to a function f : E>R. Then the limit function f is continuous.

Proof. Let ccE be an arbitrary point. If ¢ is an isolated point of E, then f is automatically continuous at C. So suppose
that c is an accumulation point of E. We shall show that f is continuous at c. Since f,—f uniformly, for every € >0
there is an integer N such that n > N implies

11,00 = 00| < %for all xeE.

Since fy; is continuous at ¢, there is a neighbourhood Ss(c) such that x £ Ss(c) ~ E (since ¢ is limit point) implies
Ifm(X) — fm(c)| < €/3.
By triangle inequality, we have
If(x) = f(c)] = [f(X) = fm(X) + fm(X) — fm(c) + fm(c)—f(c)l
<) = fmO + [ (%) = fm(e)] + [ fim(c)- f(C)]
<—+—+—=€
3 3 3
Hence
[f(x) —f(c) | < €, xe Ss(€) m E.
which proves the continuity of f at arbitrary point ¢ ¢ E.

Remark. Uniform convergence of <f,> in the above theorem is sufficient but not necessary to transmit continuity
from the individual terms to the limit function. For example, let f, : [0, 1] =R be defined for n > 2 by

n’x forOsxs1
n
2[ 2] 1 2
f.x)=<s—-n° | x——| for=<x<-—
n n n
0 forgsxsl

n

Each of the function f, is continuous on [0, 1]. Also f,(X) — 0 as n— for all x £ [0, 1]. Hence the limit function f
vanishes identically and is continuous. But the convergence f,—f is non-uniform.
The series version of Theorem 6 is the following:

Theorem. 7. If the series X f,(x) of continuous functions is uniformly convergent to a function f on [a, b] , then the
sum function f is also continuous on [a, b].

n

Proof. Let S,(x) = >, f,(X), neN and let €>0. Since X f, converges uniformly to f on [a, b], there exists a positive
i=1

integer N such that
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S
(1.3.1) 1Sh(x) — f(X)| <§ foralln>N and x ¢ [a, b].
Let ¢ be any point of [a, b], then (1.3.1) implies
S
(1.3.2) ISn(c) —f(c)| < § for all n= N.

Since f, is continuous on [a, b] for each n, the partial sum
Sn(X) = fi(X) + fo(x) +...+ fy(X)
is also continuous on [a, b] for all n. Hence to each € > 0 then exist a & > 0 such that

€
(1.3.3) ISh(X) — Sn(C)| < § whenever |x—c| < 3

Now, by triangle inequality, and using (1.3.1), (1.3.2) and (1.3.3), we have
If(x) — (c)| = If(X) =Sn(x) + Sn(X) — Sa(C) + Sn(c) - f(c)|
<TH(X) = Sa()| + [Sa(X) = Sa(C)] + 1Sn(c) - f(C)]
<el3+ e/3+e/3=¢,whenever [x—c|<d
Hence f is continuous at ¢. Since ¢ is arbitrary point of [a, b], f is continuous on [a, b].

However, the converse of Theorem 6 in true with some additional condition on the sequence <f,> of continuous
functions. The required result goes as follows.

Theorem. 8. Let E be compact and let {f,] be a sequence of functions continuous on E which converges of a
continuous function on E. If f,(x) = f..1(X) forn =1, 2, 3,..., and for every x ¢ E, than f,—f uniformly on E.

Proof. Take

gn(X) = fa(x) f(x).
Being the difference of two continuous functions, g,(x) is continuous. Also g,—0 and g, > g,+1. We shall show that
gn—>0 uniformly on E.

Let € > 0 be given. Since g,—0, there exists an integer n = N, such that
|gn(X) -0| < €/2

In particular
lgnx(x) = 0] < €/2
ie. 0<gn(X)<el2
The continuity and monotonicity of the sequence {g,} imply that there exists an open set J(x) containing x such that

0<gnt)< e
ifte J(x) and x > N,.

Since E is compact, there exists a finite set of points Xy, X,, Xs..., X, such that
EclX) v ...ud(Xn)
Taking
N = max (Nxz, Nxa,...,NXmy)
it follows that
0<gyt)< e
forall te E and n = N. Hence g,—0 uniformly on E and so f,—f uniformly on E.

1.4. Uniform convergence and Integrability.

We know that if f and g are integrable, then

If+g)=If+lg
and this result holds for the sum of a finite number of functions. The aim of this section is to find sufficient condition
to extend this result to an infinite number of functions.

Theorem. 9. Let o be monotonically increasing on [a, b]. Suppose that each term of the sequence {f.} is a real valued
function such that f, € R(a) on [a, b] forn =1, 2, 3,... and suppose f, — f uniformly on [a, b]. Then f& R(a) on [a, b]
and

b ; b
J.a fdo = r!l_)ﬂ;!D J.a fn da,



18

that is, 2 lim
N—w

10 da0) = lim 2 £, dou(x)
N—w
(Thus limit and integral can be interchanged in this case. This property is generally described by saying that a
uniformly convergent sequence can be integrated term by term).

Proof. Let e be a positive number. Choose n > 0 such that
€
(1.4.1) n[o(b) — a(a)] < §

This is possible since o is monotonically increasing. Since f,—f uniformly on [a, b], to each n>0 there exists an
integer n such that

(1.4.2) [fa(X) — f(X)] < m, x [a, b]

Since f, e R(ct), we choose a partition P of [a, b] such that

(1.4.3) U (P, o, a) - L(P, fy, @) < %

The expression (1.4.2) implies
fa(X) —m < f(x) < fu(x) +
Now f(x) < f,(x) + n implies, by (1.4.1) that

(1.4.4) UP,f o), U(P o)+ %
Similarly, f(x) = f,(x) —n implies
(1.4.5) L(P, f, ) > L(P, f,, ) — %

Combining (1.4.3), (1.4.4) and (1.4.5), we get
UP,fa)-LP, fa)<e
Hence f ¢ R(a) on [a, b].

Further uniform convergence implies that to each €>0, there exists an integer N such that forn > N

Ifa(x) = )] < x € [a, b]

<
[(b) — ()]

Then forn > N,
152 fda— [P fidod =0 () doos [P [f~F| dot
< L
[a(b) —a(a)]
_ €lo(b) —a(a)]
a(b) —a(a)

= €.

2 da(x) dx

a

Hence
I: fdo= lim Jf, do
n—>oo
and the result follows.

The series version of Theorem 9 is :

Theorem. 10. Letf,e R, n=1, 2,... If X f, converges uniformly to f on [a, b], then fe R and

P f0da= Y [P de,
n=1

i.e. the series X f, is integrable term by term.
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Proof. Let <S,> denote the sequence of partial sums of =f,. Since Xf, converges uniformly to f on [a, b], the sequence
<S,> converges uniformly to f. Then S, being the sum of n integrable function is integrable for each n. Therefore, by
theorem 9, f is also integrable in Riemann sense and

[2 fegdx= lim [P s,(x) dx

But
[0 S dx= 2 100 dx+ D B0 dx ot [0 00 dx
O (b
= 21 f4 £ dx
i=
Hence

If f(x) dx= lim i j: fi(x) dx
nN—e j

=3 [Pt do,
i=1

and the proof of the theorem is complete.

2
Example. 1. Consider the sequence <f,> for which f,(x) = nX e™™ neN, xe [0, 1]. We note that
f(x) = lim f,(x)
nN—o

) nx
= lim 5 N =0, xe(0,1]
N>« 14+ nX +n X

1 J2

Then
fo f(dx)=0
and
2
2(X) dx = nxe- X
Jo 09 dx=fo " d
1
:Ejg e'dt, t=nx
1
= [1-e"]
2
Therefore

: .1 _
limff,(x)dx= lim = [1-e™]
n—oo n—w 2

1

2

If < f,> were uniformly convergent, then jé f(x) dx should have been equal to lim | f,9x) dx. Butit is not the case.
n—o0

Hence the given sequence is not uniformly convergent to f infact, x = 0 is the point of non-uniform convergence.

o X
2. Consider the series . W . This series is uniformly convergent and so in integrable term by term. Thus
n=1 (N+X
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|ImZ Io n(n + x%) 2 dx

M—>0 =1
1
- lim & {m}
M—><0 n—1 -2 0

.om 1/1 1
lim e
m—>oon§1 Z[n n+1j

ml%[@%}@%]*---*(%m%ﬂ

nx (n—-1x
3. Consider the series Z 27 > | asxsl
1+n 1+ (n-1)°x

Let Sp(x) denote the partlal sum of the series. Then

I
3=
i3

|

TN

T
3‘
+ =
[EEN
A

[l
N |~

5,(%) nx
(X)) = ———
1+n2x?
and so f(x) = lim S,(x) = 0 for all x [0, 1]
N—o0

As we know that 0 is a point of non-uniform convergence of the sequence <S,(x)>, the given series is not uniformly
convergent on [0, 1]. But

fo fQdx=]3 0dx=0
and

1 1 nx
Sux) dx= [T ————dx
f b e
f 2n2x
T 200 14n2x2

= = 1bgL+n2x?) |
2nl>g(+ x2)

. log (1 +n?)
2n
Hence

lim [ S, () = lim — log(+n?) [fform]
n—»o0 n—w 21N 0

n o0
5 [— formj
1+n 0

Thus
fo f(dx)dx= lim fo Sa09 dx,

and so the series is integrable term by term although 0 is a point of non-uniform convergence.
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Theorem. 11. Let {g,} be a sequence of function of bounded variation on [a, b] such that g,(a) = 0, and suppose that
there is a function g such that

lim V(g - gn) =0
nN—o0
and g(a) = 0. Then for every continuous function f on [a, b], we have
: b b
r!l_[g [y fdg,= [, fdg.
and g,—g uniformly on [a, b].

Proof. If V denotes the total variation on [a, b], then
V(9) < V(gn) + V(9-9n)
Since g, is of bounded variation and lim V(g — g,) = 0 it follows that total variation of g is finite and so g is of
N—

bounded variation on [a, b]. Thus the integrals in the assertion of the theorem exist. Suppose [f(X)| < M on [a, b]. Then
b b b
If, fdg— [ fdgl=1] fd(g-g0)
<M V(g - gn)
Since V (g—g,)—0 as n—w, it follows that
[° fdg=lim |2 fdg,
N—o
Furthermore,

19(X) — 9n(X)| < V(g-9n), a<x<b
Therefore, as n—oo, we have
gn —f uniformly.

1.5. Uniform Convergence and Differentiation
If f and g are derivable, then

dix [f6) + 9] = dixf(x) + dix 9(x)

and that this can be the extended to finite number of derivable function. In this section, we shall extend this
phenomenon under some suitable condition to infinite number of functions.

Theorem. 12. Suppose {f.} is a sequence of functions, differentiable on [a, b] and such that  [f, (Xo)} converges for
some point X, on [a, b]. If {f,’} converges uniformly on [a, b], then {f,} converges uniformly on [a, b], to a function f,
and

f/(x) = lim f;/(x) (a < x < b).

Proof. Let €>0 be give. Choose N such that n > N, m> N implies

€
(1.5.1) Ifa(X0) — fin(Xo)| < 5
and
S

152 f () - T ()| < ———— ast<b
(15.2) Ifa’ (1) = f' (V) 2(b—a) ( )
Application of Mean Value Theorem to the function f, —f.,, (1.5.2) yields
(1.5.3) [fa(X) = fn(X) = fo () + fn(D)] < ﬁ <<

n m n m 2(b_a) — 2

forany xand ton [a, b] if n =N, m>N. Since

| (%) = fm(3)] < fa(X) = fm(X) = fa(X0) + fn(X0)|
+ [ fa(%0) — fm(X0)l,
the relation (1.5.1) and (1.5.3) imply forn > N, m> N,
[ fu(X) — fu(X)| <€/2+ €/2=€ (a<x<h)
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Hence, by Cauchy criterion for uniform convergence, it follows that {f,} converges uniformly on [a, b]. Let
f(x) = lim f,(x) (a<x<b).
nN—o

For a fixed point x € [a, b], let us define

f,()—f f(t)—f
154 oo O o FO-1()
t—X t—X
fora<t<b,t=x. Then
(1.5.5) lim ¢q(t) = lim M:fn’(x) (n=1,2,.)
t—Xx t—>x t—X
Further, (1.5.3) implies
S
nt - mt = _N, > N).
l6n(t) — dm(B)l < 2b—a) (n=N, m=N)

Hence {¢,} converges uniformly for t # x. We have proved just now that {f,} converges to f uniformly on [a, b].
Therefore (1.5.4) implies that

(1.5.6) lim  4n(t) = o(t)
N—
uniformly for a <t <b, t # x. Therefore using uniform convergence of <¢,> and (1.5.5) we have
limot) = lim lim ¢,(t)
t—X t—>X Nn—ow
= lim lim ¢,(t)

n—ow t—X

=lim f/(x)

N—
But lim¢(t) = f(x). Hence
t—Xx

f'(x)= lim f;/(x).
N—
Remark. If in addition to the above hypothesis, each f,’ is continuous, then the proof becomes simpler. Infact, we
have then

Theorem 13. Let <f,> be a sequence of functions such that
(i) Each f, is differentiable on [a, b]
(i) Each f,’ is continuous on [a, b]
(iii) <f,> convergesto f on [a, b]
(iv) <f,’> converges uniformly to g on [a, b], then f is differentiable and f’(x) = g(x) for all x € [a, b].

Proof. Since each f,’ is continuous on [a, b] and <f,’> converges uniformly to g on [a, b], the application of theorem 6
of this chapter implies that g is continuous and hence Riemann-integrable. Therefore, Theorem 9 implies

1 g dx=lim ! /() dx
nN—o0
But, by Fundamental Theorem of Integral calculus,
fo 100 dx = foH) — :a)
Hence
Ja 909 de=lim [f,0) - (a)]
Since <f,> converges to f on [a, b], we have
lim f.() =f(t)and lim f,(a) =f(a)
N—o0 N—o0
Hence

[ 9060 dx =f(t) - f(a)
and so
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%(IQ g(x) dx) = f ()

or g(t) =f(t), te [a, b]
This completes the proof of the theorem.
The series version of theorem 13 is

Theorem. 14. If a series X f,, converges to f on [a, b] and

Q) each f, is differentiable on [a, b]

(ii) each f, is continuous on [a, b]

(iii) the series X f,’ converges uniformly to g on [a, b]
then f is differentiable on [a, b] and f'(x) = g(x) for all x ¢ [a, b].

0
Proof. Let <S,> be the sequence of partial sums of the series Y. f,. Since =f, converges to f on [a, b], the sequence
n=1
<S,> converges to f on [a, b]. Further, since Zf’ converges uniformly to g on [a, b], the sequence <S,’> of partial sums
converges uniformly to g on [a, b]. Hence, Theorem 13 is applicable and we have
f’(X) = g(x) for all x ¢ [a, b].

. L2 nx (n-1)x
Examples. 1. Consider the series Y. > >
n=t |1+n°x° 1+(n-1)°X
For this series, we have
Sn(X) X 0<x<1
X) = ——, <x<
" 1+n2x?
We have seen that O is a point of hon-uniform convergence for this sequence. We have
i = lim 8,0 = lim —
X) = X) = _
e s 14 n2x?
=0for0<x<1
Therefore
f'(0)=0
.S, (0+h)-S, (0
Sy(0)= lim 0+ =S, (0)
n—0 h
. n
= lim S =N
>0 1+n“h
Hence
lim s,/(0) = «
n—o
Then
f(0)= lim s,(0).
nN—
. o ® sinnx
2. Consider the series Y. —3 . Xe R. We have
n=1 n
sinnx
fn(x) = 3
n
, CosNX
W)= ——
n
Thus
cosnx
Z(x) =2

n2
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. cosnx 1 1 . . .
Since — <= and 2—2 is convergent, therefore, by Weierstrass’s M-test the series xf/(x) is uniformly as
n n n

well as absolutely convergent for all x € R and so Xf,, can be differentiated term by term.

o0 0
Hence X f,y= Z f

n=1

*  sinnx © CcOosSnx
or [Z j =3 5

n=1 n n=1 n

1.6. Weierstrass’s Approximation Theorem.

Weierstrass proved an important result regarding approximation of continuous function which has many application in Numerical
Methods and other branches of mathematics.

The following computation shall be required for the proof of Weierstrass's Approximation Theorem.
For any p, q ¢ R, we have, by Binomial Theorem

n
(1.6.1) > A ptat=p+ar, nsl,
k=0
where
Differentiating with respect to p, we obtain

.-
> kgt =mp o,
k=0

which implies

(1.6.2) Z ﬂ Pq" = p(p+q)", nsl
k=0 N

Differentiating once more, we have

n k2
z—ﬂ_“ g =p(n-1) (p+q)" 2+ (p+ q)"*

k=0 N
and so
k2 ) p n-1

(163) z Pl S 1—— (p+a)™ H(p+q)
Now if xe[0, 1], take p = x and g=1-x. Then (1.6.1), (1.6.2) and (1.6.3) yield

% ﬂ;(k(l X)I’l k
(1.6.4) 5y X 1 x X L=x)" =

k=0 N

2 -
5 LS § x*@-x)"* :xz[l——]Jri
k=0 N

2
k
On expanding [— — Xj , it follows from (1.6.4) that
n

X(1-x)
n

2
(1.6.5) > [%—xj ﬂfk(l_x)"_k _ 0<x<1)

k=0
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¢o)

For any f [0, 1], we define a sequence of polynomials B, ne & follows:
N g k

(1.6.6.) B.) Y I xK@—x)"* f[—j, 0<x<1nel
k=0 n

The polynomial B, is called the nth Bernstein Polynomial for f.
We are now in a position to state and prove Weierstrass’s Theorem.

Theorem. 15. (Weierstrass’s Approximation Theorem). Let f be a continuous function defined on [a, b]. Then
given € > 0, there exists a polynomial P such that

P(X) - f(x)|< e,a<x<hb
Proof. We first show that it is sufficient to prove the theorem for the case in which [a, b] = [0, 1].
Suppose that the theorem is true for continuous functions defined on [0, 1]. If f is continuous on [a, b] and >0 we
must show that there is a polynomial P such that

(1.6.7) P(X) —f(X)|< e a<x<b
Define g by g(x) =f(a+[b—a]x) (0<x<1)

Then g(0) = f(a), g(1) = f(b). Clearly g is continuous on [0, 1]. Since the theorem holds for continuous function
defined on [0, 1], there is a polynomial Q such that

(1.6.8) la(y) - Q)< e (0<y<1)
X—a
If we put y= ——
-a
Then
0= ﬂ:f<a+((b—a)ﬂj
—-a b—-a
=f(x)

Therefore (1.6.8) reduces to

=
[f)-Q| —— |I<e (@a<x<b)
b-a

X—a
P(X)—Q[mj )

then P is a polynomial (because Q is polynomial). Hence
[f(x) - P(X)|< e, a<x<bh.
Thus we prove the theorem for functions f which are continuous over (0, 1]

If we define P by

Since f is continuous over compact set [0, 1], it is uniformly continuous on [0, 1]. Hence given € > 0 there exists >0
such that

€

W@)—KWI<-§, (x=yl<8;x ye[0,1])
Suppose N ¢ | such that
(1.6.9)

1 <d
4N
and such that

(1.6.10) (f[>0)

1 €
—_— < [
JN 4| f]
Fix x € [0, 1]. Multiplying the first identity in (1.6.4) by f and subtracting (1.6.6), we obtain for any n ¢ I,

(1.6.11) f(x) - By(X) = zn: {f (X) —f[gﬂ QE(“ (1-x)"*

k=0
=2 + X, say,
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where X is the sum over those values of k such that

(1.6.12) | K X| < 1
.6. o W :
L . N 1
while %, is the sum over other values of k. If k does not satisfy (1.6.12), that is, if | ——x| > ,
n 4Jn
then
2
k
(k-nx)?=n?|——x| >+/n°
n
Hence

KL -
|%a] = [2o[f(x) - [Hj] M

K _
< S| +] f [Hj 14 X
<2ff(x) 2, § x*@1-x"

| 2 1k
<2 FZZ (kx> € x*(1-x)

21f] 2 2 & ok
= EO (k-nx)® 4 x(1-x)

<

Here, by (1.6.5)
2| f]
|Zo] £ —/—nx(1-X)
Vn®
L2lf]
Jn

1
If n>N, it follows from (1.6.10) that — <

IS
and so
Jno4)f

%] < ef2.

Moreover, if n > N and k satisfies (1.6.12), then by (1.6.9) and (1.6.12),

[kj
f) —f | — || < el
n
k k n-k;
|zl|:|21[f(x)—f(ﬁj] X @™

€
< 5 s 4 X(1=x)
and so by first identity of (1.6.4), we have

k
——X|< 3 andso
n

Thus

=< S
)
Thus, (1.6.11) yields
| (%) = Ba(X) < [Z4] + |25
e €

<—+ — =€,

2 2
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Since x was arbitrary point in [0, 1] and n any integer with n > N, this shows that
| f(X) — Ba(X)| < €, 0<x<1,nel
This completes the proof of the theorem.

Example. If fis continuous on [0, 1] and if
Ié X"f(x)dx=0forn=0,1,2, ...,
use Weierstrass’s Approximation Theorem to prove that f(X) = 0 on [0, 1]
Solution. The given hypothesis is that the integral of the product of f with any polynomial is zero. We shall show that
j'é f2=0. We have, by Weierstrass’s Approximation Theorem

1 .ol
o 2= 1[5 POOfx)=0
= f=0
1.7. Power Series

In this section we shall consider power series with real coefficients, and study its properties.

oC
Definition. A series of the form Y. a, x" is called a power series
n=0
o0

Applying Cauchy’s root test, we observe that the power series Y, a, X" is convergent if

n=0
X< =,
where
1= lim [a,""
o : 1
The series is divergent if [x| > I_
Taking
1
r=T 1/n
lim|a, |

We say that the power series is absolutely convergent if |x| < r and divergent if |x| > r. If ay, ay,... are all real and if x
is real, we get an interval —r < x < r inside which the series is convergent.

If x is replaced by a complex number z, the power series X a, z" converges absolutely at all points z inside the circle |z
=r and does not converge at any point outside this circle. The circle is known as circle of convergence and r is called
radius of convergence. In case of real power series the interval (—r, r) is called interval of convergence.

If lim [a))”" =0, then r = « and the power series converges for all finite value of x(r z). The function represented by
the sum of the series is then called an Entire function or an integral function. For example, €7, sin z and cos z are
integral functions.

If lim |a,/"" = o0, r = 0, the power series does not converge for any value of x except ~ x = 0.

Theorem. 16. Suppose the series Y a, X" converges for |x| < r and define
n=0

=% ax  (x<n
n=0

o0
Then Y a, X" converges uniformly on [-r + €, r — €], €>0. The function f is continuous and differentiable in (-r,
n=0

r) and
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F= 3 napx't (X< 1)
-1

Proof. Let € be a positive number. If x| <r — e, we have

|an X"| < fan (r —€)" |
Since every power series converges absolutely in the interior of its interval of convergence by Cauchy’s root test, the
series Xa, (r —e)" converges absolutely and so, by Weierstrass’s M-test, Xa, X" converges uniformly on [-r + €, r —€].
Also then the sum f(x) of Za, X" is a continuous function at all points inside the interval of convergence.

Un 5 1 as n—o, we have

lim (nja,)*" = Tim (ja,)*"

Since (n)

o0 o0
Hence the series >, a,x"and 3. na,x™" have the same interval of convergence. Since
n=0 n=0

3 na, x"'is a power series, it converges uniformly in [-r + €, r —€] for every €>0. Then, by term by term
n=0
differentiation (Theorem 14) yields.
Yna, X"t =f/(x)if x| <r-e.
But, given any x such that |x| < r, we can find an >0 such that |x| < r—. Hence
Yna, X"t =f/(x)if x| <T.

Theorem 17. Under the hypothesis of Theorem 16, f hs derivative of all orders in (—r, r) which are given by

0

fOx) = Y n(n-1) (-2)...(n—k+1) a, x"*
n=k
In particular
fM0) = kan k=0, 1,2,..
Proof. Let
f)= > ax
n=0

Then by the above theorem
f'(x)=Zna,x"*

Now applying the theorem 16 to f ’'(x), we have
f7(x) = Zn (n-1) a, x"2

fOx)= > n(n-1) (1-2)...(n-k+1) a, X"
n=k
Clearly f ®(0) = k a ; the other terms vanish at x = 0.

Remark. If the coefficients of a power series are known, the values of the derivatives of f at the centre of the interval
of convergence can be found from the relation

f®(0) = |k ay.
Also we can find coefficients from the values at origin of t, f', f",...

Theorem. 18. (Uniqueness Theorem). If X a, x" and X b,x" converge on some interval (-, r), r > 0 to the same
function f, then
a, = b, for all neN.

Proof. Under the given condition, the function f have derivatives of all order in (—r, r) given by

f¥)= > n(n-1) (n-2)...(n—k+1) a, X"
n=k
Putting x = 0, this yields
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£ ®(0) = |k a and £ (0) = |k by
for all k eN. Hence

ay = by for all keN.
This completes the proof or the theorem.

Theorem. 19. (Abel). Let (-, r) be the interval of convergence of the power series
f()=2 ax
n=0
If the series is convergent when x =r, then
lim f(x) =f(r)
X—>r-0
A similar result holds if the series is convergent when x = —r.

Putting X = ry, we obtain the power series

o0 o0

> ar'y'= X by’ say,

n=0 n=0

whose interval of convergence in (-1, 1). It is therefore sufficient to prove the theorem for r = 1. Hence we shall prove the
following.

Theorem. 19. (Abel). Let (-1, 1) be interval of convergence for the power series * a, x". if > a, =S, than
n=0

o0
lim > a,x"=S.
Xx—1-0 n=p

Proof. LetS,=ay+a; +...+a,, S_.; =0. Then

m m
> apx'= Y (Sh—Sn1) X"

n=0 n=0

m m

= Z Sn Xn - Z Sn—l Xn
n=0 n=0
m-1 m

=Y S xX"+S,x"- > S X"
n=0 n=0
m-1 m

=Y S xX"—x Y Sp X"+, x"
n=0 n=0

m-1
=(1-x) X Spx"+S,x"
n=0
For |x| < 1, let m—<0 and obtain

(1.7.1) fx)=(1-x) > Syx"
n=0
Since X a, =S, S,—S as n—c0. So to each >0, there exists an integer N such that n>N implies

S-S, < el2
Also we know that

(1-x) io] X"=1 (|x| <1)
n=0
or

(1.7.2) S =(1-x) ioj Sx" (x| <1)
n=0
Then (1.7.1) and (1.7.2) yield
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100812100 % (5:-9)1

N ©
<) Y S-SIX"+ X [S-S| "
n=0 n=N+1

N €
<@A-xX) X IS, -SIX"+ —
n=0 2

N
But for a fixed N, (1-x) Y. |S, =S| |x|" is a positive continuous function of x having zero value at x = 1. Therefore
n=0

N €
there exists 5>0 such that for 1 -8 <x <1, (1-x) X S, -S| [x|" is less than E . Hence
n=0

e &<
If(X)—S|<§+§: e, 1-d<x<1

and so lim
X—1-

f(x)=S = f an
n=0

Tauber’s Theorem. The converse of Abel’s theorem proved above is false in general. If f is given by

fx)= X ax" -r<x<r
n=0
the limit f(r—) may exist but yet the series = a, r" may fail to converge. For example, if a, = (-1)", then

1
fxX) = ——,-1<x<1
+ X

1
and f(x) - E as Xx—>1—. However X (-1)" is not convergent. Tauber showed that the converse of Abel’s theorem can

be obtained by imposing additional condition on the coefficients a,. A large number of such results are known now a
days as Tauberian Theorems. We present here only Tauber’s first theorem.

Theorem. 20. (Tauber). Let f(x) = Y axx" for -1 < x < 1 and suppose that lim n a, = 0. If f(x) — S as x—1—, then
n=0 N—o0

o0
> a, converges and has the sum S.
n=0

n . 1
Proof. Letn o, = Y Kk |ag. Then 6,— 0 as n—o. Also, lim f(x,) = Sif x, =1 - —. Therefore to each e >0, we
h=0 N—o0 n

can choose an integer N such that n > N implies

c c e
| (fxn) — S| < g oh<—, nNla<—.

3 3

n
LetS,= > a..Thenfor -1 <x<1, wehave
h=0
n o
Si—S=fX)-S+ > a@-xX)- X ax
k=0 h=n+1

Let x € (0, 1). Then
(1-x) = (1-X) (1+x + —+ X <Kk(r-x)

for each k. Therefore, ifn>Nand 0 <x <1, we have



n
Sn = S| <If(X) =S|+ (1-x) 2 Kla +
h=0
. 1 .
Putting x = X, = 1-—, we find that
n
€ € €
[Si-SI< —+ot- =
3 3 3

which completes the proof.

<
3n(1—x)
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2

FUNCTIONS OF SEVERAL VARIABLES

2.1. In this chapter, we shall study derivatives and partial derivatives of functions of several variables alongwith their properties.

2.2. Linear Transformations

Definition. A mapping f of a vector space X into a vector space Y is said to be a linear
transformation if

f(x1 +x2) = (1) +F (X2),
f(cx) = cf(x)
forall x, xq, X, € X and all scalars c.
Clearly, if fis linear transformation, then f (0) = 0.
A linear transformation of a vector space X into X is called linear operator on X.
If a linear operator T on a vector space X is one-to-one and onto, then T is invertible and its inverse is
denoted by T™*. Clearly T* (Tx) = x for all x eX. Also, if T is linear, then T ' is also linear.

Theorem 1. A linear operator T on a finite dimensional vector space X is one-to-one if and only if the range of T is
whose of X.

Proof. Let R(T) denote range of T. Let (Xy, X, ..., X;) be a basis of X. Since T is linear the set (TXy, TXa,..., TXy)
spans R(T). The range of T will be whole of X if and only if {Txy, TX,,..., TX,} is linearly independent
So, Suppose first that T is one-to-one. We shall prove that {Tx;, Tx,,..., TX,} is linearly independent. Hence, let

C]_TX]_, C2TX2+. .t CnTXn =0
Since T is linear, this yields
T(CyXy + CoXp +...+¢pXp) =0

and so CiXy + CoXo +...+¢X, =0
Since (Xg, Xa,..., X} is linearly independent, we have
Ci=C=...¢,=0

Thus {TXy, TXy,..., TX,} is linearly independent and so R(T) = X if T is one-to-one.

Conversely, suppose {TXy, TX,..., TX,} is linearly independent and so

(221) CiTXy+CoTXo+...+cnTX, = 0
implies ¢; = ¢c,=...= ¢, = 0. Since T is linear, (2.2.1) implies
T(Clxl + ...+ Can) =0
= CiXg +...tepXp =0
Thus T(x) = 0 only if x = 0. Now
TX=T) =Txy)=0 =>x-y=0 =x=y

and so T is one-to-one. This completes the proof of the theorem

Definition. Let L(X, Y) be the set of all linear transformations of the vector space X into the vector space Y. If T,, T,
e L(X, Y) and if ¢4, C, are scalars, then ¢; T, + ¢, T, is defined by

(1T +¢,Ty) (X) = ¢ TiX + € Tox, X eX.
It can be shown that¢; T; + ¢, T, € L(X, Y).

Definition. Let X, Y, Z be vector spaces over the same field. If T, S € L(X, Y) we define their product ST by
(ST) (¥) =S(Tx) , xeX
Also ST € L(X,Y).

Definition. Let R" denote n-dimensional Euclidean space and let T L (R", R™). Then
lub {|Tx|:x eR", x| < 1}
is called Norm of T and is denoted by |[T||. The inequality
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[TX| <|[T][ |x]
holds for all x eR". Also if & is such that
[Tx| < AJx|, x € R", then ||T|| < A.
We are now in a position to prove the following theorem.

Theorem. 2. Let T, SeL (R", R™) and ¢ be a scalar. Then
(@) |IT|| <o and T is uniformly continuous mapping of R" into R™.
(b) IS+ TII<|Tll +[IS]]
ICTI = ICHITII-
(c) If d(T, S) =||T-S||, than d is a metric

n
Proof. (a) Let {e, €,,..., €.} be the standard basis in R" and let x eR". Thenx = z Ci &. Suppose [x] < 1 so that |c;|
i=1
<lfori=1,2,...n. Then
[TX| = [Z ;T & <X cil [Tej
<X |Tei|
Taking lub over xeR", [x| <1
n
i< . [Teil <.
i=1
Further
[Tx = Tyl = [Tx=y)| < [[Tll x-Y]; X, ¥, €R"

. S
so if [x-y|] < ——, then

[Itll
[Tx-Ty|< e, X, Y, eR".
Hence T is uniformly continuous.

(b) We have
|(T+S)x|=|Tx+ Sx|
<|Tx| +|SX|
<TIEX] + (IS 1]
= (TS I
Taking lub over x eR", x| < 1, we have
[T +S| < [IT][ + ISIl
Similarly, it can be shown that
T = fel I[TI].
(c) We have d(T,S)=|T-S||=z0andd (T,S)=|T-S||=0 & T=S.
Also d(T, S) =||T-S|| = ||S-T||=d(S, T)

Further, if S, T, U € L (R", R™), then
IS-Ull=lIS-T+T-U||
<[S=T+[T=U
Hence d is a metric.

Theorem. 3. If T € L(R", R™) and S €L (R™, R¥), then
IS T <IISIHITI

Proof. We have
IST) x| = [s(Tx)[ < [IS]| | TX|
<ISIITI X
Taking sup. over X, |X| < 1, we get
LISTIT < TISIT T
In Theorem 2, we have seen that the set of linear transformation form a metric space. Hence the concepts of
convergence, continuity, open sets, etc make sense in R".

Theorem. 4. Let C be the collection of all invertible linear operator on R" .
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1
@IFTeC|TY= =,SeL(R" R")and|S-T||=p <o, then S eC.
0.4

(b) C is an open subset of L(R", R") and the mapping T — T ' is continuous on C.

Proof. We note that
X = [T T x| < [T [Tx|

1 n
= — |Tx| forall x eR

o
and so
(2.2.2) (o =PB) x| = x| = BIX|
<[Tx| =B x|
< TX| - |[(S-T) x|

<|Sx| for all x eR".

Thus kernel of S consists of 0 only. Hence S is one-to-one. Then theorem 1 implies that T is also onto. Hence S is
invertible and so S € C. But this holds for all S satisfying ||S-T|| < o. Hence every point of C is an interior point and
so C is open.

