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Unit-1 

Logic, Semigroups  & Monoids   

and Lattices 
 

 

PART - A  :  LOGIC 

1.1.  Logic is a science of the necessary laws of thought, without which no 

employment of the understanding and the reason takes place. 

 

Consider the following argument: 

All mathematicians wear sandals  

Anyone who wears sandals is an algebraist 

Therefore, all mathematicians are algebraist. 

 

Technically, logic is of no use in determining whether any of these statements 

is true. However, if the first two statements are true, logic assures us that the 

statement. 

 

All mathematicians are algebraists is also true. 

 

Example:- which of sentences are true or false (but not both)? 

(a) The only positive integers that divide 7 are 1 and 7 itself. 

(b) For every positive integer n, there is a prime number larger than n. 

(c) Earth is the only planet in the universe that has life. 

 

Solution:- (a) We call an integer n prime if n>1 and the only positive integers 

that divide n are 1 and n itself. Sentence (a) is another way say that 7 is a 

prime. Hence sentence (a) is true. 

(b) Sentence (b) is another way to say that there are an infinite number of 

prime. Hence (b) is true.      

(d) Sentence (c) is either true or false (but not both) but no one knows which at 

this time. 

 

Definition:- A declarative sentence that is either true or false, but not both is 

called a Proposition (or statement). 

 

For example, sentences (a) to (c) in the above example are propositions. 

But the sentence 

x + y > 0 
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is not a statement because for some values of x and y the sentence is true 

whereas for other values of x and y it is false. For example, if x = 1, y = 3, the 

sentence is true, but for x = -2, y = 0, it is false. 

Similarly, the sentence 

Take two crocins is not a statement.  It is a command. 

 

The propositions are represented by lower case letters such as p, q and r. We 

use the notation p: 1+1=3 to define p to be the proposition 1+1=3. 

 

Many propositions are composite, that is, composed of subpropositions and 

various connectives. The “Composite propositions are called compound 

propositions.”A proposition which is not compound is said to be primitive. 

Thus, a primitive proposition cannot be broken into simpler propositions. 

 

Example:- The sun is shining and it is cold. This is a compound proposition 

composed of two propositions 

The sun is shining 

and  

It is cold. 

Connected by the connective “and”. 

On the other hand, the proposition 

London is in Denmark 

is primitive statement. 

 

Definition:- The truth values of a compound statement in terms of its 

component parts, is called a truth table. 

 

1.2. Basic Logical Operations  

The three basic logical operations are 

1. Conjunction 

2. Disjunction 

3. Negation 

which correspond, respectively, to “and”, “or” and “not”. 

 

Definition:-  The conjunction of two propositions p and q is the proposition 

     p and q. 

It is denoted by p  q. 

 

Example:- Let 

p : This child is a boy 

q : This child is intelligent 

Then  

p  q : This child is a boy and intelligent. 
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Thus p  q is true, if the child is a boy and intelligent both. 

Even if one of the component is false, p  q is false. Thus  

“the proposition p  q is true if and only if the proposition p and q are both 

true”. 

 

The truth value of the compound proposition p  q is defined by the truth table: 

 

     P         q          p q 

    T 

    T 

    F 

    F 

        T 

        F 

        T 

        F 

         T 

         F 

         F 

         F 

 

Example:- If  

p : 1 +1 = 3 

q : A decade is 10 years, 

then p is false, q is true and the conjunction  

p  q : 1 +1 = 3 and a decade is 10 years  

is false. 

 

Definition:-  The disjunction of two proposition p and q is the proposition 

p or q 

It is denoted by p  q. 

 

The compound statement p  q is true if at least one of p or q is true. It is false 

when both p and q are false. 

 

The truth values of the compound proposition p  q is defined by the truth 

table: 

 

    P         q          p q 

    T 

    T 

    F 

    F 

        T 

        F 

        T 

        F 

         T 

         T 

         T 

         F 

 

For example, if  

p : 1 + 1 = 3 

q : A decade is 10 years, 

then p is false, q is true. The disjunction  

p  q : 1 + 1 = 3 or a decade is 10 years  
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is true. 

 

Definition:- If p is a statement, the negation of p is the statement not p, 

denoted by ~p. 

Thus ~p is the statement “it is not the case that p”. 

Hence if p is true than ~p is false and if p is false, then ~p is true. 

 

The truth table for negation is  

       p       ~p 

      T 

      F 

       F 

       T 

 

Example:- Give the negation of the following statements : 

(a) p : 2 + 3 > 1 (b) q : It is cold 

 

Solution:- 

(a) ~p : 2 + 3 is not greater than 1. That is, ~p : 2 + 3  1. 

Since p is true in this case, ~p is false. 

(b) ~q : It is not the case that it is cold. More simply, ~q : It is not cold. 

 

Translating from English to Symbols :- We  consider 

 

Example:- Write each of the following sentences symbolically, letting p : “It is 

hot” and q : “ It is sunny”: 

 

(a) It is not hot but it is sunny 

(b) It is neither hot nor sunny. 

Solution:- (a) The convention in logic is that the words “but” and “and” mean 

the same thing. Generally, but is used in place of and when the part of the 

sentence that follows is in some way unexpected. 

The given sentence is equivalent to “ It is not hot and it is sunny” which can be 

written symbolically as ~p  q. 

 

(c) The phrase neither A nor B means the same as not A and not B. Thus to say 

“ IT is neither hot nor sunny” means that it is not hot and it is not sunny. 

Therefore the given sentence can be written symbolically as ~p  ~q. 

 

Definition:- A “Statement form” or “Propositional form” is an expression 

made up of statement variables (such as ~, , ) that becomes a statement 

when actual statements are substituted for the component statement variable. 

The truth table for a given statement form displays the truth values that 

correspond to the different combinations of truth values for the variables. 

Example:- Construct a truth table for the statement form: 



LOGIC, SEMIGROUPS  & MONOIDS AND LATTICES 
 

9 

(p  q)  ~r. 

solution:-The truth table for the given statement form is  

 

p         q            r P q             ~r       (p q)  ~r 

T         T           T 

T         T           F  

T         F           T 

T         F           F 

F         T           T 

F         T           F 

F         F           T 

F         F           F 

  T                F  

  T                T  

  F                F 

  F                T 

  F                F  

  F                T 

  F                F  

  F                T 

        T 

        T 

        F 

        T 

        F 

        T 

        F 

        T 

 

Definition:-  Two different compound propositions(or statement forms) are 

said to logically equivalent  if they have the same truth value no matter what 

truth values their constituent propositions have. 

We use the symbol  for logical equivalent. 

 

Example:- Consider the statements forms 

(a) Dogs bark and cats meow 

(b) Cats meow and dogs bark 

If we take  

p : Dogs bark 

q : Cats meow, 

then (a) and (b) are in logical expression 

(a)     p  q 

(b)   q  p 

If we construct the truth tables for p  q and q  p , we observe that p q and q 

 p have same truth values. 

 

  p          q            p  q 

  T          T 

  T          F  

  F          T  

  F          F 

         T 

         F 

         F  

         F 

        

p          q q  p 

T          T 

T          F 

F          T 

F          F 

T 

F 

F 

F 

Thus p  q and q  p are logically equivalent. That is  

p  q  q  p 

Example:- Negation of the negation of a statement is equal to the statement. 

Thus 
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~(~p)  p. 

 

Solution:- The truth table of ~(~p) is  

 

     p ~p ~(~p) 

     T 

     F 

  F 

  T 

   T 

   F 

 

Thus truth values for p and ~(~p) are same and hence p and ~(~p) are logically 

equivalent. The logical equivalence ~(~p)  p is called Involution Law. 

 

Example:- Show that the statement forms ~(p  q) and ~p  ~q are not 

logically equivalent. 

 

Solution:- Construct the truth table for both statement forms: 

 

 p             q ~p           ~q             p q ~(p q)              ~p  ~q 

 T             T       

 T             F   

 F             T      

 F             F  

 F              F               T 

 F              T               F 

 T              F               F   

 T              T               F 

     F                        F           

     T                      F 

     T                      F 

     T                        T 

 

 Thus we have different truth values in rows 2 and 3 and so ~(p  q) and                 

~p  ~q are not topologically equivalent. 

 

Remark:- If we consider ~p  ~q, then its truth values shall be  

F 

T 

T 

T 

and hence ~(p  q) and ~p  ~q are logically equivalent. Symbolically  

~(p  q)  ~p  ~q     (1) 

 

Analogously, 

~(p  q)  ~p  ~q     (2) 

The above two logical equivalence are known as De Morgan’s Laws of Logic. 

Example:- Use De Morgan’s Laws to write the negation of  

p : Jim is tall and Jim is thin.  

Solution:-The negation of p is  

~p : Jim is not tall or Jim is not thin. 
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Definition:- A compound proposition which is always true regardless of truth 

values assigned to its component propositions is called a Tautology. 

 

Definition:- A compound proposition which is always false regardless of truth 

values assigned to its component propositions is called a Contradiction. 

 

Definition:- A  compound proposition which can be either true or false 

depending on the truth values of its component propositions is called a 

Contingency. 

 

Example:- Consider the statement form 

p  ~p. 

The truth table for this statement form is  

 

 

   P   ~p p  ~p 

  T 

  F 

   F 

   T 

    T 

    T 

                                                                                
                                                                            all T’s 

Hence p  ~p is a tautology.     

 

Exercise :- Show that p  ~p is a contradiction.  

Remark:- If  and c denote tautology and contradictions respectively, then we 

notice that  

~   c     (1) 

and 

~c       (2) 

Also from the above two examples 

p  ~p      (3) 

and  

p   ~p  c    (4) 

the logical equivalence (1), (2), (3) and (4) are known as Complement Laws. 

Logical Equivalence involving Tautologies and Contradictions 

If t is a tautology and c is a contradiction, then the truth tables for p   and p  

c are : 
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      p            p              p         c    p  c 

     T 

     F     

 

      T 

      T 

       T 

       F 

       T 

      F    

      F 

      F 

      F 

      F 

                                                                                                                              

  Same truth values and so p    p   Same truth values and so p  c  c    

 

Similarly, the truth tables for p   and p  c are 

  p     p   

  T 

  F 

   T 

   T 

    T 

    T 

                             

                              

                 

Same truth 

values 

                      So 

p     
 

  p    c p  c 

  T 

  F 

   F 

   F 

    F 

    F 

                              
Same truth value and so  

 p  c  p    

 

Thus we have the following logical equivalence: 

p    p  p  c  c 

p      p  c  p (universal bound laws) 

These four logical equivalence are known as Identity Law. 

 

Example:- (Idempotent Laws): Consider the truth tables for p  p and p  p 

given below: 

 

  p    p p  p 

  T 

  F 

   T 

   F 

    T 

    F 

 

  p    p p  p 

  T 

  F 

   T 

   F 

    T 

    F 

We note that 

(i) p  p and p have same truth values  

(ii) p  p and p have same truth values 

Hence 

p  p  p and p  p  p 

These two logical equivalence are known as Idempotent Laws. 

 

Exercise :- Show that p  q  q  p and p  q  q  p (these logical 

equivalences are known as Commutative Laws). 

Exercise :- Prove that  

p  (p  q)  p  

and  

p  (p  q)  p . 
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(These logical equivalence are known as Absorption Laws). 

Exercise :- Show that  

(p  q)  r  p  (q  r),  (p  q)  r  p  (q  r)   (Associative Laws) 

and  

  p  (q  r) = (p  q)  (p  r), p (q  r) = (p q) (p r) (Distributive Laws) 

 

1.3. Conditional Propositions 

Definition:- If p and q are propositions, the compound proposition 

if p then q         or  p implies q  

is called a conditional proposition or implication and is denoted by 

p  q . 

The proposition p is called the hypothesis or antecedent whereas the 

proposition q is called the conclusion or consequent. 

The connective if…then is denoted by the symbol  . 

It is false when p is true and q is false, otherwise it is true. In particular, if 

p is false, then  p  q is true for any q. 

 

Definition:- A conditional statement that is true by virtue of the fact that its 

hypothesis is false is called true by default or vacuously true. 

For example, the conditional statement 

“ If 3 + 3 = 7, then I am the king of Japan” is true simply because p : 3 + 3 = 7 

is false. So it is not the case that p is true and q is false simultaneously. 

Thus the truth values of the conditional proposition p  q are defined by the 

truth table: 

 

p          q       p  q  

T           T 

T           F 

F           T 

F           F 

          T 

          F 

          T 

          T 

 

Each of the following expressions is an equivalent form of the conditional 

statement p  q: 

p implies q 

q if p 

p only if q  
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p is sufficient condition for q 

q is necessary condition for p. 

 

Example:- Restate each proposition in the form of a conditional proposition: 

(a) I will eat if I and hungry 

(b) 3 + 5 = 8 if it is snowing 

(c) when you sing, my ears hurt 

(d) Ram will be a good teacher if he teaches well. 

(e) A necessary condition for English to win the world series is that they sign a 

right handed relief pitcher. 

(f) A sufficient condition for Sohan to visit Calcutta is that he goes to Disney 

land. 

 

Solution:-  

(a) If I am hungry, then I will eat 

(b) If it is snowing, then 3 + 5 = 8 

(c) If you sing, then my ears hurt 

(d) If Ram teaches well, then he will be a good teacher 

(e) If English win the world series , then they sign a right handed relief pitcher 

(f) If Sohan visit Calcutta, then he goes to Disney land. 

 

Representation of “If …..then” as OR. 

Lemma:- Show that for proposition p and q, 

p  q  ~p  q 

 

Proof:- The truth values for p  q and ~p  q are given below: 

 

P q      p q      ~p    ~p q 

T 

T 

F 

F 

T 

F 

T 

F 

T 

F 

T 

T 

F 

F 

T 

T 

T 

F 

T 

T 

                                                                                
                                              Same truth values  

Hence 

p  q  ~p  q 

 

Example:- Rewrite the statement in “If….then” form: 
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  Either you get to work on time or you are fired. 

Solution:- Let 

                         ~p : you get to work on time  

and  

                           q : you are fired 

then the given statement is ~p q. But  

                           p : you do not get to work on time. 

Hence according to above lemma, the equivalent “If….then” version of the 

given statement is  

                           If you do not get to work on time, then you are fired. 