Replacing x by S™y in (2.2.2), we have
(@B IS yl<ISSH Y=yl

or ISty < 1yl
o-p
and so IS7H <
Since St-Tl=sM(T-9)T
We have
(2.2.3) IS =T < IS T-SIHIT)
LB
oo —p)
Thus if f is the mapping which maps T - T, then (2.2.3) implies
IS-TI
IFS) = f(Mll = ————5
oo —B)

Hence, if ||S —T||—0 then f(S) — f(T) and so f in continuous. This completes the proof of the theorem.
2.3. Total derivative of f defined on a subset E of R".

In one-dimensional case, a function f with a derivative at ¢ can be approximated by a linear polynomial. In fact if f'(c)
exists, let r(h) denote the difference

_ f(x+h)—f(x)

23.1 h
(2.3.1) r(h) h

—f/(x) ifh =0

and let r(0) = 0. Then we have
(2.3.2) f(x+h)y=f(x) +hf’(x) +hr(h),

an equation which holds also for h = 0. The equation (2.3.2) is called the First Order Taylor Formula for
approximating f (x +h) — f(x) by h f '(x). The error committed in this approximation is h r(h). From (2.3.1), we
observe that r(h) — 0 as h — 0. The error h r(h) is said to be of smaller order than h as h—0. We also note that hf '(x)
is a linear function of h. Thus, if we write Ah = hf’(x), then

A(a hl +b h2) = aAhl + bAh2

The aim of this section is to study total derivative of a function f from R" to R™ in such a way that the above said
properties of h f'(x) and h r(h) are preserved.
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Definition. Suppose E is an open set in R" and let f : E —R" be a function defined on a set E in R" with values in R™.
Let x €E and h be a point in R" such that |h| <rand x + h € B(x, r). Then f is said to be differentiable at x if there
exists a linear transformation A of R" into R™ such that

(2.3.3) f(x + h) =f (x) + Ah +r (h),
where the remainder r(h) is small in the sense that
. |r(h
lim [r(h)] =0.
h—>0 |h|

and we write f'(x) = A.
The equation (2.3.3) is called a First Order Taylor Formula.
The equation (2.2.4) can bw written as
. |f(x+h) —f(x) — Ah
(2.3.4) IImI ( ) —109 | =0
h—0 [h|
The equation (2.3.4) thus can be interpreted as “For fixed x and small n, f (x +h) — f (x)
is approximately equal to f’(x)h, that is, the value of a linear function applied to h.”

Also (2.3.3) shows that f is continuous at any point at which f is differentiable
The derivatives Ah derived by (2.3.3) or (2.3.4) is called total derivative of f at x or the differential of f at x.

In particular, let f be a real valued function of three variables x,y, z say. Then f is differentiable at the point (x, y, z) if
it possesses a determinate value in the neighbourhood of this point and if Af = f(x + AX, y + Ay, z + Az) — (X, y, 2) =
AAX + BAy + CAz + ep, where p = |AX| + |AX| + |Az|, >0 as p—0 and A, B, C are independent of X, y, z. In this
case AAX + BAy + CAz is called differential of f at (x, y, 2).

Theorem 5. (Uniqueness of Derivative of a function). Let E be an open set in R" and f maps E in R™ and x<E.
Suppose h eR" is small enough such that x + h E. Then f has a unique derivative.

Proof. If possible, let there the two derivatives A; and A,. Therefore
.| f(x+h)—=f(x)—A;h
i TN 00— Ah|

h—0 [h|
and “m|f(x+h)—f(x)—A2h|:0
h—0 [h|
Consider B=A; — A,. Then
Bh = Alh - Azh
= f(x +h) —f(x) + f(x) — f(x +h) + Ath — A;h
=f (x +h) —f (x) — A,h + f(x) — f(x +h) + A;h
and so |Bh| < |f (x +h) —f(x) —A:h |+ f(x+h) — f(x) — Ash|
which implies
i B [F D) — 00 ~Ash | [f(x+h) —f(x) ~ Aoh]
h—=0 h h—0 [h| [h|
=0
For fixed h = 0, it follows that
(2.3.5) w —0ast—>0
| th]

The linearity of B shows that L.H.S. of (2.3.5) is independent of t. Thus Bh = 0 for all h eR". Hence B = 0, that is, A;
= A,, which proves uniqueness of the derivative.

The following theorem, known as chain rule, tells us how to compute the total derivatives of the composition of two functions.

Theorem. 6. (Chain rule). Suppose E is an open set in R" , f maps E into R™, f is differentiable at x, will total
derivative f '(xo), g maps on open set containing f (E) into R and g is differentiable at f (x,) with total derivative g’
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(f(Xo)). Then the composition map F = f 0 g mapping E into R* and defined by F(x) = g(f(x)) is differentiable at x, and
has the derivative

F (%) = g’ (f(X0)) f'(Xo)
Proof. Take
Yo = f(Xo), A=1" (X0), B=7'(Yo)

ri(X) = f(x) — f(xo) — A(X —Xo)

r2(y) = 9(y) — 9(¥o) — B(y —Yo)

r(x) = F(x) — F(xo) — BA(X —Xo)
To prove the theorem it is sufficient to show that

F'(Xo) = BA,

and define

That is,
r(x)
| X—Xo |
But, in term of definition of F (x), we have
r(x) = 9(f(x)) = 9(¥o) —B(f(X) —f(Xo) = A(X —Xo))

(2.3.6) —0as X — X

so that
(2.3.7) r(x) =r, (f(x)) + B ry (x)
If € >0, it follows from the definitions of A and B that there exist 1 > 0 and & > 0 such that
11
—2 e ifly -y <m
Y=Yl
or Ira(y)| < € ly =Yol if [y =yol <m, i.e. if [f(x) - f(x)| <m
and [ri(X)] < € [x=Xo| if [X =Xq| < 3.
Hence
(2.38) Ir2 (F(X))| < € [f(x) — f(Xo) |
= € [ri(X) + A(X —Xo)|
< €2 [x =g + € [AlI(X —Xo)
and
(2.3.9) B ri(X)| < [IB]| | r(x)|

< €||B|| X —Xo| if [X —Xo| < 3.
Using (2.3.8) and (2.3.9), the expression (2.3.7) yields
r(x)| < € x —xo| + € [JA]l [x —Xo| + €|IB| [x |

r(x
and so real <e’+e|Al+ B
| X—=Xq |
=e[e+[A[+]B]] ifx—X|<3
[r(X)|
Hence ————— —>0as X =>Xp
| X=X |

which in turn implies
F'(%0) = BA = g'(f(x0)) '(xo)

2.4. Partial Derivatives. Let {e;, €,..., €.} be the standard basis of R". Suppose f maps on open set E = R" into R™
and let f;, f,,..., f., be components of f. Define Dy f; on E by

fi(x+te,)—f(x)
t

(2.4.1) (D f) (x) = lim
t—>0
provided the limit exists.

Writing f; (X1, Xo,...,X,) in place of fj(x), we observe that Dy f; is the derivative of f; with respect to x, keeping the other

of.

variable fixed. That is why, we use — oftenly in place of Df;.
Xy

Since f = (fy, f,,..., f)), we have
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Dy f(x) = (Dk fi(x), Dk f2(X),..., Dk fo(X))
which is partial derivative of f with respect to x".
Furthermore, if f is differentiable at x, then the definition of f'(x) shown that
. f(x+th,)-f(x
i FO0E 1) = (0
t—>0 t

If we take hy = ey, taking components of vector is (2.4.2), it follows that
“If f is differentiable at x, then all partial derivatives (Dy f;) (x) exist.”

(2.4.2)

= /(x) hy

In particular, if f in real valued (m = 1), then (2.4.1) takes the form

. f(x+t)—f(x
(D) (x) = lim —( )—T(x)

t—>0 t
For example, if f is a function of three variables x, y, and z, then

f(Xx+AX,y,2)— T(X,y,2)

Df(x) = lim
AX—0 AX
Diyy = lim S Y +AY.2) -~ f(xy.2)
Ay—0 Ay
and Di) = lim L XY Z2+A7) = T(x,y.2)
Az—0 Az

and are known respectively as partial derivatives of f with respect to X, y, z.
The next theorem shown that Ah = f’(x) (h) is a linear combination of partial derivatives of f

Theorem. 7. Let Ec R"and let f : E->R" be differentiable at x (interior point of opensetE). Ifh=c,e; +cy e, +...+
Cn €n, Where {ey, €,,..., e,} is a standard basis for R", then
n
f'(x) ()= >, c Dy f(x)

k=1

Proof. Using the linearity of f’ (x), we have

f/o) (hy= >, f(x) (cken)
k=1
= 3 ch F'(X) en
k=1
But, by (2.4.2),

f'(x) en = (Dn f) (x)

Hence f'(x) (h) = ¢k Dy (F) (¥)
k=1
If fis real valued (m = 1), we have
f'(x) (h) = (D1f(X), Dof(X),..., Dyf(X)). h.

Definition. A differentiable mapping f of an open set E — R"into R™ is said to be continuously differentiable in E if f’
is continuous mapping of E into L(R", R™).

Thus to every € > 0 and every x €E there exists a 3>0 such that
IIf (y)—f'(X)||< e ify eEand |y —x| < 3.
In this case we say that f is a C’-mapping in E or that feC'(E).

Theorem. 8. Suppose f maps an open set E < R" into R™. Then f is continuously differentiable if and only if the
partial derivatives D; f; exist and are continuousonEfor1<i<m,1<j<n.

Proof. Suppose first that f is continuously differentiable in E. Therefore to each x €E and >0, there exist a >0 such
that
If'(y) —f'(X)|| < € ify eE and [y—x| < 3.
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We have then
(24.3) If(y) & — f(x) &l = |(f" (y) —F'(x)) (&y)]

<[ (y) = £ Ol llel

=If (y) - £ Xl

<eify eEand |y—x| <d.
Since f is differentiable, partial derivatives D; f; exist. Taking components of vectors in (2.4.3), it follows that

I(D; ) () - Djfix)| < €, ify eEand |y —x| < 3.

Hence D; fiare continuouson Efor1 <i<m,1<j<n.
Conversely, suppose that D; f; are continuous on E for 1 <i<m, 1 <j <n. Itis sufficient to consider one-dimensional

case, i.e., the case m = 1. Fixx €E and €>0. Since E is open, X is an interior point of E and so there is an open ball B
< E with centre at x and radius r. The continuity of D; f implies that r can be chosen so that

€ .

(2.4.4) |(Djf)(y)_(Djf)(X)|<H' yeB,1<j<n.
Suppose h =X h; g;, || <, and take v =0
and vichieg+hye,+...+heeforl<k<n.
Then

n
(2.4.5) f(x+h) —f(x) = > [f(x+ V) —f(x+ V)]

=1

Since  |vy| <rfor 1 <k <nand since s is converse, the end points X + vi_; and x + v;j lie in s. Further, since
Vi=Viathjg
Mean Value Theorem implies
(2.4.6) f(x +vy) = F(X +vig) = F (X + vig + hye)) = f(X + vis)
=hjej (Dif) (X + Vi1 +vjhje)

€
for some 6 (0, 1) and by (2.4.4) this differ from h; (D; f) (x) by less than |h;| —. Hence (2.4.5) gives
n

n 1 n
[fx+h) —f0) -2 h(Oif) )< — 2 Ihle
j=1 n j=1
=lhle
for all h satisfying |h| <.

Hence f is differentiable at x and f '(x) is the linear function which assigns the number X hy(D; f) (x) to the vector h =X
hj e The matrix [f ' (x)] consists of the row (D; ) (x),..., (D, ) (X). Since D, f, D, f,..., D, f are continuous functions
on E, it follows that f " is continuous and hence f eC’(E).

2.5. Classical Theory for Functions of more than one Variable

Consider a variable u connected with the three independent variables x, y and z by the functional relation
u=u(xYy,z)

If arbitrary increments Ax, Ay, Az are given to the independent variables, the corresponding increment Au of the dependent
variable of course depends upon the three increments assigned to x, y and z.

Definition. A function u = u(X, y, z) is said to be differentiable at the point (X, y, z) if it possesses a determinate value
in the neighbourhood of this point and if.
Au=A Ax + BAy + CAz + ep,
where p = |Ax| + |Ay| + |Az|, e>0, as p—0 and A, B, C are independent of Ax, Ay, Az.

In the above definition p may always be replaced by 1, where
1= JAX? + Ay? + Az

Definition. If the increment ratio
u(x+Ax,y,z)-u(x,y,z)
AX
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tends to a unique limit as Ax tends to zero, this limit is called the partial derivative of u with respect to x and is

. au
written &Or UX.

Similarly @and @ can be defined.
dy oz
The differential coefficients: If in the equation
Au=AAX+BAy, + CAz+ ep
we suppose that Ay = Az = 0, then, on the assumption that u is differentiable at the point (x, vy, z),
Au=u(x+ Ax,y,z)-u (x,, 2)
= AAX + €]AX]
and dividing by Ax,

u(x+Ax,y,z)-u(x,y,z) CA+e
AX a

ou
and by taking the limit as Ax—0, since e—0 as Ax—0, we get & =A

Similarly A =B and au =C.
oy oz

: - . . ... Odu ou au )
Hence, when the function u = u(x, y, z) is differentiable, the partial derivatives —, —, — are respectively the

differential coefficients A, B, C and so

Au= a—uAX-i-a—uAy-i-a—uAZ-i- ep
OX oy oz

The differential of the dependent variable du is defined to be the principal part of Au so that the above expression may be written
as
Au =du + ep.

Now as in the case of functions of one variable, the differentials of the independent variables are identical with the arbitrary
increments of these variables. It we write u = x, u =y, u = z. respectively, it follows that

dx = Ax,dy = Ay, dz = Az
Therefore, expression for du reduces to

du = a—udx +a—udy+a—udz
OX oy oz

The distinction between derivatives and differential coefficients

We know that the necessary and sufficient condition that the function y = f(x) should be differentiable at the point x is
that it possesses a finite definite derivative at that point. Thus for functions of one variable, the existence of the
derivative f'(x) implies the differentiability of f(x) at any given point.

For functions of more than one variable this is not true. If the function u = u (x, y, z) is differentiable at the point (x, v,
z), the partial derivatives of u with respect to x, y and z certainly exist and are finite at this point, for then they are
identical with differential coefficients A, B and C respectively. The partial derivatives, however, may exist at a point
when the function is not differentiable at that point. In other words, the partial derivatives need not always be
differential coefficients.

3 3
X —
Example.1. Let f be a function defined by f(x, y) = 2—)/2 , Where x and y are not simultaneously zero, f(0, 0) = 0.
X" +y
If this function is differentiable at the origin, then, by definition,
(2.5.1) f(h, k) — f(0, 0) = Ah + BK + en, (1)

wheren = Vh? +k? and e—0 as n—0.
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Putting h = n cos0, k =1 sin 6 in (2.5.1) and dividing through by n, we get
c0s’0 —sin*0 = Acos6 + Bsin0 + .
Since € >0 as n—0, we get, by taking the limit as n—0
c0s*0 —sin®0 = A cos © + B sin 0
which is impossible, since 6 is arbitrary.
The function is therefore not differentiable at (0, 0). But the partial derivative exist however, for

f(h,0)— £(0,0) . h-0

f(0,0) = lim = lim ——=1
h—0 h h—0 h
0,0)= lim 00100 _ =K _ 4
k—0 k k=0 +Kk
Xy e 2.2
—_ if x°y==0
Example. 2. f(x,y) = 1/x2 +y2
0 if x=y=0
Then f(0, 0) =0 =£,(0, 0)

and so partial derivatives exist. If it is different, then
df =f (h, k) — f(0, 0) = Ah + Bh + en, where A =f,(0, 0) B =fy (0, 0),
This yields

LN RN e
vh? + k2
or he = h? + k2
Putting k = mh we get
mh? = eh? (1+m?)

m
or 5 =€
1+m
. m
Hence lim =0,
k>0 14+m?
which is impossible. Hence the function is not differentiable at the origin.
Remarks:

1. Thus the information given by the existence of the two first partial derivatives is limited. The values of f,(x, y) and
of f,(x, y) depend only on the values of f(x, y) along two lines through the point (x, y) respectively parallel to the axes
of x and y. This information is incomplete, and tells us nothing at all about the behaviour of the function f(x, y) as the
point (x, y) is approached along a line which is inclined to the axis of x at any given angle 6 which is not equal to 0 or
/2.

2. Partial derivatives are also in general functions of x, y and z which may posses partial derivatives with respect to
each of the three independent variables, we have the definition

0 a%[@j: lim U, (X+AX,Y,2)— U, (X,Y,2)

OX AX—0 AX
(ii) g[a_uj: lim U, (X+y+Ay,z)-u,(X,Y,2)
OX Ay—0 Ay

(iii) ﬁﬂﬁj _im Yx (0 Y,2+ A7) —uy (x,,2)
82 Az—0 Az
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Provided that each of these limits exist. We shall denote the second order partial derivatives by
_82u oru _82u or uyy and _82u or
, Uyx Uzx-

ox? 7 dyox dz6X

ou ou
Similarly we may define higher order partial derivatives of — and 8_

A
The following example shows that certain second partial derivatives of a function may exist at a point at which the function is not
continuous.
x3+y?

Example. 3. Let ¢(X,y) = ——whenx =y

o(X,y) =0whenx=vy.

This function is discontinuous at the origin. To show this it suffices to prove that if the origin is approached along different path,
¢(x, y) does not tend to the same definite limit. For, if ¢(x, y) were continuous at (0, 0), ¢(x, y) would tend to zero (the value of the
function at the origin) by what ever path the origin were approached.

Let the origin be approached along the three curves
() y=x-x3 (i) y =x -, (ii)y=x-x* ;
then we have

2x3 +0(x*)
(i) d(x,y) = ——————>0as x>0
X
2x3 +0(x*)
(i) ¢(x, y) = ——3 — —Zas x—0
X
2x3 +0(x*)
(i) ¢(x, y) = ————— >»as x>0
X
o . . )
Certain partial derivatives, however, exist at (0, 0), for if ¢, denote & 8_X we have, for example,
0,0, 0) = lim M_ lim — =0,
h—0 h—>0 h
. h,0 0,0 2h
bo0.0= iy £ )h¢ 22— iy -2

since ¢(x, 0) = X2, dy(X, 0) = 2x when x = 0.
The following example shows that uy, is not always equal to uy,.

Example. 4. Let
2 2
xy(x"-y*)
fxy)= ————5—
X" +y
f(0, 0) = 0.
When the point (X, y) is not the origin, then

of 2 —y2 4X2y2
(2.5.2) 8_X_ X2+ 2 + 2 737
i y© (xXT+y%)

of [ x2-y?  ax?y?
(2.5.3) 5:X X2 +y2 + > yz >
i yo (X“+y9)

while at the origin,
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(2.5.4) £0,0) = lim 0
h—0

f(h.0)-f(0) _
h

and similarly f,(0, 0) = 0.

From (2.5.2) and (2.5.3) we see that

(2.5.5) f(0,y) =-y (y = 0)

(2.5.6) fy(x, 0) =x (x = 0)

Now we have, using (2.5.4), (2.5.5) and (2.5.8)

f, (h,0)—f,(0,0
y(0.0) = 1y ( ):Iimgzl

K- F00 . ~k_
k k

f (0,0)= lim
y( ) h—0

f.x (0,0)= lim
y( ) k—0

and so f,, (0, 0) = f,,(0, 0).

Example. 5. Prove that the function ,
fx, y) = (xy)"

of of
is not differentiable at the point (0, 0), but that & and — both exist at the origin and have the value zero.

Hence deduce that these two partial derivatives are continuous except at the origin.

Solution. We have

i(0,0) =lim 1(h.0)-1(0.0) =0
oX h—0 h
£,0,0) = lim 0.k~ 1(0.0) =0
k—0 k
If f(x, y) is differentiable at (0, 0), then we must have
f(h, k) =0.h + 0.k + € Vh? + k2
where e >0as vh? +k? -0
2
Now oo OKITT
vh? +k?
Putting h = p cos 6, k = p sin 6, we get
e = /| sin6coso |
= lim=e /| sin6coso | = \/| €0s0sin | =0 which is impossible for arbitrary 0.

p—0
Hence, f is not differentiable.
Now suppose that (x, y) # (0, 0). Then

of _lim f(x+hy)—f(x,y)

OX h-o0 h
i MDY =Dy |
h—0 h

lim JLOEDYIZDy] X=X
>0 h(\x+h)y +|xy| 10 h[vx+h+[x]]
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lyl .1 [yl

or— |[—.
2\Ixy|  2\[x]|

Now, we can take h so small that x + h and x have the same sign. Hence the limit is

| x| 1 /Ix] .
—— Both of these are continuous except at (0, 0).

of
Similarly — = ——— o0Or —
o 2 xyl  2\lyl

We now prove two theorems, the object of which is to set out precisely under what conditions it is allowable to
assume that
fyy (8, b) = (a, b)

Theorem. 9. (Young) If (i) f, and f, exist in the neighbourhood of the point (a, b) and (ii) fy and f, are differentiable at
(a, b); then

fry = fyx
Proof. We shall prove this theorem by taking equal increments h both for x and y and calculating A? f in two different
ways, where

A?f=f(a+h, b+h)—f(a+h, b) - f(a, b+h) + f(a, b).
Let

H(x) = f(x, b+h) — f(x, b)

Then, we have

A?f=H(a+h) - H(a)

Since f, exists in the neighbourhood of (a, b), the function H(x) is derivable in (a, a+h). Applying Mean Value
Theorem to H(x) for 0 < 6 < 1, we obtain

H(a + h) — H(a) = h H'(a + 0h).
Therefore
(2.5.7) A% = hH'(a + 6h)

= h[fy (@ + 6h, b + h) — f; (a + Oh, b)]

By hypothesis (ii) of the theorem, f,(X, y) is differentiable at (a, b) so that

fy(a + 6h, b+h) — fy(a, b) = Bhfy (a, b) + hf (@, b) + € h
and

fy (@ + 6h, b) —f,(a, b) =Oh f, + €”’h,

where €’ and € tend to zero as h—0. Thus, we get (on subtracting)

fy(a +6h, b+h) —f, (a + 6h, b) = hf,, (a, b) + h (¢’ — €”)
Putting this value in (1), we obtain
(2.5.8) Af=h?f+ e, h?
where ;= €' — €”,
so that €4 tends to zero with h .
Similarly, if we take

K(y) =fla+h,y)—f(ay),
Then we can show that

(2.5.9) A%f=h? fy + €2 h?
where €,—0 with h.

From (2.5.8) and (2.5.9), we have

A*f
h_2 = fyx (a, b) €1 = fxy(a, b) + €5
Taking limit as h—0, we have
A2
lim ——=1,, (a, b) = (a, b)
A0 h2 yX 1 Xy 1

which establishes the theorem.

Theorem. 10. (Schwarz). If (i) fy, fy, fyx all exist in the neighbourhood of the point (a, b) and (ii) fyx is continuous at (a,
b), then f,, also exists at (a, b) and f,, = f,.
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Proof. Let (a + h, b + k) be point in the neighbourhood of (a, b). Let (as in the above theorem)
A% = f(a+ h, b+k) — f(a + h, h) — f(a, b + k) + f (a, b)
and
H(x) = f(x, b + k) — f(x, b),
so that we have
A% = H(a +h) — H(a).

Since f exists in the neighbourhood of (a, b), H(x) is derivable in (a, a+h).
Applying Mean Value Theorem for 0 <0 < 1, we have

H(a + h) — H(a) = hH'(a + ©6h)
and therefore

A% =hH'(a+ 6h) = h [f, (a + 6h, b+k) —f, (a + 6h, h)].

Now, since fy.(x) exists in the neighbourhood of (a, b), the function fy is derivable with respect to y in (b, b+Kk).
Therefore by Mean Value Theorem, we have
A’f=hkf,, (@a+06h b+0'k),0<0' <1

That is
1[f@+hb+k)-f@a+hb) f(ab+k)-f(,bh) . (046, b+ &%
h k Kk
Taking limit as k tends to zero, we obtain
(2.5.10) % [(a+h, b) =1, (a, b)] = lim [f,«(a +6h, b+0'K)]
=f,(a+ Oh, b)

Since fyy is given to be continuous at (a, b), we have
fyx (@ + 6h, b) = fi«(a, b) + €,
where e >0ash — 0.
Hence taking limit as h — 0 in (2.5.10), we have
- f,(a+h,b) -, (a,b)

|
h—0 h

that is, fyy (8, b) = fx(a, b)
This completes the proof of the theorem

= 1im [f(ab) + ]

Remark. The condition of Young or Schwarz’s Theorem are sufficient for f,, = f, but they are not necessary. For
example, consider the function

X2y2
f(x,y) = 9 x2 +y?
0 , X=y=0
F(h0)-1(00)_,
h

, X#0,y=0

We have f,(0,0) = lim
h—0

fO.K-00) _,

£,0,0) = Lm

Also, for (x, y) # (0, 0), we have
4

(X% +y?)2xy? - x%y?2x  2xy
(x* +y?)? (x* +y?)?

fu(x, y) =

2%y
N Gy
f

0K =100 _ gt 0,000
K

Again f, (0,0) = lim
k—0
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So that f,x (0, 0) = f,, (0, 0)
8xy®(x* +y%)? —2xy*.4y(x* +y?)
(x*+y?)*

For (x, y) # (0, 0), we have fy.(x, y) =

_ 8y’
T o(y2 232
(xX“+y*)
Putting y = mx, we can show that
lim £, =0=1,(0,0)
(x,y)—(0,0)

so that f,y is not continuous at (0, 0). Thus the condition of Schwarz’s theorem is not satisfied.
To see that conditions of Young’s Theorem are also not satisfied, we notice that

f(h,0) - £,(0,0) _ 0
h

f(0,0) = lim
h—0

If f, is differentiable at (0, 0) we should have
f(h, k) — (0, 0) = f,4(0, 0). h + fx(0, 0). k + em

2hk* here 0 as 0
————=cn,W e—0as n—0.
(h? +k?)?
Puth=pcos0, k=psin®, thenn = vh? +k? =p
S0 we have
2pcosh.p®sin? 0
4 T €P
p

i.e.2cosOsin*0=¢

Taking limit as p—0, we have
2cosOsin*06=0

which is impossible for arbitrary 6

Euler’s theorem on homogeneous functions.

Definition. A function f(x, y, z,...) is a homogeneous function of degree n if it has the property

f(tx, ty, tz,...) =t"f(x, y, ,...) (D)
(1) To prove Euler’s theorem, write X' =t,, y' =ty,..., then
fx',y,2,..)=t"f(x,y, z...) 2
and if we take partial derivatives with respect to t, we get
of ox' of oy
+—. ¥y +.=nt""f(x,y, 2),

x ot oyat
that is,
x—+yi+... =nt""f(x, y, 2)

Now putt=1,sothat X' =X,y =y,... and we get
of of
X—+Y—+..=nf(x,y,) 3)
ox oy

which is known as Euler’s theorem.

(2) Differentiate the equation (2) m times; since t is the only independent variable, we have
d™ =n(n-1)...(n-m+1) t" " f(x, y, z,...) dt"

_omf mf o

v dx'”#mdy +...,
X

and since XM =t"x", y" =t"y" ..., whent=1 we get

Now d™f
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X— — f(X Z) = n(n—l) ( — l) f( )
+ +... Y, ...(n—m+ X, Y, Z,...
aX y(iy y Y

which is the generalization of Euler’s theorem.
2.6. In view of Taylor’s theorem for functions of one variable, it is not unnatural to expect the possibility of expanding

a function of more than one variable f(x + h, y + k, z + I,) in a series of ascending powers of h, k, I, To fix the ideas,
consider a function of two variables only; the reasoning in the general case is precisely the same.

Taylor’s Theorem. If f(x, y) and all its partial derivatives of order n are finite and continuous for all point (X, y) in
the domaina<x<a+h,b<y<b+k, then

Lo f(a, b) + R
1 1 n

f(a+ h, b+k) = f (a, b) + df(a, b) + Lo (a,b) +...+
12

1
where R,= —d"f(adh,b+06k),0<0<1.
N

Proof. Consider a circular domain of centre (a, b) and radius large enough for the point (a + h, b + K) to be also with
in the domain. Suppose that f(X, y) is a function such that all the partial derivatives of order n of f(x, y) are continuous
in the domain. Write
X =a+ ht,y = b+kt,
so that, as t ranges from 0 to 1, the point (X, y) moves along the line joining the point (a, b) to be point (a +h, b+k);
then
f(x, y) = f(a + ht, b + kt) = ¢(t).
of dx of d of of
Now, o'ty = = LAYy T X g,
ox dt oy dt ax oy
and similarly

o (1) = d*,..., o(1) = d"(f)..

We thus see that ¢(t) and its n derivatives are continuous functions of t in the interval 0 <t < 1, and so, by Maclaurin’s theorem
2

t t"
DO = 6(0) +1(0) + —4"(0) +...+ —¢ (o),
2 [n

where 0 <8 < 1. Now putt =1 and observe that
$(1) =f (@ +h, b+k), 6(0) = f (a, b), ¢'(0) = d f(a, b)
$"(0) = d*f (a, b),...., ™ (O t) = d" f (a + Oh, h + Ok).
It follows immediately that

(2.5.11) f(a+h, b+Kk)=f(ab)+df(ab)+ izd2 f(a, b) +...

L g f(a, b) + R
1 ’ n

1
where R,= — d"f(a+ 6h, b + 0k), 0 <0 < 1.
n

We have assumed here that all the partial derivatives of order n are continuous in the domain in question. Taylor
expansion does not necessarily hold if these derivatives are not continuous.

Maclaurin’s theorem. If we puta=b =0, h = x, k =y, we get at once, from the equation

fla+ h, b +K) = f(a, b) + df (a, b) + idzf(a, b) +
12

+

d"f(a, b) + R,

-1
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1
where R,= —d"f(a+6h,b+0k),0<0<1,
LN
l 2 1 n-1
that f(x, y) = f(0, 0) + df(0, 0) + — d? f(0, 0) +...+ d™* (0, 0) + R,
|2 -1
1
where R,= —d"f(0x,6h),0<0 < 1.
n

The theorem easily extend to any number of variables.

Example. 6. If f (x, y) = ([x y]), prove that Taylor’s expansion about the point (x, x) is not valid in any domain which

includes the origin. Give reasons.

Solution. If a Taylor expansion were possible (n = 1)
f(x + h, x + h) = f(x, ) + h {f«(&, &) + f,(&, £)}
where x < & < x + h. This is not valid for all x, h for it implies that
X+i|=X+h &=0

of of
(The reason is that the partial derivatives & and 6_ are not continuous at the origin).
A

2.7. Implicit functions

Let F(Xy, X2,..., Xp, U) =0 Q)
be a functional relation between the n + 1 variables X,..., x,, uand let X = a;, X, = ay,..., X, = a, be a set of values such
that the equation

F(as,..., an u) =0 2
is satisfied for at least one value of u, that is the equation (2) in u has at least one root. We may consider u as a
function of the x’s : u = ¢(Xy, X,,..., x,) defined in a certain domain, where (X1, Xa,..., Xn) has assigned to it at

any point (X, Xo,..., X,) the roots u of the equation (1) at this point. We say that u is the implicit function defined by
(2). Itis, in general, a many valued function.

More generally, consider the set of equations
Fo (Xg5-- s Xp, Uppe s, Um) =0 (p=1,2,..., m) 3)

between the n +m variables xg,..., x,, Uy,..., u, and suppose that the set of equations (3) are such that there are points
(X1, Xs,..., xp) for which these m equations are satisfied for at least one set of values uy, U,,..., u,. We may consider the
u’s as functions of the x’s,

Up = &p (X1, Xppe., Xn) (p=1,2,..., m)

where the functions ¢ have assigned to them at the point (X, Xo,..., x,) the values of the roots uy, us,..., uy at this
point. We say that ug, Us,..., uy, constitute a system of implicit functions defined by the set of equation (3). These
functions are in general many valued.

Theorem. 12 (Existence Theorem). Let F(u, X, y) be a continuous function of the variables u, x, y. Suppose that
(i) F(up, a,b) =0
(ii) F(u, x, y) is differentiable at (uy, a, b)

oF
(iii) The partial derivative 8_ (ug, a,b)=0
u

Then there exists at least one function u = u (x, y) reducing to u, at the point (a, b) and which, in the neighbourhood of
this point, satisfies the equation F (u, X, y) = 0 identically.

Also, every function u which possesses these two properties is continuous and differentiable at the point (a, b).
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oF
Proof. Since F(ug, a, b) = 0 and 8_ (uo, &, b) = 0, the function F is either an increasing or decreasing function of u
u

when u = u,. Thus there exists a positive humber & such that F(u, — 3, a, b) and F(ug + 3, a,b) have opposite signs.
Since F is given to be continuous, a positive number n can be found so that the functions
F(up — 9, X, y) and F(ug + 3, X, y)
the values of which may be as near as we please to
F(up — 9, a, b) and F(uy + 3, a, b)
will also have opposite signs so long as |[x —a| <n and |y —b| <n.

Let x, y be any two values satisfying the above conditions. Then F(u, X, y) is a continuous function of u which
changes sign between ug -5 and ug + 3 and so vanishes somewhere in this interval. Thus for these x and y there isa u
in [up — 3, Uy + 8] for which F(u, x, y) = 0. This u is a function of x and y, say u (X, y) which reduces to u, at the point
(a, b).

Suppose that Au, Ax, Ay are the increments of such function u and of the vanishes x and y measured from the point (a,
b). Since F is differentiable at (u,, a, b), we have
AF = [Fy(ug, a, b) + €] Au + [Fy(up, &, b) + €'] AX
+[Fy (Up, &, b) + €"TAy=0
since AF = 0 because of F = 0. The numbers €, €', €” tend to zero with Au, Ax and Ay and can be made as small as

1
we please with & and n. Let & and m be so small that the numbers e, €', €'’ are all less than E |Fu(uo, &, b)|, which is

not zero by our hypothesis. The above equation then shows that Au—0 as Ax—0 and Ay—0 which means that the
function u = u(x, y) is continuous at (a, b).
Moreover, we have

_ [Fc(uo,a,b)+€'JAX +[F, (ug,a,b)+ €"JAy

F,(ug,a,b)+e
__ FX(Uo,a,b) AX— Fy(UO!aib)
F,(ug,a,b) F,(uy,a,b)

€1 and e, tending to zero as A x and Ay tend to zero.
Hence u is differentiable at (a, b).

Ay + €1 AX + €, Ay,

oF
Cor.1. If 8_ exists and is not zero in the neighbourhood of the point (ug, a, b), the solution u of the equation F =0 is
u

unique.

Suppose that there are two solutions u; and u,. Then we should have, by Mean Value Theorem, for u; < u’ <u,
0 =F(us, X, y) = F(U2, X, y) = (U1 — W) Fu(U', X, Y) ,
and so F, (u, X, y) would vanish at some point in the neighbourhood of (uy, a, b) which is contary to our hypothesis

Cor. 2. If F(u, x, y) is differentiable in the neighbourhood of (ug, a, b), the function u = u(x, y) is differentiative in the
neighbourhood of the point (a, b).

This is immediate, because the preceding proof is then applicable at every point (u, X, y) in that neighbourhood.
Corollary 1 is of great importance, for by considering a function of wo variables only, F(u, x) = 0, and taking
F(u, X) = f(u) —x, we can enunciate the fundamental theorem on inverse functions as follows.

Theorem. 13 (Inverse Function Theorem). If, in the neighbourhood of u = ug, the function f(u) is a continuous
function of u, and if (i) f(up) = a, (ii) f '(u) = 0 in the neighbourhood of the point u = uy, then there exists a unique
continuous function u = ¢(x), which is equal to uy, when x = a, and which satisfied identically the equation

fluy—-x=0,
in the neighbourhood of the point x = a.
The function u = ¢(x) thus defined is called the inverse function of x = f(u).

2.8. Extreme Values
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Definition. A function f(X, y, z) of several independent variables X, y, z,... is said to have an extreme value at the
point (a, b, c,...) if the increment
Af=fla+h,b+k,c+l)-f(ab,c)
preserves the same sign for all values of h, k, I, whose moduli do not exceed a sufficiently small positive number .
If Af is negative, then the extreme value is a maximum and if Af is positive it is a minimum.

Now we find necessary and sufficient conditions for extreme values. We will consider a function of two independent variables.
By Taylor’s theorem we have

of of
fx+h y+k,..)-f(x,y,...)=h & + K— +...+ terms of the second and higher orders.
Now by taking h, k, 1, sufficiently small, the first degree terms can be made to govern the sign of the right hand side

and therefore of the left side also, of the above equation, therefore by changing the sign of h, k, I, the sign of the left
hand member would be changed. Hence as a first condition for the extreme value we must have

of of of
h—+KkK—+Il—+ .. =0,
oX oy oz
and since these arbitrary increments are independent of each other, we must have
of of of

T 20 % =0 S oo, ...
x oy oz

which are necessary conditions for extreme points. These conditions are not sufficient for extreme points.
To find sufficient conditions we will consider only the case of two variables.

Let f be areal valued function of two variables. Let (a, b) be an interior point of the domain of f such that f admits of
second order continuous partial derivatives in this neighbourhood. We suppose that f,(a, b) = 0 = f,(a, b).

% f 0% f A% f _ _
> = respectively when x =aandy =b. That s,
OX OXoy oy

fX,X(a! b) = r! fx, y(an b) = Sv fy,y(au b) = t
If (a +h, b + k) is any point of neighbourhood of (a, b), then by Taylor’s theorem we have
f(a h, b +k) —f(a, b) = h f,(a, b) + k f,(a, b)

We writer, s, t for the values of

+ % [h? fxx(@, b) + 2 f(a, b) hk + K* f,,(a, b)]

1 of of
#Ry= I+ 250k + 1]+ Ry ( &(a,b)za(&b)zoj

where R; consists of terms of the third and higher orders of small quantities, and by taking h and k sufficiently small
the second degree terms now can be made to govern the sign of the right hand side and therefore of the left hand side
also. If these terms are of permanent sign for all such values of h and k, we shall have a maximum or minimum for
f(x, v,...) according as that sign is negative or positive.

Now condition for the invariable sign of (r h? + 25hk + tk®) is that rt — S® shall be positive and the sign will be that of
r. If rt — S is positive, it is clear that r and t must have the same sign.

Thus, if rt — S? is positive we have a maximum or minimum according as r and t are both negative or both positive.
This condition was first pointed out by Lagrange and is known as Lagrange’s condition.
If, However, rt = S, the quadratic terms

2 2 1 2 *
rh® + 2shk + tk® becomes — (hr + ks) *)
r

and are therefore of the same sign as r or t unless

h

— = —— = Bsay for which * vanishes

k r
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In this case we must consider terms of higher degree in the expansion f(a + h, h + k) — f(a, b). The cubic term must

h
vanish collectively when E: B; otherwise, by changing the sign of both h and k we could change the sign of f(a + h,

h
b + k) — f(a, b). And the biquadratic terms must collectively be of the same sign as r and t when E =P.

If r=0, S =0, * changes sign with k and there is no extreme value. If r =0 =S * does not change sign but it vanishes
where h = 0 (without h = 0). This is a doubtful case.

In the case in which x, s, t are each of them zero, the quadratic terms are altogether absent, and the cubic terms would change
sign with h and k and therefore all the differential coefficients of the third order must vanish separately when x = a and y = b and
the biquadratic terms must be such that they retain the same sign for all sufficiently small values of h, k.

Therefore we may state that
The value Aa, b) is an extreme value of fx, y) if
£la, b) = £(a, b) = 0
and if f.la, b) £,(a, b) > £2(a, b)

and the value is maximum or a minimum according as £, (or £,) is negative or positive.

a3 a3
Example.7. Let u=xy+ —+—,
Xy
3
OX X .
au 3 puttingx =a,y = a
= = __2:0
oy b
2 3 2 2 3
Hence ag:2a3 :zvau =1 8_22213:2
x> X oxay oy y

Therefore r and t are +ve when x = a = y and rt — s? = 2.2-1= 3 (+ve) therefore there is a minimum value of u, viz. u = 3a2.

Example. 8. Let
f(x,y) =y* + X2y +x*
It can be verified that
f(0,0)=0,f,(0,0)=0
f(0,0) =0, f,,(0, 0) = 2

fyy (0, 0) = 0.
So, at the origin we have
fx Ty = Ty’
However, on writing
1 3x*
Yy +x=(y+ SxP)2
2 4
it is clear that f(x, y) has a minimum value at the origin, since
2
h?)  3nh*

Af=f(h, K) - f(0,0)= | K+ — | +—
(h, k) (0, 0) > 1

is greater than zero for all values of h and k.

Example. 9. Let
f(x,y) = 2x* = 3xy + y?

af 3 af af 2 af
Th — =8Xx"-6 =—(0,00=0; —=-3x“+2y => —(0,00=0
en P™ Xy OX( ) Y y Oy( )
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o° f , o2 f

r= —=24x-6y=0at(0,0),S= =—6x=0at (0, 0)
OX OX
o%f , .

t= —2:2. Thus rt — S =0. Thus it is a doubtful case

However, we can write f(x, y) = (x* —y) (2x* —y), f(0, 0) = 0
f(x, y) — f(0, 0) = (x*~y) (2x*-y) >0 fory<Oorx*>y>0
y

<0fory>x?> E>O

Thus A f does not keep the some sign mean (0, 0). Therefore it does not have maximum or minimum at(0, 0).

2.9. Lagrange’s Method of Undermined Multipliers
Let u = ¢ (x;, X, X,) be a function of n variables which are connected by m equations
AlX1, Xgpeey X0) = 0, £ (Xq, X,ee0, X)) = 0, ..o, £ (X9, X9p000, %) = 0,
so that only n—-m of the variables are independent.
When u is a maximum or minimum

du = ﬂdlera—udx2 +6_udX3 +...+a—udxn =0
OXyq X, OX3 X,

Also df, = idxl+idx2+idx3+...+idxn =0
0Xq OX, OX4 oX,,

df, = idxl +idx2 +idx3 +...+idxn =0
0Xq OX, OX4 oX,,

df, =

Multiplying these lines respectively by 1, &,, ,,..., &, and adding, we get a result which may be written
P, dx; + P, dx, + P3dx; +...+ P,d,, =0,
ou of of of
where P. = +7\,1 L +7\.2 2 +...+7\.m—m

r axr r r

The m, quantities %, X,,..., A, are at our choice. Let us choose them so as to satisfy the m linear equations
P,=P,=P;..=P,=0
The above equation is now reduced to
Pos1 dXpe1 + Pryo dXpip +...4+ P, dx, = 0

It is indifferent which n — m of the n variables are regarded as independent. Let them be x,,.1, X142, --., X,. Then since n—-m
quantities dx,,,1, dXpy2,..., dx, are all independent their coefficients must be separately zero. Thus we obtain the additional n-m
equations

Poi1 =Pria =...=P, =0
Thus the m + n equations
f=h=Ffh=.=4£=0
and P,=P,=p;=...=P, =0
determines the m multipliers %, %,,..., &, and values of the n variables x;, x,,..., x, for which maxima and minima values of u are
possible.
X2 y2 ZZ
Example. 10. Find the length of the axes of the section of the ellipsoid — + b—z + — = 1by the plane Ix + my + nz=0
a C

Solution. We have to find the extreme values of the function r2 where r2 = x> + y? + 22, subject to the two equations of condition

2 2 2
x° oyt ozt
2Tz Tz 170

IXx+my+nz=0

’

[o})
(@]
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Then xdx+ydy+zdz=0 (1)
X z
— X + lzdy+—2dz:0 2)
a b c
ldx + mdy + ndz=0 (3)

Multiplying these equation by 1, %, and %, and adding we get

X

Xtk — +2,1=0 (4)
a

y+7»]l+7»2m=0 5)
b2
z

z+7»]—2+7»2n=0 (6)
c

Multiplying (4), (5) and (6) by x, y, z and adding we get

X2 y2 22
0+ y2+ 22 + 2, —2+—2+—2 + Ay (Ix, my + nz) = 0
a b° c
or 2+ x =0 =k = -r?

Hence from (4) (5) and (6) we have

Asl o A,m AN
T2y 2 T2
L S .
a b C

| 1%a® . m®b®>  n?c? , ) )
Butix+ my + nz=0 e = 0 and since %, # 0, the equation giving the
(2_a2 (2_p2 (2_c2

values of r?, which are the squares the length of the semi-axes required in the quadratic in r? is
1%a® . m’b?>  n%c?
r2_a2 2_p2 f2_c2

Example. 11. Investigate the maximum and minimum radii vector of the sector of “surface of elasticity” (x2 + y? + z2)2 = a x? + b?
y?> + ¢ 22 made by the plane Ix + my + nz =0

=0

Solution. We have
xdx + ydy + zdz (M)
a’xdx + b%ydy + c?zdz =0 (2)
and ldx + mdy + ndz = 0 (3)
Multiplying these equations by 1, A,, 1, respectively and adding we get
x+a’i, + 1k, =0 (4)
y +byh, + mh, =0 (5)
z+ 22k +nk, =0 (6)
Multiplying by x, y, z respectively and adding we get

CHy?+z2)+ (@22 +bly? +c22)h + (In+my+nz)2, =0
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1
= 2+irt=0 = h=-—7
2
]
2 2 2
_ . A, dr _ kpmr _ Apnr
a2 _r? b2 _ 2 c2 _r2
Ay 1212 A,m?r? A,n?r?
Thenlx + my +nz=0 = — Y =5 s l=— 5 =0
a“-—r b —r co—r
|2 . m? . n? 0
3 =
212 p2_r2 c2_y2

It is a quadratic in r and gives its required values.

Example. 12. Prove that the volume of the greatest rectangular parallelopiped that can be inscribed in the ellipsoid
2 2 2
X2y Lz 8abc
— t Tt =1is ——.
a? b? c? 33

Solution. Volume of a parallelepiped is = 8xyz. lts maximum value is to be find under the condition that it is inscribed in the

X2 y2 Z2
ellipsoid — + — + — = 1. We have
a® b° c

u = 8xyz
2 2 2
X z
fm gl =
a® b® ¢
Therefore
du =8yzdx + 8xzdy + 8xydz=0 (1)
2 2 2
X z
dfi=—dX+y—dy+—dZ=0 (2)
2 b2 C2

Multiplying (1) by 1 and (2) by A and adding we get

X Ar=0
yz 5 A=
a2
2
zx + y—zk =0
Z =0
zy+ — A=
C2
From (3), (4) and (5) we get
a’yz  b’zx  c’xy
X Yy z
a’yz b%zx  c?xy
and so = =
X Yy z

Dividing throughout by x, y, z we get

(3)
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a C
Hence —— =lorx= — . Similarlyy= —, Z=—F
a’ J3 NERNE]

It follows therefore that

Example 13. Find the point of the circle X2 + y? + z2 = k%, Ix + my + nz = 0 at which the function u = ax? + by? + cz? + 2#z +
2gzx + 2hxy attain its greatest and its least value.

Solution. We have
u=oax? + by? + ¢z + 2z + 2gzx + 2hxy
fi=lx+my+nz=0
F=x2+y*+22=1k2
Then axdx + by dy + czdz + fydz + 2 dy + gz dx + gxdz + hxdy + hydx = 0
ldx + mdy + ndz=0
xdx + ydy + zdz =0
Multiplying by 1, &;, A, respectively and adding
ax + ky, gz + il + Ax =0
by +hx+ Z+Am+i,y=0
cz+gx+ +in+hz=0.
Multiplying by x, y, z respectively and adding we get
u+i, =0 =k =-U
Putting this value in the above equation we have
x(a-u) + hy + gz+ 12, =0
hx + y(b-u) + 2+ mi,; =0
gx +  + z(c-u) +n i, =0
IXx+my+zx+0=0

Eliminating x, y, z and A, we get

a-u h g I

h b—u f m
= 0 Ans.

g f c-u n

| m n 0

Example. 14. If g, b, ¢ are positive and
u=(a2x® + b2y? + 22%)/x%y?2?%, ax® + by? + 22 =1,

show that a stationary value of u is given by

2o K y2 _ u 72 — [
2a(u+a)’ 2b(u+b)’ 2c(u+c)’

where p is the +ve root of the cubic

1é - (bc + ca + ab) u—2abc =0



Solution. We have

a’x? +b%y? +c?z?
v= 2.2-2 (1)
x2y?%z

ax? + by? + cz2 =1 2)

Differentiating (1), we get

which on multiplication with x? y? 22 yields
1
T —(b%?* + c*2?)dz=0 (3)
X

Differentiating (2) we have
Zaxdx=0 (4)

Using Lagrange’s multiplier we obtain

— (b2y? + 22?2 = pax

b?%y? + 222 = pax? (5)
Similarly 222 + a?% = pn by? (6)
a?x? + b%y? = pcz?* (7)

Then (6) + (7) — (5) yields
2a? x2 = plby? + cz? — ax?)
= pla - 2ax?) by (2)
Therefore

2a(a+ W x2=pn

x2 = —M
2a(a+p)

2 H d 22 H

T 2bb+p) T 2c(u+c)
Substituting these values of x?, y? and z2 in (2) we obtain
R SR ]
2@+p) 2(b+p) 2(c+p)
which is equal to

w3 —(bc+ ca+ ab) u-2abc=0 (8)

Similarly %

Since a, b, c are +ve, any one of (5), (6), (7) shows that u must be +ve. Hence 1L is the +ve root (8)
2.10. Jacobians

If uy, Uy,..., U, be n functions of the n variables x;, x,, X3,..., x, the determinant

55
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du; ou;  oug
ox, ox, X,
au, ou, adu,
ox, Ox, X,
au, ou, au,
X, OX, X,

is called the Jacobian of u;, u,,..., u, with regard to x;, x,,..., x,. This determinant is often denoted by

a(ul!UZ""' Un)
O(Xqy X5 ey Xpy)

or shortly J, when there can be no doubt as to the variables referred to

J (U], Ug,eeey Un)

Theorem. 14. If u;, u,,..., U, are n differentiable functions of the n independent variables x;, x,,...,x,, and there exists an identical
differentiable functional relation ¢(u;, u,, ..., u,) = 0 which does not involve the x’s explicity, then the Jacobian

a(u11u2"“’ Un)
O(X1, X500 Xpy)

vanishes identically provided that ¢, as a function of the u’s has no stationary values in the domain considered.
Proof. Since

¢(U11 Ug,..oy Un) = OI

we have
(2.10.1) A du, + % du, +...+ﬂdun =0
Uy u, ou,
But

dul_%dx1 %dszr +%dxn

OXq X, X,
(2.10.2) i e e e s
du, = Ay dx1+aun dx, + +8un dx ,

0Xq oX, oX,

and on substituting these values in (2.10.1) we get an equation of the form
(2.10.3) Ardx; + Aydx, +...+ A dx, =0
and since dx;, dx,,..., dx, are the arbitrary differentials of the independent variables, it follows that
A =0,A,=0,.,A, =0

In other words,
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op ou;, o ou, 0p du,
ou, X, U, oOx, ou, ox,
od ou; op ou, op ou,
(2.10.4) ou, X, ou, ox,  ou, ox,
ou, Ox, ou, ox, ou, ox,

and since, by hypothesis, we cannot have
% _ _ % _,
ou, éu,  éu,
on eliminating the partial derivatives of ¢ from the set of equation (2.10.4) we get
o(ug,uy,...,uy,) 0
O(Xq, X500y X))

which establishes the theorem.

Theorem. 15. If u;, u,,..., U, are n functions of the n variables x;, x,,..., x, say u,, = £,(x;, X3,.-.., Xu), (m =1, 2,...n), and if

o(uy,Uy,..,uy,)
O(Xq, X500y X))

connecting some or all of the variables u;, u,,..., u, which is independent of x;, x,,..., x,

=0 , then if all the differential coefficients concerned are continuous, there exists a functional relation

Proof. First we prove the theorem when n = 2. We have u = fx,y), v =g (x, y) and

ou ou
ox oy
=0
N oV
ox oy
If v does not depend on y, then — = 0 and so either — = 0O orelse — = 0. In the former case u and v are functions of x

OX
only, and the functional relation sought is obtained from

u = Ax), v = g(x).

by regarding x as a function of v and substituting in u = Ax). In the latter case v is a constant, and the functional relation is

v=a
If v does depend on y, since — = 0 the equation v = g(x, y) defines y as a function of x and v, say
y =wxv),

and on substituting in the other equation we get an equation of the form
u = F(x, v).
(The M. F [x, g (x, y)] is the same function of x and y as Ax, y))
Then
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ou  au oF oF ov g@ oF

Rl I St il T
O_ax oy|_|OX ov OX ovay|_|ox
N v v vV v
X ox OX oy ox oy
(obtained on multiplying the second now by a— and subtracting from the first) and so, either — = 0, which is contrary to
u
hypothesis or else — =0, so that F is a function of v only ; hence the functional relation is

u = F(v)
Now assume that the theorem holds for n—-1.

Now u, must involve one of the variables at least, for if not there is a functional relation u, = a. Let one such variable be called

ou

. n .
x, Since # 0 we can solve the equation

U, = ﬁ| (Xll X2peees Xn)

for x, in terms of x;, X,,..., X,-; and u,,, and on substituting this value in each of the other equations we get n—1 equations of the
form

(2.10.5) U, = g, (Xq, Xg,eee) X-1, Up), (r=1,2,..., n=1) (2)
If now we substitute £, (x;, x,,..., x,) for u, the functions g, (x;, X3,..., X,-1, U,) become
£ (X1, Xgeeey X-1, %), (F=1,2,..., n=1)
Then
of, of, of
ox, OX,  OX,
of, of, of,

09, n 09, _aun 09, n 09, _ ou, a9, _aun
oX, ou, ox, X,y Ou, oX,, ou, oX,
592 a92 aun agz +892 aun 592 aun

=|ox, ou, ox; < OX,, ou, &X,, ou, X,
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%1-“1 agl ) 0

aXl aXn—l

ag_z)"'l agz ’ 0
=[x OXpy

yoen
OX;  OX,4  OX
by subtracting the elements of the last row multiplied by

9, 09, 09na
ou, ou, au,

from each of the others. Hence

au, 091,92, 9n4) 0
OX, O(Xq, X ey Xpg)

ou, (91,924 9n1) _

# 0 we must have
X, O(X1, X500 Xg)

dn-1, that is between u;, u,,..., u,-; into which u, may enter, because u, may occur in set of equation (2.10.5) as an auxiliary
variable. We have therefore proved by induction that there is a relation between u;, u,,..., u,.

Since , and so by hypothesis there is a functional relation between g;, g5, ...,

Properties of Jacobian

Lemma. If U, V are functions of u and v, where u and v are themselves functions of x and y, we shall have
8(U,V)  8(U,V) 8(u,v)
ax,y)  o(u,v) a(xy)

Proof. Let U= F(,v),V=Fuv)

u=odlxy),v=ylxy
U_U o U
OX OU OX OV OX
J_Jau U

Then

N_Vau v
OX OUu OX oV ox
N_NM NNV

and

U aul |du du
oU,V) ouv) _|ou  ov |, |ox Oy
o(u,v) axy) |V Vv v

ou ov| |ox oy
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Mau v Lo dov
| ouox ov ox ou oy ov oy
v va o v vV

ou ou

_lax oy |_auV)
Vv V| a(x,y)

x oy

The same method of proof applies if there are several functions and the same number of variables.

Lemma. If J is he Jacobian of system u, v with regard to x, y and J’ the Jacobian of x, y with regard to u, v, then J J' = 1.
Proof. Let u = fx, y) and v = F(x, y), and suppose that these are solved for x and y giving
x = ¢(u, v) and y = y(u, v),

we then have an differentiating u = Ax, y) w.rtuand v; = F(x, y) w.r.t uand v

_uox ou oy
ov 0O '
! ay au obtained from u = fx, y)
udx udy
OX OV Oy ov
v ox v oy
OX ou 0
8}/ ! obtained from v = F(x, y)
1= VX vy
X ov oy éu
ol oy
x| au au
Also JJy = @ @ X % @
ox oyl lov av
QUOX  Cu Oy cudx  ou oy
oxou oy du'axov oy v
C|vox vy vox vy
OXou Oy éu oxov oy ov
10
= =1
01
Example15. If u=x+2y+z,v=x-2y+ 3z
w = 2xy — xz + 4yz — 222,
ou,v,w) . _
prove that —— = 0, and find a relation between u, v, w.
a(x,y,2)

Solution. We have



o(u,v,w)
o(x,y.2)

ou
oz
ov
oz
ow
oz

SIEEIEEE
22222

1 2 1
= 1 -2 3
2y—7 2Xx+4z —-x+4y-4z
1 0 0

= 1 -4 2 Performing c,—2¢; and c;—¢;

2y—2 2X+6z-4y -—-x+2y-3z

4 2
C|2x+6y—4y —x+2y-3z

0 2
0 —x+2y-3z
=0
Hence a relation between u, v and w exists
Now,
u=v=2x+ 4z
u-v=4y-2z
w = x(2y-z) + 2z(2y -3)
= (x+2z) (2y-2)
= 4w = (u+V) (u-v)
= 4w = 2 -2
which is the required relation.

Performing ¢, +2c,
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Example. 16. Find the condition that the expressions px + qy + rz, p'x + q'y + r'z are connected with the expression ax? + by? +

cz? + 2fyz + 2gzx + 2hxy. By a functional relation.

Solution. Let
u=px+aqy+rz
v=p +qy+rz
w = ax? + by? + ¢z + 2fz + 2gzx + 2hxy
We know that the required condition is

o(u,v,w)
o(x,Y,2)
Therefore
aa
oX oy oz
N N N
x oy ozl
oW ow  ow
oXx oy oz

But
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TR TR
ox oy oz
OoX oy oz
%—2 + 2hy + 2
aX y g
oW
—— = 2hx + 2by + 2£4
oy
%—2 +2f +2
0z :
Therefore
p q r
p’ q r

2ax + 2hy + 29z 2hx + 2by + 2fz  2gx + 2fy + 2cz

pq r P q r pq r
= P q r{=0jp" g r
a h g h b f

which is the required condition.

=0,/p" g r|=0
g f c

1
Example. 17. Prove that if 40) = 0, 7(x) = — then
1+x

X
f(x)+f(y)=f£ +yj
1-xy

Solution. Suppose that
u=1x + fy)
X+Yy

1-
au
ox’

Now J(u,v) =
ov

ox

v =

22

1 1
1+x2 1+y?
1+y? 1+ x?
L-x9)*  @+xy)?

Therefore u and v are connected by a functional relation
Let u = ¢(v), that is,

X
fix) + fly) = d{ij
1-xy

Putting y = 0, we get
x) + A0) = ¢(x)
= Ax) + 0 = ¢(x) -+ f0)=0
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ence /(X) /(y)
1 Xy

Example. 18. The roots of the equation in %
r=xP+ ryP+(2z°=0

o(u,v.w) _ , (y-2)z-x)(x~y)
o(X,Y,2) (Vv—w)(w —u)(u—-v)

are u, v, w Prove that

Solution. Here u, v, w are the roots of the equation 2.3 - (x +y + A2 + (C + y? + ) —— (X +y  + 28 =0

Let x+y+z=¢’;,x2+y2+zz=n,§(x3+y3+23)=g (1)
and then u+v+w =& vw + wu + uv =1, uvw = (2)
Then from (1)
5 1 1 1
1 ) Z
% =[2X 2y 2Z|=2(y-2) z-x) (x-y) (3)
X’ i)
y x2 y? 72
Again, from (3), we have
5 1 1
M =\V+W W+U U+V|=-(v-w) (w=h) (u-v) (4)
o(v,u,w)
WU uv

Then from (3) and (4)
a(u’ v, W) — a(”! v, W) ) a(E.n e C) —_2 (yf Z)(Z 7X)(X B y)
a(X!y1 Z) a(@n@) a(X!y’ C) (U—W)(W—U)(U—V)

Example. 19. If o, B, v are the roots of the equation in k :
X z
+ y + =
a+k b+k c+k

then

oxy.2) _ (a=B)B-7)(r—a)
d(a.B,y)  (a-b)(b-c)(c-a)

Solution. The equation in k is
k® + k2 (a+b+c—x-y-z) +k [ab + bc + ca —x(b+c) —y(c+a)-z(a+b)] *
+ abc— bex— cay —abz = 0
Now «, B, v are the roots of this equation. Therefore
a+p +y=—(a+b +c) +x +y +z
ap + By + ya = ab + bc + ca —x(b+c) -y (c+a) —z (a+b)
and

1

opy = —abc + bex + cay + abz.

Then, we have
X, ¥ o
oo Cao  Oa
X, ¥
B P P

Xy @2

1=

OX oy 1674
=-(b+q ——(C+a)——(a+b)—
B+y = —(b+c) P ( )8(1 ( )8(1
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OX oy 0z
a=-b+c) — —(C+a)—=—(a+b)—
T+ (”aﬁ( )GB( )aB
OX oy 0z
a+p =-(b+q — —(C+a)——(a+b)—
oy oy oy
ﬁy=bca—X+CaQ+ab@
oo oo oo
ya=bc%+ca@+ab@
B B B
aﬁ=bc%+ca@+ab@
x oy &
oo, Cdo Ca 1 1 1
Now, x & —(b+c) —(c+a) —(a+b)
B B P
a_x @ @ bc ca ab
oy oy Oy
1 1 1
=(B+y v+ta a+P
By ya  of
Hence
o(x,Y,2)
(b —c) c-a) (a-b) = ~(a—B) (B~7) (r-o)
o(a,B,7)

ox.y.2) __ (a=B)B-v)(y—a)
&(a,B,y)  (b—c)(c-a)(@a-b)

Second Method. After the step (*) let a+b+c —(x +y+z) = &, ab + bc + ca —x (b+a) — y(c+a) -z (a+b) =7

=

abc — bex — cay — abz = ¢ (1)
a+B+y=-¢of+By+ya=m,ofy=- (2)
5 -1 -1 -1 5 -1 -1 -1
the wz _(btc) —(c+a) —(a+b)|and y: By yro a+p
X,V,Z By
(%.y,2) —bc —ca —ab (0, B,) By —-ya -—af
= (a - b) (b=¢) (c-a) = - (a—P) (B-v) (r-)
LAY Ay AEnZG (@ -BB -0 -a)

o, B.C) aEMC) daBy)  (a—b)b-c)c-a)

Example. 20. Prove that the three functions U, V, W are connected by an identical functional relation if
U=x+u-=z V=xy+z, W=x2+y? + 22— 2yz
and find the functional relation.

Solution. Here
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cu ou ouU

ox oy 0z 1 1 -1
AU, V,W) &V oV oV

AR A | 1
Cva N S a2 20 26y
ox oy oz
1 1 0
-1 -1 0|=0
2x 2(y-z) O
Hence there exists some functional relation between U, V and W.
Moreover,
U+V=2x
U-V =2(y-z
and (U +V)? + (U-V)2 = 402 + y? + 22 -2yz)

= 4W
which is the required functional relation.

Example. 21. Let V be a function of the two variables, x and y. Transform the expression
AANAY
ox2 oy
by the formulae of plane polar transformation.

x=rcos0,y =rsin0.

Solution. We are given a function V which is function of x and y and therefore it is a function of rand 6. Fromx = rcos 8 &y =r
sin 6, we have

r= 1/X2+y2 , 0 =tan"y/x

Now
N _ovar v o
OX O OX  ou ox
oV sind oV or 0 sinej
=cos————— 0 —=0080,—=———
or r oo [ OoX r
. N N v
oy o oy 0 oy
oV coso oV or . o9 cosH
=sin—+——— . —=S8In6, —=——
or r oo ( r j

0 o sind o j
Therefore — =|c0sf— ————
OoX [ or r oo
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o2V o sind o oV sind oV
Hence —5 =] €080 ————— || COSO— ————
or r ¢o or r oo
0 oV sin@oV) sin@ o oV  sind oV
=cos® —| COSO— ——— |- —— — | COSO— —— —
or r oo 00 or r oo
o’V sin@ &V sind &%V
= cos 6 | COSO + _—
o r? 090 r oxo0
sinod 0’V . 0oV cos® oV sind o’V
- —|coshf——-sinp—— — — ——— —
r oxor or r oo r o2
0’V _sin0cosd 8%V sin?0 0%V
= cos? 0 -2 +
or? ro a0 r? 002
sin?0 oV 2sin0coso oV
+ — = (1)
r or r 00
o> (. 8 cosb &\( . OV cosb oV
and —— =|sinp—+———||sing—+——
oy? o r 0 o r o0
0. .0V cosBoV) cosO o . .oV cosO oV
=sin0 —|SINO—+—— [+ ———| SINO—+——
or or r oo r ¢o or r oo

. . 0%V cosb &V cosh 82V
=sin6 | SINO - — 4+
o> 2 8 r oroe

+C0S0——
r

cosd( . 0%V oV sind oV cosd 6%V
+ ——| sSind —+
o00r 0 r 80 r oo

oV . sin®cosd 0’V _ cosBsin6 oV
or? r orad r2 00

=sin? 0

cos0sind &2V . cos? 0 6%V . cos? 0 v
r o0or r2 02 r o or

sinbcoso 8_V
r2 00
Adding (1) and (2) we obtain

o’V 8’V 8%V 16V 1 0%V
+ = + —2

ox?  oy? e r a r? o0




which is the required result.

Example. 22. Transform the expression

( o7 azj2 {(az]z (az]z}
X—-l-y— + (a2 - X2 - y?) —_— +| —
ox oy OX oy

by the substitution x = rcos 8,y = rsin 8

Solution. If Vis a function of x, y, then

N _NX NY XN yN
o oxaor oy o rax roy
oV oV oV [ 0 aj
= r—=X—+Y—= [ X—+4+Yy— |V
or OX oy OX OX
0 0 0
= —=X—+Yy—
1% ox oy
Simior 000
’ B oy ox
0Z 0JZ or oz 0 0z sin® oz
Now —=—.—+—.—=C00S0— ————
OX o oX 08 oX or r oo
cZ . 0Z cosh oZ
—=sin0—+——
oy or r oo

[82)2 oz [82)2 1[@2
Therefore — | t+| — = — | +—=| —
x) oy or) 2\ o8

and the given expression is equal to

jZ
oL 2 2 2 1674 2 1
[raj +@" —r ){[5j +r—2[

[82)2 a? [azjz
e | 2] 5
or r2 o0

Example. 23. If x = r cos 6, y = r sin 0, prove that

2 2 2 2
(2 = y?) {a_u_a_u]+4 a u —rza_u

OXOy ar?
where u is any twice differentiable function of x and y.

Solution. We have

ou oX ou oy

ou

or

m

(2)
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u . 0u Xdu yau
=cos® — +SINO— =——+=—
OX oy rox roy
a_
o ox "oy
8[8uj 0 0 ou  au
Therefore r—| 1l—|=| X—+Y— X—+Yy—
X\ or OX oy OX oy

o[ _ou ou of(_ou ou
=x— | X—+Y— [+Y—| X—+y—
5X£ X Wj 3)’( 28 8)/]

%l xy o%u xy o%u iy? o%u ixu
e Caxdy Coyx T ooy ox oy
Therefore
82r+r8u 2 o%u o°u ,0% _dy _au

—= +2 + +X—+Yy—
oo ox? Xyaxay yay2 ox yay

r2

zazu— 282_u+2xy azu +y2@ ing (1)
a2 " x? xvy O oy? S

u_du ox aoucy

Again, —_—=—.—+

r

0 X0 oy b
_ i au
oy ~ox
d%u o o) au éu
Therefore 5 = X—=-yY— || X——Yy—
09 oy ~ oX oy ~ox
_ o ou_du) of ou_ au
Coylay Cox) Toax\Tay 7 ox
d%u o’u ,d9%u  Auau
= x2 —2xy +y —X— =y — @)

Y AUoOX xX? o ox oy
From (1), (2) and (3) we get the required result.

Example 24. If x = rcos 8, y = rsin 6, show that
00
OXoY

Solution. We have

=-r"2cos 20

Xx=rcosB,y=rsin6
Then dx = dr cos 6 — rsin 6 do
dy =drsin® + rcos8d6

(2)
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rd® = cos 6 dy — sin 6 dx

dr = cos 6 du + sin 6 dy
drd® + r d?0 = — sin 0 d0 dy — cos 6 do dx
= — (sin 8 dy + cos 6 dx) do

1
= — (sin 6 dy + cos 6 dx) — (cos 6 dy — sin 6 dx)
r

1 1
rd?0 =—-— (sin 8 dy + cos 6 dx) (cos® dy — sind dx) —— (cos 6 dx + sin 0 dy)
r r
(cos 6 dy —sin 8 dx)
1
= d% = - [(sin 6dy + cos 6 dx (cos 0 dy — sin 0 dx) + (cos dx + sin 0 dy)
r
(cos 6 dy — sin 8 dx)]
= ——2[sin 0 cos 0 dy? — sin? 8 dx dy + cos? 0 dx dy — sin © cos 8 dx?
r

+ cos? 0 dx dy — sin 0 cos dx + sin 0 cos 0 dy? — sin? @ dxdy]

=——2[2 cos? 0 dx dy — 2 sin? 0 dx dy + 2 sin 0 cos 0 dy? — 2 sin 0 cos 0 dx]

r
00 0%0 0%0
——dx? +2 dxdy +—-dy?
OX oxoy oy
1
=——2[2 cos? 0 dx dy — 2 sin2 8 dx dy + 2 sin 0 cos 0 dy? — 2 sin 0 cos 0 dx]
80 2cosBsin® 9’0 —2sinBcoso
Now X2 2 : 2 2
oy r
Therefore
0°0
=———1[2 cos? 0 — 2 sin? 0]
oxoy 2
1 c0s20
= —-——cos 20 = — .
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3

PART A : THE RIEMANN - STIELTJES INTEGRAL

3.1 We have been dealing with Riemann integrals in our undergraduate level studies in mathematics. The aim of
this chapter is to consider a more general concept than that of Riemann. This concept is known as Riemann — Stieltjes
integral which involve two function f and . In what follows, we shall consider only real — valued functions.