Negation of a conditional statement:-  We know that p  q is false if and 

only if p is true and its conclusion q is false. Also, we have shown above that  

                                               p  q  ~p  q 

Taking negation of both sides, we have 

   ~(p  q)  ~(~p  q) 

                     ~(~p)  (~q)                (De-Morgan’s Law) 

   p  ~q     (Double negative Law or 

Involution Law) 

(This can also be obtained by constructing the truth tables for ~(p  q) and p  

~q; the truth tables would have the same truth values proving the logical 

equivalence) 

Thus  

                        The negation of “If p then q” is logically equivalent to “p and 

not q”. 

 

Example:- Write negations for each of the following statements: 

(a)   If I am ill, then I cannot go to university 

(b)   If my car is in the repair shop, then I cannot attend the 

class. 

 

Solution:- We know that negation of “ If p then q” is logically equivalent to “p 

and not q”. Using this fact, the negations of (a) and (b) are respectively 

 

(1) I am ill and I can go to university 

(2) My car is in the repair shop and I can attend the class. 
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Remark:- The negation of a “if…..then” proposition does not start with 

the word if. 

 

Definition:- If p  q is an implication, then the converse of p  q is the 

implication q  p. 

 

Definition:- The contrapositive of a conditional statement “If p  then q” is “If 

~q then ~pf”. 

In symbols, 

                                     The contrapositive of p  q is ~q  ~p. 

 

Lemma:- A conditional statement is logically equivalent to its contrapositive. 

 

Solution:- The truth tables of p  q and ~q  ~p are: 

         p  q 

P      q     p q 

T      T 

T      F 

F      T 

F      F 

      T 

      F 

      T 

      T 

                       
                                   

Hence 

         ~q  ~p 

p        q ~p      ~q   ~q  ~p 

T        T 

T        F 

F        T 

F        F 

 F         F 

 F         T 

 T         F 

 T         T 

       T 

       F 

       T 

       T 

                                               

                                    p  q  ~q  ~p 

Example:- Give the converse and contrapositive of the implications 

(a) If it is raining, then I use my umbrella. 

(b) If today is Monday, then tomorrow is Tuesday. 

Solution:- (a) we have 

           p: It is raining 

                      q : I use my umbrella 

The converse is q  p: If I use my umbrella, then it is raining. 

The contrapositive is ~q  ~p: If I do not use my umbrella, then it is not 

raining. 

(b) we have 

 p : Today is Monday 

 q : Tomorrow is Tuesday 

The converse is q  p : If Tomorrow is Tuesday, then today is Monday. 

The contrapositive is ~q  ~p: If tomorrow is not Tuesday, then today is not 

Monday. 

 

Same truth values 
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Definition:- The inverse of the conditional statement p  q is ~p  ~q. 

For example, the inverse of “If today is Easter, then tomorrow is Monday” is  

“If today is not Easter, then tomorrow is not Monday”. 

Remark:- If a conditional statement is true, then its converse and inverse may 

or may not be true. For example, on any Sunday except Ester, the conditional 

statement is true in the above example yet its inverse is false. 

 

Only if:- “ p only if q “ means that p can take place only if q takes place also. 

That is, if q does not take place, then p cannot take place, i.e. ~q  ~p. 

Therefore equivalence between a statement and its contrapositive imply that “ 

if p occurs, then q must also occur”.    Hence 

    If p and q are statements, “p only if” means “if not q, then not p” or 

equivalently “if p then q”. 

Remark:- “p only if q” does not mean “p if q”. 

 

Example:- Use contrapositive to rewrite the following statement I n” if 

….then” form: 

   “Ram will stand first in the class only if he works twelve hours a day.” 

 

Solution:- Version 1: We have 

                         p : Ram will stand first in the class 

                         q: he works twelve hours a day 

The contrapositive is ~q  ~p : If Ram does not works twelve hours a day, 

then he will not stand first in the class. 

 

Version 2 : If Ram stands first in the class, then he will work twelve hours a 

day. 

 

Definition:- If p and q are statements, the compound statement “p if and only 

if q” is called a Biconditional statement or an equivalence. It is denoted by p 

 q. Observe that p  q is true only when both p and q are true or when both 

p and q are false.(i.e. if both p and q have same truth values) and is false if p 

and q have opposite truth values. 

The biconditional statement has the following truth table: 

                                                p  q 

     P     q   p q 

             

    T 

    T 

    F 

    F 

    T 

    F 

    T 

    F 

     T 

     F 

     F 

     T 
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Lemma:- Show that  

                                                p  q  (p  q)  (q  p) 

 

Solution:- We know that “ p if and only if q” means that both “ p if q” and “ p 

only if q” hold. This means p  q should be logically equivalent to (p  q)  

(q  p). We verify it using the truth table: 

 

P         q     p q     q p      p q (p q) (q p) 

T         T 

T         F 

F         T 

F         F 

       T 

       F 

       T 

       T 

      T 

      T 

      F 

      T 

       T 

       F 

       F 

       T 

           T 

           F 

           F 

           T 

                                                                                                
                                                                     Same truth values     

Hence 

                                            p q  (p q)  (q p)      

Remark:- It follows there for that biconditional statement can be written as the 

conjunction of two “if……then” statement namely p  q and q  p. Also we 

know that 

 

                                             p  q  ~p  q 

and so 

    q  p  ~q  p 

Hence 

            p  q  (p  q)  (q  p) 

                        (~p  q)  (~q  p) 

Thus the statements having  or  symbol are logically equivalent to 

statement having ~,  and . 

 

Definition:- Let p and q be statements. Then p is a sufficient condition for q 

means “if p then q” p is a necessary condition for q means “ if not p then not 

q”. 

 

The hierarchy of operations of logical connectives :  The order of operations 

of connectives are  

                                     ~,  ,  ,   ,   

 

1.4. Arguments and Their Validity  

Definition:- An argument is a sequence of statements. All statements but the 

final one are called premises (or assumptions or hypothesis). The final 

statement is called the conclusion. 
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The symbol ,  read “therefore”, is generally placed just before the 

conclusion. 

 

Logical form of an argument : The logical form of an argument can be 

obtained from the contents of the given argument. For example, consider the 

argument: 

If a man is a bachelor, he is unhappy 

If a man is unhappy, he dies young 

        Bachelors die young. 

This argument has the abstract form 

If p then q 

If q then r 

         p  r  , 

where 

p : He is bachelor 

q : He is unhappy 

r : He dies young 

Consider another example: 

If Socrates is a human being, then Socrates is mortal 

Socrates is a human being 

        Socrates is mortal. 

The abstract form of this argument is  

If p then q 

       p 

        q, 

where 

p : Socrates is human being 

q : he is mortal 
 

Definition:- An argument is said to be valid if the conclusion is true whenever 

all the premises are true. 
 

Definition:- An argument which is not true is called a fallacy. 
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Method to Test Validity of an Argument 

1. Identify the premises and conclusion of the argument 

2. Construct a truth table showing the truth values of all the premises and 

conclusion 

3. Find the rows (called critical rows) in which all the premises are true. 

4. In each critical row, determine whether the conclusion of the argument is 

also true. 

(a) If in each critical row the conclusion is also true, then the argument form 

is valid. 

(b) If there is at least one critical row in which conclusion is false, the 

argument form is fallacy (invalid). 

 

Example:- Show that the argument 

p 

p  q  

                    q 

is valid. 

 

Solution:- The premises are p and p  q. The conclusion is q. The truth table 

is  

 

                  Premises       Conclusion        

 p        q  p      p q        q 

T        T 

T        F 

F        T 

F        F 

 T        T 

 T        F 

 F        T 

 F        T 

       T 

       F 

       T 

       F 

   

In the first row, all the premises are true. Therefore the first row is critical row.  

The conclusion in this critical row is also true. Hence the argument is valid.  

The argument (discussed above) 

p 

p  q 

        q 

is known as Law of Detachment. 

 

Example:- Consider the following argument form 

 

p  q 

Critical row 
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p 

        q 

An argument of this type is  

p  q: If the last digit of this number is a 0, then this is divisible by 10 

                     p : The last digit of this number is a 0 

        This number is divisible by 10. 

The truth table for the premises and conclusion is  

 

                                   Premises     Conclusion        

 P        q   p q      p              Q 

T        T 

T        F 

F        T 

F        F 

     T 

     F 

     T 

     T 

     T       

     T       

     F  

     F                              

       T 

       F 

       T 

       F 

                                                         

The first row is critical row and the conclusion I the critical row is true. Hence 

the given argument form is Valid. 

The fact that this argument form is valid is called Modus ponens. This Latin 

term means “Method of affirming” (since the conclusion is an affirmation). 

 

Example:- Consider the argument form 

p  q 

   ~q 

~p 

An example of this type of argument form is 

     If Zeus is human, then Zeus is mortal  

     Zeus is not mortal  

 Zeus is not human. 

The truth table for the premises and conclusion is  

 

                                                           Premises          Conclusion        

 p        q  p q    ~q      ~p 

T        T 

T        F 

F        T 

F        F 

 T           F 

 F           T 

 T           F 

 T           T 

       F 

       F 

       T 

       T                         

                                                                                                        

The last row is critical row and conclusion in this row is also true. Hence the 

argument form is valid. 

Critical row 

Critical row 
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The fact that this argument is valid is called Modus Tollens which means 

(Method of denying) since the conclusion is denial. 

The above example can be solved by “Method of contradiction” also in the 

following way :  Suppose that the conclusion is false, i.e, Zeus is human. Then 

by the given statement (If…..then) Zeus is mortal. But this contradicts the 

premises “Zeus is not mortal”. Hence the argument is valid and so Zeus is not 

human. 

 

Exercise :- Using truth table or critical row method, show that the argument  

p  q 

q  r 

         p  r 

is universally valid.  This argument is known as Rule of Inference  or Law of 

Syllogism. 

 

Example:- Consider the argument 

Smoking is healthy 

   If smoking is healthy, then cigarettes are prescribed by physicians 

         Cigarettes are prescribed by physicians. 

 

Solution:- In symbols, the argument is  

p  

p  q 

        q 

The argument is of the form Modus Ponens (or Law of Detachment) and so is 

valid.   However, the conclusion is false. Observe that the first premises, p : “ 

Smoking is healthy”, is false. The second premises, p  q is then true and 

conjunction of the two premises (p  (p q)) is false. 

 

Example:- Fill in the blanks of the following arguments so that they become 

valid inferences : 

(a) If there are more pigeons than there are pigeonholes, then two pigeons 

roost in the same hole. 

There are more pigeons than there are pigeonholes 

 ---------------------------------------------------------- 

(b) If this number is divisible by 6, then it is divisible by 2  

This number is not divisible by 2 

 ----------------------------------- 

 

Solution:- (a) In logical symbols, the argument is  
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p  q 

p 

 -----------. 

Hence, by Modus ponens, the answer is q, that is, 

Two pigeons roost in the same hole. 

(b) In logical symbols, the given premises and conclusion are  

p  q 

~q 

------------. 

Hence, by Modus tollen, the answer is ~p, that is, 

This number is not divisible by 6. 

 

Example:- Using rules of valid inference solve the problem: 

(a) If my glasses are on the kitchen table, then I saw them at breakfast 

(b) I was reading the newspaper in the living room or I was reading in the 

kitchen 

(c) If I was reading the newspaper in the living room. Then my glasses are on 

the coffee table. 

(d) I did not see my glasses at breakfast 

(e) If I was reading my book in bed, then my glasses are on the bed table. 

(f) If I was reading the newspaper in the kitchen, then my glasses are on the 

kitchen table. 

Where are the glasses? 

 

Solution:-Let 

p : my glasses are on the kitchen table  

q : I saw them at breakfast 

r : I was reading the newspaper in the living room 

s : I was reading the newspaper in the kitchen 

t : my glasses are on the coffee table 

u : I was reading my book in bed 

v : my glasses are on the bed table. 

Then the given statements are 

(a) p  q (b) r  s (c) r  t 
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(d) ~q  (e) u  v (f) s  p 

The following deductions can be made:(1) 

 p  q by (a) 

 ~q by (d) 

        ~p by Modus Tollen (2) 

 s  p by (f) 

 ~p by the conclusion of (1) 

           ~ s by Modus Tollen   (3) 

 r   s by (b) 

 ~s by the conclusion of (2) 

          r by disjunctive syllogism(4) 

 r  t by (c) 

 r by the conclusion of (3) 

         t by Modus Ponens     

Hence t is true and the glasses are on the coffee table.  

Contradiction Rule:- If the supposition that the statement p is false leads 

logically to a contradiction, then you can conclude that p is true. 

In symbols, 

~p  c, where c is a contradiction 

 p 

The truth table for the premise and the conclusion of this argument is given 

below: 

 

   p    ~p    c ~p  c      p 

  T 

  F 

     F 

     T 

   F 

   F 

      T 

      F 

     T 

     F 

 

The premises and conclusion are both true in the critical row and hence the 

argument is valid. 

 

Example:- Knights and Knaves (Raymond Smullyan’s Description of an 

island containing two types of people): 

 

This island contains two types of people: knights who always tell the truth and 

Knaves who always lie. A visitor visits the island and approached two natives 

who spoke to the visitor as follows: 

 

A says : B is a knight 

B says : A and I are of opposite type. 

Critical row  
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What are A and B? 

 

Solution:- Suppose A is a knight. Because A always tells the truth, it follows 

that B is a knight.  

Therefore what B says is true (by the definition  of Knight). Therefore A and B 

are of opposite type. Thus we arrive at a contradiction: A and B are both 

Knights and A and B are of opposite type. Therefore supposition is wrong. 

Hence A is not a Knight. So A is a Knave. Therefore what A says is false. 

Hence B is not a Knight and so is a Knave. Hence A and B are both Knaves.    

 

1.5. Quantifiers 

So far we have studied the compound statements which were made of simple 

statements joined by the connectives ~, , ,  and . That study cannot be 

used to determine validity in the majority of everyday and mathematical 

situations. For example, the argument 

All human being are mortal  

Socrates is a human being 

 Socrates is mortal 

is intuitively correct. Yet its validity cannot be derived using the methods 

studied so far. To check the validity of such argument it is necessary to 

separate the statements into parts-subjects and predicates. Also we must 

analyse and understand the special role played by words denoting quantities 

such as All or Some. 

 

Definition:- The symbolic analysis of predicates and quantified statements is 

called the predicate calculus whereas the symbolic analysis of ordinary 

compound statements is called the Statement Calculus (or prepositional 

calculus). 

 

In English grammar, the predicate is the part of a sentence that gives 

information about the subject. For example, in the sentence “Ram is a resident 

of Karnal”, the word Ram is the subject and the phrase “is a resident of 

Karnal” is the predicate. Thus, predicate is the part of the sentence from 

which the subject has been removed. 

 

In logic, predicates can be obtained by removing any nouns from a statement. 

For example, if P stands for “is a resident of Karnal” and Q stands for “is a 

resident of”, then both P and Q are predicate symbols. The sentences “x is a 

resident of Karnal” and “x is a resident of y” are denoted as P(x) and Q(x, y) 

respectively, where x and y are predicate variables that take values in 

appropriate sets. 

 

Definition:- A predicate is a sentence that contains a finite number of 

variables and becomes a statement when specific values are substituted for the 

variables. 
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The domain of a predicate variable is the set of all values that may be 

substituted in place of the variables. The predicates are also known as 

“propositional functions or open sentences”. 

 

Definition:- Let P(x) be a predicate and x has domain D. Then the set 

{ x  D : P(x) is true} 

is called the truth set of P(x). 

 

For example, let P(x) be “ x is an integer less than 8” and suppose the domain 

os x is the set of all positive integers. Then the truth set of P(x) is {1, 2, 3, 4, 5, 

6, 7} 

 

Let P(x) and Q(x) be predicates with common domain D of x. The notation 

P(x)  Q(x) means that every element in the truth set of P(x) is in the truth set 

of Q(x). 

 

Similarly P(x)  Q(x) means that P(x) and Q(x) have Identical truth sets. 

 

For example, let  

P(x) be “x is a factor of 8” 

Q(x) be “x is a factor of 4” 

R(x) be “ x < 5 and x  3” 

and let the domain of x be set of positive integers (Zahlen). 

Then 

Truth set of P(x) is {1, 2, 4, 8} 

Truth set of Q(x) is {1, 2, 4}  

Since every element in the truth set of Q(x) is in the truth set of P(x), Q(x)  

P(x). 

 

Further, truth set of R(x) is {1, 2, 4}, which is identical to the truth set of Q(x). 

Hence R(x)  Q(x). 

 

Definition:- The words that refer to quantities such as “All”, or “some” and 

tell for how many elements a given predicate is true are called quantifiers. 

By adding quantifier, we can obtain statements from a predicate. 

 

1.6. Universal Quantifiers and Existence Of Quantifiers 

Definition:- The symbol  denotes “ for all” and is called the Universal 

quantifier. 
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Thus the sentence 

All human beings are mortal 

Can he written as 

 x  S, x is mortal, 

where S denotes the set of all human being. 

 

Definition:- Let P(x) be a predicate and D the domain of x. A statement of the 

form “  x  D, P(x)” is called a universal statement. 

A universal statement P(x) is true if and only if P(x) is true for every x in D 

and a universal statement P(x) is false if and only if P(x) is false for at least 

one x  D. 

A value for x for which P(x) is false is called a Counterexample to the 

universal statement.] 

 

Example:- Let D = {1, 2, 3, 4} and consider the universal statement 

P(x) :  x  D, x
3
  x 

This is true for all values of x  D since 1
3
  1, 2

3
  2 and so on. 

But the universal statement 

Q(x) :  n N, n + 2 > 8 

is not true because if we take n = 6, then 8 > 8 which is absurd. 

 

Definition:- The symbol  denotes “there exists” and is called the existential 

quantifier. 

For example, the sentence “ There is a University in Kurukshetra” can be 

expressed as  

 a university u such that u is in Kurukshetra. 

or, we can write 

 u  U such that u is in Kurukshetra, where U is the set of universities. 

The words such that are inserted just before the predicate.   

 

Definition:- Let P(x) be a predicate and D is the domain of x. a statement of 

the form “  x  D such that P(x)” is called an Existential Statement. It is 

defined to be true if and only if P(x) is true for at least one x in D. 

It is false if and only if P(x) is false for all x in D. 

For example the existential statement 

 n  N : n + 3 < 9 

is true since the set 

{n : n + 3 < 9} = {1, 2, 3, 4, 5} 
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is not empty.  

 

Example:- Let A = {2, 3, 4, 5}, then the existence statement 

 n  A : n
2
 = n 

is false because there is no element in A whose square is equal to itself. 

 

Definition:- A statement of the form 

 x, if P(x) then Q(x) 

is called universal conditional statement. 

Consider the statement 

 x  R, if x > 2 then x
2

 > 4 

can be written in any of the form 

(i) If a real number is greater than 2, then its square is greater than 4 

(ii) Whenever a real number is greater than 2, its square is greater than 4   
(iii) The square of any real number that is greater than 2 is greater than 4. 

(iv) The squares of all real numbers greater than 2 are greater than 4. 

On the other hand, consider the statements 

(i) All bytes have eight bits 

(ii) No fire trucks are green. 

These can be written as  

(i)  x, if x is a byte, then x has eight bits 

(ii)  x, if x is a fire truck , then x is not green. 

 

Example:- Consider the statement 

(i)  Polygons p, if p is a square, then p is a rectangle. 

This is equivalent to the universal statement 

“  squares p, p is a rectangle”. 

(ii)  a number n such that n is prime and n is even.  

This is equivalent to  

“  a prime number n such that n is even”. 

Remark:- Existential quantification can also be implicit. For example, the 

statement 

“The number 24 can be written as a sum of two even integers” 

can be expressed as  

“  even integers m and n such that 24 = m + n”. 
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1. Universal quantification can also be implicit. For example the statement 

“If a number is an integer, then it is rational number”  

is equivalent to 

“  real number x, if x is an integer, then it is a rational 

number.” 

 

1.7. Negation of University Statement  

Definition:- The negation of a universal statement 

 x in D, P(x) 

is logically equivalent to a statement of the form 

 x in D such that ~P(x) 

Thus 

~(  x  D, P(x))   x  D, ~P(x) 

Hence 

The negation of a universal statement “all are” is logically equivalent to an 

existential statement “some are not”. 

For example, the negation of 

(i) “ For all positive integer n, we have n + 2 > 9”  

is  

“ There exists a positive integer n such that n + 2  0”. 

(ii) The negation of  

“ All students are intelligent” 

 is  

“Some students are not intelligent” 

or  

“  a student who is not intelligent”. 

(iii) the negation of  

“ No politicians are honest” 

is  

“  a politician x such that x is honest.” 

or  

“Some politicians are honest”. 

 

Definition:- The negation of a universal conditional statement is defined by 

~( x, P(x)  Q(x))   x such that ~( P(x)  Q(x)).  

Also we know that the negation of if-then statement is  
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~ ( P(x)  Q(x) )  P(x)  ~Q(x). 

Hence 

~( x, P(x)  Q(x))   x such that  P(x)  ~Q(x) , 

that is, 

~( x, P(x)  Q(x))   x such that P(x)  and ~Q(x). 

 

Example:- The negation of  

 people p, if p is blond then p has blue eyes 

is  

 a person p such that p is blond and p does not have blue eyes. 

 

Example:- Suppose there is a bowl and we have no ball in the bowl. Then the 

statement 

“All the balls in the bowl are blue” 

is true “by default” or “ Vacuously true” because there is no ball in the bowl 

which is not blue. 

If P(x) is a predicate and the domain of x is D = {x1, x2,….,xn), then the 

statement 

 x  D, P(x) 

and 

P(x1)  P(x2) …  P(xn) 

Are logically equivalent. 

For example, let P(x) be  

“x . x = x” 

and let D = {0, 1}. Then 

 x  D, P(x) 

can be written as 

 binary digits x ,         x . x = x. 

This is equivalent to  

0 . 0 = 0 and 1 . 1 = 1 

which can be written as  

P(0)  P(1) 

Similarly, if P(x) is a predicate and D = (x1, x2, …,xn} then the statements 

 x  D, P(x) 
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and  

P(x1)  P(x2) ….  P(xn) 

are logically equivalent. 

 

Definition:- Let 

 x  D, if P(x) then Q(x) 

be a statement. Then 

(i) Contrapositive of this statement is  

 x  D, if ~Q(x) then ~P(x) 

(ii) Converse of this statement is  

 x  D, if Q(x) then P(x) 

(iii) Inverse of this statement is  

 x  D, if ~P(x) then ~Q(x) 

 

1.8. Universal Modus Ponens 

The following argument form is valid 

Formal Version   Informal Version 

 x if P(x) then Q(x)  If x makes P(x) true, then x makes Q(x) true 

P(a) for a particular a   a makes P(x) true 

 Q(a)     a makes Q(x) true. 

An argument of this form is called a Syllogism. The first and second premises 

are called its major premises and minor premises respectively. 

 

Example:- Consider the argument: 

If a number is even, then its square is even 

K is a particular number that is even 

 K
2
 is even 

The major premises of this argument can be written as 

  x, if x is even then x
2
 is even 

Let  

P(x) : “x is even” 

Q(x) : “x
2
 is even” 

and let k be an even number. Then the argument is  

 x, if P(x) then Q(x) 
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P(k) for k 

 Q(k) 

This form of argument is valid by universal Modus Ponens. 

 

1.9. Universal Modus Tollens 

The following argument form is valid 

Formal Version   Informal Version 

 x if P(x) then Q(x)   If x makes P(x) true, then x makes Q(x) 

true 

~Q(a) for a particular a    a does not makes Q(x) true 

 ~P(a)      a does not makes P(x) true. 

 

Example:- 

All human being are mortal  

Zeus is not mortal 

 Zeus is not human 

The major premise of this argument can be rewritten as  

 x, if x is human, then x is mortal 

Let 

P(x) : x is human 

Q(x) : x is mortal 

let Z = Zeus 

 Then we have 

 x, if P(x) then Q(x) 

~Q(Z) 

 ~P(Z) 

which is valid by Universal Modus Tollens. 

 

Example:- The argument  

All professors are absent minded 

Tom is not absent minded 

 Tom is not a professor. 

The major premise can be written as 

 x, if x is professor, then x is absent minded. 
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Let 

P(x) : x is professor. 

Q(x) : x is absent minded. 

Z = Tom 

Then we have 

 x, if P(x) then Q(x) 

~Q(Z) 

~P(Z). 

Hence, by Universal Modus Tollens, Tom is not a professor. 

1.10. Use of Diagrams For Validity of Arguments 

Consider the argument: 

All human beings are mortal 

Zeus is not mortal 

 Zeus is not a human being. 

 

          

          

          

          

          

          

          

          

          

          

          

        

 

The two diagrams fit together in only  one way as shown below:  

     

          

          

          

          

          

          

          

         

mortal 

human

being .Zeus  

Minor premise Major premise 

mortal 

.Zeus 

Human 

being 

mortal 
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Since Zeus is outside the mortal disc it is necessarily outside the human beings 

disk. Hence the Conclusion is true. 

 

Example:- Use a diagram to show the invalidity of the arguments 

All human being are mortal 

Felix is mortal 

 Felix is a human being. 

 

Solution:-  The major premise and a minor premise of the arguments are 

shown in the diagrams below :   

 

          

          

          

          

          

          

          

          

          

          

      

There are two possibilities to fit these two diagrams into a single one. 

 

          

          

          

          

          

          

          

          

           

(1) (2) 

The conclusion “Felix is a human being” is true in the first case but not in the 

second. Hence the argument is invalid. 

 

 

 

 

 

 

 

 

Mortals 

Human 

being 

     Mortal 

. Felix 

 

Human 

being 

.Felix 

Mortal 

     Mortal 

 

Human 

being 

. Felix 
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PART B : SEMIGROUPS AND MONOIDS 

1.11. Binary Operation and its Properties  

Definition.  Let A be a non-empty set.  Then a mapping f : A  A  A is called a binary 

operation.  Thus, a binary operation is a rule that assigns to each ordered pair (a, b)  A A an 

element of A.   

For the sake of simplicity, we write a * b in place of f(a,b).  

Examples. 1.  Let Z be the set of integers.  Then f : Z  Z  Z defined by f(a,b) = a * b = a+b, 

a, b  Z is a binary operation on Z because the sum of two integers a and b is again an integer.   

Thus, addition of integers is a binary operation.   

2. Let N be the set of positive integers.  Then f : N  N  N defined by f(a,b) = a * b = a b is 

not a binary operation because difference of two positive integers need not be positive 

integer.  For example 2-5 is not a positive integer.  

3. For the set N of positive integers, let f : N  N  N be defined by f(a,b) = 
b

a
.  Then f is 

not a binary operation.  For example, if a = 2, b = 7, then 
b

a
 = 

7

2
is not a positive integer.  

4. Let Z be the set of all integers.  Then f : Z  Z  Z defined by  

f(a,b) = max (a, b)  

is a binary operation.  For example,  

  f(2, 4) = 2 * 4 =  max(2,4) = 4  Z .  

5. Let A = {a, b, c}.  Define * by  

x * y = x,  x, y  A .  

Then the table given below defines the operation *  

* a b c 

a a a a 

b b b b 

c c c c 

Further, if we define  .  by  

  x.y = y,  x,    y  A,  
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then the table given below defines the operation . 

. a b c 

a a b c 

b a b c 

c a b c 

6. If A = {0, 1}.   Then the binary operations  and  are defined by the following tables : 

^ 0 1 

0 0 0 

1 0 0 

 

and  

 0 1 

0 0 1 

1 1 1 

 

Properties of Binary Operation 
1. Commutative Law :-  A binary operation * on a set A is said to be commutative if  

    a * b = b * a  

for any elements a and b in A.  

For example, consider the set Z of integers.  Since  

  a+b = b+a   and a.b  =  b.a,  

for a, b  Z, the addition and multiplication operations on Z are commutative.  

But, on the other hand, subtraction in Z is not commutative since, for example,  

  2 3  3  2 

Example.  Fill in the following table so that the binary operation * is commutative. 

* a b c 

a b   

b c b a 
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c a  c 

We note that b * a = c, therefore, for commutativity we must have a * b = c.  

Further, c * a = a, hence a * c should also be a. 

Further, for commutativity we should have  

  c * b  = b * c  

     =  a  

Thus c * b should be  a .   

Note that for commutativity of *, the entries in the table are symmetric with respect to the main 

diagonal.  

Definition.  A binary operation * on a set A is said to be associative if for any elements a, b, c 

in A, we have  

  a * (b * c) =  (a * b) * c 

For example, addition and multiplication of integers are associative.  But subtraction of 

integers is not associative.  For example,  

    (2 4) 5  = 7 ,  

but 

    2 (4 5) = 3 

Theorem.  Let * be a binary operation on a set A.  Then any product a1 * a2 * … * an requires no 

parenthesis, that is, all possible products are equal.  