3.2 Definitions and Notations

Definition. Let [a, b] be a given interval. By a partition (or subdivision) P of [a, b] , we mean a finite set of points

P = {XOI Xl, ........ N Xn}
such that

A= XX X S X< Xy = b,
Definition. A partition P* of [a, b] is said to be finer than P (or a refinement of P) if P* o P, that is, if every point of P
is a point of P*.
Definition. The P, and P, be two partitions of an interval [a, b]. Then a partition P* is called their common
refinement if P* =P, U P,.

Definition. The length of the largest subinterval of a partition P = {Xq, X1,...,X,}0f [a, b] is called the Norm (or Mess)
of P. We denote norm of P by |P|. Thus

|P| = max Ax; = max [X; — Xj_; : i=1,2,...,n]
We notice that if P* o P, then | P * | <| P |. Thus refinement of a partition decreases its norm.

Let f be a bounded real function defined on [a, b]. Corresponding to each partition P of [a,b], we

put
M; = lub f(x) X1 £X LX)
M; = glb f(x) X1 £X LX)

Let o be a monotonically increasing function on [a, b]. Then « is bounded on [a, b] since a(a) and
o(b) are finite.

Corresponding to each partition P of [a, b], we put
A o= a(x;) - ou(Xi.1)
The monotonicity of o implies that A o; > 0.

For any real valued bounded function f on [a, b], we take

L(P, f, &) = Zmi Ac,
i=1

U, f, o) = Zn: m, Aai ,

i=1

Where m; and M; are bounds of f defined above. The sums L(P, f, o) and U(P, f, o) are respectively called Lower
Stieltjes sum and Upper Stieltjes sum corresponding to the partition P. We further define

fda=lub L (P, f, )

fdo = glb U(P, f, ),

D )| T QD |y | T
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b b
where lub and glb are taken over all possible partitions P of [a, b]. Then I fdo and I f do are respectively called
a a
Lower integral and Upper integrals of f with respect to c.
b

If the lower and upper integrals are equal, then their common value, denoted by j f da., is called the Riemann —
a
Stieltjes integral of f with respect to o, over [a, b] and in that case we say that f is integrable with respect to o, in the
Riemann sense and we write f eR ().
The functions f and o are known as the integrand and the integrator respectively.

In the special case, when a(X) = X, the Riemann - Stieltjes integral reduces to Riemann — integral. In such a case we

b b b b
write L(P, f), U, ), [ f, [ fand f €% respectively in place of L(P, f, o), UP, , o), fdo, | | fdaandfe
a a a a

R(w).
Clearly, the numerical value of I f do depends only on f, o, a and b and does not depend on the symbol x. In fact x

is a “dummy variable” and may be replaced by any other convenient symbol.

3.3. In this section, we shall study characterization of upper and lower Stieltjes sums, and upper and lower
Stieltjes integrals.

The next theorem shows that for increasing function o, refinement of the partition increases the lower sums and
decreases the upper sums.

Theorem 1. If P* is a refinement of a partition P of [a, b], then
L(P, f, @) < L(P*, f, ) and
UP*, f, a) <U(P, f, o).

Proof. Suppose first that P* contains exactly one more point than the partition P of [a, b]. Let this point be x* and let
this point lie in the subinterval [x;.; x;]. Let
Wi=glbf(x) (X.1<X<x*)
W,=glb f (x) (xX* <x<x)
Then w; > m; and w, > m; where
m; = glb f(x) (X1 £ X LX)
Hence
L(P*, f, &) — L(P.f,a) = waou(x*) — ou(Xi-1 )] ~Wa[ou(xi) — ou(x*)] = mi[oe(xi) — ou(Xi1)]
= (Wa-m) [o(x*)- au( Xi )] + (w2 —m;) [ou(xi) - ou(x*)]
>0
Hence L(P*, f, o) = L(P, f, o).

If P* contains k points more than P, we repeat the above reasoning k times.
The proof for U(P*, f, o) < U(P, f, o) is analogous.

Theorem 2. If o is monotonically increasing on [a, b], them for any two partitions P;and P,, we have
L(Pl, f, 0() < U(Pz, f, (X)
Proof. Let P be the common refinement of P, and P,, that is, P = P; U P,. Then we have, using Theorem1,
L(Py, f, o) <L(P, f, o) < U(P, f, o) < U (P, f,cx).

Remark. It also follows from this theorem that
m [a(b)-a(a)] < L(Py, f, o) < U(Py, f, o) < M[au(b )-au(a)] ,
where m and M are as usual inf and sup of f on [a, b].
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Theorem 3. If ais increasing on [a, b], then

b
fdos | fdo
a
Proof. Let P* be the common refinement of two partitions P; and P,. Then , by Theorem 1,
L(P,, f, &) <L(P*, f, o) <U(P*fa) <U(P,, f, o)

D |y, T

Hence
L(Pl, f, (X) < U(Pz, f, (X)
We keep P, fixed, and take lub over all P;. We obtain

j fdov < U(P,, f, )

Taking glb over all P, we get

j fd(xgj f dor.

Example. Let o(x) = x and define f on [0, 1] by
1if xisrational
f(x) =

Qif xisirrational

Then for every partition P of [0, 1], we have
m;=0, M; =1,
because every subinterval [Xx;.1, Xi] contain both rational and irrational number. Therefore

L(P, f, o) = ZmiAxi
i=1

=0
UP, f, o) = ZMiAxi

i=1
n

= Z (Xi=Xi1) = Xn-Xo =1-0

i=1

Hence, in this case

j fdocﬁj f dar.

Theorem 4. Let o« onAa, b]. Then f eR(a) if and only if for every >0 there exists a partition P such that
UP, f,a) —L(P, f,a) < €.

Proof. Suppose first that for every P we have
U(P, f, )-L(P, f, a)<e.
This gives us
b b b b
[UP.fo)—[ fdal+[][ fda—| fdal+[] fdoa-L(P,f o)]<e.
a a a
Since, each one of the three numbers

a

U, £, o)- I f do, j f da- f f dor, f fda-L (P, f, o) is non-negative, we have
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OSj fda-j fdo <e.
. d

Since < is arbitrary positive number, we note that the non-negative number I fd(x-_[ fda is less than every

positive number and hence
j fda- | fda=0

which yields

j fd(x:j f da

and so f € R(a).
Conversely, suppose that f € R(a) and that € > 0 be given. Then

j fdcx:I fdcx:I f dot

and there exist partitions P;and P, such that

I € €
(331) U(PZ: f, (x)< I fdo + E:I fdo + E

3.3.2 LPfa)> | fdou- = fda- S
(3.3.2) Py f) > | >=] >
Let P the common refinement of P, and P,.Then

U(P, f, o) < U(P,,f, o)
and

L(P, f, o) <L(P, f, o)
Thus the relation (3.3.1) and (3.3.2) reduce to

S
(3.3.3) umt@<ij+§

(3.3.4) L(Pf(x)>I fdo- =
. . L 1 2
Combining (3.3.3) and (3.3.4), we obtain

[ fd(x—E<L(P,f,oc)<U(P,f,(x)<I fdo+ =
2 2

which yields
U(P, f, o) — L(P, ) <e.
This completes the proof of the theorem.

3.4. In this section, we shall discuss integerability of continuos and monotonic functions alongwith properties of
Riemann-Stieltjes integrals.

Theorem 5. If f is continuous on [a, b], then (o).
(i) fe R(a)
(i) to every > 0 there corresponds a & > 0 such that

n b
» f(ti)Aoci—I fdo|< €
i=1 2
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for every partition P of [a, b] with | P | < & and for all tj € [X;.1, Xi].

Proof. (i) Let € > 0 and select n} > 0 such that
(34.1) [ou(b) - ()] n > €

which is possible by monotonicity of o on [a, b]. Also f is continuous on compact set [a, b]. Hence
f is uniformly continuous on [a, b]. Therefore there exists a 6 > 0 such that

(3.4.2) | f(x) - f(t) | <m whenever | x -t| <& forall x €[a, b], t €[a, b].
Choose a partition P with | P | < 3. Then (3.4.2) implies

Mi-mién (1 =1, 2,...... ,Il)
Hence

UG, f, o) — L(P, f, o) = i M.Aa, - Zn:miAai
i-1 i-1
= Zn:(Mi -m)Aa; <7 Zn:Aai
i1 i-1

:U_Zn: [e; (%) —a(xi4)]

= n[o(b) - o(a)]

S
<n.— =-¢,

n

which is necessary and sufficient condition for f € R(a).
(i) We have

L(P, f, o)< D F(t)Ag; <UP. T o)
i=1
and

b
L(P, f, o) < I fdo < U(P, f, o)
a

Since f € R(a), for each €>0 there exists 6 > 0 such that for all partition P with | P | < 8, we have
UP,f,a)-L(P, f, o)< e
Thus

0 b
| > Ft)A, - | fda]<UP,f a)-LE,f a)
i1 a

<e
b

n
Thus for continuous functions f, lime 0 Y f (t;)Ac; exits and is equal to I f do.
i=1 a

Theorem 6. If f is monotonic on [a, b] and if o is both monotonic and continuous on [a, b], then f € R(a).

Proof. Let € be a given positive number. For any positive integer n, choose a partition P of [a, b] such that

_ab)-a@)
n

This is possible since o is continuous and monotonic on [a, b] and so assumes every value between its bounds o.(a)

and a(b). If is sufficient to prove the result for monotonically increasing function f, the proof for monotonically

decreasing function being analogous. The bounds of f in [X;.;, X;] are then
m;= f(Xi_l), Mi = f(Xi), i =1, 2,.....,n.

Ao 1,2, ....0).

Hence



75

UP, d, o) - L(P, f, o) = Zn:(Mi -m,)Ag;

i=1

_a®)-a(@) -y -
= - ;(Mi m;)
:Mif(xi)—f(xu)]

- M [f(b) - f(2)]

< e for large n.
Hence f € R(w).

Example. Let f be a function defined by
f(x*) =1 and f(x) =0 for x # x*,a<x* < h.

b
Suppose a is increasing on [a, b] and is continuous at x*. Then f € R(«) over [a, b] and I fdo
a

=0

Solution. Let P = {Xo X, X} be a partition of [a, b] and let x* e Ax; Since « is continuous at x*, to each € > 0 there
exists & > 0 such that

€
| a(X) — a(x*) | < E whenever | X —x*| <8
Again since o is an increasing function,
€
o(X) — o(x*) < E forO<x—x*<3d
and
€
o(X*) — a(x) < E forO<x*—-x<5
Then for a partition P of [a, b],
Ao = ou(X;) —ou(X.1)

= a(X) — a(x*) + o(X*) — a(Xi.1)
e €

<— + = =¢g,
2 2
n Oift, #x™*

Theref f(t,)Aa; = !
ereoreizzlz(l) [ {Aai,tiZX*-
that is,

| > f(t)Ax -0]<e

i=1
Hence

n b
limero > f(t)A, = | fda=o0.
i-1 a
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b
and so f € R(e) and J' fdo=0.
a
Theorem 7. Let f; ¢ R(a) and f, &€ R (o) on [a,b], then (f, + f,) ¢ R («) and
b b b
I (f, + f)do = I fido + I f,dot
a a a

Proof. LetP =[a=Xg, X...... X, = b] be any partition of [a, b]. Suppose further that My, m;/, M;", m;"and M;, m; are
the bounds of fy, f,and f, + f , respectively in the subinterval [x.4 Xi]. If oy, o € [Xig, Xi], then
[fi(og) + Fa(oz)] - [Filo) + Fao)]

<[ fa(o) - Fulo) [+ [ Faoz ) — Fo(cr)]

< (M -mi') + (M- my”
Therefore, since this hold for all o, o, €[Xi1, Xi], We have
(343) Mi —m; < (Mi’ = mi’ ) + (Mi” - mi”
Since fy, f, e R(a), there exits a partition P, and P, of [a, b] such that

UP,,f,a) - L(P, fLa) <=
(3.4.4) 2

These inequalities hold if P, and P, are replaced by their common refinements P.
Thus using (3.4.3), we have for f =f; + f,,

UP, f,a)—LP, f,o) = Zn:(Mi -m,)Ag;

i=1

<

(M, =m,)Ag, + 3 (M,"“m")Ag,

i=1

M-

||
5N

N

+ — (using 3.4.4)

<
2

M Nm

Hence f=f, +f, € R(w).

Further, we note that

M -—m" < m <M< M/ +M”

Multiplying by A o, and adding for I=1, 2, .....,n, we get
(3.4.5) L(P, fi, ) + L(P, f, &) <L (P, f, ) <U(P, f, )

<U (P, fy, o) <U(P, fy, o) + U(P, 5, o)
Also

b
3.4.6 L £ do + =
(3.4.6) U(P, i, o) < j *

b
(3.4.7) U, f,, o) < ! f, do + %
Combining (3.4.5), (3.4.6) and (3.4.7), we have

b
I fdo< U, f, o) < U (P, f1, o) + U(P, fy, o)
a

b b
S S
<Iflda+J.f2da+E+E
a a



Since < is arbitrary positive number, we have

b b b
(3.4.8) I fdasj fld(x+j f, dot

Preceding with (-f;), (-f,) in place of f; and f, respectively, we have

b b b
I (-f) do < j (—fy) da + J' (-f,) da
or a a a
b b b
(3.4.9) [ fao=[ fida+ | fda

Now (3.4.8) and (3.4.9) yield

b b b b

I fda:j (f1+f2)doc:j fldoc+j f, da
a a a a

Theorem 8. Iff € R(a) and f € R(B) then f € R(a + B) and
b

I fd((x+[3):i fd(x+j fdp.

a

Proof. Since f € R(a) and f € R(P), there exists partition P, and P, such that

U f, a)— L(Py, f, o) < %

U(P. £, B)— L(P2, f, B) < %

These inequalities hold if P, and P, are replaced by their common refinement P.
Also

A (o + Bi) = [au(x) - a(Xi)] + [B (X3) - B (Xi.0)]

Hence, if M; and m; are bounds of f in (X1, X;),

UP, f, (a+B) - L. f, @+ B) = D (M, —m)A(e; +5,)

i=1

= Zn:(Mi —m;)Aq; + _Zn:(Mi —m;)AB;

e €
<—+—- =€
2 2
Hence f € R(a + B).
Further
‘ S
U, . a)<J' fdo+ —
" 2
b
€
U, f, a)<J' fdp+ —
" 2
and

UP. faB)= D M Ag; + ) M, AS
Also, then

77
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b
I fd(a+B)<UP, f,a+p)=UP,f a)+UP,T B)

a

b b
:j fda+j fdp + e
a a

Since < is arbitrary positive number, therefore
b

b b
I fd(a+[3)sj f dot +J' fdp.
a a a
Replacing f by —f, this inequality is reversed and hence
b b b
I fd((x+B):I f dot +J' f dp.
a a a

Theorem 9. If f € R(x) on [a, b], then f € R(a) on [a, c] and f eR(x) on [c, b] where ¢ is a point of [a, b] and

b c b

I fda = j fdo + j f do.

a a C
Proof. Since f € R(a), there exits a partition P such that

UP, f,a) - L(P, f, o) <e,e>0.
Let P* be a refinement of P such that P* = P U{c}. Then

L(P, f, o) <L(P* f, ) <U(P, f, o) < L(P, f, @)
which yields
(3.4.10) UP* f, o) - LP* f, o) <UP, f o) -L(P, f, )

< e

Let P, and P, denote the sets of points of P* between [a, c], [c, b] respectively. Then P, and P, are partitions of [a, c]
and [c, b] and P* =P, U P,. Also

(3.4.11) UP*, f, o) = U(Py, f, &) + U(P,, f, o)
and
(3.4.12) L(P*, f, o) = L(Py, f, o) + L(P,, f, o)

Then (3.4.10), (3.4.11), and (3.4.11) imply that

U(P*, f, o) — L(P*, f, o) = [U(Py, f, o) — L(Py, f, &)] + [U(Py, f, ) — L(P,, T, &)]
<e

Since each of U(Py, f, o) — L(Py, f, o) and U(P,, f, &) — L(P, f, at) is non — negative, it follows that
UPy, f,a)—L(P, fa)< e

and
UP, f,a) —L(P,, )< €

Hence f is integrable on [a, c] and [c, b].

Taking inf for all partitions, the relation (3.4.11) yields

_ c b
(3.4.13) | fdazj fd(x+j f dot
. a c

But since f in integrable on [a, c] and [c, b], we have
b c b

(3.4.14) j f(x) dazj fdo + j f da
a a c

The relation (3.4.12) similarly yields



b c b
(3.4.15)[ fd(xSI fda+J' f dot
a a C

Hence (3.4.14) and (3.4.15) imply that

b c b
Ifda:I fd(x+I f dot
a a C

Theorem 10. If f € R(w), then

b b

Q) cf € R(a) and I (cf) da = CI f do., for every constant c,
a a

(ii) If inaddition | f(x) | < K on [a, b], then

b
| I fdot | < K[au(b) - o(a)].

Proof. (i) Letf € R(a) and let g =cf. Then
UP.g.0)= > M;'Ae; = D ctM Aey,
i=1 i=1

Y M Ag,
i=1
CUP, f, )

Similarly
L(P,g, ) =cL(P,f, )
Since f € R(a), 3 a partition P such that for every € >0,

UP. T, o)~ L(P, f, o) < =
C

Hence
UP,g,a)-L(P,g,a)=c[U(P, f o) — L(P, f, )]
S
<C— = €.
C

Hence g =c f € R(w).

b
IS
Further, since U(P, f, o) < I fda+ — ,
" 2
b
I gdo < UP, g, @) = c UP, f, )
a

b
<¢( I fdo+ =)
4 2

Since € is arbitrary

b b

[ gdasc| fda

a a
Replacing f by —f, we get

b b
I gdochI f dot
a a

79
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Hence i (cf) do = c]l fdo

(i) If Maand m are bouands of f € R(w) on [a, b], then it follows that

(3.4.16) m[a(b) - a(a)] < i f do < M[au(b) - a(a)] for b > a.

In fact, if a = b, then (3.4.12) is trivial. If b > a, then for any partition P, we have

mle(b) - a(a)] < zn:miAoci =L(P, f, o)
i=1

b
ngdcx
a

<SUP o)=Y M, Ag

<M (b-a)
which yields

b
(3.4.17) m [a(b) - a(a)] < j fde<M (b-a)

Since | f(x) | < k for all x e(a, b), we have
-k < f(x) <k
so if mand M are the bounds of fin (a, b),
-k <m<f(x) <M< kforall x e(a, b).
If b > a, then a(b) - a(a) = 0 and we have by (3.4.17)

b
“K[o(b) - o(a)] < m[o(b) - (@)] < J' f dot

< M[o(b) - (a)] < k[au(b) - ()]
Hence

b
| j f dot | < K[ou(b) - ()]

Theorem 11. Suppose f € R(x) on [a, b], m < f <M, @ is continuous on [m, M] and h(x) = ¢[f(x)] on [a, b]. Then h €
R(cx) on [a, b].

Proof. Let € > 0. Since ¢ is continuous on closed and bounded interval [m, M], it is uniformly continuous on [m, M].
Therefore there exists 3 > 0 such that 3 < € and
| d(S) —¢(t) |[<eif|s—t]<3,s,te[m, M].
Since f € R(w), there is a partition P = {Xq, Xq, ........ , Xn} Of [a, b] such that
(3.4.18) U(P, f, o) — L(P, f, ar) < 3°.

Let M;, m; and M*;, my* be the lub, g. I. b of f(X) and ¢(X) respectively in [X;1, X;]. Divide the number 1,2,.....,n into
two classes :
iGAifMi—mi<6
and
ie BifMi—miZS.
Fori € A, our choice of & implies that Mi* - mi* < <. Also, fori € B, Mj* - m* <2k where  k=1lub | ¢(t) |, t €[m,
M]. Hence, using (3.4.18), we have

(3.5.19) 5 > Aa; < D (M, —m)Ag; <&

icB icB
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so that Z Aca; < 8. Then we have
icB

UP.h o) ~L(P, h,a) =D (M, *—m, * )Ae; + D (M, *—m*)Ag,
icA icB
< efoyb) - a(a)] + 2 kd
< [o(b) - a(a)] + 2K]
Since € was arbitrary,
U(P, h, a) — L(P, h, o) <e*, e* >0.
Hence h e f(a).

Theorem 12. Iff € R(a) and g € R(a) on [a, b], thenfg € R, || € R(x) and
b

b
| I fdo|< I | do.
a a
Proof. Let ¢ be defined by ¢(t) = t? on (a,b]. Then h(x) = ¢[f(x)] = f* € R(x) by Theorem 11. Also
1
fg= 2 [(f+9)* - (f- 9)°].
Since f, g € R(w), f+g € R(w), F-g e R(a). Then, (f+ g)?> and (f - g)° € R(x) and so their difference multiplied by
1
Z also belong to R () proving that fg € R.
If we take ¢(f) = | t|, again Theorem 11 implies that | f | € R(c). We choose ¢ = +1 so that
¢ j fda=>0
Then
| I fdcx|:cI fda = j cfdasj | dot

because cf < | f|.
3.5. Riemann-Stieltjes integral as limit of sums. In this section, we shall show that Riemann-Stieltjes integral I f

do can be considered as the limit of a sequence of sums in which M;, m; involved in the definition of I f do are

replaced by values of f.
Definition. Let P = {a = Xq, Xg,....... , Xn = b} be a partition of [a, b] and let points ty, t;......, t, be such that t, €[X.1=,
Xi]. Then the sum

n
SP.foy= Y f(t)A
i=1
is called a Riemann-Stieltjes sum of f with respect to «.

Definition. We say that
|im|p|ﬁo S(P, d, (X) =A

If for every € > 0, there exists a d > 0 such that | P | < & implies
|S(P, f,a) —A|<e.

Theorem 13. If limpo S(P, f, ) exists, then f & N (a) and
b
limpp0 S, f,0) = | fda.
a

Proof. Suppose limpo S(P, f, o) exists and is equal to A. Then given € > 0 there exists a 5>0 such that | P| < 3
implies

ISP, fa)—A|< =
2
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or
35.1) A-S <SP fa)<A+ S
2 2

If we choose partition P satisfying | P | < & and if we allow the points t; to range over [Xx;.1, X;], taking lub and glb of the
numbers S(P, f, o) obtained in this way, the relation (3.5.1) gives

A- % <L o) <U(P.f o) < (Uf) <A+ %
and so

U(P, f, o) -L(P, f, o) < +§:e

N M

Hence f € R(x). Further
S S
A- 5 < L(P, fo) <[fda<U (P, f, ) <A + 5

which yields

S S
A——SI fdu<A+ —
2 2
or
j f dot = A = limpo S(P, f, ).

Theorem 14. If

(i) f is continuous, then
b
limpy0 S, f,0) = | fda
a
(i) f € R(x) and o is continuous on [a, b], then
b
limpp0 S, f,0) = | fda
a

Proof. Part (i) is already proved in Theorem 5(ii) of this chapter.
(if) Letf e R(a), o be continuous and € > 0. Then there exists a partition P* such that
(35.2) U™ f o< | fdo+ =
. . L ) 4
Now, a being uniformly continuous, there exists 3, > 0 such that for any partition P of [a,b] with |P| < 3, , we have

for all i

Ao = oXi) — ouXi1) <

where n is the number of intervals into which [a, b] is divided by P*. C onsider the sum U(P,
f, o). Those intervals of P which contain a point of P* in their interior contribute no more than
(n-)eM €
(3.5.3) (n—-1) max Ao, M < ———— < —,
4Mn 4

Then (3.5.2) and (3.5.3) yield
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(S
(3.5.4) U, f, o) < j fd(x+E

for all P with | P | < 3;.
Similarly, we can show that there exists a 3, > 0 such that

(3.5.5) LP.f o)> | fdo- %

for all P with | P | < 3,
Taking & = min (3,.3,), it follows that (3.5.3) and (3.5.4) hold for every P such that | P | < 3.
Since
L(P, f, o) <S(P, f, a) <U(P, f, o)
(3.5.4) and (3.5.5) yield

S(P.f, < | fdo+ —
1 2
and
S(Pfoc)<j fdo- =
1 2
Hence
|S(Pf<x)-j fdo|< =
1 H 2
for all P such that | P | < & and so

limpo S(P, f, o) = | fda

This completes the proof of the theorem.

The Abel’s Transformation (Partial Summation Formula) for sequences reads as follows:
Let <a,> and <b,> be sequences and let
An=a0+a1+ ....... + a, (A,]_:O),

then
g q-1
Zanbn = 2 A0, =Dy ) Ay - Ay
n—p n=p

3.6. Integration and Differentiation. In this section, we show that integration and differentiation are inverse
operations.

Definition. If f € %R on [a, b], than the function F defined by

t
F() = j f (x) dx, t €[a, b]
a
is called the “Integral Function” of the function f.

Theorem 15. If f € R on [a, b], then the integral function F of f is continuous on [a, b].

Proof. We have
t

F(t) = J' £ (x) dx
a
Since f e R, it is bounded and therefore there exists a number M such that for all x in [a, b],
[f(xX) | < M.
Let € be any positive number and ¢ any point of [a, b]. Then
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F(o) = j f (x) dx F(c + h) T £ (x) dx.
Therefore ' '
| F(c +h) —-F(c) =| C]h f (x) dx - j f () dx
. ’
j £ (%) dx |

M[h|

IN

) €
<eif|h|< —
M

S
Thus|(c+h)-c|<d= M implies | F(c + h) —F(c) < . Hence F is continuous at any point C €[a, b] and is so
continuous in the interval [a, b].

Theorem 16. If fis continuous on [a, b], then the integral function F is differentiable and
F'(xo) = f(Xo), X €[a, b].
Proof. Let f be continuous at X in [a, b]. Then there exists & > 0 for every € > 0 such that
(36.1) () —f(x0) [ < €
whenever [t —Xg|<3.LetXg— 3<s< Xp<t<Xy+danda<s<t<h,then
F(t)—F(s) 1
——2 ) =l [ F0dx—f(x0) |
t—s t—s

S

= L j f(x)dx—i f (Xo) dX |
. ) t—s ’

Oy —+

1 t 1 t
= | ! f(X)-f(xo)]dx|s§|_! £ (x) =  (x0) [dX< <,

(using (3.6.1)).
Hence F'(Xo) = f (Xo). This completes the proof of the theorem

Definition. A derivable function F such that F’ is equal to a given function f in [a, b] is called Primitive of f.

Thus the above theorem asserts that “Every continuous function f possesses a Primitive, viz the integral function I f

a

(x) dx”
Furthermore, the continuity of a function is not necessary for the existence of primitive. In other words, the function
possessing primitive are not necessary continuous. For example, consider the function f on [0, 1] defined by

2xsin1—cosl,x¢0

f) = X X
0, x=0
It has primitive
Fo0 = xzsini,x;to
0,x=0

Clearly F'(x) = f(x) but f(x) is not continuous at x = 0, i.e., f is not continuous in [0,1].
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Theorem 17.(Fundamental Theorem of the Integral Calculus). If f € R on [a, b] and if there is a differential

function F on [a, b] such that F’ = f, then
b

J' f(x) dx = F(b) — F(a)

a

Proof. Let P be a partition of [a, b] and choose t; (1=1,2, ...... ,n) such that X; ; <t < X;. Then, by Lagrange’s Mean
Value Theorem, we have

F(xi) — F(Xi) = (Xi — Xi.1) F'(t) = (Xi — Xi0) T(t:) (since F' = ).
Further

n

F(b) - F(a) = Y. [F(x) - F(x.)]
i=1

= > f(t) (%)
i=1

= () Ax,
i=1
b
and the last sum tends to I f(x) dx as | P | -0, by Theorem 13 taking a.(x) = x . Hence

a

b

J' f(x) dx = F(b) - F(a).

a
This completes the proof of the Theorem.

The next theorem tells us that the symbol do(x) can be replaced by o'(x) dx in the Riemann — Stieltjes integral
b

I f(x) da(x). This is the situation in which Riemann — Stieltjes integral reduces to Riemann integral.

a

Theorem 18. If f € R and o’ € R on [a, b], then f € R(x) and
b

i fdo = I f(x) o’ (X) dx.

a

Proof. Sincef e R, o’ € R, it follows that their product f o’ € R. Let € > 0 be given. Choose M such that | f | < M.
Since f o’ € R and o’ € R, using Theorem 14(ii) for integrator as x, we have

(3.6.2) | Y e Ax- [ fol<e
if |[P|<6;and x. <t;<x;and
(363) | z a'(t) Ax —I o' |<e
if | P | <3, and x;; <t <x;. Letting t; vary in (3.6.3), we have
(3.6.4) 1> @) Axi—I o |< e
if | P | <3, and x; 1< s < X;. From (3.6.3) and (3.6.4) it follows that

1> @] Axi—j o+ I o= (s) Ax|

< Z o'(t) Axi- I o | +] Z o'(Si) Ax;- I o |

<e+e=2e
or
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(3.6.5) > () - ol(s)l Axi<2e

if | P | < 8, and X1 <t < Xi, Xi.1 £ 5 < X
Now choose a partition P so that | P | < 3 = min (34, 3,) and choose t; € [Xi.1, X;]. By Mean Value Theorem,
Ao = ax) - o(Xia) = o' (S5) (X — Xi.1)
=o/(S) Ax
Then, we have

(3.6.6) D) Aw= Y. fW)at) Axi+ Y. (B «(S) - w®)] Ax.
Thus, by (3.6.2) and (3.6.5), it follows that
1> ) Aai- [ forl=1 Y @) Axi- | fo
+ R (S) - ' (t)] Axi]
<et+t2eM=€(l+2M)

Hence
b

limpo . f(6) Ax = j £(x) o' () dx

a
or

i fdo = I £(x) o () dx

2 2
Example. Evaluate (i) I X2 dx?, (ii) I [x] dx?

0 0
Solution. We know that

b b
I fdoo= [ (x) c(x) dx

Therefore
2 2 2
I X2 dx? = I x4(2x) dx? = I 2x3 dx
0 0 0
a2
=2| |—1 =8 Ans.
0
and
2 2
I [x] dx? = I [x] 2x dx
0 0

1 2
I [x] 2x dx +I [x] 2x dx
0 1
2 2
=0+ j 2xdx =0+ 2|
1
=0+3=3 Ans.
We now establish a connection between the integrand and the integrator in a Riemann — Stieltjes integral. We shall

2

1

show that existence of I f do implies the existence of I o df.

We recall that Abel’s transformation (Partial Summation Formula) for sequences reads as follows:
“Let <a,> and <b,> be two sequences and let A, =ag+a; +.....+ a, (A, =0). Then
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q g-1
(3.6.7) Z anbn= > Aq(by - boar) + Ag by — Agiby”
n=p n=p

Theorem (Integration by parts). If f € R(«) on [a, b], then o € R(f) on [a, b] and
I f(x) dou(x) = f(b) au(b) — f(a) (@) - f a (x) df(x)
(Due to analogy with (3.6.7), the above expression is also known as Partial Integration Formula).

Proof. LetP ={a =X, Xy, ....,x, = b}be a partition of [a, b]. Choose t3, t,, .....t, such that X< ti< x and
take ty = a, t,+1 = b. Suppose Q is the partition{t, t, ....,t,+1}0f [a, b]. By partial summation, we have
n n+l
S(P.f, o) = D f(t)eu(x) — a(xi)] = f(b) cx(b) — (@) @) — D a(Xioa)[ () — (tir)]
i=1 i=1

=f(b) a(b) - f(a) a(a) - S(Q, a, f)
since ti.1 < X1 <t. If | P |—0, | Q |0, then
S(P, f, o) - j fdoc and S(Q, o, f) — f a df.
Hence

I f dot = f(b) a(b) — F(a) x(a) - j o df

3.7. Mean Value Theorems For Riemann — Stieltjes Integrals. In this, section, we establish Mean Value
Theorems which are used to get estimate value of an integral rather than its exact value.

Theorem 19 (First Mean Value Theorem for Riemann — Stieltjes Integral). If fis continuous and real valued and
o is monotonically increasing on [a, b], then there exists a point x in [a, b] such that

I f dot = F(x) [ u(b) - o(a)]

Proof. If a(a) = a(b), the theorem holds trivially, both sides being 0 in that case (o become constant and so do = 0).
Hence we assume that o(a) < au(b). Let
M =lub f(x), m=glb f(x). a<x<b
Then
m<f(x) <M
or

mla(b) - a(a)] < I f do < M[cu(b) - o(a)]

Hence there exists some ¢ satisfying m < ¢ < M such that
b
I f dot = c[au(b) -(a)]
a

Since f is continuous, there is a point X €[a, b] such that f(x) =c and so we have
b

I f(x) dau(x) = f(x)[o(b) -ou(a)]

a
This completes the proof of the theorem.
Theorem 20 (Second Mean — value Theorem for Riemann — Stieltjes Integral). Let f be monotonic and o real and
continuous. Then there is a point X €[a, b] such that

b
I fda = f(a)[o(x) - a(@)] +f(b)[(b) - (X)]
a

Proof. By Partial Integration Formula, we have

b b
I f dot = F(b) au(b) — F(a) o(a) - j adf
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The use of First Mean —Value Theorem of Riemann — Stieltjes integral yields that there is x in [a,
b] such that

b

[ wdf = a(f(o) - (@)

a
Hence, for some x €[a, b], we have.

b
j f da = f(b)o(b) — f(a)au(a) — a(X)[f(b) — f(a)]
= f(@)[o(x) - ou(@)] + f(b) [cx(b) — (x)]

which proves the theorem.
3.8. We discuss now change of variable. In this direction we prove the following result.