Proof.  We shall prove this result by induction on n.  Since * is associative, the theorem holds 

for n = 1, 2 and 3.   Suppose [a1 a2 … an] denote any product and  

(a1 a2 … an)  = (… (a1 a2)a3…)an 

It is sufficient then to show that  

      [a1a2…an] = (a1a2 … an) 

Since [a1 a2 … an] denote arbitrary product, there is an m < n such that induction yields  

 [a1 a2 … an]  = [a1 a2 … am] [am+1 … an]  

           = [a1 a2 … am] (am+1 … an)  

           = [a1 a2 … am] ((am+1 … an 1)an)  

           = ( [a1 a2 … am] (am+1 .. an 1))an  

   = [ a1 … an 1] an  

   = (a1 … an 1)an  

   = (a1 a2 … an) ,  

which proves the result.  
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Definition.  Let * be a binary operation on a set A.  An element e in A is called an identity 

element for * if for any element a  A,  

    a * e = e * a  = a.  

Further e is called right identity if a * e = a and left identity if e * a = a for any a  A.  

Let e1 the left identity and e2 be the right identity for a binary operation *.  Then  

  e1e2 = e2        since  e1 is left identity 

and  

    e1 e2 = e1      since e2 is right identity 

Hence e1 = e2 and so identity element for a binary operation is unique. 

Definition.  Let * be a binary operation on a set A and let A has identity element e.   Then 

inverse of  an element a in A is an element b such that  

    a * b =  b * a = e.  

We shall see later on that if * is associative, then the inverse of an element, if it exits, is unique.  

Definition.   A binary operation * on a set A is said to satisfy the left cancellation law if  

a * b = a * c  b = c  

A binary operation * on a set A is said to obey right cancellation law if  

  b * a = c * a  b = c  

Let Z be the set of integers.  Since  

    a + b =  a + c  b = c  

and  

    b + a = c + a  b = c  for a, b, c  Z,  

it follows that addition of integers in Z obeys both cancellation laws.  

Similarly multiplication of integers also obey cancellation laws.  

On the other hand, matrix multiplication does not obey cancellation 

laws.  To see it, let  

   A =   
00

11
 ,  B = 

10

11
 ,  C =  

51

30
 .  

Then  

   AB = AC = 
00

21
 

but B  C .  

1.12. Algebraic Systems  
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Definition.  A non-empty set together with a number of binary operations on it is called an 

algebraic system.  

In what follows, we shall define some algebraic systems :  

Definition.  A non-empty set S is said to be a semigroup if in S there is defined a binary 

operation * satisfying the following property :  

If a, b, c  S, then  

 a * (b * c) = (a * b) * c        (Associative Law)  

Thus  

 A non-empty set S together with an associative binary operation * defined on S is 

called a Semi-group.   

We denote the semigroup by (S, *).  

Definition.  A semigroup (S, *) is called commutative if the binary operation * is a 

commutative operation, i.e., if  

    a * b =  b * a   for a, b  S.  

Examples.  1.  Let Z be the set of all integers. Then (Z, +) is a commutative semigroup.   In 

fact, if a, b, c  Z, then  

(i) a * b = a+b is an integer.  Therefore, the operation + on Z is a binary operation.  

(ii) a + (b+c) = (a+b) + c, because associative law holds in the set of integers.  

(iii) a + b =  b + a, because addition in Z is commutative.  

2. The set Z of integers with the binary operation of subtraction is not a semi-group since 

subtraction is not associative in Z.  

3. Let S be a finite set and let F(S) be the collection of all functions f : S  S under the 

operation of composition of functions.  We know that composition of functions is 

associative, i.e.  

fo(goh) =  (fog)oh ,  f , g , h  F(S) .  

Hence F(s) is a semigroup.  

4. The set P(S), where S is a set, together with the operation of union is a commutative 

semigroup.  

5. The integers modulo m, denoted by Zm, refer to the set  

       Zm = {0, 1, 2,…, m 1} .  

The addition in Zm is defined as  

                a + b = r,  
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where r is the remainder when a+b is divided by m.  The multiplication in Zm is defined by  

            a.b = r,  

where r is the remainder when a+b is divided by m .  

For example, consider 

       Z4 = {0, 1, 2,3}  

The addition table is  

+ 0 1 2 3 

0 0 1 2 3 

1 1 2 3 0 

2 2 3 0 1 

3 3 0 1 2 

 We note  
  (1+2) + 3  =  3+3 =  2       and     1+(2+3) =  1+1 = 2      

Hence  

    (1+2)+3 =  1 + (2+3)  

In general,  

             (a+b) + c = a + (b+c),  a, b, c  Z4  

Hence Z4 is a semi-group.   
Definition.  A non-empty set S is said to be a monoid if in S there is defined a binary 

operation * satisfying the following properties :  

(i) If a, b, c  S, then  

a * (b * c) = (a * b) * c       (Associative Law)  

(ii) There exists an element e  S such that  

          e * a = a * e = a   for all a  S (Existence of identity element) 

Thus :  

An algebraic system (S, *) is said to be a monoid if  

(i) * is a binary operation on non-empty set S  

(ii) * is an associative binary operation on S 

(iii) There exists an identity element e in S.  

It, therefore, follows that  

A monoid is a semi-group (S, *) that has an identity element. 

Example.   1.  In example 3 above, identity function is an identity element for F(S).  Hence 

F(S) is a monoid.   
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2. Let M be the set of all n  n matrices and let the binary operation * of M be taken as 

addition of matrices.  Then (M, *) is a monoid.  In fact,  

(i) The sum of two n  n matrices is again a matrix of order n  n .  Thus the 

operation of matrix addition is a binary operation.  

(ii) If A, B, C  M, then  

A + (B+C) = (A+B) + C    (Associative Law)  

       (iii)      The zero matrix acts as additive identity of this monoid because  

   A + 0 = 0 + A =   A   for A  M .  

Definition.   Let A be a non-empty set.  A word w on A is a finite sequence of its elements.  

For example,   

  w = ab ab bb = ab ab
3
  

is a word on A = {a, b} . 

Definition.  The number of elements in a word w is called its length and is denoted by l(w).  

For example, length of w in the above example is  

  l(w) = 6   

Definition.  Let u and v be two words on a set A.  Then the word obtained by writing down the 

elements of u followed by the elements of v is called the concatenation of the words u and v 

on A.  

For example, if A = {a, b, c}  and  

                  u = ab a bbb      and v = a c b a b 

then  

       w = ab abbb ac bab = abab
3
acbab 

is the concatenation of u and v.  

Let F(A) denote the collection of all words on A under the operation of 

concatenation.  We note that  

  (u v)w = u(v w)  

for u, v, w  F(A).  Hence F(A) is a semigroup known as Free semigroup on A.  The 

elements of A are called the generator of F(A).  

Also, we note that if u, v are two words, then  

    l(uv)  = l(u) + l(v). 

Further, the empty sequence, denoted by , is also considered as a word on A.  However, we 

do not assume that  belongs to the free semigroup F = F(A).   The set of all words on A 
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including  is usually denoted by A*.  Thus A* is a monoid under concatenation.  It is called 

the free monoid on A.  

Definition.  Let (S, *) be a semigroup and T be a subset of S.  If T is closed under the operation 

* that is, a * b  + whenever a, b  T, then (T, *) is called a subsemigroup of (S, *).  

Definition.  Let (S, *) be a monoid with identity e, and let T be a non-empty subset of S.  If T 

is closed under the operation * and e  T, then (T, *) is called a submonoid of  (S, *).  

Clearly, the associative property holds in any subset of a semigroup and so a subsemigroup 

(T, *)  of a semigroup (S, *) is itself a semigroup.  

Similarly, a submonoid of a monoid is itself a monoid.  

Example.   1.  Let A be the set of even positive integers.  Then (A, .), where . denotes ordinary 

multiplication is a subsemigroup of (N, X) since A is closed under multiplication.  

Similarly, the set B of odd positive integers form a subsemigroup (B, X) of (N, X).  

Also (A, + ) is a subsemigroup of (N, . ).  But (B, +) is not a subsemigroup of (N, +) because B 

is not closed under addition.  For example, 1+3 = 4 which is not odd.  

2. Let (S, *) be a semigroup and a  S.   If T = {a
i
 : i  N} ,  then (T, *) is a subsemigroup of  

(S, *).  

3. Let F(A) be a free semigroup on the set A = {a, b}.  Let G consists of all even words, that 

is, words with even length.  The concatenation of two such words is also even.  Thus G is 

a subsemigroup of F(A).  

Theorem.  The inverse of every element in a semigroup with identity e is unique.  

Proof.   We shall use associativity of the binary operation * to prove the uniqueness of the 

inverse element.  

So, suppose that b and c are two inverses of an element a in a monoid (S, *).  Therefore, we 

have  

  a * b = b * a = e      (i) 

     
  a * c = c * a = e      (ii)  

We note that  

  b * (a * c) =  b * e,     by (ii)  

        = b,  because e is identity     (iii)  

and  

  (b * a) * c = e * c ,  by (i)  

                     = c,  because e is identity    (iv)  

But associativity of binary operation * implies  

  b * (a * c) = (b * a) * c  

Hence, from (iii) and (iv) it follows that  
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      b = c ,  

proving that inverse, if exist, of every element in a monoid is unique.  

1.13 Homomorphism of 

Semigroups 
We discuss now a method for comparing the algebraic structures of the two 

semigroups.  

Definition.   Let (S, *) and (T, * ) be two semigroups.  A function f : S  T is called a 

semigroup homomorphism if  

      f(a * b) = f(a) *  f(b)  

for all a, b  S.  

If, in addition, f is also onto, we say that T is a homomorphic image of S.  

Definition.  Let (S, *) and (T, * ) be two semigroups.  If f : S  T is both one-to-one and onto in 

addition to being a homomorphism, then f is called an isomorphism from (S, *) to (T, * ).  

Definition.   A homomorphism f from (S, *) to (T, * ) is called a monomorphism if f as a map 

is injective (one-to-one).   

Definition.   A homomorphism f from (S, *) to (T, * ) is called an Epimorphism if f as a map 

is surjective (onto).  

Thus we may define isomorophism between two semigroups (S, *) and (T, * ) as  

Definition.   Let (S, *) and (T, * ) be two semigroups.  Then a homomorphism f : (S, *)  (T, 

* ) is called an isomorphism if it is both monomorphism and epimorphism.  

OR 

Definition.  Let (S, *) and (T, * ) be two semigroups.  Then a mapping f : S  T is called an 

isomorphism if  

(i) f (a * b) = f(a) *  f(b)  for all a, b  S   (semigroup homomorphism) 

(ii) f as a map is bijective.  

Definition.   Let (S, *) and (T, * ) be two semigroups.  If f : S  T is an isomorphism, then the 

semigroups (S, *) and (T, *) are called isomorphic.  In such a case (T, * ) is called isomorphic 

image of (S, *).  

Examples.  1. Let F(A) be the free semigroup of a set A, and let Z be the semigroup of 

integers under addition.  Let  

  f : F(A)  Z  

be defined by  

    f(w) = l(w),  w  F(A)  

We note that, if u, v  F(A), then  
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  f(uv) = l(uv)  

                     = l(u) + l(v)  

             = f(u) + f(v)  

Hence f is a homomorphism.   Here, the operation in F(A) is written multiplicatively, whereas 

the operation in Z is addition.   

2. Let Z be the set of integers and T be the set of all even integers.  Then               (Z, + ) and 

(T, +) are semigroups.  Let  

       f : Z  T 

be defined by  

    f(a) = 2a,  a  Z  

We note that  

(i) f(a+b)= 2(a+b)  

          = 2a + 2b  

                      = f(a) + f(b)  

Thus f is a homomorphism.  

(ii)     f(a) = f(b)   2a = 2b  

                                     a = b 

Hence f is one-to-one, that is, f is monomorphism.  

(iii) Let b be an even integer.  Then a = 
2

b
  Z and  

                    f(a) = f
2

b
 =  2

2

b
  = b 

Thus to every b  T, there is an a  Z such that f(a) = b.  

Hence f is onto, i.e., f is epimorphism.  

Hence f is an isomorphism.  

Theorem.   Let (S, *) and (T, * ) be monoids with identities e and e  respectively.  Let F : S  

T be a homomorphism from (S *) onto (T, * ).  Then f(e) =  e .   

Proof.   Let b be any element of T.  Since f is surjective, there is an element a  S such that 

f(a) = b.  Since e is identity of S, we have  

  a * e = a = e * a    (i) 

and so  

           b = f(a)= f(a * e) , by (i)  

                        = f(a) *  f(e) ,  because f is homomorphism  
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                        = b *  f(e)  

Also,  

  b = f(a) = f(e * a)  

   = f(e) *  f(a)  

   = f(e) * b  

Hence  

  b *  f(e) = f(e) *  b = b  

and so f(e) is identity for T.  Thus, f(e) = e  .  

Theorem.  If f is a homomorphism from a commutative semigroup (S, *) onto a semigroup (T, 

* ), then (T, * ) is also commutative, that is, homomorphic image of an abelian 

(commutative) semigroup is abelian. 

Proof.  Let t1, t2  T.  Since f is onto, there exist s1, s2  S such that  

  f(s1) = t1 and f(s2) = t2  

Then  

    t1 *  t2  = f(s1) *  f(s2)  

   =  f(s1 * s2) ,  since f is homomorphism 

     = f(s2 * s1), since S is abelian  

     = f(s2) *  f(s1), since f is homomorphism 

     = t2 *  t1 . 

Hence (T, * ) is abelian.  

Remark.   The converse of the above theorem is not true.  

Theorem.  Let f : (S, *)  (T, * ) be semigroup homomorphism.  If S  is a subsemigroup of (S, 

*), then the image of S  under f is a subsemigroup of (T, * ).   

Proof.  Let f (S ) be the image of S  under f and let t1, t2 be in f (S ).   Then there are s1 and s2 in 

S  such that  

          t1 = f(s1) and t2 = f(s2)  

We claim that f(S ) is closed under the binary operation * .   It is sufficient to show that t1 *  t2  

f(S ).   We have, in this direction,  

  t1 *  t2 =  f(s1) *  f(s2)  

               = f(s1 * s2),  because f is homomorphism.  

Now since S  is a semigroup and s1, s2  S , we have s1 * s2  S (due to closeness of the 

peration *).  Hence  f(s1 * s2)  f(S ).  It follows, therefore, that t1 *  t2  f(S ).   

Further, since the associativity hold in T, it also holds in f(S ).  Hence f(S ) is a 

subsemigroup of   (T, * ).   