Theorem 21. Let fand ¢ be continuous on [a, b]. If ¢ is strictly increasing on [«, B], where a=o¢(a), b =d(b),
then
b p
[ feaax=] o) )
a a
b
(this corresponds to change of variable in I f(x) dx by taking x = @(y)].
a
Proof. Since ¢ is strictly monotonically increasing, it is invertible and so
a=¢(@), p=0¢"(b).
Let P = {a = Xo,Xy,.....,X, =b} be any partition of [a, b] and Q = {o =Yg, Y1,......yn = P} be the corresponding partition
of [a, B], where y; = ¢ *(x;). Then

A X=X — Xig

= 0(yi) = d( Vi)

= Adi
Let for any ¢; € Ax; di € A'y;, where ¢; = ¢(d;). Putting g(y) = fle(y)], we have
(3.8.1) S(P,f)= >, f(c)Ax

i=1
= Y F(O(d))A,
=2 o) A,

= S(Q, 9, ¢)
b

Continuity of f implies that S(P, f)— I f(x) dx as | P |- 0 and continuity of g implies that

a

b
S(Q, g, (p)—)I g(y) dpas Q| — 0.

Since uniform continuity of ¢ on [a, b] impliesthat | Q | - 0 as | P | — 0. Hence letting | P | - 0 in (3.8.1), we have

b B p
[ foaax=[ gopdo= [ fieydory)

This completes the proof of the theorem.
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3.9. Integration of Vector — Valued Functions. Letf; f,...... ,fi be real valued functions defined on [a, b] and let f
=(ffh...... ,fi) be the corresponding mapping of [a, b] into R,
Let o be a monotonically increasing function on [a, b]. If fje R(a) fori=1, 2, ....., k, we say that f € R(c) and then
the integral of f is defined as

b b b b

j fda:(j fld(x,_[ fyda,........ j f, da)

a a a a

b
Thus I f do is the point in R*whose ith coordinate is I fi do.

a

It can be shown that if f € R(w), g € R(w),

then
b b b
(i) I (f+g)d(x:I fdcx+I g dot
a a a
b c b
(ii) I fda:j fda+j fdo,a<c<b,
a a a
(iii) if f € R(o), T e R(wy), then f e R(oyt+ o)
and

b b b
I fd (ot o) = j f doyy + J' f dot,
a a a

To prove these results, we have to apply earlier results to each coordinate of f. Also, fundamental
theorem of integral calculus holds for vector valued function f . We have

Theorem 22. If fand F map[a, b] into R*, if f € R(a) if F =f, then
b

[ foa=Fo)-F@

a

Theorem 23. If f maps [a, b] into R*and if f € R(c) for some monotonically increasing function o on [a, b], then | f

| € R(at) and
b b
|I fda|sj If | dot.
a a
Proof. Let
f = (f, ... R).
Then

[f =2+ .+ )
Since each f; € R(w), the function f? € R(ct) and so their sum f,;> + ...+ fi2 € R™. Since x? is a continuous function of
X, the square root function is continuous on [0, M] for every real M. Therefore | f | € R(x).

Now, lety = (y1, Ya, ....,yx), Where y; = I fi da, then

y:I f da

and

|Y|2:Zi: Yizzz Yij fi dot
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=[ (X vif)d

But, by Schwarz inequality
D VO IF@] (@<t<b)
Then

(3.9) y Fely || If1da
If y = 0, then the result follows. If y = 0, then divide (3.9.1) by |y | and get
i< | Ifldo

or j' |f|dasj If | dev.
a

3.10. Rectifiable Curves. The aim of this section is to consider application of results studied in this chapter to
geometry.

Definition. A continuous mapping y of an interval [a, b] into R* is called a curve in R¥.
If v : [a, b] > R¥is continuous and one — to — one, then it is called an arc.
If for a curve r : [a, b] - R,
r(a) = r(b)
but
r(ty) # r(t)
for every other pair of distinct points ty, t; in [a, b], then the curve v is called a simple closed curve.

Definition. Letf : [a, b] — R*be amap. If P = {Xo, X4, ..., X,}is a partition of [a, b], then
n
V(f,a,b)=lub D [106) —f(xi) |,
i=1

where the lub is taken over all possible partitions of [a, b], is called total variation of f on [a,b].
The function f is said to be of bounded variation on [a, b] if V(f,a,b) <+ .

Definition. A curvey: [a, b] = R¥is called rectifiable if v is of bounded variation. The length of a rectifiable curve y

n
is defined as total variation of v, i.e, V(y, a, b). Thus length of rectifiable curve y = lub Z | v(Xi) — v(Xi.1) | for the

i=1
partition (2 =Xy < X; < ....<x, = b).

n
The ith term | y(x)) — y(xi.1) | in this sum is the distance in R between the points r(x;.,) and r(x;). Further Z | v(x;) —

i=1

v(xi.1) | is the length of a polygon whose vertices are at the points y(Xo), v(X1), ..., Y(Xn). As the norm of our partition

tends to zero those polygons approach the range of ymore and more closely.

Theorem 24. Lety be a curve in R, If y' is continuous on [a, b], then v is rectifiable and has length
b

[ 1rona

a

Proof. Itis sufficient to show that I v | =V(y, a, b). So, let {X,, ....,x,}be a partition of [a, b]. Using Fundamental

Theorem of Calculus for vector valued function, we have



91

n n Xi

2 1110 = 3| [ v
3 }Iv’(t)ldt
b F i
= 1v@]a
Thus )
(3.10.1) V(7 a b) < f Ial

To prove the reverse inequality, let € be a positive number. Since y' is uniformly continuous on [a, b], there exists & >
0 such that
lY'(s)-v() [< e, if|s—t]<d.
If mesh (norm) of the partition P is less then & and x;; <t < X;, then we have
Y@ <]y () |+ e,
so that
Xi
[ 1voldi-e Ax<yol Ax
Xi-1
X
=1 | ro+ve)-verd

Xi_1

X Xi
<| [ lv@d+l [ o) -vold]
Xi_1 Xi1
<|v06) = v(%ia) | + € AX
Adding these inequalities fori=1, 2, ...., n, we get
b n
[ 1vora<d 1w -1 1+2€ b-a)
2 i-1
=V(y,a, b) +2¢ (b —a)
Since € is arbitrary, it follows that

b
(3.10.2) j |7t | dt < V(y, a, b)

Combining (3.10.1) and (3.10.2), we have
b
[ 1v®1dt=v(,ab)

a
b

Hence the length of r is I | (t) | dt.

a
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PART B : THEORY OF MEASURE AND INTEGRATION

3.11. Inthis section we shall define Lebesgue Measure, which is a generalization of the idea of length.

Definition. The length I(l) of an interval | with end points a and b is defined as the
difference of the end points. In symbols, we write

l()=b-a.

Definition. A function whose domain of definition is a class of sets is called a Set Function.
For example, length is a set function. The domain being the collection of all intervals.

Definition. An extended real — valued set function p defined on a class E of sets is called Additive if A € E, B € E,
AuBeEand An B =¢,imply
HAUB)=p(A)+p(B)

Definition. An extended real valued set function p defined on a class E of sets is called finitely additive if for every

finite disjoint class {Ay, A,,....,A}of sets in E, whose union is also in E, we have
n

n
n(lJ A= uai
i=1 i=1
Definition. An extended real — valued set function p defined on a class E of sets is called countably additive it for
every disjoint sequence {A,} of sets in E whose union is also in E, we have

0

p(lJ Ay=> ua

i=1 i=1

Definition. Length of an open set is defined to be the sum of lengths of the open intervals of which it is composed of.
Thus, if € is an open set, then
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1G)= D 1),

n
where

G= U |n,|nlﬁ|n2:(Pifn1¢n2.
n

Definition. The Lebesgue Outer Measure or simply the outer measure m* of a set A is defined as
m* (A) = inf I(1,),
(A) A ()

where the infimum is taken over all finite or countable collections of intervals {I.} suchthat A cI,.
Since the lengths are positive numbers, it follows from the definition of m* that m*(A) > 0 and that m* ¢ = 0.
Further, if A is a singleton, then m* A =0 and also if A B, then M* A < M* B.

Theorem 25. Outer measure is translation invariant.

Proof. Let A be a set. We shall show that m* (A) = m*(A+x),
where A+x={y+x:y e A}.
Let {I,} be collection of intervals {l,} such that A < v I,. Then, by the definition of outer measure, for € > 0, we have
(3.11.1) m(A)= > (1) - €.
But, A+xcu (I, +X),
so by (3.11.1)
M (A+x)< D 11,+x)= > I(1)<m*A+e

Since e is arbitrary positive number, we have

(3.11.2) m* (A + X) <m*(A)
On the other hand

A=A+Xx-X
and so

(3.11.3) m* (A) <m*(A +X)
Combining (3.11.2) and (3.11.3), the required result follows.

Theorem 26. The outer measure of an interval is its length.

Proof. First assume that I is a bounded closed interval [a, b]. Since for every +ve real number  the open interval (a -
€, b+ €) covers |, it follows that

m*l <l(@a-e,b+e)

=b-a+22e

Since this is true for every € < 0, we must have

m*1<b-a=I(l)
For this special case | = [a, b], it remains to prove that m* | > b —a. Let {I,} be countable collection of open intervals
covering |. Then it is sufficient to establish

D> I()zb-a
n

Since [a, b] is compact, by Heine Borel Theorem, we can select a finite number of open intervals from {l,}such that

P
their union contain | = [a, b]. Let these finite intervals be J;, J,, ...., J,.Then since U Ji o [a, b] it is sufficient to
i=1
prove that
P

> 1@ zb-a

i=1
Since a € |, there exists an open interval (a;, b;) from the above mentioned finite number of intervals such that a; <a <
b;. If by < b, then b; € I. Since by is not covered by the open interval (a;, b;), there is an open interval (a,, b,) in the
finite collection Jy, ...., J, with a, < by < b,. Continuing in this fashion we obtain a sequence

(a1, ba), (a2, by),....(an, by)
in the collection Jy, J,, .....J, satisfying
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a; < big < b
foreveryi=2,..,n.
Since the collection is finite, out process must terminate with an (a,, b,) satisfying b € (a,, by)
Then we have
n

IR OEDIMICH:
n i=1
= (by—an) + (b1 —an1) + ... 4 (by — @) + (b1 —ay)
= bn - (an — bn-l) ....... (ap— bl) — a1
Since each expression in the bracket is —ve, it follows that
D> () >by-a>b-a
n
Hence the theorem is proved in this case.
Next, let | be any bounded interval with end points a and b. For every positive real number <, we have
[a+e,b-—€e]clc]ab]
Therefore
b-a-2e<m*[a+e,b- €]
<m* 1 <m* [a, b]
=b-a
Since this holds for every € > 0, we must have
m*l=b-a=I(l)
Finally, let I be unbounded. Then, for every real number r, | contains a bounded interval H of length
I (H)=r.
Therefore by the above result
m*l>m*H=IH)=r.
Since this holds for every r € R, we must have
m* 1= =I(l)
This completes the proof of the theorem.

Theorem27. Let {A,} be a countable collection of sets of real numbers. Then
m* (UA) < Y. m*A,.

Proof. If one of the sets A, has infinite outer measure, the inequality holds trivially. So suppose m* A, is finite.
Then, given € > 0, there exists a countable collection { I, ;} of open intervals such that A, U I, iand

Z I(Inni) <m* An + En ,
i 2

by the definition of m* A,.

Now the collection [l,, i]ni = U [1,, ili is countable, being the union of a countable number of countable collections,
n
and covers U A,. Thus

m* (U A)< D ()
=2 2 1)
<y (m*An+25n)

- Ay =

n n
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> masey o

n n

Z m* A, + €

n
Since € is an arbitrary positive number, it follows that

m* (VA,) < Z m*A,

Cor 1. If Ais countable, m* A =0.

Proof. We know that a countable set is the union of a countable family of singleton. Therefore
A = [x,], which yields

m* A =m* [U(x,)] < Z m* [x,](by the above theorem)
But as already pointed out outer measure of a singleton is zero. Therefore it follows that

m* A<0
Since outer measure is always a non — negative real number, m* A= 0.

Cor 2. Every interval is not countable.

Proof. We know that outer measure of an interval | is equal to its length. Therefore it follows from Cor. 1 that every
interval is not countable.

Cor 3. If m* A=0, then m* (A U B) =m*B.
Proof. Using the above proposition

m*(AuB)<m*A+m*B
=0+m*B (i)

AlsoBcAuUB
Therefore m* B <m* (A v B) (i)
From (i) and (ii) it follows that
m* B =m* (Au B)
Note:- Because of the property m* (v A,) < Z m* A,, the function m* is said to be countably subadditive. It
would be much better if m* were also countably additive, that is, if

m* (U A,) = Z m* A,.
for every countable collection[A,] of disjoint sets of real numbers. If we insist on countable additivity, we have to
restrict the domain of the function m* to some subset m of the set 2% of all subsets of R. The members of m are called

the measurable subsets of R. That is, to do so we suitably reduce the family of sets on which m* is defined. This is
done by using the following definition due to Carathedory.

Definition. A set E of real numbers is said to be m* measurable, if for every set A € R, we have
m* A=m* (AN E)+m*(AnE°

Since
A=(AnE)u (AnE,

It follows from the definition that

m*A=m*[(ANE)UANE)<m*(AnE)+m*(AnE

Hence, the above definition reduces to:

A set E € R is measurable if and only if for every set A € R, we have

m* A>m* (AN E)+m* (AnE°.

For example ¢ is measurable.

Theorem 28. If m* E =0, then E is measurable.

Proof. Let A beanyset. Then A~ E c E and so
m*(AnE)<m*E=0 (M
Also A> AnE®,andso
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m*A>m*(ANE)Y=m*(AnE)+m*(AnE)
as m* (A ~ E) =0 by (i)
Hence E is measurable.
Theorem29. If a set E is measurable, then so is its complement E°.
Proof. The definition is symmetrical with respect to E° , and so if E is measurable, its complement E° is also
measurable.

Theorem30. Union of two measurable sets is measurable.
Proof. Let E; and E; be two measurable sets and let A be any set. Since E, is measurable, we have

m* (A M Elc) =m* (A M Elc ﬁEz) +m* (A M Elc ﬁEzc) (l)
and since

An(EiUE)=(ANE)U[ANE NE] (i)
Therefore by (ii) we have

m*[An (B, UE)]<m* (AN E) +m*[An E, Ef (iii)
Thus

m* [An (E; v Ey)]+m* (AN E‘UEY)
SM*(ANE)+m*(AnE, UES)+m*(AnE‘nEY)
=m* (AN E) +m* (AnE) (by (i)
<m* A (since E; is measurable)
ie.m*(An(E;VEy))+m* (An (E;wE))<m*A
Hence E; U E, is measurable.

Cor. If E; and E, are measurable, then E; ~ E; is also measurable.

In fact we note that E;, E, are measurable = E;°, E,° are measurable = E;° U E,° is measurable = (E;° U E,*)°=E;
M E, is measurable.

Similarly, it can be shown that if E; and E, are measurable, then E,* n E,® is also measurable.

Definition. Algebra or Boolean Algebra: - A collection A of subsets of a set X is called an algebra of
sets or a Boolean Algebra if

A, BeA=>AuUuBeA

(i) AecA=>Ac A

(iii) For any two members A and B of A, the intersection A n B isin A.

Because of De Morgan’s formulae (i) and (ii) are equivalent to (ii) and (iii).

It follows from the above definition that the collection M of all measurable sets is an algebra. The
proof is an immediate consequence of Theorems 29 and 30.

Definition. By a Boolean o - algebra or simply a ¢ - algebra or Borel field of a collection of sets, we mean a
Boolean Algebra A of the collection of the sets such that union of any countable collection of members of this
collection is a member of A.

From De Morgan’s formula an algebra of sets is a o - algebra or Borel field if and only if the intersection of any
countable collection of members of A is a member of A.

Lemma 1. Let A be any set, and Eg, E,, ...., E, a finite sequence of disjoint measurable sets. Then
n n
m(An[lJ ED=D. m*A~E).
i=1 i=1

Proof. we shall prove this lemma by induction on n. The lemma is trivial for n = 1. Let n>1 and suppose that the
lemma holds for n — 1 measurable sets E;.

Since E, is measurable, we have
m* (X) =m* (X n E,) + m* (X " E;°)
for every set X € R. In particular we may take

x=Am[Lnj Eil.

i=1
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Since Ey, E,, ....,E, are disjoint, we have

n
XmEn:Am[U E]~E,=ANE,
i=1
and

n n-1
xnEf=An[l]) ElnEF=AA[] E]
i=1 i=1
Hence we obtain
n-1

m*X=m*AnE)+mAn[| ] E] (i)
But since the lemma holds for n — 1 we have "
m*(A [Dl ED=3 manE)
Therefore (i) reduces to . -
n-1

m*X=m*AnE)+ Y m*AnE)
i=1
n
=> mANE)
i=1
Hence the lemma.

Lemma 2. Let A be an algebra of subsets and {E; | i € N} a sequence of sets in A. Then there exists a sequence [D; | i
e N] of disjoint members of A such that

D;icE; (ieN)
U Di = U Ei
icN icN

Proof. Foreveryie N, let
Dh=E,\(E;w Eyu...... U En)
=E.n(EyUE,u...... U En)°
SE,NESfNESS .. M Epq® 0]
Since the complements and intersections of sets in A are in A, we have each D, € A. By construction, we obviously
have
DicE; (ieN) (i)
Let D,and Dy, be two such sets, and suppose m <n. Then D, c E,, and so
Dy, D, c E,n D,
SEnnEnEfn BN E S (using (i)
=EnnEN) ...

— (i

The relation (i) implies

It remains to prove that

For this purpose let x be any member of U E;. Let n denotes the least natural number satisfying x € E,.. Then we
icN
have
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xeE\(Eww .0 En) =Dy | Dn
ieN
This completes the proof.
Theorem 31. The collection M of measurable sets is a ¢ - algebra.

Proof. We have proved already that M is an algebra of sets and so we have only to prove that M is closed with
respect to countable union. By the lemma proved above each set E of such countable union must be the union of a
sequence {D,} of pairwise disjoint measurable sets. Let A be any set, and let

n
E,= U D;c E. Then E, is measurable and E,° > E°. Hence
icl
m* A = m*(A AE,) + mM*(A A E,%) = m*(A ~E,) + m*(A ~ E,0).
But by lemma 1,

n n
m*(AnE)=m AN~ ] D)= D m*A~D)
icl i=1
Therefore

n
m*A> D m*AnD)+m*AnE)
i=1
Since the left hand side of the inequality is independent of n, we have

m*A> D m*An D)+m*AnE)
i=1

> m*( U [A N Dj]) + m*(A n E®) (by countably subadditivity of m*)

icl

=m*(An| ] D)+m*AnE)
icl
= m*(A NE) + m*(A n E,°).
which implies that E is measurable. Hence the theorem.
Lemma 3. The interval (a, o0) is measurable

Proof. Let A be any set and
Ai=An(a )
A=An(a ©)=An(-0,a].
Then we must show that
m* A+ m* A, <m* A
If m* A= o0, then there is nothing to prove. If m* A M < o0, then given € > 0 there is a countable collection {I,} of
open intervals which cover A and for which

D) <m*A+e (i)
Letly=1,n(a o)and I, =1, (-c0, a). Then I, and I,” are intervals (or empty) and

(1) =1(1) + 1(1") = m*( 1)) +m*( 1,") (i)
Since A; c U I/, we have

m* A <m*U 1)< D m* Iy, (iii)
and since, A, U I/, we have

m* A, <m*U 1,") D m* Iy, (iv)
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Adding (iii) and (iv) we have

M*A+m* A, < D mrI+ <Y mEI
=D (M1 + <m* 1Y)

=> 1) [by (ii)]

Sm*A+ e [by (D]
But € was arbitrary positive number and so we must have
m*A;+m* A, <m* A

Definition. The collection B of Borel sets is the smallest ¢ - algebra which contains all of the open sets.

Theorem 32. Every Borel set is measurable. In particular each open set and each closed set is measurable.

Proof. We have already proved that (a, «) is measurable. So we have
(a, 20)° = (- o0, a] measurable.

Since (- 0, b) = U (-0, b - %] and we know that countable union of measurable sets is measurable, therefore (- o,
n=1
b) is also measurable. Hence each open interval,
(@, b) = (-, b) " (a, ©) is measurable, being the intersection of two measurable sets.
But each open set is the union of countable number of open intervals and so must be measurable
(The measurability of closed set follows because complement of each measurable set is
measurable).

Let M denote the collection of measurable sets and Cthe collection of open sets. Then C — M. Hence B is also a
subset of M since it is the smallest ¢ - algebra containing C. So each element of B is measurable. Hence each Borel
set is measurable.

Definition. If E is a measurable set, then the outer measure of E is called the Lebesgue Measure of E ad is denoted by
mE.

Thus, m is the set function obtained by restricting the set function m* to the family M of
measurable sets. Two important properties of Lebesgue measure are summarized by the
following theorem.

Theorem 33. Let {E,} be a sequence of measurable sets. Then
m(u E) < Z m E;
If the sets E,, are pairwise disjoint, then
m(u E) = Z mE;.
Proof. The inequality is simply a restatement of the subadditivity of m*.
If {E;}is a finite sequence of disjoint measurable sets. So we apply lemma 1 replacing A by R. That is , we have

mRAIU ED= Y m R AE)

i=1 i=1

:m*(LnJ E)= Zn: m* E;
i=1 i=1

and so m is finitely additive.

Let {E} be an infinite sequence of pairwise disjoint sequence of measurable sets. Then
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O EiD

n
i=1 i=1

m(o Ei)Zm(LnJ E)= Zn: mE;
i-1 i1 i1

Since the left hand side of this inequality is independent of n, we have

m(O Ei)Zi m E;
i=1 i=1

The reverse inequality follows from countable subadditivity and we have

m(LOOJ Ei): i m E;.
i=1 i=1

Hence the theorem is proved.

=

And so

Theorem 34. Let {E,} be an infinite sequence of measurable sets such that E,.; ¢ E, for each n. Let mE; <. Then
© lim
m( ﬂ E)= mE,,
i1 n— o

Proof. LetE= ﬂ Eiand let F; = E;— Ei.;. Then since {E,} is a decreasing sequence. We have
i=1
M Fi = (I)
Also we know that if A and B are measurable sets then their difference A — B = A ~ B® is also measurable. Therefore
each F; is measurable. Thus {F;} is a sequence of measurable pairwise disjoint sets.
Now

= O (Ein Eiv")
i1

=E; n (VE)

Hence
m(|J F)=mE: -8
i=1
= i mF;=m(E;-E)
i=1

= Z M(E; — Ei+1) = M(E, — E) (i)

i=1
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Since E; = (E; — E) U E, therefore

mE; = m(E; - E) + m(E)

= MmE;-mE=m(E;-E), (sincemE <mE; <) (i)
Again

Ei= (Ei—Eis1) W Eint

= mE;=m(E; - Ej.1) + M Ejyy

= m E; - m Ej,y= m(E; — E;+1) (since Ejyy c Ey) (iii)
Therefore (i) reduces to

mE;,-mE= Z.O: (m E; - m Ej+y) (using (ii) and (iii))
i=1

=lim Z (mEi—mEi+1)

n—>e 9

= lim [ME;,-mE,+mE,—mE;....... -m Ep]
N—o0

= Iim [m El—mEn+1]
nN—o0

:mEl- Ilm mEn+1

N—o0
=>mE= lim mE,
n—o0

:m(ﬂ E)= lim mE,
i-1 n—>oo

Theorem 35. Let {E,} be an increasing sequence of measurable sets, that is, a sequence with E, c E,,; for each n. Let
mE; be finite, then

m(U E)= lim mE,.
i-1 n—e
Proof. Thesets E;, E, — Ej, E3—E,, ....,E, — E,1, are measurable and are pairwise disjoint. Hence
E, U(E-E)u.. . U(E,—Er)u....
is measurable and
m[El U(EZ — El) .. U(En — En_l)U. . ]
n n
=mE+ Y mE-E)=mE+ lim > m(E -Ew)
i=2 n—o0 i=2

Butk; U(E; - E)u...u (En—Enpdu...... is precisely O E,
Moreover, -
n
Z m(E, — Ei—l) = Z ( mE;—-m Ei-l)
" :(;T:]ZEQ—mEl)+(mE3—mE2)+ ...... +(mEn—mEn,1)
=mE,-mE;

>

Thus we have

m[U E]l=mE,+ r!|_>m [ME,—mE,]
i=1 ®

= lim mE,
nN—o0

Definition. The symmetric difference of the sets A and B is the union of the sets A — B and B — A. It is denoted by A
AB
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Theorem 36. If m (E; AE,) =0 and E; is measurable, then E, is measurable. Moreover mE,=mE,.

Proof. We have

Ex=[E1U(E2-E)] - (BE1-Ey) (i)
By hypothesis, both E, — E; and E; — E, are measurable and have measure zero. Since E; and E, — E; are disjoint,
E; U(E, — E,) is measurable and m[E; U(E, — E;)] = m E; + 0 = m E,. But, since

E; - E; c[E1 (B2 - Ey)],
it follows from (i) that E, is measurable and

m E; = m[E; U(Ez - Ey)] - M(E1 - Ey)

=mE;-0=mE,.

This completes the proof.

0
Definition. Let x and y be real numbers in [0, 1]. Then sum modulo 1 of x and y, denoted by ~ x + v, is defined by
0 X+yif x+y<1
X+ y= .
X+y-1lif x+y=>1.
0
It can be seen that + is a commutative and associative operation which takes pair of numbers in[0, 1) into numbers in
[0, 1).

If we assign to each x € [0, 1) the angle 2= x then addition modulo 1 corresponds to the addition of angles.

If E is a subset of [0, 1), we define the translation module 1 of E to be the set
0 0
E + y=[z|z=x + yforsomex € E].
If we consider addition modulo 1 as addition of angles, translation module 1 by y corresponds to rotation through an
angle of 2 y.

We shall now show that Lebesgue measure is invariant under translation modulo 1.

0 0
Lemma. Let E c [0, 1) be a measurable set. Then for each y € [0, 1) the set E + y is measurable and m(E + y) =m
E.

Proof. LetE;=En[0,1-y)and E,=E n[1-Y, 1). Then E; and E, are disjoint measurable sets whose union is E,
and so
ME=mE; +mE..
We observe that
0 0
E, + y={x + y:xekE]

| o x+yifx+y<1
B X+y-1if x+y>1.

But for x € E;, we have x +y <1 and so
(0]
E, +ty={x+y,xe E;}=E; +YV.

XEE]_

o]
and hence E; + y is measurable. Thus

0
m(E; + y) = m(E; +y) = m(Ey),
0 0 0
since m is translation invariant. Also E, +y=E, + (y—1) and so E, + y is measurable and m(E, + y) = m E,. But
0 0 0
E+y=E+Yy)v(E +Y)
0 0 0
and the sets (E; + y) and (E, + ) are disjoint measurable sets. Hence E + y is measurable and
0 0 0
mE + y)=m[E + y) v (E: +Y)
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(0] 0
=m(E; + y)+m(E; + )
=m(E,) + m(E;)
=m(E).
This completes the proof of the lemma.

Construction of a non — measurable set. If x —y is a rational number, we say that x and y are equivalent and write x
~y. ltisclearthat x ~x; X~y =y ~xand X ~y, Y~z = X ~ z Thus ‘~’ is an equivalence relation and hence
partitions [0, 1) into equivalence classes, that is, classes such that any two elements of one class differ by a rational
number, while any two elements of different classes differ by an irrational number. By the axiom of choice (Let C be
any collection of non — empty sets. Then there is a function F defined on C which assign to each set A € C on element

Q0
F(A) in A.) there is a set P which contains exactly one element from each equivalence class. Let <ri>i 0 be an
enumeration of the rational numbers in [0, 1) with ry = 0 and define
]
Pi=P + r;. (translator modulo 1 of P)
Then Py =P. Letx € P; ~ P;. Then
X=pithi=p+r
with p; and p; belonging to P. But p; - p; = rj — rj is a rational number, whence p; ~ p;. Since P has only one element
from each equivalence class, we must have i = j. This implies that if i # j, Pin P;= ¢, that is , that <P;> is a pair
wise disjoint sequence of sets. On the other hand, each real number x in [0, 1) is in some equivalence class and so is
equivalent to an element in P. But if x differs from an element in P by the rational number r;, them x € P;. Thus U P; =
[0, 1). Since each P; is a translation modulo 1 of P, each P; will be measurable if P is and will have the same measure.
But if this were the case,

m[0, 1) = i mP; = Z.O: mP,
i=1 i=1

and the right hand side is either zero or infinite, depending on whether m P is zero or positive. But this is impossible
since m[o, 1) = 1, and consequently P cannot be measurable.

Definition. An outer measure is said to be regular if for any set A contained in whole space X we can find a
measurable set B such that
B> Aand m*A=m*B =mB.

Theorem37. Let m* be a regular outer measure such that m* X < «. Then the necessary and sufficient condition for a
set E to be measurable is that
m* X=m*E +m*E°.
Proof. The condition is necessary :- Since E is measurable, for any set A we have
m* A= m*(A n E) + m*(A n EY)
Replacing A by X we have
m* X = m*(X N E) + m*(X n E%)
=m*E+m*E°
The condition is sufficient :- Let A be any set. Since m* is regular we can find a measurable set B > A such that
m* A=m*B =mB.
Now B being measurable, we have
m* E = m*(E n B) + m*(E n BY) (i)
m* E* = m*(E° ~ B) + m*(E° n BY) (i)
Adding (i) & (ii) we have
m* E + m* E° = m*(E n B) + m*(E ~ B°) + m*(E° ~ B) + m*(E° ~ B)
= m* X = m*(E N B) + m*(E n B%) + m*(E° n B) + m*(E® n B)
Now consider E
m*(E ~ B) + m*(E° ~ B).
Since
B=(E~B)u (E°nB),
Therefore
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m* B < m*(E ~ B) + m*(E® ~ B)
Hence EAB
m* X > m*(E n B®) + m* B + m*(E° n B

Again

m* B® < m*(E n B°) + m*(E° ~ B°) (iii)
Hence

m* X > m* B + m* B¢

=mB+mB®=m*X

Thus

m*(E n B) + m*(E n BY) + m*(E° ~ B) + m*(E° n BY)

=mB+mB°

That is,

m*(E n B) + m*(E n B%) + m*(E* ~ B) + m*(E° ~ BY) - m B°
=mB
Using (iii), the last expression reduces to
m*(E n B) + m*(E°~ B) <m B.

INNER MEASURE

Definition. Let F be a closed set. Then inner measure of a set E, denoted by m. E, is defined by

E P {IF}
M= =
FcE

where | . | denotes the length.

Definition. A subset E of (a, b) is said to measurable if

m* E = m« E.
The relation between inner and outer measure is m« E = (b —a) — m* E°.
Let [E,] be a sequence of sets. Then

Definition. The set of those elements which belong to E,, for infinitely many values of n is called the lim sup of the
sequence of sets {E,}. We denote it by lim E,.
Lemma. Wn E,= ﬂ U E,.

m=1 n=m

Proof. Letx e ﬁ E,. Then

X € U E, forall m

n=m

:Xeﬁu En:mEncﬁU E,

m=1 n=m m=1 n=m

conversely, if x € ﬂ U E,, then

m=1 n=m

X € U E, forallm

n=m
= x e E,forsomen=m
= X € E, for infinite values of n.

=xe limE,
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Hence Wn E,= ﬂ E,.

Definition. The set of those elements which belong to all E,, except a finite number of them is called lim in f of the
sequence of sets {E,}. We denote it by limE,.

It may be proved that limE, = U ﬂ E, For, let

Similarly, we can show that if x € lim E, then x € U ﬂ E,.

m=1 n=m

Theorem 38. If {E,} is a sequence of measurable sets, then lim E, and lim E, are also measurable.

Proof. We have shown above that

lim E, =

Cs

N E
n=m

Since {E,,} is a sequence of measurable sets, the right hand side is measurable and so lim E, is measurable.

Similarly, since
limEg, = U ﬂ En

m=1 n=m

it is obvious that right hand side and so lim E, is measurable.

1

3
[l

Example. The cantor set is uncountable with outer measure zero.

Solution. We already know that cantor ser is uncountable. Let C, denote the union of the closed intervals left at the
nth stage of the construction. We note that C,, consists of 2" closed intervals, each of length 3" Therefore

m*C,<2" 3" (M Co=mX(UF) = Y m*Fy)
But any point of the cantor set C must be in one of the intervals comprising the union C,, for each ne N, and as such C
c C, for all n € N. Hence

3
m*C<m*C,<| —
3

This being true for each n € N, letting n — o gives m* C = 0.

Example. If E;and E, are any measurable sets, show that
M(El o Ez) + m(E1 m E2) = m(El) + m(Ez)

Proof. Let A be any set. Since E; is measurable,

m* A =m*(A n Ey) + m*(A n E;°).
We set A = E; U E, and we have

m*(Ey w Ep) = m*[( Eyw Ep) m Ej] + m*[(Ey U E) m E]
Adding m (E; m E,) to both sides we have

M(EL U Ep) + ME; N E)=mE; +m[(E; U Ep) nEf 1+ M(E1nEy) (1)
But

Ex=[(Erv Ex) M Ef] U (E1n Ey).
Therefore

M{[(E: W E;) nE] U(E1nEx)}=mE,
Hence (1) reduces to
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M(El o E2) + m(El m E2) = mEl +m E2.

Theorem39. Let E be any set. Then given € > 0, there is an open set O o E such that
m*O<m*E+ e.

Proof. There exists a countable collection [I,] of open intervals such that E c U I, and
n

o0

D M) <m*E+e.

n=1
Pt O= U Iy,
n=1
Then O is an open set and
m* O = m*(U In)

IA

s 1M
3
*
S

=> () <m*E+e.

n=1
Theorem 40. Let E be a measurable set. Given € > 0, there is an open set O o E such that m*(O\E) < e.

Proof. Suppose first that m E < «. Then by the above theorem there is an open set O > E such that
Mm*O<m*E+ ¢
Since the sets O and E are measurable, we have
m*(O\E) =m*O-m*E< €.
Consider now the case when m E = o. Write the set R of real numbers as a union of disjoint finite intervals; that is, R

o0

= I.. Then, if E, = E m I, m(E,)< «. We can, thus, find open sets O, o E, such that
(0, —E;) < —
m*(0, — Ep) < on

Define O = U O,. Clearly O is an open set such that O o E and satisfies
n=1
O-E= O, -
1

En,C U (On—En)
n= n=1 n=1
Hence

MO0 -E)< Y. m*O)E)<e.
n=1
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A

MEASURABLE FUNCTIONS  AND LEBESGUE
INTEGRAL

PART A : MEASURABLE FUNCTIONS

4.1. Definition. Let E be a measurable set and f a function defined on E. Then f is said to be measurable (Lebesgue
function) if for any real o any one of the following four conditions is satisfied.

(@) {x| f(x) > o } is measurable
(b) {x | f(x) = o} is measurable
(©) {x | f(x) < o} is measurable
(d) {x | f(x) < o} is measurable.

We show first that these four conditions are equivalent. First of all we show that (a) and (b) are equivalent. Since
X)) >a}={x|f(x) <o}
and also we know that complement of a measurable set is measurable, therefore (a) = (d) and conversely.

Similarly since (b) and (c) are complement of each other, (c) is measurable if (b) is measurable and conversely.

Therefore, it is sufficient to prove that (a) = (b) and conversely.
Firstly we show that (b) = (a) .
The set {x | f(X) = o} is given to be measurable.
Now

0

X100 >a}= (JXIf) 2o+ %}

n=1
1_. . .
But by (b), {x | f(xX) = o + —} is measurable. Also we know that countable union of measurable sets is measurable.
n

Hence {x | f(x) > o } is measurable which implies that (b) = (a). Conversely, let (a) holds. We have

e 1
X109 = o} = (X IfX) > o - =

n=1
1 _ . .
The set {x | f(x) > a — —} is measurable by (a). Moreover, intersection of measurable sets is also measurable.
n

Hence {x | f(x) > a} is also measurable. Thus (a) = (b).
Hence the four conditions are equivalent.

Lemma. If o is an extended real number then these four conditions imply that {x | f(x) = .} is also measurable.

Proof. Let o be a real number, then

XIf)=a}={x|fx)=a} ~ {x]|f(X) <o}
Since {x | f(x) = o } and { x | f(x) < o} are measurable by conditions (b) and (d), the set {x | f(x) = « } is measurable
being the intersection of measurable sets.

Suppose o =+ o0 . Then
{x 1109 =0} = [J{X]f(x) > n}

n=1
which is measurable by the condition (b) and the fact that intersection of measurable sets is measurable.

Similarity when o = —o, then
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X [(x) = —} = [{X] () <-n}
n=1
which is again measurable by condition (d).
Hence the result follows.

Second definition of Measurable functions

We see that
{X[f(x) >}
is inverse image of («, «]. Similarly the sets
[X|f(x) =a}, {x|f(x) <a}, {x]|f(X)c o} are inverse images of [a, «], [0, &) and [-oo, o] respectively.
Hence we can also define a measurable function as follows.

A function f defined on a measurable set E is said to be measurable if for any real « any one of the four conditions is
satisfied :

@ The inverse image f*(«, ] of the half-open interval (o, «] is measurable.

(b) For every real o, the inverse image f* [a, «] of the closed interval [o, «] is measurable.
(©) The inverse image f* [0, o) of the half open interval [0, o) is measurable.

(d) The inverse image f [, o] of the closed interval [-eo, o] is measurable.

Remark 1. It is immediate that a necessary and sufficient condition for measurability is that {x | a < f(x) < b} should
be measurable for all a, b [including the case a = —o, b = +o0], for any set of this form can be written as the
intersection of two sets

X|fx)za}n {x|f(xX)<b},
if f is measurable, each of these is measurable and so is {x | a < f(x) < b}. Conversely any set of the form occurring in
the definition can easily be expressed in terms of the sets of the form {x | a < f(x) < b}.

Remark 2.  Since (o, o) is an open set, we may define a measurable function as “A function f defined on a
measurable set E is said to be measurable if for every open set G in the real number system, f (G) is a measurable set.

Definition. Characteristic function of a set E is defined by

. 1 if xeE
X) =
e 0 if x ¢E

This is also known as indicator function.

Example of a Measurable function

Let E be a set of rationals in [0, 1]. Then the characteristic function y¢g(x) is measurable.
Proof. For the set of rationals in the given interval, we have

. 1 if xeE
X) =
U700 if x ¢E

It is sufficient to prove that the set
{1 7e(x) > o }

is measurable for any real .

Let us suppose first that o« > 1. Then

lae) >} ={x]ye (x)>1}
Hence the set {x | xe(x) > o } is empty in this very case. But outer measure of any empty set is zero. Hence for o > 1,
the set {x | xe(X) > o } and so ye(X) is measurable.

Further let0 <o < 1. Then
Xlre)>a}=E
But E is countable and therefore measurable. Hence yg(X) is measurable.

Lastly, let oo < 0. Then
{X1xe(x) >} =0, 1]
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and therefore measurable. Hence the result.

Example 2. A continuous is measurable.

Proof. If the function f is continuous, then £ (a, =) is also open. But every open set is measurable. Hence every
continuous function is measurable.
We may also argue as follows:

If f is continuous then

{x| f(x) <o, x¢ (a, b)}
is closed and hence

{X[(x) 2 o} = {x | f(x) <}’
is open and so measurable.
* All the ordinary functions of analysis may be obtained by limiting process from continuous function and so are
measurable.

Example 3. A constant function with a measurable domain is measurable.

Solution. Let E be a measurable set and let f : E — R* be a constant function definition by f(x) = K(constant).
Then for any real o, we have
E if a <k

{x:f(x)>(x}:{¢ if o >k

Since both E and ¢ are measurable, it follows that the set {x : f(x) > o} and hence f is measurable.

Theorem 1. For any real ¢ and two measurable real-valued functions f, g the four functions
f +c, cf, f+g, fg are measurable.

Proof. We are given that f is a measurable function and c is any real number. Then for any real humber o

{x1f(x) +c>a} ={x|f(x)>oa-—c}
But {x | f(x) > a—c} is measurable by the condition (a) of the definition. Hence {x | f(x) + ¢ > o} and so f(x) + c is
measurable.
We next consider the function cf. In case ¢ = 0, cf is the constant function 0 and hence is measurable since every
constant function is continuous and so measurable. In case ¢ > 0 we have

{x[ef(x) > a} = {x]f(x) > %}=f’l(%,w],

and so measurable.

In case ¢ < 0, we have

r
{xlef(x) >} ={x|f(x) < —}
C
and so measurable.

Now if f and g are two measurable real valued functions defined on the same domain, we shall show that f+g is
measurable. To show iit, it is sufficient to show that the set {x | f(xX) + g(x) > o} is measurable.

If f(x) + g(x) > «, then f(x) > a—g(x) and by the Cor. of the axiom of Archimedes there is a rational number r such that
a-g(x) <r<f(x)
Since the functions f and g are measurable, the sets
{x|f(x) >r}and {x| g(x) > a—r}
are measurable. Therefore, there intersection
Se={x[f(x) >}~ {x]g(x) >a-r}
is also measurable.
It can be shown that
{x|f(x) + g(x) > a } = U{S; | ris arational}
Since the set of rational is countable and countable union of measurable sets is measurable, the set U{S, | r is a
rational} and hence {x | f(x) + g(x) > « } is measurable which proves that f(x) + g(x) is measurable.

From this part it follows that f-g = f+(—g) is also measurable, since when g is measurable (—g) is also measurable.
Next we consider fg.



110

The measurability of fg follows from the identity

fg= %[(f+g)2 --¢’1,

if we prove that f is measurable when f is measurable. For this it is sufficient to prove that
{xeE|P(X)>a}, oisareal number,
is measurable.

Let o be a negative real number. Then it is clear that the set {x | fA(x) >« } = E(domain of the measurable function f
). But E is measurable by the definition of f. Hence {x | f*(x) > « } is measurable when o < 0.

Now let o > 0, then
I P > o} = x| (x) > Yo} U {x | f(x) < —Va}
Since f is measurable, it follows from this equality that
x| () >a}
is measurable for « > 0 .

Hence 2 is also measurable when f is measurable.

Therefore, the theorem follows from the above identity, since measurability of f and g imply the measurability of f + g .
From this we may also conclude that f/g (g # 0) is also measurable.

Theorem 2. If f is measurable, then |f] is also measurable.

Proof. It suffices to prove the measurability of the set
{x||f(x)] >}, where « isany real number.
If o <0, then
{x| [f(x)| > o} = E (domain of f)
But E is assumed to be measurable. Hence {x | |f(x)| > o } is measurable for o < 0.
If o >0 then
XTFO) > o } = {x [ f(x) > o } o {X [ f(X) < —a }
The right hand side of the equality is measurable since f is measurable. Hence {x | f(x)| > o} is also measurable.
Hence the theorem is proved.
Theorem 3. Let {f, },_; be a sequence of measurable functions. Then
sup{fy, fo,.., f.}, inf. {fy, ..., 1 },

sup f,, inf f,, limf,and lim f, are measurable.
n n

Proof. Define a function
M(X) = Sup{fll f2s"~a fn}

We shall show that {x | M(x) > a} is measurable.

In fact

n
{xIM) >} = [J{xIfi(x) > o}
i=
Since each f; is measurable, each of the set {x | fi(x) > « } is measurable and therefore their union is also measurable.
Hence {x | M(x) > o } and so M(x) is measurable.

Similarly we define the function
m(x) = inf{f,, f,,..., f,}
Since m(x) < o iff fi(x) < o for some i we have

n
{xIme) <} = J{xfi) <o}
i=1
and since {x | fj(x) < o} is measurable on account of the measurability of f;, it follows that {x| m(x) < o} and so
m(x) is measurable.

Define a function
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M’(x) = Sup f,(x) =sup {fy, f>,..., fi,,...)
n
We shall show that the set
XM (X)>a}
is measurable for any real a.
Now

&IM) > a} = (J{x| () >}
i=
is measurable, since each f, is measurable.
Similarly if we define
m'(x) = inf f,(x),
n

then

{xIm' () <o} = U{xIf(x) <o}
i=1

and therefore measurability of f,, implies that of m’(x). Now since

lim f,=lim supf,=inf {sup f, }

n n=k
and lim f,=sup {inf f_ 3},
k n>k
the upper and lower limits are measurable.

* Finally if the sequence is convergent, its limit is the common value of lim f, and lim f,, and hence is measurable.

Definition. Let f and g be measurable functions. Then we define

f* = Max (f, 0)
f~ = Max (-, 0)
fygs T+o+f -] e (f, 9)
and i
fag= W i.e. min (f, g)

+
Theorem 4. Let f be a measurable function. Then f and f are both measurable.

Proof. Let us suppose that f> 0. Then we have

+
f =fand f=0 (i)
So in this case we have
+
f=f - f

Now let us take f to be negative. Then

+
_f =Max(f,0)=0
f =Max (-f,0)=-f (i)
Therefore on subtraction
+
f=f - f
Incase f =0, then

+ —

f =0 f=0 (iii)

+
Thereforef= f — f
Thus for all f we have



112

+
f=f_-F (iv)
Also adding the components of (i) we have
f=|f|l=f+ f v)

since f is positive.
And from (ii) when f is negative we have

+
f+ f=0-f=—f=|f (vi)
In case f is zero, then
+
f+ f=0+0=0=1f (vii)
That is for all f, we have
+
[fl="F +f (viii)
Adding (iv) and (viii) we have
+
f+f|=2f
1
= =2 @) ()

Similarly on subtracting we obtain

-1
f=—(lf[-f) )
2

+
Since measurability of f implies the measurability of | f | it is obvious from (ix) and (x) that T and f ~ are measurable.

Theorem 5. If fand g are two measurable functions, then f v g and f A g are measurable.
Proof. We know that

R ] L]
2

fge 119170
2

Now measurability of f = measurability of [f|. Also if f and g are measurable, then f+g, f-g are measurable. Hence
fvg and fAg are measurable.

We now introduce the terminology “almost everywhere” which will be frequently used in the sequel.

Definition. A statement is said to hold almost everywhere in E if and only if it holds everywhere in E except possibly
at a subset D of measure zero.

Examples

(@) Two functions f and g defined on E are said to be equal almost everywhere in E iff f(x) = g(x) everywhere except
a subset D of E of measure zero.

(b) A function defined on E is said to be continuous almost everywhere in E if and only if there exists a subset D of
E of measure zero such that f is continuous at every point of E-D.

Theorem 6. (a) If f is a measurable function on the set E and E; — E is measured set, then f is a measurable function
on E;.

(b) If f is a measurable function on each of the sets in a countable collection {E;} of disjoint measurable sets, then f is
measurable.

Proof. (a) For any real o, we have {x ¢ E, f(x) > o} = { x ¢ E; f(x) > o} n E;. The result follows as the set on the
right-hand side is measurable.
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o0
(b) Write E = U E; . Clearly, E, being the union of measurable set is measurable. The result now follows, since for
i=1

each real o, we have E = { x ¢ E, f(x) > o} = [ JE; f(x)> o}
i=1
Theorem 7. Let f and g be any two functions which are equal almost everywhere in E. If f is measurable so is g.

Proof. Since f is measurable, for any real o the set {x | f(x) > o } is measurable. We shall show that the set {x | g(x)
> o } is measurable. To do so we put
B ={x[f(x)>a}
and
Eo={x]g(x)>a}
Consider the sets
El_ EZ and EZ_ E]_
Since f = g almost everywhere, measures of these sets are zero. That is, both of these sets are measurable. Now
E,=[E1 v (E2-E)] - (Ei-Eo)
= [E1v (Ex-Ey) n (E1-Ey)°
Since E,, E,—E; and (E;—E,)° are measurable therefore it follows that E, is measurable. Hence the theorem is proved.

Cor. Let {f,} be a sequence of measurable functions such that lim f, = f almost everywhere. Then f is a measurable
N—x

function.

Proof. We have already proved that if {f,} is a sequence of measurable functions then lim f, is measurable. Also it
n—o

is given that lim f, = fa.e. Therefore using the above theorem it follows that f is measurable.
n—o

Theorem 8. Characteristic function y is measurable if and only if A is measurable.

Proof. Let A be measurable. Then

B 1 ifxeA
MOZ10 i xgA e xeAC

Hence it is clear from the definition that domain of y 4 is A w A which is measurable due to the measurability of A.
Therefore, if we prove that the set {x | xa(X) > o } is measurable for any real o, we are through.
Leta>0. Then
X ralx) > o} = {x| 2a(x) = 1}
= A(by the definition of Ch. fn.)
But A is given to be measurable. Hence for o > 0. The set {x | xa(X) > o } is measurable.

Now let us take « < 0. Then
X17a¥)>a}=AUA
Hence {x | xa(X) > o} is measurable for o < 0 also, since A U A® has been proved to be measurable. Hence if A is
measurable, then y is also measurable.
Conversely, let us suppose that yA(x) is measurable. That is, the set {x | xa(X) > o} is measurable for any real o.
Letaa>0. Then
{X1xalx) > o} ={x|7a(x) = 1} = A
Therefore, measurability of {x | xa(X) > o} implies that of the set A for « > 0.
Now consider o < 0. Then
{x[7a(x) > a} = AU A°
Thus measurability of y A(x) implies measurability of the set AUA® which imply A is measurable.

Remark. With the help of above result, the existence of non-measurable function can be demonstrated. In fact, if A
is non-measurable set then y A cannot be measurable.

Theorem 9. If a function f is continuous almost everywhere in E, then f is measurable.
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Proof. Since f is continuous almost everywhere in E, there exists a subset D of E with m*D = 0 such that f is
continuous at every point of the set C = E-D. To prove that f is measurable, let « denote any given real number. It
suffices to prove that the inverse image

B=f Yo, 0) = {Xe E|f(X) >}
of the interval (o, o) is measurable.

For this purpose, let x denote an arbitrary point in B ~ C. Then f(X) > « and f is continuous at x. Hence there exists

an open interval Uy containing x such that f(y) > « hold for every point y of E Uy Let
u= (JU,
xeBNC

Since x ¢ E nUy B holds for every x ¢ B~ C, we have
BNCcEnucB

This implies
B=(EnU)u(BnD)

As an open subset of R, U is measurable. Hence E LU is measurable. On the other hand, since
m*(BAD)<m*D =0,

B~D is also measurable. This implies that B is measurable. This completes the proof of the theorem.

Definition. A function ¢, defined on a measurable set E, is called simple if there is a finite disjoint class {E;, E,,...,
E,} of measurable sets and a finite set {c, a,..., o} of real numbers such that

(X’I |fX8E|,|:1,2,,n
f(x) = :
0 ifxgE, vE,u..UE,

Thus, a function is simple if it is measurable and takes only a finite number of different values.
The simplest example of a simple function is the characteristic function ye of a measurable set E.

Definition. A function f is said to be a step function if
fx)=Ci, &1 <x<§
for some subdivision of [a, b] and some constants C; .
Clearly, a step function is a simple function.

Theorem 10. Every simple function ¢ on E is a linear combination of characteristic functions of measurable subsets
of E.

Proof. Let ¢ be a simple function and cy, ¢,,..., ¢, denote the non-zero real numbers in its image ¢(E). For each i =
1,2,...,n, let
Ai={xeE:¢(x)=Ci}
Then we have
n
o= D Cixa,
i=1
On the other hand, if $(E) contains no non-zero real number, then ¢ = 0 and is the characteristic function y, of the
empty subset of E.

It follows from Theorem 10 that simple functions, being the sum of measurable functions, is measurable.
Also, by the definition, if f and g are simple functions and c is a constant, then f +c, cf, f+g and fg are simple.

Theorem 10 (Approximation Theorem). For every non-negative measurable function f, there exists a non-negative
non-decreasing sequence {f,} of simple functions such that

lim f,(x) = f(x), xe E
nN—o
In the general case if we do not assume non-negativeness of f, then we say

For every measurable function f, there exists a sequence {f,}, n € N of simple function which converges (pointwise) to
f.
i.e. “Every measurable function can be approximated by a sequence of simple functions.”

Proof. Let us assume that f(x) >0 and x ¢ E . Construct a sequence
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i-1 i )
fi(x) = < on forz—nﬁf(x)<2—n,l—1,2,...,n2

n for f(x)=n

for every ns N.
If we take n = 1, then

=1 ool i
= -1, i

f=1 5 o=t <.i=12
1 for f(x)>1

0 forOsf(x)<%
1

That is, fi(x) = % fOfESf(X)<1
1 forf(x)>1

Similarly taking n = 2, we obtain

L e L B
4 4

f(x) =
2 for f(x)>2
That is,
1

0 for0< f(x)<z

1

=~ for =<f(x) <=

2 (x)
fz(X): ............................

Zforzsf(x)<2
4 4
2 for f(x)> 2

Similarly we can write f3(x) and so on. Clearly all f, are positive whenever f is positive and also it is clear that f, <
f.+1. Moreover f, takes only a finite number of values. Therefore {f,} is a sequence of non-negative, nondecreasing
functions which assume only a finite number of values.

En=f" [EL} = {XSE | -1 <f(x) < L}
2" 2" 2" 2"

E,= f1[n, ] ={xsE|f(x)>n}
Both of them are measurable. Let
nzn -
I —

f,= z o e

i=1

Let us denote

and

LT,

foreveryne N.
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n2n -
| — . . . .
Now Z—nXE is measurable, since E has been shown to be measurable and characteristic function of a
nj I
i=1 '
measurable set is measurable. Similarly XE, is also measurable since E, is measurable. Hence each f,, is measurable.
Now we prove the convergence of this sequence.

Let f(X) <o . Thatis f is bounded. Then for some n we have

2n Sf(X)<—n
- |2n1_|2n1£f( )_Iznl 2Ln_lz—nl
-1 1
= 0 < f(x) - <—
n 2n

= 0<f(X) - f.(x) < zin (by the def of (X))

U

f(x) = £,(x) < €
= lim f,(0) = f(x)

n—o0
and this convergence is uniform.

Let us suppose now that f is not bounded. Then since
fa(x) =n for f(x) = n
lim f,(x) = o="1(x)
n—o0
When we do not assume non-negativenss of the function then since we know that f* and f ~ are both non-negative,

we have by what we have proved above
+

f=1lim¢,x.. (i)
nN—o0
f= limy(x) ... (ii)
N—o0
where ¢',(x) and ¢""(X) are simple functions. Also we have proved already that
+
f=f- f

Now from (i) and (ii) we have
+
f— f=lim¢',() - lim ¢ (x)
n—o0 n—o0
1im (¢'s(x) = ¢"(x))
n—o0
lim ¢,(x)
n—o0

(since the difference of two simple functions is again a simple function). Hence the theorem.

Littlewood’s three principles of measurability
The following three principles concerning measure are due to Littlewood.
First Principle. Every measurable set is a finite union of intervals.

Second Principle. Every measurable function is almost a continuous function.

Third Principle. If {f,} is a sequence of measurable function defined on a set E of finite measure and if f,(x) — f(x)
on E, then f,(x) converges almost uniformly on E.

First of all we consider third principle. We shall prove Egoroff’s theorem which is a slight modification of third
principle of Littlewood’s.
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Theorem 11(Egoroff’s Theorem). Let {f.} be a sequence of measurable functions defined on a set E of finite
measure such that f,(x) — f(x) almost everywhere. Then to each € > 0 there corresponds a measurable subset E, of E

such that m Eg < e and f,(x) converges to f(x) uniformly on E,.

Proof. Since f,(x) — f(x) almost everywhere and {f.} is a sequence of measurable functions, therefore f(x) is also a
measurable function. Let

H={x]| lim f,(x) =f(x) }
nN—o
Clearly measure of E-H is zero.
For each pair (k, n) of positive integers, let us define the set
pd 1
Ew= [ X Ifn(¥) - ()| < Pa

m=n
(Since each f,—f is a measure function, the sets Ey, are measurable).

Then for each k, if we put

0
E = U Ekn
n=1
Then it is clear that
0
E'=|JE, oH
n=1
In fact, if xe Hthenxs E'= HcFE .
We have also
= 1
Exoeny = [ X1 Ifn(9) = T001 < =}
m=n+1 k
Clearly

1
Ein = Exeny 0 {X [ [fa(X) = F(X)] < E}

Hence Ey.1) cannot be a proper subset of Ey,. That is,
EimcC Ek(n+1)
Thus for each k the sequence [Ey,] is an expanding sequence of measurable sets. Therefore

lim m (Ex,) = m( OEkn )
n—>e n=1
=>m(H) =m(E),
whence
limm(Eg,)=0. (i)

Thus, given € >0, we have that for each k there is a positive integer n, such that

Im Eg, —0]< — N
2

ie. Im Egal< =, nzn (ii)

2
Let

o0

EozﬂEknk,
k=1

then Ey is measurable and

m EC:m(nEknk)C
k=1
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m(UEﬁnk)
k=1

<>m Eﬁnk
k=1
- € o
= Zz—k (using (ii))
k=1
€ o L
= — =e.
a2k

It follows from the definition of Ey, that for all m > n,,
1
[ fn(¥) = (X) | < K (iii)

for every x Eknk . Since Ey ¢ Eknk for every k, the condition m > ny yields (iii) for every x € E;. Hence f,(x) >
f(x) uniformly on E,. This completes the proof of the theorem.

Now we pass to the second principle of Littlewood. This is nothing but approximation of measurable functions by continuous
functions. In this connection we shall prove the following theorem known as Lusin Theorem after the name of a Russian
Mathematician Lusin, N.N.

Theorem 12 (Lusin’s Theorem). Let f be a measurable function defined on [a, b]. Then to each € > 0, there corresponds a

c . .
measurable subset Ej of [a, b] such that m EO < € and f is continuous on E,.

Proof. Let f be a measurable function defined on [a, b]. We know that every measurable function is the limit of a sequence
{0.(x)} of simple functions whose points of discontinuity form a set of measure zero. Thus we have

lim da(x) =f, xe[a, b]
n—

By Egoroff's theorem, to each € > 0 there exists a subset E; of [a, b] such that m ES < € and ¢,(x) converges to f(x) uniformly on
Eo,. But we know that if {¢,(x)} is a sequence of continuous function converging uniformly to a function f(x), then f(x) is continuous.

Therefore f(x) is continuous on E,. This completes the proof of the theorem.

Theorem 13. Let f be a measurable function defined on [a, b] and assume that f takes values £ « on a set of measure zero.
Then given € > 0 we can find a continuous function g and a step function h such that
|[f-g] <e, (Fh<e,
except on a set of measure less than € .

Proof. Let H be a subset of [a, b] where f(x) is not £ o . Then by the hypothesis of the theorem mH = m( [a, b]). We know that
every measurable function can be expressed as a almost everywhere limit of a sequence of step functions which are continuous
on a set of measure zero.

That is, we can find a sequence of step functions such that
lim ¢,(x) = f(x) a.e. onH.
nN—o

Let F = H such that ¢,(x) — f(x) and is continuous everywhere on F.

By Egoroff's theorem for a given € > 0 we can find a subset F' = H such that ¢,(x) — f(x) uniformly on F’ and
ME-F) < e
But we know that if {f.} is a sequence of continuous function converging uniformly to a function f(x), then f(x) is continuous.
Therefore f(x) is continuous on F'.

Define a continuous function g(x) on [a, b] such that

OifxeF
glx) = . ,
f(x)if xeF
Therefore on F' we have
l-gl < <

We have already shown that
m([a, b]-F)<e.
Also we have shown that ¢,(x) - f(x) where ¢,(x) is a sequence of step function, so f(x) is also a step function. Hence the
theorem.
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In order to prove the first principle of Litlewood we prove two theorems on approximations of measurable sets.

Theorem 14. A set E in R is measurable if and only if to each € > 0, there corresponds a pair of sets F, G such that Fc Ec G, F
is closed, G is open and m(G-F) < € .

Proof. Sufficiency :- Taking € = —, let the corresponding pair of sets be F,, G, with
1
m(Gn_ Fn) < —

n
Let

x=UFr, Y= ()G
; [ 150
It follows that Y-X « G,-F, and

1
m(Y-X) <m(G,-F,)) < —
n

so that
m(Y-X) = 0.
Since
E-Xc Y-X,
so
m(E-X) = 0.

Therefore, E - X is measurable.

But E = (E-X) U X . Therefore E is measurable, since X is measurable and E-X is measurable.
Necessity. We now assume that E is measurable. We first prove this part under the assumption that E is bounded. Since E is
measurable and bounded, we can choose an open set G o E such that

S
m(G) < m(E) + — (i)
Choose a compact (closed and bounded) set S > E , and then choose an open set V such that  S-Ec< V and
S
m(V) < m (S-E) + E (ii)

Let F = S-V. Then F is closed (since S-V = S ~n V¢ which is closed being the intersection of closed sets) and F c E. We have
m(F) = m(S) - m(S V)
2 m(S) - m(V)

> m(S) - m(S-E) - % (Using (ii))

(E) < (iii)
= m(E)- — iii
2

Then
m(G—F) = m(G) - m(F)
= m(G) - m(E) + m(E) -m(F)
S S (usi (i) and (iii))
< — 4+ — =€ usin 1) an m
272 °

This finishes the proof for the case in which E is bounded.

Now, let E be the measurable but unbounded. Let
/ S, ={x||x|£n} neZ
E-| =En S]
E,=En(S,-S.1), n=2.

Then
e= JE, .
n

where each E, is bounded and measurable.

Using what has already been established, let F,, G, be a pair of sets such that F, c E, = G,, F,, is closed, G, is open, and m(G,—F,)
S
< o tetF= | JF,. 6= J&,. ThenGFc|] (GF)andso
n n n
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m(G-F) < m{| J(G, - FJ)}
n

n 2"
We see that G is open and that F ¢ E = G, so all that remains to prove is that F is closed. Suppose {x;} is a convergent sequence
(say x; = x) with x; € F for each i. Then {x} is bounded and so is contained in Sy for certain N. Now F, = S,—-Syif n > N .

N N
Therefore, x; € U Fn for each i. But then the limit x is in U F , for this last set is closed. Therefore F is closed. This finishes
n=1L

n=1
the proof.

Definition. If A and B are two sets, then

AAB= (A-B)u (B-A).
N

Theorem 15. If E is a measurable set of finite measure in R and if € > 0, there is a set G of the form G = U |n where |y, |, ,...,
n=1

Iy are open intervals, such that m(EAG) < € .
Proof. Let us assume at first that E is bounded. Let X be an open interval such that E = X. There exist Lebesgue covering {l,} and
{J,.} of E and X-E respectively such that

Z||n|<m(e)+i,
- 3
S

J | <mx-g)+ —,
13, .

S
and such that each |, and J, is contained in X. Choose N so that Zl | n | < 5 and define sets G, H, K as follows
n>N

N
o=, 1v=Ul, . x=6~ [JJ,
=1 n>N n

Observe that E-G = H and G-E = K so that E A G = Hu K and therefore
m(EAG) < m(H v K) £ m(H) + m(K)

We know that m(H) < z m(l n)
n>N

= Z“nl

n>N

< (by our choice)

<
3

S
Hence it suffices to prove that m(K) < ? . Since

k=6nJJ,
n

=uGnl,

therefore m(K) = z M (G ~ J,). So we seek an estimate of z m(G n J,).
n

Now we can see that

n
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X=[UIH]U[U(‘]n —G)] '

whence

mx) =m{{J1,1+m 1, —G)]
<31, [+ m(I, —G)

We also have

DL T+2019, |<m(E)+m(X—E)+2—3E

(X) =
=mX + —,
3

whence

2¢
Zl In |+Z|‘]n |<Z| In |+Zm(‘]n _G)+_
n n n n 3
and therefore, since J, = (J,-G)u (J, » G),

mK) < > mGnJ,) =>mJ,)->mJ,-G)

2¢
< —
3
Hence when E is bounded
e 2¢
m(EAG) < § + — =€

3
For the general case, let
S.={x | Ix| <n},
T,=5
T,=S-S., n=2
LetE,=E~S,. Then

- JEAT)
i=1

o0
k= (JENT)
i=n+1
Because m(E) < +«, we have

o0
m(E-E,) = Zm(E ﬁTi )—> Oas n— .
i=n+l
But EAE, = E-E,(since EAE, = (E-E,) u (E,—E) and E,—E is empty) and so m(EAE,) — 0. Using what has already been proved we can

find a sequence G, which is finite union of open intervals such that m(E, AG,) < — . Now the following inequality is true.

m(EAG,) < m(EAE,) + m(E,AG,),
since EAG, = (EAE,) u (E,AG,) . We see therefore that m(EAG,) - 0. If € > 0, we shall have m(EAG,) < e for a suitable value of
n, and then G, will serve our purpose. This completes the proof of the theorem.

Theorem 16. Let € be a set with m* E < « . Then E is measurable iff given € > 0, there is a finite union B of open intervals such
that
m*E AB) < €

Proof. Suppose E is measurable and let € > 0 be given. The (as already shown) there exists an open set O o E such that m* (O
S
E) < —. As m*E is finite, so is m*O. Since the open set O can be written as the union of countable (disjoint) open intervals {I;},

there exists an n ¢ N such that
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z |(||)<E (In fact m* O = Zl(li)<003 z |(||)<§ because m* O < )

i=n+1 2 i=n+1 i=n+1
n
Set B = Uli . Then
i

EAB= (E-B)uU(B\E)c (O\B)u (O\E)
Hence

m*EaB) <m* (| JI;)+m*O\E) < §+
i=n

N M

n
Conversely, assume that for a given € > 0, there exists a finite union B = U Ii if open intervals with m* (E AB) < € . Then
i=n
using “Let € be any set. The given € > 0 there exists an open set O o E such that m* O < m* E + € there is an open set O E
such that
m*O<m*E+ € (i)
If we can show that m* (O — E) is arbitrary small, then the result will follow from “Let E be set. Then the following are equivalent
(i) E is measurable and (ii) given € > 0 there is an open set O o E such that m * (O —E) < €”.
Write

S = Lnj(li n0)
i=1

Then S < B and so
SAE=(E\S)U(S\E)c(E—S)v (B—E).
However,
EN\S=(EnO)u (EnB)=E—B, because EcO.
Therefore
SAE c(E—B)U(B—E) = EAB,
and as suich m* (SAE) < €. However,

EcSU(SAE)
and so
m*E<m*S + m*(SAE)
<m*S + e (i)
Also
O—E =(0-S)uU(SAE)
Therefore
m*(O\E)<m*O-m*S+ e
<M*E+e-m*S+e (using (i)
<mM*S+e+e-m*S+e (using (ii)
<mM*S+e+e-m*S+e
=3e.

Hence E is measurable.
[13 : bE
Convergence in Measure

Definition. A sequence < f,, > of measurable functions is said to converge to f in measure if, given €> 0, thereisan N
such that for all n > N we have
m{x [f(x) - f,(X)| > e } < €.

F. Riesz Theorem

Theorem 17 (F. Riesz). “Let < f, > be a sequence of measurable functions which converges in measure to f. Then
there is a subsequence < f,x > which converges to f almost everywhere.”

Proof. Since < f, > is a sequence of measurable functions which converges in measure to f, for any positive integer k
there is an integer ny such that for n > n, we have

1 1
m{x | f,(x) - f(x) | = 2_k}< 2_k
Let



123

_ 1
Ec={x|If, (x)-f()|= 2—k}

Thenifx & | JE, , we have
k=i

1 .
1, (X)—f(X)|<—2k fork >i
and so fnk (x) = f(x)

Hence f, (x) —f(x) foranyx ¢ A= ﬂU =

i=1 k=i
But
mA<m {UEK}
k=i
X 1
= zm Ek = V1
v ok-1

Hence measure of A is zero.
Example. An example of a sequence < f,, > which converges to zero in measure on [0, 1] but such that < f,(x) > does
not converge for any x in [0, 1] can be constructed as follows :

Letn=k+2",0<k<2", and setfo(x) = 1ifxe [K27", (k+1)2™] and f,(x) = O otherwise. Then

2
m{x | [fa(X)|> € } < o
and so f, — 0 in measure, although for any x ¢ [0, 1], the sequence < f,(X) > has the value 1 for arbitrarily large values
of n and so does not converge.

Definition. A sequence {f.} of a.e. finite valued measurable functions is said to be fundamental in measure, if for every € > 0,
m({x: |[f,(x) = f.(x)| = €}) > 0 as n and m—<ec.

Definition. A sequence {f,} of real valued functions is said to be fundamental a.e. if there exists a set E, of measure
zero such that, if x ¢ Egand € > 0, then an integer ng = ny= (X, €) can be found with the property that
[fa(X) — f(X)| < €, whenevern=ngand m=ny .

Definition. A sequence {f.} of a.e. finite valued measurable functions will be said to converge to the measurable
function f almost uniformly if, for every € > 0, there exists a measurable set F such that m(F) < € and such that the
sequence {f.} converges to f uniformly on F°.

In this Language, Egoroff’s Theorem asserts that on a set of finite measure convergence a.e. implies almost
uniform convergence.

The following result goes in the converse direction.

Theorem 18. If {f,} is a sequence of measurable functions which converges to f almost uniformly, then {f.}
converges to fa.e.