Theorem.  The intersection of two subsemigroups of a semigroup (S, *) is subsemigroup of (S, 

*).  
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Proof.  Let (S1, *) and (S2, *) be two subsemigroups of the semigroup (S, *).  Let a  S1  S2 

and  b  S1  S2 .   Then  

  a  S1  S2  a  S1 and  a  S2  

    b  S1  S2   b  S1 and b  S2  

Since S1 is a subsemigroup, therefore, a, b  S1 implies a * b  S1.  Similarly, since S2 is a 

subsemigroup, a, b  S2 implies a * b  S2.  Hence  

  a * b  S1  S2  

Hence S1  S2 is closed under the operation *.  Further associativity in S1 and S2 implies the 

associativity of S1  S2 since S1  S2  S1 and S1  S2  S2.   Hence S1  S2 is a 

subsemigroup of (S, *).  

Corollary.   Intersection of two submonoids of a monoid (S, *) is a semimonoid of (S, *).  

Proof follows the same line as that in the above Theorem. 

Remark.  Union of two subsemigroups of a semigroup (S, *) need not be a subsemigroup of 

(S, *).  

For example,  

  (S1 , *)  =  {0,  2,   4,   6,  + ….}  

and  

   (S2, *) = {0,  3,   6,   9, , …}  

are subsemigroups of the semigroup (Z, +) of integers.  But  

             S1  S2 = {0,  2,   3,   4,   6,  ….}  

is not a subsemigroup of (Z, +), because  

    2  S1  S2 ,  3  S1  S2  , 

but  2+3 = 5   S1  S2 showing that S1  S2 is not closed under addition.  

1.14. Quotient Structure 

Definition.  An equivalence relation R on a semigroup (S, *) is called a congruence relation if 

a R a  and b R b  imply (a * b) R (a  * b ).   

Examples.  1.    Let (Z, +) be the semigroup of integers. Consider the  relation R defined on Z 

by  

  A R b if and only if a   b (mod m).  

We know that a   b (mod m) if m divides a b.  We note that  

(i) For any integer a, we have a  a (mod m), i.e., a R a  

(ii) If a R b, then a  b (mod m)  m | (a b)  m|(b a)  and so b  a (mod m) which 

means            b R a.  
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(iii) If a R b and b R c, then  

a  b(mod m) and b  c(mod m) 

               m|(a b)   and m|(b c)  

                           m [(a b) + (b c)] 

                           m|(a c) 

                           a  c (mod m), which means that a R c.  

Thus R is reflexive, symmetric and transitive and so is an equivalence relation.  Further, if  

    a   c (mod m) and b  d (mod m),  

then  

    m | (a c)  and m | (b d)  

 

        m | [(a c) + (b d)] 

        m|[(a+b)  (c+d)]  

 (a+b)  (c+d) (mod m)  

  (a+b) R (c+d)  

Hence R is a congruence relation.  

2.   Consider the semigroup (Z, .), where . denotes ordinary multiplication.   Let us again 

consider the relation R on Z defined by  

              a R b  if and only if a  b (mod m).  

This relation is an equivalence relation.  Further if a  c (mod m) and b  d (mod m), then  

 m|(a c)  and   m|(b d) 

  m|b(a c)  and  m|c(b d) 

 n|(ab bc) and m|(bc cd) 

 m|[(ab bc + bc cd)]  

 m|(ab cd) 

 ab  cd (mod m)  

Hence the relation is a congruence relation on (Z, . ) .  

3.   Let F(A) be the free semigroup on a set A.  Define u R v if u and v have the same 

length.  We note that  

(i) u R u  because u has same length as u 

(ii) If u R v, then u and v have same length  v and u have same length  v R u  

(iii) If u R v and v R w, then u and v have same length and also v and w have same length 

and so u and w have same length, that is, u R w :  

Hence R is an equivalence relation.   Further, let u R v and u  R v .   Then  
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      l(u) = l(v) and l(u ) = l(v ) .  

Then  

    l(uu) =  l(vv ) = m + n ,  

that is  

    l(uu ) = l(vv )  

   uv   R vv   

Hence R is a congruence relation on F = F(A).  

4.   Let (Z, +) be the semigroup of integers and let f(x) =  x
2

x 2.   Let R be a relation defined 

on Z by  

  a R b  if and only if f(a) =  f(b).  

It can be shown that R is an equivalence relation.  Further we note that  

   f( 1) = f(2) = 0   and so 1 R 2  

   f( 2) = f(3) = 4  and so 2 R 3. 

But  

   f( 3) = 10  and f(5) = 18 , 

and so     

  3  R  5 .  

Hence R is not a congruence relation.  

1.15 Equivalence Classes 

If R is an equivalence relation on the semi-group (S, *) , it will partition S into equivalence 

classes.  Let [a] be the equivalence class containing a in S and let S/R denote the set of all 

equivalence classes, where R is congruence relation.  

We define an operation   on the equivalence classes S/R by 

     [a]    [b] = [a * b] ,        a , b  S 

that is    : S/R  S/R  S/R  is defined by  

                      ( [a], [b] )  = [ a]     [b] = [a * b] 

Then we have  

Theorem.  Let R be a congruence relation on the semigroup (S, *).  Then  : S/R  S/R  S/R 

defined by  

                         ( [a], [b] ) = [a]  [b] = [a * b] , a, b  S  

is a binary operation on S/R and (S/R, ) is a semigroup. 

Proof.  Suppose that ([a], [b] ) = [a ],  [b ] ).  Then a R a  and b R b .  Since R is congruence 

relation, this implies a * b R a  * b .  Thus [a * b] = [a  * b ], that is,   is a well defined 

function. Hence   is a binary operation  S/R.  
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Further we note that  

[a]   ( [b]    [c] )  =  [a]    [ b * c]    (by definition of   )  

        =  [ a * (b * c)]      (by  definition of    ) 

        =  [ (a * b) * c] (Associativity of * in S)  

        =  [a * b]  [c] (by definition of  )  

        =  ( [a]   [b] )   [c]  (by definition of   )  
 

Hence    is an associative operation.    This implies that (S/R, ) is a semigroup.  

The operation   is called quotient binary relation on S/R constructed from the given binary 

relation  * on S by the congruence relation R.  

The semigroup (S/R, ) is called Quotient Semigroup or Factor Semigroup or 

the Quotient of S by R. 

Theorem.  Let R be the congruence relation on the monoid (S, *), then 

(S/R, ) is a monoid.  

Proof.  We have shown above that (S/R, ) is a semigroup.  Further if e is 

identity element in(S, * ), then [e] is the identity in (S/R,  ).  Thus (S/R,  

) is semigroup having identity element [e] and so is a monoid.  

Theorem.  Let R be a congruence relation on a semigroup (S,*) and let 

(S/R, ) be the corresponding quotient semigroup.  Then the mapping  : 

S  S/R (called the natural mapping) defined by  

    (a) = [a] 

is an onto homomorphism, known as Natural homomorphism.  

Proof.  According to definition of , to each [a] in S/R, there is a  S such 

that [a] = [a].  Hence  is subjective.   Now let a, b  S.  Then  

    (a * b) = [a * b] 

                          =  [a]   [b]  

      = (a)   (b)  

Hence  is homomorphism onto.  

Theorem (Fundamental Theorem of Semi-group Homomorphism).  Let f : S 

 T be a homomorphism of the semigroup (S, *) onto the semigroup (T, 

* ).  Let R be the relation on S defined by  

    a R b   if f(a) = f(b) for a, b  S  

Then  

(i) R is a congruence relation on S  

(ii) (S/R, ) is isomorphic to (T, * ).   

(If f is not onto, them (ii) shall be “S/R is isomorphic to f(S)”.  

Proof.  First we show that R is an equivalence relation. We note that  

(i) Since f (a) = f (a), we have a R a.   

(ii) If  a R b, then f(a) = f (b) or f (b) =  f(a) and hence b R a.  

(iii) If a R b and b R c , then  

f (a) = f (b) and f (b) = f (c)  
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and hence  

    f (a) = f (c) 

and so a R c.  

Thus the relation R is reflexive, symmetric and transitive and so an 

equivalence relation.  

Suppose now that  

    a R a    and   b R b  .  

Then  

    f (a) = f (a ) and f (b) = f (b )  

Since f is homomorphism,  

    f(a * b) = f(a) *  f(b)  

    = f(a ) *  f(b )  

     = f(a  * b )  

Hence  

  (a * b) R(a  * b )  

and so R is a congruence relation.  

Define  

   : S/R    T  

by    

     ( [a] ) = f(a) .  

We claim that  is well defined.  Suppose  [a] = [b].   will be well defined 

if f(a) = f(b).  Now [a] = [b] implies a R b, that is, f(a) = f(b).  Hence  is a 

function (well defined).  

Further, if [a], [b]  S/R, then  

   ( [a]   [b] ) =   ( [a * b] ),  a, b  S  

    = f(a * b)  

    = f(a) *  f(b),  because f is homomorphism 

    =  [a] *  [b] 

So  is semigroup homomorphism.  

Also   

    ( [a] =   ( [b] )    f(a) = f(b)  

       a R b  

       [a] = [b],  

and so  is one – to – one .  

Thus ,  as a map,  is bijective and homomorphism.  Hence  is an 

isomorphism and  

   S/R   T  

Remark.  We have proved that the mapping  : S  S/R is natural 

homomorphism.  Also, we proved that the mapping  : S/R  T is an 

isomorphism.  Thus diagram of the situation becomes  
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                                                               f 

                                          S                                       T 

                                                                          

                                                                   S/R 

Also, we note that  

  (  o ) (a)  =   (  (a)) 

     =  ( [a] )  

     = f(a) for all a  S .  

Hence  

        o  = f  

1.16. Direct Product of Semigroups 
Let (S, *) and (T, * ) be two semigroups.  Consider the cartesian 

product S  T .  Define a binary operation *  on S  T by  

  (s1, t1) *  (s2, t2) =  (s1 * s2, t1 *  t2)  

In what follows, we prove that (S  T, * ) is a semigroup.  

Theorem.  Let (S, *) and (T, * ) be semigroups.  Then (S  T, * ) is a 

semigroup under the binary operation *  defined by  

  (s1, t1) *  (s2, t2) =  (s1 * s2,  t1 *  t2) . 

Proof.  If (s1, t1) , (s2, t2)  and (s3, t3)  S  T , then  

[ (s1, t1) *  (s2, t2) ] *  (s3, t3)  =  (s1 * s2, t1 *  t2) *  (s3, t3)  

    = ((s1 * (s2 * s3), t1 *  (t2) *  t3))  

    = (s1 * (s2 * s3), t1 *  (t2 *  t3))  

    = (s1, t1) *  (s2 * s3, t2 *  t3)  

    = (s1, t1) *  [(s2, t2) *  (s3, t3) ] 

Hence *  is associative and so (S  T, * ) is a semigroup.  

Corollary.  If (S, *) and (T, * ) are monoids, then (S  T, * ) is also a monoid.  

Proof.  We have proved above that (S  T, * ) is a semigroup.  We further 

note that if eS is identity of (S, *) and eT is identity of (T, * ), then for (s1, t1) 

 S  T, we have  

  (eS, eT)*  (s1, t1) = (eS * s1, eT *  t1)  

       = (s1, t1) 

and  

  (s1, t1) *  (eS, eT) = (s1 * eS, t1 *  eT)  

        = (s1, t1) 

Thus  

  (s1, t1) *  (eS, eT) = (eS, eT) * (s1, t1) = (s1, t1)  

showing that (eS, eT) is identity element of (S  T, * ), that is, (S  T, * ) is a 

semigroup with identity (eS, eT) and hence is a monoid.  
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PART C : LATTICES 
 

1.17  Definitions and Examples 

Definition: A lattice is a partially ordered set (L, ) in which every subset         

{a, b} consisting of two element has a least upper bound and a greatest 

lower bound.  

We denote lub({a, b}) by a  b and call it join or sum of a and b. Similarly, 

we denote GLB({a, b}) by a  b and call it meet or product of a and b. 

Other symbol used are:  

    LUB :  , +,  

       GLB : *,  .  ,  

Thus Lattice is a mathematical structure with two binary operations, join 

and meet. Lattice structures often appear in computing and mathematical 

applications.  

A totally ordered set is obviously a lattice but not all 

partially ordered sets are lattices. 

Example 1. Let A be any set and  P(A) be its power set. The 

partially ordered set (P(A), ) is a lattice in which the meet and 

join are the same as the operations  and  respectively. If A has 

single element, say a, then P(A) = { , {a}} and  

LUB({ , {a}) = {a} 

GLB({ , {a}) =  

The Hasse diagram of (P(A), ) is a chain containing two elements  and {a} 

as shown below: 
 

              {a}   

    

      

             
 

If A has two elements, say a and b. Then P(A) = { , {a}, {b}, {a, b}}.   The 

Hasse diagram of {P(A),  ) is then as shown below :   

 

 

 

 

 

 

                                                                      {a,b} 
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                              {a}                   {b}   

 

 

                        
We note that 

1. LUB exists for every two subsets and is  L  M 

2. GLB exists for every two subsets and is in L  M  

for L, M  P A .  Hence  P A) in a lattice. 

Example 2. Consider the poset (N, ), where  is relation of divisibility. Then 

N is a lattice in which 

  join of a and b = a  b = L C M(a, b) 

  meet of a and b = a  b = G C D (a, b) for a, b  N. 

Example 3. Let n  be a positive integer and let Dn be the set of all positive 

divisors of n. Then Dn is a lattice under the relation of divisibility. The Hasse 

diagram of the lattices D8, D20  and  D30  are respectively  

                                                 

                         

 

                                                       

                                    

                                                 D8 = {1, 2, 4, 8} 

 

       20 
          

    

 

                                             4        10 
      

  

 

       2        5 

 

      

       1 

   D20 = {1, 2, 4, 5, 10, 20} 

and 

 

 

 

 

                                30 

 

                                6    15  

                            10 

4 

   1 

8 

2 
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                            3 

                                 2    5 

 

                                         1  

 

 D30 = {1, 2, 3, 5, 6, 10, 15, 30}. 

1.18. The Transitive Closure of a Relation 

Definition: The Transitive closure of a relation R is the smallest transitive 

relation containing R.  It is denoted by R  . 

Example: Let A = {1, 2, 3, 4} and R = [(1, 2), (2, 3), (3, 4), (2, 1)]   Find the 

transitive closure of R. 

Solution:  The digraph of R is      

        

                                                1             3 

                                                      

We note that from vertex 1, we have paths to the vertices 2, 3, 4 and 1. Note 

that path from 1 to 1proceeds from 1 to 2 to 1. Thus we see that the ordered 

pairs (1, 1), (1, 2), (1, 3) and (1, 4) are in R .  Starting from vertex 2, we have 

paths to vertices 2, 1, 3 and 4 so the ordered pairs (2, 1), (2, 2), (2, 3) and (2, 4) 

are in R . The only other path is from vertex 3 to 4, so we have 

R  = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (2, 4), (3,4)} 

Example: Let R be the set of all equivalence relations on a set A. As such R 

consists of subsets of        A  A and so R is a partially ordered set under the 

partial order of set inclusion. If R and S are equivalence relations on A, the 

same property may be expressed in relational notations as follows: 

  R  S if and only if x R y  x S y for all x y  A. 

Then (R,  ) is a poset. R is a lattice, where the meet of the equivalence 

relations R and S is their intersection R  S and their join is (R  S) ,  the 

transitive closure of their union. 

Definition: Let (L, ) be a poset and let (L, ) be the dual poset. If (L, ) is a 

lattice, we can show that (L, ) is also a lattice. In fact, for any a and b in L, the 

L U B of a and b in (L, ) is equal to the GLB of a and b in (L, ). Similarly, 

the GLB of a and b in (L, ) is equal to L U B in (L, ).  

2 

4 
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The operation and  are called dual of each other. 

Example: Let S be a set and L = P(S). Then (L, ) is a lattice and its dual 

lattice is (L, ), where  represents “contains”. We note that in the poset                

(L, ), the join A  B is the set A  B and the meet A  B is the set A  B. 

1.19. Cartesian Product of Lattices 

Theorem: If (L1, ) and (L2, ) are lattices, then (L, ) is a lattice, where              

L = L1  L2 and the partial order  of L is the product partial order. 

Proof: We denote the join and meet in L1 by 1, and 1 and 

the join and meet in L2 by 2 and 2 respectively.  We know that 

Cartesian product of two posets is a poset.   Therefore L = L1  L2 

is a poset. Thus all we need to show is that if (a1, b1) and (a2, b2)  

L, then (a1, b1)  (a2, b2)and (a1, b1)  (a2, b2) exist in L.  

Further, we know that 

  (a1, b1)  (a2, b2) = (a1 1 a2 ,   b1  2 b2) 

and  

 (a1, b1)  (a2, b2) = (a1 1 a2 ,  b1  2 b2) 

Since L1 is lattice, a1  1 a2 and a1 1 a2 exist.   Similarly, since L2 is a lattice, 

b1 2 b2 and   b1 2 b2 exist.  Hence (a1, b1)  (a2, b2) and (a1, b1)  (a2, b2) 

both exist and therefore (L, ) is a lattice,  called the direct product of (L1, ) 

and (L2, ). 

Example: Let L1 and L2 be the lattices whose Hasse diagram are given below :  

        I1               I2  

 
        

                                         a                 b    

             

  01       

                                            02 

         L1 L2    

  

Then L = L1  L2 is the lattice shown in the diagram below: 

 

 

 

 

  

                                                (I1, I2)  

 

                                            (I1, a)                (I1, b)  

    

 

(01,I2) 

(I1,02) 
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                                            (01, a)           (01, b) 

 

                                         (01, 02) 

                                                        L = L1  L2    

  1.20. Properties of Lattices 
Let (L, ) be a lattice and let a, b , c  L. Then, from the 

definition of (join) and (meet) we have  

(i) a  a  b and b  a  b;   a  b is an upper bound of a and b. 

(ii) if a  c and b  c, then a  b  c;   a  b is the least bound of a and b. 

(iii) a  b  a and a  b  b;   a  b is a lower bound of a and b. 

(iv) if c  a and c  b, then c   a  b;   a  b is the greatest lower bound of a 

and b 

Theorem: Let L be a lattice. Then for every a and b in L,  

(i) a  b = b if and only if a  b 

(ii) a  b = a if and only if a  b 

(iii) a  b = a if and only if a  b = b 

Proof: (i) Let a  b = b. Since a   a  b, we have a  b. 

Conversely, if a  b, then since b  b, it follows that b is an upper bound of a 

and b. Therefore, by the definition of least upper bound, a  b  b. Also a  b 

being an upper bound, b  a  b. Hence   a  b = b. 

(ii)  Let a  b = a. Since a  b  b, we have a  b.   

Conversely, if a  b and since a  a, a is a lower bound of a and b 

and so, by the definition of greatest lower bound, we have 

   a  a  b 

Since a  b is lower bound, 

   a  b  a 

Hence 

  a  b = a. 

(iii)       From (ii) 

  a  b = a  a  b…….(iv) 

             From (i) 

  a  b  a  b = b……….(v) 

Hence, combining (iv) and (v), we have 
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   a  b = a  a  b = b. 

Example: Let L be a linearly (total) ordered set. Therefore a, b  L imply 

either a  b or b  a. Therefore, the above theorem implies that 

  a  b = a 

  a  b = a 

Thus for every pair of elements a, b in L, a  b and a  b exist. Hence a 

linearly ordered set is a lattice. 

Theorem : Let (L, ) be a lattice and let a, b, c  L. Then we have 

L1 : Idempotent property 

 (i) a  a = a 

 (ii) a a = a 

L2 : Commutative property 

 (i) a  b =b  a 

 (ii) a  b = b  a 

L3 :  Associative property 

 (i) a (b  c) = (a  b)  c 

 (ii) a (b  c) = (a  b)  c 

L4 : Absorption property 

 (i) a ( a  b) = a  

 (ii) a (a  b) = a 

Proof: L1 : The idempotent property follows from the definition of LUB and 

GLB. 

L2 : Commutativity follows from the symmetry of a and b in the definition of 

LUB and GLB. 

L3 : (i) From the definition of LUB, we have  

  a  a (b  c)     (1) 

  b  c  a  (b  c)     (2) 

Also b  b  c and c  b  c and so transitivity implies 

  b  a (b  c)     (3) 

and  

  c  a (b  c)      (4) 

Now, (1) and (3) imply that a (b  c) is an upper bound of a and b and hence 

by the definition of least upper bound, we have 
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  a  b  a (b  c)     (5) 

Also by (4) and (5), a (b  c) is an upper bound of c and a  b .   Therefore 

  (a  b)  c  a (b  c)    (6) 

Similarly 

  a (b  c)  ( a  b)  c    (7) 

Hence, by antisymmetry of the relation , (6) and (7) yield 

  a (b  c) = (a  b)  c 

The proof of (ii) is analogous to the proof of part (i). 

L4 : (i) Since a  b  a and a  a, it follows that a is an upper bound of a  b 

and a. Therefore, by the definition of least upper bound 

  a  (a  b)  a     (8) 

On the other hand, by the definition of LUB, we have 

  a  a  (a  b)      (9) 

The expression (8) and (9) yields 

  a  (a  b) = a. 

(ii) Since a  a  b and a  a, it follows that a is a lower bound of a  b and a. 

Therefore, by the definition of GLB, 

  a  a (a  b)     (10) 

Also, by the definition of GLB, we have 

  a (a  b)  a     (11) 

Then (10) and (11) imply 

  a (a  b) = a 

and the proof is completed. 

In view of L3, we can write a  (b  c) and  (a  b)  c as a  b  c. 

Thus, we can express 

  LUB ({a1, a2,….an) as a1  a2 …… an 

  GLB ({a1, a2,….an) as a1  a2 …… an 

Remark:   Using commutativity and absorption property, part (ii) of previous 

Theorem can be proved as  follows :   
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Let a  b = a. We note that 

  b   (a  b ) = b  a 

                                    = a  b (Commutativity) 

But  

                     b  ( a  b) = b     (Absorption property) 

Hence 

                                   a  b = b 

and so by part (i), a  b.   Hence a  b = a if and only if a  b. 

 

Theorem: Let (L, ) be a lattice. Then for any a, b, c  L, the following 

properties hold : 

 

1. (Isotonicity) :  If a  b, then 

  (i) a  c  b  c 

  (ii) a  c  b  c 

This property is called “Isotonicity”. 

2. a  c and b  c if and only if a  b  c 

3. c  a and c  b if and only if c  a  b 

4. If a  b and c  d, then 

 (i) a  c  b  d 

 (ii) a  c  b  d. 

Proof : 1 (i).    We know that 

 a  b = b if and only if a  b. 

Therefore, to show that a  c  b  c, we shall show that  

 (a  c)  (b  c) = b  c. 

We note that 

 (a  c)  (b  c) = [(a  c)  b]  c 

          = a  (c  b)  c 

          = a  (b  c)  c 

          = (a  b)  (b  c) 

          = b  c (a  b = b and c  c = c) 
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The part 1 (ii) can be proved similarly. 

2. If a  c, then 1(i) implies 

 a  b  c  b 

But  

 b  c  b  c = c 

            c  b = c (commutativity) 

Hence a  c and b  c if and only if a  b  c 

3. If c  a, then 1(ii) implies 

  c  b  a  b 

But  

c  b  c  b = c 

Hence c  a and c  b if and only if c  a  b. 

4 (i) We note that 1(i) implies that      

 if a  b, then a  c  b  c = c  b 

 if c  d, then c  b  d  b = b  d 

Hence, by transitivity 

a  c  b  d   

(ii) We note that 1(ii) implies that 

 if a  b, then a  c  b  c = c  b 

  if c  d, then c  b  d  b = b  d. 

Therefore transitivity implies 

           a  c  b  d. 

Theorem:  Let (L, ) be a lattice. If a, b, c  L, then 

 (1) a (b  c)  (a  b)  (a  c) 

  (2) a (b  c)  (a  b)  (a c) 

These inequalities are called “Distributive Inequalities”. 

Proof:  We have 

 a  a  b   and    a  a  c   (i) 

Also, by the above theorem, if x  y and x  z in a lattice, then x  y  z. 

Therefore (i) yields 
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 a  (a  b )  (a  c)  (ii) 

Also  

 b  c  b  a  b 

and  

 b  c  c  a  c  , 

that is, b  c  a  b and b  c  a  c and so, by the above argument, we 

have 

 b  c  (a  b)  (a  c) (iii) 

Also, again by the above theorem  if x  z and y  z in a 

lattice, then 

     x  y  z 

Hence, (ii) and (iii) yield 

      a c (b  c)  ( a  b)  (a  c) 

This proves (1). 

The second distributive inequality follows by using the principle of duality. 

Theorem: (Modular Inequality) : Let (L, ) be a lattice. If a, b, c  L, then 

 a  c if and only if a (b  c)  (a  b)  c 

Proof: We know that 

 a  c  a  c = c    (1) 

Also, by distributive inequality, 

 a (b  c)  (a  b)  (a  c) 

Therefore using (1) a  c if and only if  

  a   (b  c)  (a  c)  c, 

which proves the result. 

The modular inequalities can be expressed in the following way also: 

 (a  b)  (a  c)  a  [b  (a  c)] 

 (a  b)  (a  c)  a  [b  (a  c)] 

Example: Let (L, ) be a lattice and a, b, c  L. If a  b  c, then 

     (i) a  b = b  c, (ii) (a  b )  (b  c) = (a  b)  ( a  c). 

Solution:  (i)  We know that     

a  b  a  b = b 

and  
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b  c  b  c = b 

Hence a  b  c implies 

a  b = b  c.  

(ii) Since a  b and b  c, we have 

 a  b = a and b  c = b 

Thus 

   (a  b)  (b  c) = a  b 

            = b, since a  b  a  b = b. 

Also, a  b  c   a  c by transitivity.  Then  

  a  b and a  c   a b = b ,  a  c = c    

and so  

          (a  b )  (a  c) = b  c   

                               = b since b  c  b  c = b. 

Hence  

     (a  b)  (b  c) = b = (a  b)  (a  c), 

which proves (ii). 

1.21. Lattices as Algebraic System 

Definition.    A Lattice is an algebraic system (L, , ) with two binary 

operations and , called join and meet respectively, on a non-empty set L 

which satisfy the following axioms for a, b, c  L : 

1. Commutative Law :    

   a b  =  b a        and    a  b  =  b  a .  

2. Associative Law :  

   (a b) c =  a (b  c)  

and  

   (a  b)  c  =  a (b  c)  

 

3. Absorption Law : 

(i) a  (a  b) =  a  
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(ii) a  (a b) = a  

We note that Idempotent Law follows from axiom 3 above.   In fact,  

   a  a =  a  [a  (a b)]    using 3(ii)  

             = a    using 3(i)  

The proof of a  a = a  follows by principle of duality.  

1.22 Partial Order Relations on a Lattice 

A partial order relation on a lattice (L) follows as a consequence of the axioms 

for the binary operations  and . 

We define a relation  on L such that for a, b  L , 

 a  b  a  b = b  

or analogously, 

 a  b  a  b = a . 

We note that 

(i) For any a  L 

 a  a = a  (idempotent law), 

therefore a  a showing that  is reflexive. 

(ii) Let a  b and b  a. Therefore  

 a  b = b  

 b  a = a 

But 

             a  b = b  a (Commutative Law in lattice) 

Hence 

        a = b  , 

showing that  is antisymmetric. 

(iii) Suppose that a  b and b  c.  Therefore  a  b = b and b  c = c . Then  

 a  c = a  (b  c) 

           = (a  b)  c (Associativity in lattice) 

           = b  c 

           = c  , 

showing that a  c and hence  is transitive.  
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This shows that a lattice is a partially ordered set  

1.23 Least Upper Bounds and Latest 

Lower Bounds in a Lattice 
 

Let (L, , ) be a lattice and let a, b  L. We now show that LUB of {a, b}  

L with respect to the partial order introduced above is a  b and GLB of {a, b} 

is a  b. 

From absorption law 

 a  (a  b) = a 

 b  (a  b) = b 

Therefore a  a  b and b  a  b, showing that a  b is upper bound for {a, 

b}. Suppose that there exists c  L such that a  c, b  c. Thus we have  

     a  c = c and b  c = c 

and then  

 (a  b)  c = a  (b  c) = a  c = c  ,  

implying that a  b  c. Hence a  b is the least upper bound of a and b.  

Similarly, we can show that a   b is GLB of a and b. 

The above discussion shows that the two definitions of lattice given so 

far are equivalent. 

Example: Let Ĉ be collection of sets with binary operations Union and 

Intersection of sets. Then   (Ĉ, , ) is a lattice. In this lattice, the partial order 

relation is set inclusion.   In fact, for A, B  Ĉ, 

 A  B iff A  B = B 

Or 

 A  B iff A  B = A. 