Proof. Let F, be a measurable set such that m(F,) < %and such that the sequence {f,} converges to f uniformly on
o0
Fy.n=12,... IfF=[F, then
n=1
1
m(F) < p(Fy) < P

so that m(F) = 0, and it is clear that, for x € F°, {f,(x)} converges to f(x).

Theorem 19. Almost uniform convergence implies convergence in measure.
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Proof. If {f,} converges to f almost uniformly, then for any two positive numbers € and 3 there exists a measurable
set F such that m(F) < & and such that [f,(x) — f(x)] < €, whenever x belongs to F® and n is sufficiently large.

Theorem. If {f,} converges in measure to f, then {f,} is fundamental in measure. If also {f,} converges in measure
tog,thenf=g .ae.

Proof. The first assertion of the theorem follows from the relation

X 60) — Fn(0] 2 €} € X 1,00 — £ = %} OAX: () — X)] 2 %}

To prove the second assertion, we have

X If(X) - 9091 = €} € {x: Fo(x) — ) | = %}u x: ,(0-009| 2 %}

Since by proper choice of n, the measure of both sets on the right can be made arbitrarily small, we have
m{x: [f(x) —g(x)|=€}) =0

for every € > 0 which implies that f = g a.e.

Theorem 20. If {f.} is a sequence of measurable functions which is fundamental in measure, then some
subsequence {f, }is almost uniformly fundamental.

Proof. For any positive integer k we may find an integer n(k) such that if n > n(k) and m> n(k), then
1 1
m({x : [fa(X) = fm(X)[ = oK B < oK

We write B B
np= n(l),n;=(n+1) v n(2), n3=(+1) v n(3),...;thenn; <Ny <nz<...,
So that the sequence {fnk }is indeed on subsequence of {k.}. If

1
Be= 01y, 09 ~Fo 0 0012 30
and k <i<j, then, for every x which does not belong to Ey \ Eyxs1 v Exsn U...., we have

= 1 1
oy 00 =T, 0O X o 00~ Fop 001 =
m=l m=i
so that, in other words, the sequence {f,, }is uniformly fundamental on
E\(Exv Ex1 v ....). Since
& 1
m(Ek UEmu...)< Zm(Em) < F

m=k
This completes the proof of the theorem.

Theorem 21. If {f.} is a sequence of measurable functions which is fundamental in measure, then there exists a
measurable function f such that {f,} converges in measure to f.

Proof. By the above theorem we can find a subsequence {fnk } which is almost uniformly fundamental and therefore
fundamental a.e. We write f(x) = I!im fnk (x) for every x for which the limit exists. We observe that, for every € >
—>0

0,
0 R,00-T001 = €] = {x: 11,00 ~ F, 09I %}u o 1fn, (00012 %}.

The measure of the first term on the right is by hypothesis arbitrarily small if n and ny are sufficiently large, and the
measure of the second term also approaches 0 (as k—), since almost uniform convergence implies convergence in
measure. Hence the theorem follows.

Remark. Convergence in measure does not necessarily imply convergence pointwise at any point. Let
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E [r—l L =12...25 k=12,
,k: _’_ r: bk AR} b = bt A b
Ttk ok

and arrange these intervals as a single sequence of sets {F,} by taking first those for which k =1, then those with k = 2,
etc. If m denotes Lebesgue measure on [0,1], and f,(X) is the indicator function of F,, then for 0 < € < 1,
X f()= €} =F,
so that, for any € >0, m {x: [f,(X) | = €} <m(F,) — 0. This means that f, — 0 in measure in [0, 1]. However, at no
point x € [0, 1] does f,(xX) — 0; in fact, since every x is in infinitely many of the sets F, and infinitely many of the sets
(©—F,) we have
liminff,(x) =0, limsup fy(x) =1 forall xe [0, 1].
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PART B : “THE LEBESGUE INTEGRAL”

4.2. The shortcomings of the Riemann integral suggested the further investigations in the theory of integration. We
give a resume of the Riemann Integral first.

Let f be a bounded real-valued function defined on the interval [a,b] and let

a=§ <& <...<&=b
be a partition of [a,b]. Then for each partition we define the sums

s= 3 —& )M
i=1

and
n
s= > (& —&i)mi,
i=1
where
M= sup f(x), mi= inf f(x)
Ej_1<X<Ej Ci1<X<

We then define the upper Riemann integral of f by

b
R [f(dx= infs
a
With the infimum taken over all possible subdivisions of [a,b].

Similarly, we define the lower integral
b

ij (X)dx =sups.
a

The upper integral is always at least as large as the lower integral, and if the two are equal we say that f is Riemann
integrable and call this common value the Riemann integral of f. We shall denote it by

b
R jf (x) dx
a

To distinguish it from the Lebesgue integral, which we shall consider later.

By a step function we mean a function y which has the form

w(X) =¢j, &1 <x<§
for some subdivision of [a, b] and some set of constants c; .

The integral of y(x) is defined by
b

n
[ woodx = 3¢ 6.
a i=1
With this in mind we see that

b b
R [f(x)dx=inf[ w(xdx

for all step function w(x) = f(x).
Similarly,

b b
R If (x) dx = sup I d(x)dx
a a

for all step functions ¢(x) < f(x).

Example. If
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{:1ifxisraﬁonw
f(x) =

0 if xisirrational’
then

b b
R [f(x)dx=b-aandR [f (x)dx=0.
a a
Thus we see that f(x) is not integrable in the Riemann sense.
4.3. The Lebesgue Integral of a bounded function over a set of finite measure

The example we have cited just now shows some of the shortcomings of the Riemann integral. In particular, we
would like a function which is 1 on a measurable set and zero elsewhere to be integrable and have its integral the
measure of the set.

The function yg defined by

- 1 xeE
X) =
te OxeE

is called the characteristic function on E. A linear combination

n
o(x) = Z];aiXEi ()
1=
is called a simple function if the sets E; are measurable. This representation for ¢ is not unique. However, we note
that a function ¢ is simple if and only if it is measurable and assumes only a finite number of values. If ¢ is a simple
function and [a,..., a,] the set of non-zero values of ¢, then

0= D 3 %A,
where A; = {x | $(x) = &} . This representation for ¢ is called the canonical representation and it is characterised
by the fact that the A; are disjoint and the a; distinct and nonzero.

If ¢ vanishes outside a set of finite measure, we define the integral of ¢ by

i=1

n

when ¢ has the canonical representation ¢ = ZaiXAi . We sometimes abbreviate the expression for this integral to |
i=1

¢. If E is any measurable set, we define

I(b = M)XE .
E

It is often convenient to use representations which are not canonical, and the following lemma is useful.

Lemma. If E;, E,,..., E, are disjoint measurable subset of E then every linear combination

n
o= D CiXe,
i1

with real coefficients ¢y, C,...,c, is a simple function and
n

J.(I): chmEI

i=
Proof. It is clear that ¢ is a simple function. Let ay, a,,..., a, denote the non-zero real number in ¢(E). For each j =
1,2,...,nlet

Aj = U Ei
ci=a;

Then we have
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A =47 (@) = {x] ¢(x) = a}

and the canonical representation
n
6= a%n
=L
Consequently, we obtain

n

-1

=>am [ JE]

=l Cj=a;

=>a; » mE; (Since Eare disjoint, additivity of measures applies)

=1 Ci=a;

n
=1
This completes the proof of the theorem.

Theorem 22. Let ¢ and y be simple functions which vanish outside a set of finite measure. Then
[(@p+by)=al¢ +bly,
and, if ¢ >y a.e, then
fozly.

Proof. Let {A} and {B;} be the sets which occur in the canonical representations of ¢ and . Let A, and B, be the
sets where ¢ and vy are zero. Then the sets E, obtained by taking all the intersections A; » B; form a finite disjoint
collection of measurable sets, and we may write

N
¢= ZakXEk
k=1

N
W= ZkaEk7
k=1

and so
N N
ap+by=a y ayye +b D byxe,
k=1 k 1
N
Z kXg, T zbkaEk
5
= > (aa, +bby ) e,
k=1
Therefore
N
(ap+by) = > (aa, +bb, )mE,
k=1

N

N
Z aa)me, + kZ(bbk)mEk
)

N N

=a » a,mE,+ b> b,mE,

k=1 k=1
=alop+bly.

To prove the second statement, we note that

I -ly=I-w =0,
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since the integral of a simple function which is greater than or equal to zero almost everywhere is non-negative
by the definition of the integral.

Remark. We know that for any simple function ¢ we have
N
¢ = zaiXEi
k=1
Suppose that this representation is neither canonical nor the sets E;’s are disjoint. Then using the fact that
characteristic functions are always simple functions we observe that
Jo=lar g, +Ta X, a0 Ag,
:al.[ XE1+ az.[ XE2+ ds XE3+ +anf XEn
=amE; + a;mE, +...+...+amE,

N
k=1
Hence for any representation of ¢, we have
N
J.(I) = Z ai mEI
k=1

Let f be a bounded real-valued function and E a measurable set of finite measure. By analogy with the Riemann integral we
consider for simple functions ¢ and y the numbers

ot o

and

sup [ ¢,
o<f g
and ask when these two numbers are equal. The answer is given by the following proposition :

Theorem 23. Let f be defined and bounded on a measurable set E with mE finite. In order that

inf j\y (X)dx = SUpI(I)(x)dx
S“VE f>y g

for all simple functions ¢ and v, it is necessary and sufficient that f be measurable.

Proof. Let f be bounded by M and suppose that f is measurable. Then the sets

E, = {x|@2f(x)>w}, -n<K<n,
n

n
are measurable, disjoint and have union E. Thus
n
Z mE k = mE
k=—n

The simple function defined by

M n
ol = — > Kyg, ¥
N k=—n

and
M D
bl = — > (K=Dyg, &
N k=n
satisfy
n(x) < F(x) < o (x)
Thus

n
ot [W(dX s [, ()dx= 0 3 km E,
E E N k=—n
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and
M n
sup [(X)dx = [, (X)dx = = > (k-1)m E, ,
E E N k=—n
whence

M & M
o<inf [W(X)dX - sUP [P padks — > m E, =—mE.
E E N k=—n n

Since n is arbitrary we have

inf [y(x)dX -sup [(x)dx =0,
E E

and the condition is sufficient.
Suppose now that

inf [\ (ax = SUP ¢ (elx.
w=r ¢<f E
Then given n there are simple functions ¢, and v, such that

Onlx) < flx) < wio(x)
and

1
(4.3.1) Fya(x) dx =T d,()dx < —
n

Then the functions

y* = infy,

and ¢* = sup ¢,
are measurable and

8*(x) < £ < wH(X) -
Now the set

A= {x| ¢*(x) < w*x)}
is the union of the sets

A x| ¢*(x) < w*(x) - —}
A%

A%
But each A, is contained in the set {x | ¢,(x) < w,(x) —— }, and this latter set by (4.3.1) has measure less than — . Since n is
n
arbitrary, mA, = 0 and so mA = 0. Thus ¢* = y* except on a set of measure zero, and ¢* = f except on a set of measure zero.
Thus f is measurable and the condition is also necessary.

Definition. If f is a bounded measurable function defined on a measurable set E with mE finite, we define the Lebesgue integral
of f over E by

[E0qdx = inf [y (x)dx
E E

for all simple functions w > f .
By the previous theorem, this may also be defined as

[f(x)dx = sup [o(x)dx
E E
for all simple functions ¢ < f.

We sometimes write the integral as I f. IfE = [a, b] we write If instead of jf
E a [a,b]
Definition and existence of the Lebesgue integral for bounded functions.
Definition. Let F be a bounded function on E and let E, be a subset of E. Then we define MIf, EJ] and mlf, E,] as

MIf; E] = LU.D f(x)
XeEk
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mlf, E] = 0.1.b )
xeEk
Definition. By a measurable partition of E we mean a finite collection P = {E;, E,,..., E,}of measurable subsets of E such that

n
JEi =¢
k=1

and such that m(E;~E) =0 (j,k=1,...,n, [zk).
The sets E;, E,,.., E, are called the components of P.

If P and Q are measurable partitions, then Q is called a refinement of P if every component of Q is wholly contained in some
component of P.
Thus a measurable partition P is a finite collection of subsets whose union is all of E and whose intersections with one another
have measure zero.

Definition. Let f be a bounded function on E and let P = {E,,..., E,} be any measurable partition E. We define the upper sum U[f,
P] as

n
uf; Pl = > M[f;E, 1mE,
k=1
Similarly, we define the lower sum L[f; P] as

n
us P = > m[f;E ImE,
k=1
As in the case of Riemann integral, we can see that every upper sum for f is greater than or equal to every lower sum for f.
We then define the Lebesgue upper and lower integrals of a bounded function f on E by

inf u [f; P) and sup L[f; P]
P

respectively taken over all measurable position of E. We denote them respectively by
If and J-f
E E
Definition. We say that a bounded function f on E is Lebesgue integrable on E if
[f=]f
E E
Also we know that if \y is a simple function, then
n
I W= amE,
E k=1

Keeping this in mind, we see that

jf = inf j\y(x)dx
E E

for all simple functions w(x) 2 f(x). Similarly

[f =sup [$(x)dx
E E

for all simple functions §(x) < f(x).
Now we use the theorem :

“Let f be defined and bounded on a measurable set E with mE finite. In order that

inf [y(x)dx = sup [$(x)dx
fy E f2¢
for all simple functions ¢ and v, it is necessary and sufficient that f is measurable.”
And our definition of Lebesgue integration takes the form :

“If f is a bounded measurable function defined on a measurable set E with mE finite, we define the (Lebesgue) integral of f over E
by
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[f(x)dx =inf [y (x)dx
E E

for all simple functions y > f.”
The following theorem shows that the Lebesgue integral is in fact a generalization of the Riemann integral.

Theorem 24. Let f be a bounded function defined on [a, b]. If f is Riemann integrable on [a, b], then it is measurable and
b b
R [F(x)dx = [f(x)dx
a a

Proof. Since fis a bounded function defined on [a, b] and is Riemann integrable, therefore,

R?f(X)dX = Lr;t ?cb(x)dx

and

b b
R ! f(x)dx = ilg ! W(x)dx

for all step functions ¢ and y and then

b b b b
R { f(x)dx =R { f(x)dx :>i¢rg { H(x)dx = iug Jw(x)dx (i)

<t 3

Since every step function is a simple function, we have
b b b b
— i <
R ! f (x)dx i‘i': ! y(x)dx < 'Ji'; ! o(x)dx <R ! f (x)dx
Then (i) implies that
b b
su X)dx = inf | ¢(x)dx
p (o =it [ ()

and this implies that f is measurable also.

Comparison of Lebesgue and Riemann integration

(m The most obvious difference is that in Lebesgue’s definition we divide up the interval into subsets while in the case of

Rimann we divide it into subintervals.

(2) In both Riemann’s and Lebesgue’s definitions we have upper and lower sums which tend to limits. In the Riemann case
the two integrals are not necessarily the same and the function is integrable only if they are the same. In the Lebesgue
case the two integrals are necessarily the same, their equality being consequence of the assumption that the function is

measurable.

(3) Lebesgues’s definition is more general than Riemann. We know that if function is the R-integrable then it is Lebesgue
integrable also, but the converse need not be true. For example the characteristic function of the set of irrational points

have Lebesgue integral but is not R-integrable.

Let i be the characteristic function of the irrational numbers in [0,1]. Let E, be the set of irrational numbers in [0,1], and let E, be
the set of rational numbers in [0,1]. Then P = [E;, E;] is a measurable partition of (0, 1]. Moreover, ¥ is identically 1 on E; and ¢

is identically 0 on E,. Hence M[y, E;] = m[y, E;] = 1, while M[y, E;] = m[y, E;] = 0. Hence U[y, P] = 1.mE; + 0.mE, = 1.
Similarly L(x, P = 1.m E, + 0. ME, = 1. Therefore, U [y, P] = L[y, P].
Therefore, it is Lebesgue integrable.

For Riemann integration
M, J1 =1, mly, J]=0
for any interval J < [0, 1]
Ul =1, Lz =0.
*. The function is not Riemann-integrable.

Theorem 25. If f and g are bounded measurable functions defined on a set E of finite measure, then

(i) [af =aff
E E



(ii)
(iii)

(iv)

v)
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[(f+a)=[f+]g
E E E

Iff<g a.e., then

E E
Iff =g a.e., then

[f=]o

E E

If A<f(x) < B, then

AmE < jfsBmE.
E

(vi) If A and B are disjoint measurable sets of finite measure, then
Jt=Jo+]t
AuB A B

Proof. We know that if y is a simple function then so is ay. Hence

y=>f

[af =inf [ay =ainf [y =a[f
E E war g E
which proves (i).

To prove (ii) let £ denote any positive real number. There are simple functions ¢ <f, y > f, £ < g and n > g satisfying

[o0)dx > [f-e, Jwydx < [f+e,
E E E E

[e(dx > [g-e, [n()dx < [g+e,
E E E E

Since ¢ + £<f + g < wy+n, we have

[E+a)=[@0+8)=[o+[e>[f+]g-2€
E E E E E

I(f+9)3I(W+H)ZIW+IH<If+I9+2€
E E E E E E
Since these hold for every € > 0, we have
[(f+0)=[f+]g
E E E

To prove (iii) it suffices to establish

[(g-f)=0
E
For every simple function y > g-f, we have > 0 almost everywhere in E. This means that
Iw >0
E
Hence we obtain
fg-f)= inf [y(x)dx=>0 (1)
d v2(g-) 3

which establishes (iii).
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Similarly we can show that

[(g-f)= sup [w(x)dx <0 @)
E w=(g-f) g
Therefore, from (1) and (2) the result (iv) follows.

To prove (v) we are given that
A<f(x)<B
Applying (iv) we get

[f(x)dx < [Bdx =B dx
E E E

= BmE
That is,
If < BmE
E
Similarly we can prove that If > AmE .
E
Now we prove (vi).
We know that
Aas = Aa T A
Therefore,
If = I Yas = I flxatrs)
AuB AuB AuB
= I fra + If 7B
AuB AuB

= If + If
A B
which proves the theorem.

Theorem 26 (Lebesgue Bounded Convergence Theorem). Let < f, > be a sequence of measurable functions defined on a set E
of finite measure and suppose that <f, > is uniformly bounded, that is, there exists a real number M such that |f,(x)| <M forall n

eNandallxsE If lim f.(x) = f(x) for each x in E, then
n—oo

[ = lim [f,.
E E

n—w

Proof. We shall apply Egoroff’s theorem to prove this theorem. Accordingly for a given € > 0, there is an N and a measurable

set Ey < E such that mEy® < and for n > N and x ¢ E; we have

S
[fax) = f(x) | < ——
T omE)

Then we have

| Jf TR =) I, —F
E E E E

= Ilfn_f|+I |fn_f|

E c
0 E0
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< — = m(Ey)+—.2M
2m(E) aM
< —+—-=€
Hence
[f, > [f.
E E

The integral of a non-negative function
Definition. If f is a non-negative measurable function defined on a measurable set E, we define
[f =supfh,
E h<f E

where h is a bounded measurable function such that m{x|h(x) # 0} is finite.

Theorem 27. If f and g are non-negative measurable functions, then

(i Icf:CIf, ¢>0
E E
(i) [E+9)=[f+]g
E E E
and
(iii) Iff< ga.e., then
[f<fg.
E E
Proof. The proof of (i) and (iii) follow directly from the theorem concerning properties of the integrals of bdd functions.
We prove (ii) in detail.
If h(x) < f(x) and k(x) < g(x), we have h(x) + k(x) < f(x) + g(x), and so
[(h+K) < [(F+0)
E E
. fh+fk<[(f+0g)
E E E
Taking suprema, we have
(iv) [f+[g<[(f+0)
E E E

On the other hand, let /be a bounded measurable function which vanishes outside a set of finite measure and which is not
greater than (f+g). Then we define the functions h and k by setting
h(x) = min(f(x), Ax))
and
k(x) = Ax) - h(x)
We have
h(x) < f(x) ,
k(x) < glx) ,
while h and k are bounded by the bound /and vanish where /vanishes. Hence

il :£h+£ks£f+£g

and so taking supremum, we have
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sup < [f+g
I<f+g E E
that is,

o [f+[g=[(f+g)
E E E

From (iv) and (v), we have
[E+g)=Jf+]g.
E E E

Fatou’s Lemma. If < f, > is a sequence of non-negative measurable functions and f,(x) — f(x) almost everywhere on a set E,
then

[f <lim][f,
E E
Proof. Let h be a bounded measurable function which is not greater than f and which vanishes outside a set E’ of finite measure.
Define a function h, by setting
h.(x) = min{h(x), f,(x)}
Then h, is bounded by the bounds for h and vanishes outside E'. Now h,(x) — h(x) for each x in E'.
Therefore by “Bounded Convergence Theorem” we have

fh=[h=lim[h, <lim[f,
E E' E' E

Taking the supremum over h, we get
[f <lim[f,
E E

Theorem 28 (Lebesgue Monotone Convergence Theorem). Let < f, > be an increasing sequence of non-negative measurable
functions and let f = lim f,. Then
If = lim [f,

Proof. By Fatou’s Lemma we have
fr< limis,

But for each n we have f, < f, and so | f, < [f . But this implies

limif,<lf

Hence
[f= lim[f,

Definition. A non-negative measurable function f is called integrable over the measurable set E if
If <o
E

Theorem 29. Let f and g be two non-negative measurable functions. If f is integrable over E and g(x) < f(x) on E, then g is also
integrable on E, and

[f-9)=]f-g
E E E
Proof. Since
[f=](F-0)+]g
E E E
and the left handside is finite, the term on the right must also be finite and so g is integrable.

Theorem 30. Let f be a non-negative function which is integrable over a set E. Then given € > 0 there is a 8 > 0 such that for
every set A c E with mA < 3 we have

If<e.
A
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Proof. If |f| <K, then

jfs IK=KmA
A A
S

Set 8 < — . Then

J"|:<K.E =e.
A

Set f,(x) = f(x) if f(x) < n and f,(x) = n otherwise. Then each f, is bounded and f, converges to f at each point. By the monotone

S S
convergence theorem there is an N such that IfN > Jf — E , and I(f — fN) < E . Choose 8 < m IfmA <35, we

E E E
have
[f = [(F-ra+ [fy
A A A
< I(f—fN)-i-NmA (since IfNSIN = NmaA)
E A A
S S
< —+—=€.

The General Lebesgue Integral

We have already defined the positive part f * and negative part f~ of a function as
f* =max (f, 0)

f = max(-f, 0)
Also it was shown that
f=f*-f
[fl =f*+ F
With these notions in mind, we make the following definition.

Definition. A measurable function f is said to be integrable over Eif f* and f are both integrable over E. In this case we define
[f=]fr-[f
E E E

Theorem 31. Let f and g be integrable over E. Then
(i) The function f+g is integrable over E and
[E+9)=[f+]g
E E E

(i) Iff<ga.e., then If < Ig
E E

If A and B are disjoint measurable sets contained in E, then

[f=[f+]f

AuB

(iii)

Proof. By definition, the functions f*, _f_, g*, g are all integrable. Ifh = f+g,thenh = (f*— f) + (g*— g) and hence h = (f* +
gt)-(f+ g). Sincef* + g* and f + g are integrable therefore their difference is also integrable. Thus h is integrable.
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We then have
[h=[{f" +9") - (F+9)]
E E
= [ +g") -] (F+0)
E E
[t +fo" - ]T-]o
E E E E
- (Jf" -[H+(o" [
E E E E
That is,
[E+9)=[f+]g
E E E

Proof of (i) follows from part (i) and the fact that the integral of a non-negative integrable function is non-negative.

For (iii) we have

If = IfXAuB

AuB
=[foa+ s
= [f+]f
A B
* It should be noted that f+g is not defined at points where f = « and g = —« and where f = —© and g = «. However, the set of

such points must have measure zero, since f and g are integrable. Hence the integrability and the value of [(f+g) is independent
of the choice of values in these ambiguous cases.

Theorem 32. Let f be a measurable function over E. Then f in integrable over E iff |f| is integrable over E. Moreover, if f is
integrable, then

| [fr< I

Proof. If fis integrable then both f * and f~ are integrable. But |[f| = f* + f~. Hence integrability of f* and f~ implies the
integrability of |f].

Moreover, if f is integrable, then since f(x) < |f()J§)| T || (x), the property which states that if f < g a.e. , then [f < [g implies that
F< 1] ()
On ther other hand since —f(x) < |f(x)| , we have
< [)f] (ii)
From (i) and (ii) we have
[if| < 1)) .
Conversely, suppose f is measurable and suppose |f| is integrable. Since
0<f*x) < |f(x)]

it follows that f * is integrable. Similarly f ™ is also integrable and hence f is integrable.

Lemma. Let f be integrable. Then given € > 0 there exists 8 > 0 such that | If | < € whenever A is a measurable subset of E

A
with mA < 3.

Proof. When f is non-negative, the lemma has been proved already. Now for arbitrary measurable function f we have f = f+ — f~
. So by that we have proved already, given € > 0, there exists 3, > 0 such that

S

+
/{f <2

when mA < §,. Similarly there exists 5, > 0 such that
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_ S
If <—,
A 2
when mA < §, . Thus if mA < 8 = min (5,, §,) , we have

= S S
| [E<[Ifl=[f +[f<Z+-=€
A A A A 2 2
This completes the proof.
Theorem 33 (Lebesgue Dominated Convergence Theorem). Let a sequence < f, >, n ¢ N of measurable functions be dominated
by an integrable function g, that is,

If.x)] <glx)
holds for every n ¢ N and every x ¢ E and let < f, > converges pointwise to a function f, that is, f(x) = lim f.(x) for almost all x in
n—o0
E. Then
[f=lim [f,
E "%
Proof. Since |f,| < g for every ns N and f(x) = lim f,x), we have |f| <g. Hence f, and f are integrable. The function g—f,, is

non-negative, therefore by Fatou’s Lemma we have

Jo-Jf=[(g-f)<lim[(g-f,)
E E E E

= [g—lim|[f,
E E
whence
[f =Tim]f,
E E
Similarly considering g + f, we get
[f <limff,
E E

Consequently, we have

[f=lim[f, .

E
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PART A : “DIFFERENTIATION AND INTEGRATION

The “fundamental theorem of the integral calculus” is that differentiation and integration are inverse processes. This general
principle may be interpreted in two different ways.
If f(x) is integrable, the function

X
Fix) = [f(t)dt (i)
a
is called the indefinite integral of f(x); and the principle asserts that
F'(x) = f(x) (i)
On the other hand, if F(x) is a given function, and f(x) is defined by (ii), the principle asserts that
X
[f(t)dt = F(x) - F(a) (i)
a

The main object of this chapter is to consider in what sense these theorems are true.
From the theory of Riemann integration (ii) follows from (i) if x is a point of continuity of f. For we can choose hg so
small that [f(t) — f(x)| < € for |t—X| < hy; and then
F(x +h —F(x) 1%
| ——————fI=1 f {f() - fCQ}dtf<e  (Jhl<ho),
h h s
by the mean-value theorem. This proves (ii).
We shall show that more generally this relation holds almost everywhere. Thus differentiation is the inverse of
Lebesgue integration.

The problem of deducing (iii) from (ii) is more difficult and even using Lebesgue integral it is true only for a certain class of

functions. We require in the first place that F'(x) should exist at any rate almost everywhere and as we shall see this is not
necessarily so. Secondly, if F'(x) exists we require that it should be integrable.

5.1. Differentiation of Monotone Functions

Definition. Let C be a collection of intervals. Then we say that C covers a set E in the sense of Vitali, if for each e
>0 and x in E there is an interval | ¢ C such that x ¢ I and I(l) < €.

Now we prove the following lemma which will be utilized in proving a result concerning the differentiation of
monotone functions.

Lemma 1 (Vitali). Let E be a set of finite outer measure and C a collection of intervals which cover E in the sense of
Vitali. Then given € > 0 there is a finite disjoint collection {l,,..., I} of intervals in C such that

N
m*[E — U|n]< €.
=1
Proof. It suffices to prove the lemma in the case that each interval in C is closed, for otherwise we replace each

interval by its closure and observe that the set of endpoints of Iy, 1,,..., Iy has measure zero.

Let O be an open set of finite measure containing E. Since C is a Vitali covering of E, we may suppose without loss
of generality that each | of C is contained in O. We choose a sequence < I,> of disjoint intervals of C by induction as
follows :
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Let I, be any interval in C and suppose I4,..., I, have already been chosen. Let k;, be the supremum of the lengths of
the intervals of C which do not meet any of the intervals I,...,I, . Since each I is contained in O, we have k, <m O <
" 1
oo . Unless E ¢ U |i , we can find I,y in C with I(l,+,) > E k, and ., disjoint from Iy, 1,,..., I, .
i=1
Thus we have a sequence < |, > of disjoint intervals of C, and since U I, c O, we have X I(I,) <m O <w. Hence
we can find an integer N such that

S0, <<
N+1 5
Let

N
R=E-JI,
i=1

It remains to prove that m*R < € .
N

Let x be an arbitrary point of R. Since U I, is a closed set not containing x, we can find an interval | in C which
i=1

contains x and whose length is so small that I does not meet any of the intervals Iy, I,,..., Iy . Ifnow I~ lj= ¢ fori<

N, we must have I(l) < ky < 2l (In+1). Since lim I(1,) =0, the interval I must meet at least one of the intervals I,. Let

n be the smallest integer such that | meets I, We have n> N, and I(l) < k,_; < 2I(l,)). Since xisin |, and I has a point

1 5
in common with 1,,, it follows that the distance from x to the midpoint of 1, is at most I(I) + E I(1,) < E I(1,).

Let J,, denote the interval which has the same midpoint as I, and five times the length of .. Then we have X
€ Jn. This proves

o0
Rc UJ n
N+1
Hence

Rz 31(3,)=5 S1(,)<<.

N+1 N+1

The Four Derivatives of a Function
Whether the differential coefficients

f(x +h) — f(x)
h

f'x) = lim
h—0

exists or not, the four expressions

D0 = i f(x+h)—Tf(x)
h—0+ h
D 100 = Fg,‘ f(x)-f(x—h)
D00 = lim f(x+h)—f(x)
h—>0+ h
Dfx= lim f(x)-f(x—h)
h—0+

always exist. These derivatives are known as Dini Derivatives of the function f.

D" f(x) and D, f(x) are called upper and lower derivatives on the right and D~ f(x) and D_ f(x) are called upper and
lower derivatives on the left. Clearly we have D* f(x) > D, f(x) and D f(x)= D_ f(x). If D* f(x) = D, f(x), the
function f is said to have a right hand derivative and if D™ f(x) = D_ f(x), the function is said to have a left hand
derivative.
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If
D" f(x) = D, f(x) = D~ f(x) = D_ f(x) # + o0, we say that f is differentiable at x and define f '(x) to be the
common value of the derivatives at x.

Theorem 1. Every non-decreasing function f defined on the interval [a, b] is differentiable almost everywhere in [a,
b]. The derivative f' is measurable and

b
[ ()dx <f(b) - f(a).

Proof. We shall show first that the points x of the open interval (a, b) at which not all of the four Dini-derivatives of f
are equal form a subset of measure zero. It suffices to show that the following four subsets of (a, b) are of measure
Zero:

A={xe(a b)|D_f(x) < D" f(x)},

B={xec(ab)|D:f(x)<D f(x)},

C={xe(a,b)|D_f(x)<D f(x)}

D={xe(a b)|D,f(x)<D"f(x) }.
To prove m* A =0, consider the subsets

Ay ={xe(ab)|D_f(x) <u<v<D"f(x)}
of A for all rational numbers u and v satisfying u < v. Since A is the union of this countable family {A,.}, it is
sufficient to prove m* (A,,) = 0 for all pairs u, v withu <v.

For this purpose, denote oo = m* (A,,) and let € be any positive real number. Choose an open set U > A, with m* U
<a+ e. Setxbe any point of A,, . Since D_f(x) < u, there are arbitrary small closed intervals of the form [x —h, x]
contained in U such that

f(x) — f(x—h) < uh.

Do this for all x ¢ A, y and obtain a Vitali cover C of A,,. Then by Vitali covering theorem there is a finite
subcollection {J3, J,..., J,}of disjoint intervals in C such that

n
m*(Auy\,— UJ|) <e
i=1
Summing over these n intervals, we obtain

STIF(x) —F(x; —h)] <u 3h,
i=1 i=1

<um*U
< u(ate)
Suppose that the interiors of the intervals J;, J,,..., J, cover a subset F of A,,. Now since D f(y) > v, there are
arbitrarily small closed intervals of the form [y, y+k] contained in some of the intervals J; (i=1, 2,..., n) such that
f(y+k) — f(y) > vk
Do this for all y € F and obtain a Vitali cover D of F. Then again by Vitali covering lemma we can select a finite
subcollection [Ky, Ko, ..., K] of disjoint intervals in D such that

m
m* [F— U Kil<e
i=1
Since m*F > a— €, it follows that the measure of the subset H of F which is covered by the intervals is greater than o
— 2e. Summing over these intervals and keeping in mind that each K; is contained in a J,, we have

) —F (% — )32 STF(Y + k)~ F(y,)]
i=1 i=1

m
>v Zki
i=1

>V (a—2€)
S0 that
v(a—2€) <u(o + €)
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Since this is true for every € > 0, we must have v o < ua. Since u < v, this implies that « = 0. Hence m*A =0.
Similarly, we can prove that m*B = 0, m*C = 0 and m*D = 0.
This shows that
f(x+h)—-f(x)
h

is defined almost everywhere and that f is differentiable whenever g is finite. 1f we put

gx)= lim
h—0

1
gn(X) = n[f (X + H) —f(x)] forxce[ah],

where we re-define f(x) = f(b) for x > b. Then g,(x) — g(x) for almost all x and so g is measurable since every g, is
measurable. Since f is non-decreasing, we have g, > 0 . Hence, by Fatou’s lemma

b ) b ) b 1
!g sll_mggn =lim n{[f(X+H)—f(X)]dx
_b+£ b
jn f(x)dx — [ (x)dx
1 a

a+—
n

1
§.
>

b+i a+i

Tf(x)dx + | t ()dx — | i f(x)dx — Tf(x)dx
a b a a

1
§.
>

b+% a+%
=limn| [ f()dx - [f(x)dx
b a
< f(b) - f(a)

(Use of f(x) = f(b) for x > b for first interval and f non-decreasing in the 2" integral).
This shows that g is integrable and hence finite almost everywhere. Thus f is differentiable almost everywhere and
g(x) = f’(x) almost everywhere. This proves the theorem.

Functions of Bounded Variation

Let f be a real-valued function defined on the interval [a,b] and let a = Xg < X; <X, < ... <x, = b be any partition of
[a,b].