For example, the diagram of lattice of subsets of {a, b} is 

                            {a, b} 

 

 

                                         {a}        {b} 
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1.24. Sublattices 

Definition: Let (L, ) be a lattice. A non-empty subset S of L is called a 

sublattice of L if a  b  S and a  b  S whenever a  S,  b  S. 

Or 

Let (L, , ) be a lattice and let S  L be a subset of L. Then (S, , ) is 

called a sublattice of           (L, , ) if and only if S is closed under both 

operations of  join( ) and meet( ). 

From the definition it is clear that sublattice itself is a lattice. 

However, any subset of L which is a lattice need not be a sublattice. 

For example, consider the lattice shown in the diagram: 

               I  

           e                      f    

            c   

            a       b     

   0 

   L 

We note that  

(i)    the subset S shown by the diagram below is not a sublattice of L, since 

a  b  S and                 a  b  S. 

      I 

          e           f   

 

        a            b 

            S 

(ii)  the set T shown below is not a sublattice of L since a  b  T. 
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   I 

     

         a        b  

 

           T 

However, T is a lattice when considered as a poset by itself. 

(iii) the subset  of L shown below is a sublattice of L: 

     c 

 

 

         a     b 

 

 

 

      0 

              U 

Example: Let A be any set and P(A) its power set. Then (P(A), , ) is a 

lattice in which join and meet are union of sets and intersection of sets 

respectively.  

A family Ĉ  of subsets of A such that S  T and S  T are in Ĉ  for S, 

T  Ĉ  is a sublattice of (P(A), , ).   Such a family Ĉ  is called a ring of 

subsets of A and is denoted by            (R(A), , )   (This is not a ring in the 

sense of algebra).   Some author call it lattice of subsets. 

Example:   The lattice (Dn,  ) is a sublattice of (N, ), where   is the relation 

of divisibility.  

1.25  Lattice Isomorphism 
Definition: Let (L1, 1, 1) and (L2, 2, 2) be two lattices. A mapping f : 

L1  L2 is called a lattice homomorphism from the lattice the lattice (L1, 1, 

1) to  (L2, 2, 2) if for any a, b  L1, 

 

f(a 1 b) = f(a) 2 f(b) and f(a 1 b) = f(a) 2 f(b) 

Thus, here both the binary operations of join and meet are preserved. There 

may be mapping which preserve only one of the two operations. Such 

mapping are not lattice homomorphism. 

Let 1 and 2 be partial order relations on (L1, 1, 1) and                    

(L2, 2, 2) respectively. Let f : L1  L2 be lattice homomorphism. If                 

a, b  L1, then 
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 a 1 b  a 1 b = b 

and so 

            f(b) = f(a 1 b)  

    = f(a) 2 f(b) 

                 f(a) 2 f(b) 

Thus 

                 a 1 b  f(a) 2 f(b) 

Thus order relations are also preserved under lattice homomorphism. 

If a lattice homomorphism f: L1  L2 is one-to-one and onto, then it is called 

lattice isomorphism. 

If there exists an isomorphism between two lattices, then the lattices are called 

isomorphic. 

Since lattice isomorphism preserves order relation, therefore isomorphic 

lattices can be represented by the same diagram in which nodes are replaced by 

images. 

Theorem: Let A = {a1, a2,….,an} and B = {b1, b2,……bn} be any two finite 

sets with n elements. Then the lattices (P(A), ) and (P(B), ) are isomorphic 

and so have identical Hasse-diagram. 

Proof: Consider the mapping 

f : P(A)  P(B) 

defined by  

 f({an} = {bn}, f({a1, a2,….,am}) = {b1, b2,……bn} for m  n . 

Then f is bijective mapping and L  M  f(L)  f(M) for subsets L and M of 

P(A). Hence P(A) and P(B) are isomorphic. 

For example, let A = {a, b, c}, B = {2, 3, 5}. The Hasse-diagram of 

P(A) and P(B) are then given below: 

 

 

  

               {a,b,c}     {2,3,5} 

 

          {a,b}        {b,c}            {2,3}   {3,5} 

   {a,c}     (2,5) 
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   {b}     {3} 

           {a}   {c}     {2}   {5} 

 

  
 

Define a mapping f : P(A)  P(B) by 

         f( ) = , f({a}) = {2}, f({b}) = {3}, f({c}) = {5} 

 f({a, b}) = {2, 3}, f({b, c}) = {3, 5}, f({a, c}) = {2, 5} 

 and  

f({a, b, c}) = {2, 3, 5}. 

This is a bijective mapping satisfying the condition that if S and T are subsets 

of A, then S  T if and only if f(S)  f(T). Hence f is isomorphism and (P(A), 

) and (P(B), ) are isomorphic. 

Thus, for each n = 0, 1, 2,…., there is only one type of lattice and this lattice 

depends only on n, the number of elements in the set A, and not on A. It has 2
n
 

elements. Also, we know that if A has n elements, then all subsets of A can be 

represented by sequences of 0’s and 1’s of length n. We can therefore label the 

Hasse diagram of a lattice (P(A), ) by such sequence of 0’s and 1’s.  

For example, lattices of P(A) and P(B) of the last example can be 

labeled as below:  

   

               111  

 

              110       011  

   101 

 

   010 

          100   001 

 

        000 

 

The lattice so obtained is named Bn. The properties of the partial order in Bn 

can be described directly as follows:  

 

Let x = a1 a2…..an and y = b1 b2…..bn be any two elements of Bn. Then 

(1) x  y if and only if ak < bk, k = 1, 2,…..,n, where ak and bk are 0 or 1. 

(2) x  y = c1 c2….cn, where ck = min(ak, bk). 

(3) x  y = d1 d2 ….dn, where dk = max(ak, hk). 
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(4) x has a complement x  = z1 z2……zn where zk = 1 if xk = 0 and zk = 0 if xk 

= 1. 

Remark: (Bn, ) under the partial order  defined above is isomorphic to 

(P(A), ), when A has n elements. In such a case x  y corresponds to S  

T, x  y corresponds to S  T and x  corresponds to A
c
. 

Example : Let D6 = {1, 2, 3, 6}, set of divisors of 6. Then D6 is isomorphic to 

B2. In fact f : D6  B2 defined by  

 f(1) = 00, f(2) = 10, f(3) = 01, f(6) = 11 

is an isomorphism. 

                                   6                                           11 

                                                                                    

                       2                       3                10                       01 

 

                                     1                                        00 

                                    D6                                      B2 

Example: Let A = {a, b} and P(A) = { , {a}, {a, b}} then the lattice (P(A), ) 

is isomorphic to the lattice (D6, 1) with divisibility as the partial order relation. 

In fact, we define a mapping f : D6  P(A) by 

 f(1) = , f(2) = {a}, f(3) = {b}, f(6) = {a, b} , 

then f is bijective and we note that 

1|2  { }  {a}  f(1)  f(2) 

 2|6  {a}  {a, b}  f(2)  f(6) 

and so on. 

Hence f is isomorphism. 

      6    {a,b} 

 

 2    3 {a}           {b}  

 

      1              

 D6    P ({a, b}) 

Definition: Let (L, , ) be a lattice. Then lattice homomorphism f : L  

L is called an endomorphism. 

Definition: Let (L, , ) be lattice. Then the lattice isomorphism f: L L 

is called an automorphism. 
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If f : L  L is an endomorphism, then the image set of f is sublattice of L. 

Definition: Let (A, ) and (B, ) be two partially ordered sets. A mapping f 

: A  B is called order preserving relative to the ordering  in A and  in 

B iff for a, b   A,  

   a  b  f (a)  f (b)  

If A and B are lattices and f : A  B is a lattice homomorphism, then f is 

order preserving. 

Definition: Two partially ordered sets (A, ) and (B, ) are said to be order 

isomorphic if there exists a mapping f : A  B which is bijective and both f 

and f
-1

 are order preserving. 

For lattices (A, ) and (B, ), an order isomorphism is equivalent to 

lattice isomorphism. Hence lattices which are order-isomorphic as partially 

ordered sets are isomorphic. 

Let (L, , ) be a lattice and let S = {a1, a2….,an} be a finite subset 

of L. Then 

  LUB of S is represented by a1  a2 …..  an 

GLB of S is represented by a1  a2 ……  an 

Definition: A lattice is called complete if each of its non-empty subsets has a 

least upper bound and a greatest lower bound. 

Obviously, every finite lattice is complete. 

Also every complete lattice must have a least element, denoted by 0 and a 

greatest element, denoted by I. The least and greatest elements if exist are 

called bound (units, universal bounds) of the lattice. 

1.26 Bounded, Complemented  and Distributive Lattices  

Definition: A lattice L is said to be bounded if it has a greatest element I 

and a least element 0. 

For the lattice (L, , ) with L = {a1, a2,….,an}, 

            a1  a2 …..  an = I and a1  a2 …….  an =  0  .            

Example :  The lattice Z
+

 of all  positive integers under partial order of 

divisibility is not a bounded lattice since it has a least element (the integer 1) 

but no greatest element. 
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Example: The lattice Z of integers under partial order  (less than or equal 

to) is not bounded since it has neither a greatest element nor a least element. 

Example:  Let A be a non-empty set. Then the lattice (P(A), ) is bounded. 

Its greatest element is A and the least element is empty set . 

If (L, ) is a bounded Lattice, then for all a  L 

          0  a  I  

   a  0 = a, a  0 = 0 

    a  I = I, a  I = a 

Thus 0 acts as identity of the operation  and I acts as identity of the 

operation . 

Definition: Let (L , , 0, I) be a bounded lattice with greatest element I 

and the least element 0. Let a  L. Then an element b  L is called a 

complement of a if 

 a  b = I and a  b = 0 

It follows from this definition that 

      0 and I are complement of each other. 

Further, I is the only complement of 0. For suppose that c  I is a 

complement of 0 and c  L, then 

0  c = I and 0  c = 0 

But 0  c = c. Therefore c = I which contradicts c  I. 

Similarly, 0 is the only complement of I. 

Definition: A lattice (L, , , 1, 0) is called complemented if it is bounded 

and if every element of L has at least one complement. 

Example: The lattice (P(A), ) of the power set of any set A is a bounded 

lattice, where meet and join operations on e(A) are  and  respectively. 

Its bounds are  and A. The lattice (P(A), ) is complemented in which the 

complement of any subset B of A is A  b. 

Example: Let L
n
 be the lattice of n tuples of 0 and 1, where partial 

ordering is defined for                 a = (a1, a2,…,an) , b = (b1, b2, ….., bn)  L
n
 

by 
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 a n b  ai  bi            for all i = 1, 2, …,n , 

where  means less than or equal to. Then (L
n
, n) is lattice which is 

bounded. For example, the bounds are (0, 0, 0) and (1, 1, 1) for L
3
. 

 

   (1,1,1) 

 

         (1,1,0)       (0,1,1)  
            (1,0,1) 
 
            (0,1,0) 

        (1,0,0)   (0,0,1) 

 

        (0,0,0) 

The complement of an element of L
n
 can be obtained by interchanging 1 by 0 

and 0 by 1 in the         n-tuple representing the element. For example, 

complement of (1, 0, 1) in L
3
 is (0, 1, 0). 

Definition: A lattice (L, , ) is called a distributive lattice if for any 

elements a, b and c in L,  

(1) a (b  c) = (a  b) (a  c) 

(2) a (b  c) = (a  b) ( a  c) 

Properties (1) and (2) are called distributive properties. 

Thus, in a distributive lattice, the operations  and  are distributive 

over each other. 

We further note that, by the principle of duality, the condition (1) holds if 

and only if (2) holds. Therefore it is sufficient to verify any one of these 

two equalities for all possible combinations of the elements of a lattice. 

If a lattice L is not distributive, we say that L is non-distributive. 

Example: For a set S, the lattice (P(S), ) is distributive. The meet and join 

operation in P(S) are             and  respectively. Also we know, by set 

theory, that for A, B, C  P(S), 

 A  (B  C) = (A  B)  (A  C) 

 A  (B  C) = (A  B)  (A  C). 

Example:  The five elements lattices given in the following diagrams are 

non distributive. 

    I       I 

 

        a             a   c    
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                                                                                      b 

                                                                                      

        b       c 

         o 

       (ii) 

   

  o (i)   

 

In fact for the lattice (i),  we note that 

   a (b  c) = a  I = a , 

while 

   (a  b)  (a  c) = b  0 = b  

Hence 

   a (b  c)  (a  b)  (a  c)  ,  

showing that (i) is non-distributive. 

For the lattice (ii) , we have  

 

 a (b  c) = a  I = a , 

while 

 (a  b)  (a  c) = 0  0 = 0  . 

Hence 

 a (b  c)  (a  b)  (a  c)  , 

showing that (ii) is also non-distributive 

Example: The lattice shown in the diagram below is distributive: 

               I 

                
          

                                                                                                                                                                                                                                                                      

  b        d         
               

  

 

        a           c                    

 

     

          0                        

The distributive properties are satisfied for any ordered triplet chosen 

from the given elements. 

Theorem: A lattice L is non distributive if and only if it contains a sublattice 

isomorphic to any one of the following two five-element lattices:  

    I       I 
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        a             a   c    

                                                                                      b 

                      

        b       c 

         o 

        

   

  o   

(The Proof of this theorem is out of the scope of this book) 

Example: Is the following lattice a distributive lattice ? 

 

                                I 

               

           d                              e 

            c   

            a       b     

   o 

 

Solution: The given lattice is not distributive since {0, a, d, e, I} is a 

sublattice which is isomorphic to the five-element lattice shown below : 

 
       I        

 

                         

 

 

                

        

   

     

                       0 

Theorem: Every chain is a distributive lattice. 

Proof: Let (L, ) be a chain and a, b, c  L.  We shall show that  

distributive law holds for any a, b, c  L.   Two cases arise : 

Case 1. Let a  b or a  c. In this case 

            a (b  c) = a 

and  
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 (a b) (a  c) = a 

and hence 

             a (b  c) = (a  b)  ( a  c) 

Also, by Principle of Duality 

          a (b  c) = (a  b)  (a  c) 

Case II. Let b  a    or    c  a .  Then we have  

         a (b  c) = (b  c) 

and 

            (a  b)  ( a  c) = (b  c) 

Hence 

          a (b  c) = (b  c) 

Hence distributive law holds for any a, b, c  L. 

Theorem: The direct product of any two distributive lattices is a 

distributive lattice. 