By the variation of f over the partition P = {Xq, Xy,..., x5} Of [a,b], we mean the real number

V(i Py = (k) — (X )

i=1

and then
V2(f) = sup {V(f,P) for all possible partitions P of [a,b] )

n
= SUp Y. If(x) ~ f(xi-a) |
P i=1
is called the total variation of f over the interval [a,b]. I V,*(f) < oo, then we say that f is a function of bounded
variation and we write f &£ BV.

Lemma 2. Every non-decreasing function f defined on the interval [a,b] is of bounded variation with total variation
V. (F) = f(b) - f(a).

Prof. For every partition P = [Xg, X4, ..., X,} Of [a,b] we have
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V(ER) = S F(x) — F (X, )

i=1

= S (%)~ F(xi)
i=1

= f(b) — f(a)

This implies the lemma.

Theorem 2 (Jordan Decomposition Theorem). A function f: [a,b] — R is of bounded variation if and only if it is the
difference of two non-decreasing functions.

Proof. Let f=g—hon [a,b] with g and h increasing. Then for any, subdivision we have
2ATOG) = F(xig) [ = D 90x) = 9(Xi)]+ 2 [h(x;) — h(x;_y)]
i=1 i=1 i=1

=g(b) - 9(a) + h(b) — h(a)

V(f) <g(b) +h(b) - g(a) - h(a) ,
which proves that f is of bounded variations.

Hence

On the other hand, let f be of bounded variation. Define two functions g, h : [a, b] — R by taking

9(x) = V(). h(x) = Vi (f) - f(x)
for every x ¢ [a, b]. Then f(x) = g(x) — h(x).

The function g is clearly non-decreasing. On the other hand, for any two real numbers x and y in [a, b] with x <y, we
have
h(y) —h(x) = [V/(f) - f(y)] - [Va"(F) - f(x)]
= V(f) - [f(y) - f(x)]
> V,X(f) - V() =0
Hence h is also non-decreasing. This completes the proof of the theorem.

Examples. (1) If fis monotonic on [a,b], then f is of bounded variation on [a, b] and V/(f) = [f(b) — f(a)|, where V(f)
is the total variation.

(2) Iff’ exists and is bounded on [a, b], then f is of bounded variation. For if |f '(x)| < M we have
n

n
2D = (Xi) [ < 2 M(X; —Xi1) = M(b-2)
i= i=1

no matter which partition we choose.

(3) f may be continuous without being of bounded variation. Consider

xsin~ (0<x<2)
X

f(x) =
0 (x=0)
Let us choose the partition which consists of the points
2 2 2 2

0, F,F,---,g.g,
Then the sum in the total variation is

CHET

1
and this can be made arbitrarily large by taking n large enough, since ¥ — diverges.
n

(4) Since [f(x) — f(a)| < V() for every x on [a,b] it is clear that every function of bounded variation is bounded.
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The Differentiation of an Integral

Let f be integrable over [a,b] and let
X
F(x) = [f(t)dt
a

If f is positive, h > 0, then we see that
x+h

Foxth) —F(x) = [f(t)dt =0

Hence, integral of a positive function is non-decreasing.

We shall show first that F is a function of bounded variation. Then, being function of bounded variation, it will have a
finite differential coefficient F’ almost everywhere. Our object is to prove that F '(x) = f(x) almost everywhere in
[a,b]. We prove the following lemma :

Lemma 3. If fis integrable on [a,b], then the function F defined by
X
F(x) = [f(t)dt
a

is a continuous function of bounded variation on [a,b].

Proof. We first prove continuity of F. Let X, be an arbitrary point of [a,b]. Then

X
FO) - Foxo)l =] [T (0t
X0
X
< [If @l
X0
Now the integrability of f implies integrability of |f| over [a,b]. Therefore, given € >0 there isa d >0 such that for

every measurable set A c [a, b] with measure less than 8, we have I| fl<e.
A
Hence
[F(X) — F(Xo)| < € whenever |x—Xo| <3
and so f is continuous.
To show that F is of bounded variation, let a = Xq < X; <... <x, = b be any partition of [a,b]. Then
n n X Xj-1
YIFC)—F(xia) | =] [f(dt— [f(t)dt|
i=1 a

i1 3
=S [fctt
=l xj1

IO

I=1xj_1

b
[If(t)|dt

IN

Thus
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b
VoFs [If(t)]dt <o
a

Hence F is of bounded variation.

Lemma9. Iffisintegrable on [a, b] and
X
[f(tydt=0
a

for all x ¢ [a,b], then f = 0 almost everywhere in [a,b].

Proof. Suppose f> 0 on a set E of positive measure. Then there is a closed set F  E with
be the open set such that
O=(a,b)-F
b
Then either jf #0 orelse

a
b
o= [f=[f+[f
a F 0

0 bn
= jf +> If(t) dt,
F

n=1an

because O is the union of a countable collection {(a,, b,)} of open intervals.
But, for each n,

bp bp an
[fmd= [foa-[fod

= F(b,) — F(a,) =0 (by hypothesis)
Therfore, from (1), we have

jfzo

F
But since >0 on F and mF > 0, we have If>0.

F
We thus arrive at a contradiction. Hence f =0 almost everywhere.

Lemma 5. If f is bounded and measurable on [a, b] and
X
F(x) = [ f (dt+ F(a),
F

then F'(x) = f(x) for almost all x in [a,b].

mF>0. LetO

@

Proof. We know that an integral is of bounded variation over [a,b] and so F’(x) exists for almost all x in [a,b]. Let [f|

< K. We set
F(x +h) —F(x)

fo(x) =
) n

1
with h= —. Then we have
n

1 X+h X
f.(x) = };{ | f(t)dt——jf(t)dt}
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X+h

:% if(t)dt

x+h

1
= hl= | JF(dt]

1X+h 1X+h
= {If(O]dt= — [Kat
h X h X

_K
N

h=K

Moreover,
fa(x) = F'(x) a.e.
Hence by the theorem of bounded convergence, we have

IF' (x)dx = Iimzfn (x)dx = LT&%E[F(X +h) —F(x)]dx

[ qoeh 1¢ b
am{ﬁ | F(x)dx _FJF(X)dX

a+h

1c+h 1a+h ]
Iim = | F(x)dx — = | F(x)dx
o oo

F(c) — F(a) (since F is continuous)

Tf (x)dx
Hence :
T[F'(x) —f(x)]dx =0

for all ¢ £ [a,b], and so
F(x) = f(x) a.e.
by using the previous lemma.
Now we extend the above lemma to unbounded functions.

Theorem 3. Let f be an integrable function on [a,b] and suppose that
X
F(x) = F(@) + [F(x)dt

a
Then F'(x) = f(x) for almost all x in [a, b].

Proof. Without loss of generality we may assume that f > 0 (or we may write “From the definition of integral it is
sufficient to prove the theorem when f > 0).

Let f,, be defined by f,(x) = f(x) if f(x) <n and f,(x) = n if f(x) > n. Then f—f, >0 and so
X
G(x) = [(F-f,)
a

is an increasing function of x, which must have a derivative almost everywhere and this derivative will be non-
negative. Also by the above lemma, since f, is bounded (by n), we have



148

dix(ifn) =f,(x) ae. (i)
Therefore,

d % d X
F(x) = d—x(jf>=d—X(Gn +£fn)

:—G + If

> fn(x) a.e. (usmg )
Since n is arbitrary, making n—oo we see that
F(x) = f(x) a.e.
Consequently,

TF' (x)dx > Tf(x)dx

=F(b) - F(a) (using the hypothesis of the theorem)
Also since F(x) is an increasing real valued function on the interval [a,b], we have

?F' (X)dx < F(b) - F(a) = jtaf(x)dx
Hence : :

TF' (x)dx = F(b) - F(a) = Tf(x)dx

= T[F'(x) —f(x)dx =0

Since F'(x) — f(x) = 0, this implies that F'(x) — f(x) = 0 a.e. and so F'(x) = f(X) a.e.

Absolute Continuity

Definition. A real-valued function f defined on [a,b] is said to be absolutely continuous on [a,b] if, given € > 0
there is a 8 > 0 such that

SF(x) — (%)< e
i=1

for every finite collection {(x;, X{')} of non-overlapping intervals with
n

Zl Xi’ — XiI <d
i=1
An absolutely continuous function is continuous, since we can take the above sum to consist of one term only.
Moreover, if

Fex) = [f(t)dt
then :

Z|F(x.) F(x)| = z| j'f(t)dt— jf(t)dt

i=l g
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noX'
= 2| Jf(@dt]
.
| f(t)|dt= _f |f(t)|dt, where E is the set of intervals (x, ;")

n X
<
i=1 Xij E

n
< —>0as Y |X{'-X;|>0.
i=1
The last step being the consequence of the result.
“Let € >0. Then there isa d > 0 such that for every measurable set E c [a, b] with m E < 3, we have

[Ifl<en
A
Hence every indefinite integral is absolutely continuous.

Lemma 6. If fis absolutely continuous on [a,b], then it is of bounded variation on [a,b].
Proof. Let d be a positive real number which satisfies the condition in the definition for € = 1. Select a natural
number

b-a
n>
)
Consider the partition © = {X,, X1,..., x,} 0f [a,b] defined by
i(b—a
n
for everyi=0, 1,..., n. Since |x; — Xj_1| <3, it follows that
i
VXi'_1 <1

This implies
n
b _ X
Vo) =2V, () <n
Hence f is of bounded variation.
Cor. If fis absolutely continuous, then f has a derivative almost everywhere.

Lemma 7. If fis absolutely continuous on [a,b] and f'(x) = 0 a.e., then f is constant.

Proof. We wish to show that f(a) = f(c) for any c < [a,b].
Let E c (a,c) be the set of measure c—a in which f’(x) = 0, and let € and n be arbitrary positive numbers. To each x
in E there is an arbitrarily small interval [X, x+h] contained in [a,c] such that
[f(x+h) —f(x) | <nh

By Vitali Lemma we can find a finite collection {[X, y«]} of non-overlapping intervals of this sort which cover all of
E except for a set of measure less than &, where § is the positive number corresponding to € in the definition of the
absolute continuity of f. If we label the x, so that x, < Xy.1, We have (or if we order these intervals so that)

ATYoS<X <Y <X <. <Y< Xpap =C
and

n
Z| Xis1 ~ Yk | <?
k=0
Now
n n
DY) =T 1< (Vi — %)
k=0 k=1

<n (c-a)
by the way to intervals {[xy, Yi]} were constructed, and
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S (i)~ FY) <
k=0

by the absolute continuity of f. Thus
@) = @1 = | 2 [f (Xpur) = F(y,OI+ 2 IF(yi) = F (X, )]
k=0 k

=1
<e+n(c-a)

Since € and n are arbitrary positive numbers, f(c) — f(a) =0 and so f(c) = f(a). Hence f is constant.
Theorem 4. A function F is an indefinite integral if and only if it is absolutely continuous.
Proof. We know that if F is an indefinite integral then F is absolutely continuous. Suppose on the other hand that F is
absolutely continuous on [a,b]. Then F is of bounded variation and we may write

F(x) = F1(x) — F2(x),
where the functions F; are monotone increasing. Hence F ’(x) exists almost everywhere and

IF' ()] < Fy'(x) + F2'(x)
Thus

[1F(q] dx < Fy(b) + Fo(b) — Fy(a) — F2(a)
and F'(x) is integrable. Let

G = [F'(t)dt
a

Then G is absolutely continuous and so is the function f = F—G. But by the above lemma since f'(x) = F(x) -
G'(x) =0 a.e., we have fto be a constant function. That is,

F(x) — G(x) = A (constant)
or

F(x) = TF' (t)dt=A
N a
F(X) = T F'(t)dt+ A
Taking x = a, we have A i F(a) and so
F(x) = TF'(t) dt + F(a)
a

Thus F(x) is indefinite integral of F'(x).
Cor. Every absolutely continuous function is the indefinite integral of its derivative.

Convex Functions

Definition. A function ¢ defined an open interval (a, b) is said to be convex if for each x, y € (a, b) and &, p such
that X, u>0 and A + u= 1, we have

GOX + 1y) < RO(X) + po(y)

The end points a, b can take the values —=, « respectively.
If we take L =1-A, A >0, then A + u=1 and so ¢ will be convex if

(5.1.1) OO+ (1-R)y) < 2o(x) + (1-1)d(Y)
Ifwetakea<s<t<u<b and
t-—s u-—t
A= —— , u= —— , U=X, S=VY,
u-s u-s

then
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and so (5.1.1) reduces to

(et 2w
u-s u-—=S

u-—Ss u-=S
or
t—s u-—t
(5.1.2) () < ¢(u) + ——od(u)
u-—=S u-—=S

Thus the segment joining (s, $(s)) and (u, $(n)) is never below the graph of ¢.
A function ¢ is sometimes said to be convex on (a,b) it for all x, y ¢ (a, b),

f[xgyj g%f(x)+%f(y)

1
(Clearly this definition is consequence of major definition taking A = p = E ).

If for all positive numbers A, p satisfying &+ = 1, we have

G(AX + py) <Ad(X) + no(y),
then ¢ is said to be Strictly Convex.

Theorem 5. Let ¢ be convex on (a,b) anda<s<t<u<b,then
$() —0(5) _ o) —d(S) _ o(u—4(t)

t-s u-s u-—t

If ¢ is strictly convex, equality will not occur.

Proof. Leta<s<t<u<bandsuppose ¢ is convex on (a,b). Since
t-s N u-t t-s+u-t u-s

= = =1,
u—-S u-S u-=S u-—s=S
therefore, convexity of ¢ yields
) (t—s Ui u_tsjs t—s o) + u—t¢(s)
u-=s u-=s u-=S u-=S
or
t-s u-—t
(5.1.3) o) < o(u) +——(9)
u-s u-s
or
(u=s) ¢(t) < (t=s) ¢(u) + (u-t) 6(s)
or
(U=s) (6(t) — ¢(s)) < (t=5) d(u) + ud(s) — to(s) — uh(s) + s ¢(s)
or
(U=8)(¢(t) — 4(3)) < (t=5) (H(u)=4(s))
or
614 6() —d(s) _ 6(W) —(6)

t-s u-=S
This proves the first inequality. The second inequality can be proved similarly.
If ¢ is strictly converse, equality shall not be there in (5.1.3) and so it cannot be in (5.1.4). This completes the proof
of the theorem.

Theorem 6. A differentiable function ¢ is convex on (a,b) if and only if ¢’ is a monotonically increasing function. If
¢’ exists on (a,b), then ¢ is convex if and only if ¢ > 0 on (a, b) and strictly convex if v’ >0 on (a,b).
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Proof. Suppose first that ¢ is differentiable and convex and leta<s<t<u<v<hb. Then applying Theorem 5 to a <

s<t<u,we get
o() —9(s) _ o(u) —(s) _ &(u) —o(t)
t—s u-s u—t
and applying Theorem5toa<t<u<v, we get

o(u) —o(t) _ (V) —o(t) _ o(v) — (V)

u-—t V-t vV—-u
Hence
O(t) —6(s) _ o(v) —o(u)
t-s v-u
Ift—>s, M decreases to ¢'(s) and if u— v, M increases to ¢’(v). Hence ¢'(v) = ¢'(s) for all s <
—S vV—u

v and so ¢’ is monotonically increasing function.
Further, if ¢"" exists, it can never be negative due to monotonicity of ¢'.
Conversely, let w"” >0 . Our aim is to show that v is convex. Suppose, on the contrary, that ¢ is not convex on (a, b).
Therefore, there are points a < s <t < u < b such that

o) — () _ ¢(u) — (1)

t-s u-—t

that is, slope of chord over (s,t) is larger than the slope of the chord over (t,u). But slope of the chord over (s,t) is
equal to ¢'(a), for some o ¢ (s, t) and slope of the chord over (t,u) is ¢'(B), B £ (t,u). But ¢'() > ¢'(B) implies ¢’ is not
monotone increasing and so y"’ cannot be greater than zero. We thus arrive at a contradiction. Hence ¢ is convex.
If ¢ >0, then ¢ is strictly convex, for otherwise there would exist collinear points of the graph of ¢ and we would
have ¢'(a) = ¢'(B) for appropriate o and B with o < 3 . But then ¢"" = 0 at some point between o and 3 which is a
contradiction to " > 0. This completes the proof.

Theorem 7. If ¢ is convex on (a,b), then ¢ is absolutely continuous on each closed subinterval of (a,b).

Proof. Let[c,d] c (a,b). Ifx, ye[c, d], then we havea<c<x <y <d<bandso by Theorem 5, we have
0(c) —9(a) _ (¥) —(x) _ ¢(b) —¢(d)
c-a  y-Xx  b-d

Thus
[$(y) —o(X)| < Mlx=y| , x,ye[c, d]

and so ¢ is absolutely continuous there.

Theorem 8. Every convex function on an open interval is continuous.

Proof. Ifa<x; <Xx<Xx,<b, the convexity of a function ¢ implies

X, —X X=X
(5.15) e L ) R 1)
Xy =X Xy =X
If we make X — X, in (5.1.5), we obtain ¢(x;+ 0) < &(X,); and if we take X, — X we obtain d(x) < o(x + 0).

Hence ¢(x) = ¢(x+0) for all values of x in (a,b). Similarly $(x-0) = ¢(x) for all values of x. Hence
¢(x=0) = $(x+0) = $(x)
and so ¢ is continuous.
Definition. Let ¢ be a convex function on (a,b) and x, € (a,b). The line
(5.1.6) y = M(X—Xo) + $(Xo)
through (Xo, $(Xo)) is called a Supporting Line at X, if it always lie below the graph of ¢, that is, if
(5.1.7)  $(X) = M(X—Xo) + $(Xo)
The line (5.1.6) is a supporting line if and only if its slope m lies between the left and right hand derivatives at X,.
Thus, in particular, there is at least one supporting line at each point.

Theorem 9 (Jensen Inequality). Let ¢ be a convex function on (-, ) and let f be an integrable function on [0,1].
Then
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[9(F(t))dt = $[JF(t)dt]
Proof. Put

o= if (t)dt
0

Let y = m(x—a) + () be the equation of supporting line at o. Then (by (....) above),
o(f(t)) = m(f(t)—cx) + (o)

Integrating both sides with respect to t over [0, 1], we have

}q)(f (t)dt = m[[f(t)dt - [f(t)dt] + }d)(oc)dt
0 . 0]
=0+ h(c) j dt
0

1
= o) = o[ [ F(t)dlt].
0

LP — space
Let p be a positive real number. A measurable function f defined on [0,1] is said to belong to the space L if | [f|> < oo .

Thus L* consists precisely of Lebesgue integrable functions on [0,1]. Since
[f+ol” <2° (f° +19F) ,
we have
[[F+gP < 2P JIffP + 2° [P
and so if f, g ¢ L”, it follows that f+g € L . Further, if o is a scalar and f & L, then clearly of belongs to L°. Hence of

+ Bg ¢ LP whenever f, g ¢ L? and «, B are scalars.
We shall study these spaces in detail in Course On Functional Analysis.

PART B : MEASURE SPACE

5.2.  We recall that a c—algebra 3 is a family of subsets of a given
set X which contains ¢ and is closed with respect to complements and
with respect to countable unions. By a set function un we mean a
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function which assigns an extended real number to certain sets. With
this in mind we make the following definitions :

Definition. By a measurable space we mean a couple (X, B)

consisting of a set X and a c- algebra 3 of subsets of X.
A subset A of X is called measurable (or measurable with respect to

B)if Agp.

Definition. By a measure p on a measurable space (X, 3) we mean a

non- negative set function defined for all sets of 3 and satisfying u(¢)
=0and

U (gEij:é“Ei (*)
for any sequence E; of disjoint measurable sets.

By a measure space (X, B, 1) we mean a measurable space (X, B)
together with a measure u defined on f.

The property (*) of u is referred to by saying that p is countably
additive.

An example of the measure space is (R, m, m) where R is the set of
real numbers, m the Lebesgue measurable sets of real numbers and m
the Lebesgue measure.

Theorem 10. If A€, B e, and A — B, then
nA<uB

Proof. Since
B=AuU|[B\A]
is a disjoint union, we have
uB=p[AuU (B\A)]
= wA) +n(B\VA)
>uA.

Theorem 11. If Ej e 3, u E; < w0 and E;j o Ej.4q, then
n [ﬁa]:mm

i=1
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Proof. Let
E=ﬁa

Then )
E;=Eu D(Ei ~Ein) s

and this is a disjoint Il_Jlnion. Hence
w(Er) = n(E) + éH(Ei_Eiﬂ)

Since
Ei = Eiss U (Ei~Eis1)
is a disjoint union, we have
ME; = mE;:1 + m(Ei \ Ejsy)

le.  WE~Ei+) = u(E) — pEin
Hence

w(Es) = w(E) + 2@ Ei — uEin)
= u(E) + lim ij(uEi CHE)
= W(E) + pEy — lim uE,
whence pE; < oo implies
w(E) = r!'_tg)lvl En.
Theorem 12. If E; € 3, then
M(QEijéqui .
Proof. Let
G,=E, - DlEi

Then G,, c E, and the sets G, are disjoint. Hence

w(Gn) < 1 En,
while

(o E) = 2“6” < 2uEn
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Theorem 13. If E; ¢ B and E;  Ej.q, then
uUe, | = tim nEy

Proof. Let
E=Da
Then )
E=E,u (E-E) v (Es-E) U ...
= E; U {O(EM—EJ}
and this is a disjoint uﬁ_ilon. Hence
n(E) = pE; + iu(Em\Ei)
= pE; + nlijléu (Eis1 — Ei)
= pEy + lim [uE, — pEy]
=uE; —uEy + lim uE,

= lim uE, .

nN—co

Definition. A measure p is called finite if u(X) <o . Itis called o-
finite if there exists a sequence (X,) of sets in 3 such that

X =[x,
and p X, <.

By virtue of a lemma proved earlier in Chapter 3, we may always
take {X,} to be a disjoint sequence of sets. Lebesgue measure on
[0,1] is an example of a finite measure while Lebesgue measure on
(—o0, ) is an example of a o-finite measure.

Definition. A set E is said to be of finite measure if E€ 3 and pu E <
o0 ,

A set E is said to be of o-finite measure if E is the union of a
countable collection of measurable sets of finite measure.
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Any measurable set contained in a set of o-finite measure is itself of
o-finite measure, and the union of a countable collection of sets of &-
finite measure is again of o-finite measure.

Definition. A measure space (X, 3, n) is said to be complete if 3
contains all subsets of sets of measure zero, that is, if Be 3, uB =0
and A c B imply A g p.

For example Lebesgue measure is complete, while Lebesgue measure
restricted to the c-algebra of Borel sets is not complete.

Definition. If (X, B, 1) is a measure space, we say that a subset E of
X is locally measurable if E~B e 3 foreach B € 3 with uB <.

The collection C of all locally measurable sets is a c-algebra
containing f.

The measure p is called saturated if every locally measurable set is
measurable, i.e., isin .

For example every o-finite measure is saturated.

Example. Show that u(E; AE;) =0 implies uE; = uE, provided that
E; and E, ¢ B

Solution. Since Ey, E; € 3, we have E;\ E; and E; \E; in 3 and so E;
A E; e 3. Moreover,
W(EL A Ep) = pu[(B1\Eo) L (B2 \ Ey)]
= p (B \Ep) + (B2 \ Ey)
But, by hypothesis, u (E; A E;) = 0. Therefore,
]J(E]_ \ Ez) =0 and ]J(Ez \ El) =0.
Also, we can write
E> =[E1V (BEx-Ey)] - (E1-E)
Then
ue, =uE;+0-0=pkE; .

5.3. Measure and Outer Measure
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In case of Lebesgue measure we defined measure for open sets and
used this to define outer measure, from which we obtain the notion of
measurable set and Lebesgue measure.

Definition. By an outer measure pu* we mean an extended real
valued set function defined on all subsets of a space X and having the
following properties :

() w*¢=0

(i) AcB=u*A<u*B (monotonicity)
(i) Ec iEi = u*E< iu*Ei (subadditivity)
Because of (ii), property (iii) can be replaced by

(i) E= DEi , Ejdisjoint=> p*E< i“*Ei

The outer measure p* is called finite if u* X <o .

By analogy with the case of Lebesgue measure we define a set E to
be measurable with respect to u* if for every set A we have
A= pu*(ANE) + u* (AN EY)
Since pu* is subadditive, it is only necessary to show that
u* A>p*(ANE)+pu* (ANE
for every A in order to show that E is measurable.

This inequality is trivially true when u* A = o and so we need only
establish it for sets A with u*A finite.

Theorem 14. The class B of u*-measurable sets is a c-algebra. If u
Is restricted to [3, then p is a complete measure on 3.

Proof. It is obvious that the empty set is measurable. The symmetry
of the definition of measurability in E and E° shows that E° is
measurable whenever E is measurable.

Let E; and E, be measurable sets. From the measurability of E,,
WA = p* (AN Ey) + u*(ANEY)
and
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u*A = p* (AN E) + p*(A N E" M E) + u*(A N Ef
E,")
by the measurability of E;. Since
AN[EiUE]=[ANE]U[ANE;NE)]
we have
H*(Aﬁ [El N\ Ez] ) < H*(A M Ez) + M* (A M Egc M El)
by subadditivity, and so
H*A > M* (Aﬁ [E1 N\ Ez] ) + M* (A M Elc M EZC)
This means that E; v E; is measurable. Thus the union of two
measurable sets is measurable, and by induction the union of any
finite number of measurable sets is measurable, showing that 3 is an
algebra of sets.

Assume that E = U E;, where < E; > is a disjoint sequence of
measurable set, and set

Gn= UE
Then (by what we have proved above) G, is measurable, and

W*A=p* (ANG)+p*(AnGYO)=>p* (An Gy +
u*(An EY)
because E° = G,°
Now G, N E, = E,and G, " E," = G,_1, and by the measurability of
E,, we have

w* (AN Gp) = p* (ANEy) +p* (AN Gry)
By induction (as above, u* (A N Gp_1) = u*(AN Ensy) + u* (AN Eno
and so on)

u* (AN Gy) = _iZlu* (ANE)
and so

u* A= p* (ANEY) + Sux (AN E)

> pu*(ANEY) +u* (ANE),

since ANE c UJnanE)
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Thus E is measurable. Since the union of any sequence of sets in an
algebra can be replaced by a disjoint union of sets in an algebra, it
follows that B is a c-algebra.

We now show that p is finitely additive. Let E; and E, be disjoint
measurable sets. Then the measurability of E, implies that
n(Erv By =p* (BE1V Ey)
:H*([EJ_UEz]ﬁEz)‘l'H*([ElUEz]ﬁEZC)
- H* E2 + H* El
Finite additivity now follows by induction.

If E is the disjoint union of the measurable sets {E;}, then
WE= p (QEij:inEi
and so

But nE < Yr Ej, by the subadditivity of u*. Hence pis

countably additive and hence a measure since it is non-negative and
pHoé=p*¢=0.
Measure on an Algebra

By a measure on an algebra we mean a non-negative extended real

valued set function p defined on an algebra A of sets such that

(1 we=0 - - | |

(i) If < A; > is a disjoint sequence of sets in A whose union
is also in A, then

K (GAij:iHAi
i=1 i=1
Thus a measure on an algebra A is a measure <> A is a c-algebra.
We construct an outer measure u* and show that the measure pn
induced by p* is an extension of u (measure defined on an algebra).

We define
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u* E = inf Spa, ,
i=1
where < A; > ranges over all sequence from A such that

Ec OAi :
Lemma 8. If A e A and if < A; > is any sequence of sets in A such
that A = (Ja,, then p A< Sua,.
Proof. Set

Bi=ANANA" 1N ... A
Then B, € A and B,, — A,. But A is the disjoint union of the sequence
< B, >and so by countable additivity

nA = iluBn < iluAn

Corollary. IfAe A, u*A= pA.
In fact, we have, from above

HAS SuA, <p*A+ e,
n=1

that is,
LASU*A+ €
Since ¢ is arbitrary, we have
LA < u* A
Also, by definition,
uw*A<pA
Hence
u* A=uA.

Lemma 9. The set function u* is an outer measure.

Proof. u*, by definition, is a monotone non-negative set function
defined for all sets and u* ¢ = O. We have only to show that

it is countably subadditive. Let E DEi . If u* E; = o for any i, we
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have p* E< X u* Ej=w . If not, given € >0, there is for each i a
sequence <A, >=, of sets in A such that E; — ['inj and
=1

ij 7 j=1
i“Aij <PrFE+
=1 2!
Then
M* E< ZuAij <iu*Ei+e
ij i=1

Since € was an arbitrary positive number,
M* E< iu*Ei
i=1
which proves that u* is subadditive.

Lemma 10. If A€ A, then A is measurable with respect to p*.

Proof. Let E be an arbitrary set of finite outer measure and ¢ a
positive number. Then there is a sequence < A; > from A such that E
— U A and

SUA<U*E+ €
By the additivity of p on A, we have

n(A) = uAnA) + p(Ain A

Hence
WE+ €> Su(ANA) + Su(Ain A9
>u* (EnA)+p* (EnAY)
because
ENAcu(AnA)
and

EnA°cu (Ain A9
Since € was an arbitrary positive number,
W*E>p* (e mA)+pu* (En A
and thus A is u* - measurable.
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Remark. The outer measure u* which we have defined above is
called the outer measure induced by p.

Notation. For a given algebra A of sets we use A, to denote those
sets which are countable unions of sets of A and use A 5 to denote
these sets which are countable intersection of setsin A ..

Theorem 15. Let p be a measure on an algebra A, u* the outer
measure induced by p, and E any set. Then for e >0, there is a set A
¢ A, with E < A and

W A<u*E+ ¢
ThereisalsoasetB e AgswithEcBand uy*E=pu*B.

Proof. By the definition of u* there is a sequence < A; > from A
such that E — U A; and

S SpFE+ e (1)
Set

A= U Ai
Then uy* A< X pu* A = X A (2)

because pu* and p agree on members of A by the corollary.
Hence (1) and (2) imply

uw* A<u* E+ €
which proves the first part.

To prove the second statement, we note that for each positive integer
n there is a set A, in A, such that E — A, and

u* A, < p* E + % (from first part proved above)

LetB=nA,. ThenB ¢ A,sand E = B. Since B c A,,

wW*B<u*A,<u*E+ 1

n
Since nis arbitrary, u* B <u* E. But E < B implies u* B > u* E by
monotonicity. Hence u*B =pu*E.
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Theorem 16 (Cartheodory Extension Theorem). Let p be a

measure on an algebra A and let u* be the outer measure induced by

u. Then the following properties hold :

(@) w*isan outer measure

(b) A cAimplies u(A) =pu* A

(c) A c Aimplies Ais u* - measurable.

(d) The restriction p of p* to the pu*-measurable sets is an
extension of u to a c-algebra containing A.

(e) p is finite (or o-finite) implies that p is finite (or o-finite).

(FIf u is o-finite, then p is the only measure on the smallest o-
algebra containing A which is an extension of p.

Proof. We have already proved (a), (b) and (c). The fact that p is
an extension of pu from A to be a measure on a c-algebra containing
A follows from (b), (c) and the result. “The class 3 of u*-measure
sets is a c-algebra. If p is pu* restricted to B, then p is a measure
on B.” Also p is finite or o-finite whenever p is finite or o-finite.
We establish () now.

Let 3 be the smallest c-algebra containing A and p; be another
measure on 3 such that w;(E) = w(E) for E € A. We need to show the
following :

wi(A) = p(A) forAep (1)
Since p is o-finite, we can write X = Jg,, Eie A, Ein Ej = (i # j)

and wWEj) <w,1<i<w, ForAgB:_lthenA: v (A n Ej) and we
have

(A = zu (AN E)
and )

ni(A) = gul (AN E)

So, to prove (1) it is sufficient to show the following :
w A= p(A) for A e whenever p(A)<ow
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Let Ae Bwith pA<ow. Givene >0, thereare Ejg A, 1<i<ow,
A c UE, and

E(Oa] < Sy < p(A)+ e

i=1

Since
mi(A) < [@Eijs S1(E) = TuE)
Thus, (2) implies

w(A) < p(A) + e (2)
Since this is true for_all >0, it follows that
Hi(A)< pA (3)

Now considering the sets E; from inequality (2), F = (Jg, ¢ p and so F

i=1

is p*-measurable. Since AcF,
u(F) = wA)+ uF-A)

w(F\A) = n(F) - wA)<e (from (2)) _
Since pi(E) = p(E) foreach E € A, we have py(F) = p (F). Then
p(A) < pF) = n(F) = m(A) + i (FVA)
<pu(A)+ p(F\A)
(by inequality (3) because (3) is true if A is replaced by any set in 3
with finite u-measure). The relation (4) then yields
nA) <w(A) + e
Since this true for all € >0, we have
B (A) < u(A) (5)
The relations (3) and (5) then yield
HA = (A)
which completes the proof of the theorem.

or

Definition. Let f be a non-negative extended real valued measurable
function on the measure space (X, B, ). Then [f du is the supremum
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of the integrals ¢ du as ¢ ranges over all simple functions with 0 <
d<f.
Lemma 1 (Fatou’s Lemma). Let < f, > be a sequence of non-

negative measurable functions which converge almost everywhere on
a set E to a function f. Then

[ <lim[f,
Proof. Without loss of generality we may assume that f,(x) — f(x)
for each x € E. From the definition of [f it is sufficient to show that ,
if ¢ is any non-negative simple function with ¢ <f, then [¢>limff,

If [¢ = oo, then there is a measurable set A — E with pA = oo such
E

that ¢ >a 0 on A. Set

An={xeE: fiy(x)>a forallk>n}
Then A, < A.i. Thus < A, > is an increasing sequence of
measurable sets whose union contains A, since ¢ < lim f,. Thus lim

nA,=c. Since jf, >ap A, we have
E
lim [f,= o0 = [¢
E E
If ¢ <oo, then there is a measurable set A < E with pA < oo such that
E

¢ vanishes identically on E\ A . Let M be the maximum of ¢, let
be a given positive number, and set
A,=[xeE iffy(X) > (1-<€) ¢(x) forall k > n]

Then < A, > is an increasing sequence of sets whose union contains
A, and so (A \ A,) is a decreasing sequence of sets whose intersection
Is empty. Therefore, (by a proposition proved already) lim pu (A —
A,) = 0 and so we can find an n such that u(A — Ay < € for all k >
n. Thus fork>n



[fe= [f20-9) [¢
E Ak

’ > (1-¢€) Lf\¢— M

2(1—e)f¢—A_IA<I>
>[p-—eclo—eM

Since c is arbitrary.

limff, > [ .

167