Proof: Let (L1, 1) and (L2, 2) be two lattices in which meet and join are 

1, 1 and  2, 2 respectively. Then meet and join in L1  L2 are 

defined by  

        (a1, b1)  (a2, b2) = (a1 1 a2, b1 2 b2)  (1) 

and 

         (a1, b1)  (a2, b2) = (a1 1 a2, b1 2 b2)  (2) 

Since L1 is distributive, 

         a1 1(a2 1  a3) = (a1  1 a2) 1 (a1 1 a3) (3) 

Since L2 is distributive, 

b1 2(b2 2  b3) = (b1  2 b2) 2 (b1 2 b3)  (4) 

Therefore 

(a1, b1) [(a2, b2)  (a3, b3)]   

= (a1, b1) [(a2 1 a3, b2 2 b3)] 

= [(a1 1 (a2 1 a3), b1 2 (b2 2 b3)] 

= [(a1 1 a2) 1 (a1 1 a3), (b1 2 b2) 2 (b1 2 b3)]   

       (using (3) and (4)) 
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and using (1) and (2), we have 

        [(a1, b1)  (a2 , b2) ]  [((a1, b1)  (a3 , b3)] 

  = (a1 1 a2, b1 2 b2)   (a1 1 a3, b1 2 b3) 

   = [(a1 1 a2) 1 (a1 1 a3), (b1 2 b2) 2 (b1 2 b3)] 

Hence  

(a1, b1) [(a2, b2) (a3, b3)] = [(a1, b1) (a2 , b2) ] [((a1, b1) (a3 , b3)], 

proving that L1  L2 is distributive. 

Theorem: Let L be a bounded distributive lattice. If a complement of any 

element exists, it is unique. 

Proof: Suppose on the contrary that b and c are complements of the 

element a  L. Then  

 a  b = I  a  c = I 

 a   b = 0  a  c = 0 

Using distributive law, we have 

 b = b  0 

    = b (a  c) 

    = (b  a)  (b  c) 

    = (a  b)  (b  c) 

    =  I  (b  c) 

    = b  c 

Similarly, 

 c = c  0 

    = c (a  b) 

    = (c  a)  (c  b) 

    = (a  c)  (c  b) 

    = I  (c  b) 

    = I  (b  c) 

    = b  c 

Hence b = c. 
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Definition: Let (L, , ) be a lattice. An element a  L is said to be join-

irreducible if it cannot be expressed as the join of two distinct elements of 

L. 

In other words, a  L is join-irreducible if for any b, c  L 

 a = b  c  a = b or a = c. 

For example, prime number under multiplication have this property. In 

fact if p is a prime number, then p = a b  p a or p = b. 

Clearly 0 is join – irreducible. 

Further, if a has at least two immediate predecessors, say b and c as in the 

diagram below: 

       a  

       b     c 

Then a = b  c and so a is not join – irreducible. 

On the other hand if a has a unique immediate predecessor c, then 

 a  sup(b1, b2) = b1  b2 for any other elements b1 and b2 because c 

would lie between b1, b2 and a. 

     a  

 

      c 

 

   

  b1           b2 

In other words, a  0 is join irreducible if and only if a has a unique 

predecessor.   

Definition: Those elements, which immediately succeed 0, are called atoms. 

From the above discussion, it follows that the atoms are join-irreducible. 

    a   b 

    

   c 

However, lattices can have other join-irreducible elements. For example, 

the element c in five-element lattice is not an atom, even then it is join 

irreducible because it has only one immediate predecessor, namely a. 



 97 

 

 

                            I 

         

    c 

 

            b  

    a 

   o 

Let a be an element of a finite lattice which is not join irreducible, then we 

can write 

   a = b  c 

If b and c are not join irreducible, then we can write them as the join of 

other elements. Since L is finite we shall finally have 

   a = d1  d2  d3 ……  dn  ,  (1) 

where di, i = 1, 2, …,n  are join-irreducible. If di precedes dj, then di  dj = 

dj, so we delete di from the expression. Thus d’s are irredundant, i.e., no d 

precedes any other d. 

The expression (1) need not be unique. For example, in lattice shown above 

 I = a  b and I = b  c . 

Theorem: Let (L, , ) be a finite distributive lattice. Then every a in L 

can written uniquely (except for order) as the join of irredundant join 

irreducible elements. 

Proof: Let a  L. Since L is finite, we can express a as the join of 

irredundant join irreducible elements (as discussed above). To prove 

uniqueness let 

  a = b1  b2 …..  bn = c1  c2 …..  cm  , 

where bi are irredundant join-irrducible and ci are irrdundant and join-

irreducible. For any given i, we have 

  bi  (b1  b2 …..  bn) = c1  c2 …..  cm , 

Hence 

 bi = bi  (c1  c2 …..  cm) 
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     = (bi  c1)  (bi  c2) ………  (bi  cm) 

Since bi is join-irreducible, there exists j such that bi = bi  cj and so bi  

cj. 

Similarly, for ci there exists a bk such that cj  bk . Hence 

 bi  cj  bk  ,  

which gives bi = cj = bk since bi are irredundant. Hence bi and ci may be 

paired off. Hence the representation for a is unique except for order. 

Theorem: Let L be a complemented lattice with unique complements. Then 

the join irreducible elements of L, other than 0, are its atoms. 

Proof: Suppose a is join irreducible and is not an atom. Then a has a 

unique immediate predecessor b  0. Let b  be the complement of b 

(complement exists since L is complemented). Since b  0,  b   I. If a 

precedes b , then             b  a  b , and so b  b  = b  which is impossible 

since b  b  = I. Thus a does not precede b  and so a  b  must strictly 

precede a. Since b is the unique immediate predecessor of a, we also have 

that a  b  precedes b. But a  b  precedes b . 

 

 a  

 

   b     b   

 

 

    a  b  

Hence  

  a  b   inf (b, b ) = b  b  = 0 

Thus a  b  = 0. Since a  b = a, we also have 

 a  b  = (a  b)  b  = a  (b  b ) 

                 = a  I = I 

Therefore b  is a complement of a.  Since complements are unique, a = b. 

This contradicts the assumption that b is an immediate predecessor of a. 

Thus the only join irreducible elements of L are its atoms. 

Combining this result with the above-proved theorems, we have 

Theorem:  Let L be a finite complemented distributive lattice. Then every 

element a in L is the join of a unique set of atoms. 
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Unit-2  

Boolean Algebra 

 

2.1. Definitions and Examples 

Definition: A non-empty set B with two binary operations  and , a unary 

operation , and two distinct elements 0 and I is called a Boolean Algebra if 

the following axioms holds for any elements a, b, c  B: 

[B1]: Commutative Laws: 

  a  b = b  a  and           a  b = b  a 

[B2]: Distributive Law:  

  a (b  c) = (a b)  (a  c) and a  (b  c) = (a  b)  (a  c) 

[B3]: Identity Laws: 

 a  0 = a and  a   I = a 

[B4]: Complement Laws: 

 a  a  = I  and a  a  = 0 

We shall call 0 as zero element, 1 as unit element and a  the complement of a. 

We denote a Boolean Algebra by (B, , , ~, 0, I ). 

Example 1. Let A be a non-empty set and P(A) be its power set. Then the set 

algebra (P(A), , , , , A) is a Boolean algebra.    

      

 

Example 2 :  Let B = {0, 1} be the set of bits (binary digits) with the binary 

operations  and  and the unary operation    defined by the following 

tables:    

            1      0                                 1     0            1     

0         

          1    1      1                  ,            1    1     0                        0    

1 

          0    1      0                 0    0     0            

Here the operations  and   are logical operations and  

complement of 1 is 0 whereas complement of 0 is 1.  Then (B, , ,  

  , 0, 1) is a Boolean Algebra. It is the simplest example of a two-

element algebra.  

Further,  a two element Boolean algebra is the only Boolean algebra whose 

diagram is a chain. 
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Example 3 : Let Bn be the set of n tuples whose members are either 0 or 1. Let 

a = (a1, a2,….,an) and  b = (b1, b2,….,bn) be any two members of Bn.  Then we 

define  

a 1 b = (a1  b1, a2  b2,…..,an  bn) 

a 1 b = (a1  b1, a2  b2,…..,an  bn)  , 

where  and  are logical operations on {0, 1}, and  

         a  = (~ a1, ~ a2,…, ~ an)  , 

where ~ 0 = 1 and ~1 = 0 . 

If 0n represents (0, 0,…..,0) and 1n = (1, 1,……,1), then (Bn, 1, 1, , 0n, 1n) 

is a Boolean algebra. 

This algebra is known as Switching Algebra and represents a switching 

network with n inputs and one output. 

Example 4. The poset D30 = {1, 2, 3, 5, 6, 10, 15, 30} has eight element. 

Define ,  and  on D30 by 

         a  b = lcm(a, b)  ,   a  b = gcd(a, b)         and        a  = 
a

30
. 

Then D30 is a Boolean Algebra with 1 as the zero element and 30 as the unit 

element. 

Example 5: Let S be the set of statement formulas involving n statement 

variables. The algebraic system (S, , , ~, F, T) is a Boolean algebra in 

which , , ~ denotes the operations of conjunction, disjunction and negation 

respectively. The element F and T denotes the formulas which are 

contradictions and Tautologies respectively. The partial ordering 

corresponding to ,  is implication  .   

We have seen that Bn is a Boolean algebra. Using this fact, we can also define 

Boolean algebra as follows: 

Definition: A finite lattice is called a Boolean Algebra if it is isomorphic with 

Bn for some non-negative integer n. 

For example, D30 is isomorphic to B3. In fact, the mapping f: D30  B3 defined 

by  

f(1) = 000,   f(2) = 100,   f(3) = 010,   f(5) = 001,  

f(6) = 110,   f(10) = 101,   f(15) = 011,  f(30) = 111  
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is an isomorphism.   Hence D30 is a Boolean algebra. 

If a finite L does not contain 2
n
 elements for some non-negative integer n, 

then L cannot be a Boolean Algebra. 

For example, consider D20 = {1, 2, 4, 5, 10, 20} that has 6 elements and 6  2
n
 

for any integer n  0.   Therefore, D20 is not a Boolean algebra. 

If | L | = 2
n
, then L may or not be a Boolean Algebra. If L is 

isomorphic to Bn, then it is Boolean algebra, otherwise it is not. 

For large value of n, we use the following theorem for determining 

whether Dn is a Boolean Algebra or not. 

Theorem: Let 

        n = p1 p2…….pk, 

where pi are distinct primes,  known as set of atoms. Then Dn is a Boolean 

algebra. 

Proof: Let A = {p1, p2,….,pk}. If B  A and aB is the product of primes in B, 

then 
a
B|n. Also any divisor of n must be of the form 

a
B for some subset B of A, 

where we assume that a  = 1. Further, if C and B are subsets of A, then C  B 

if and only if 
a
C|

a
B. Also 

 
a
C B = 

a
C   

a
B

 
= gcd(

a
C   , 

a
B )  

  

and 

  
a

C B =
 a

C  
a

B = lcm (
a
C , 

a
B) 

Thus the function f : P(A)  Dn defined by  

             f(B) = 
a
B 

is an isomorphism. Since P(A) is a Boolean algebra, it follows that Dn is also a 

Boolean algebra.  

For example, consider D20, D30, D210, D66, D646. We notice that 

(i) 20 cannot be represented as product of distinct primes and so D20 is not a 

Boolean algebra. 

(ii) 30 = 2.3.5, where 2, 3, 5 are distinct primes.  Hence D30 is a Boolean 

Algebra. 

(iii) 210 = 2.3.5.7 (all distinct primes) and so D210 is a Boolean algebra. 

(iv) 66 = 2.3.11 (product of distinct primes) and so D66 is a Boolean algebra. 
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(v) 646 = 2.17.19 (product of distinct primes) and so D646 is a Boolean 

Algebra. 

Duality: The dual of any statement in a Boolean algebra B is obtained 

by interchanging   and  and interchanging the zero element and unit 

element in the original statement. 

For example, the dual of   a  0 = 0   is   a  I = I  

Principle of duality: The dual of any theorem in a Boolean Algebra is 

also a theorem. 

(Thus, dual theorem is proved by using the dual of each step of the proof of 

the original statement). 

 

2.2  Properties of a Boolean Algebra 

Theorem: Let a, b and c be any elements in a Boolean algebra (B, , , ,          

0, I). Then 

1. Idempotent Laws: 

(i) a  a = a   (ii) a  a = a 

2. Boundedness Laws: 

(i) a  I = I   (ii) a 0 = 0 

3. Absorption Laws: 

(i) a (a  b) = a  (ii) a (a b) = a 

4. Associative Laws: 

(i) (a  b)  c = a (b  c) (ii) (a  b)  c = a (b  c) 

Proof: It is sufficient to prove first part of each law since second part 

follows from the first by principle of duality. 

1. (i). We have 

a = a  0 (by identity law in a Boolean algebra) 

   = a (a a ) (by complement law) 

   = (a a) (a  a ) (by distributive law) 

   = (a a) I (complement law) 

   =  a a (identity law) , 

which proves 1(i). 

2(i) : We have 

a  I = (a  I) I (identity law) 

          = (a  I)  (a  a ) (complement law) 

          = a  ( I  a ) (Distributive law) 
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          = a  a  (identity law)  

          = I (complement law). 

3(i) : we note that 

                    a (a  b) = (a  I)  (a  b) (identity law) 

    = a  (I  b) (distributive law) 

    = a  (b  I) (commutativity) 

   = a  I (Identity law) 

    = a (identity law) 

4(i) Let 

 L = (a  b)  c,  R = a (b  c) 

Then  

    a  L = a [(a  b)  c] 

   = [a (a  b)]  (a c) (distributive Law) 

     = a  (a  c) ( absorption law) 

   = a (absorption law) 

and 

    a  R = a [a (b  c)] 

    = (a  a)  (a (b c)] (distributive law) 

       = a  (a  (b  c)] (idempotent law) 

    = a (absorption Law) 

Thus a  L = a  R and so, by duality, a L = a R . 

Further, 

  a   L = a   [(a  b)  c] 

   = [a   (a  b)]  (a   c) (distributive law) 

   = [(a   a) (a    b)]  (a   c) (distributive law) 

    = [0, (a   b)]  (a   c) (complement Law) 

    = (a   b)]  (a   c) (Identity law)  

    = a  (b  c) (distributive law) 

On the other hand,  

   a   R = a   [a  (b  c)] 

   = (a   a) [a   (b  c)] (distributive law) 

 = 0  [a   (b  c)] (complement law) 

   = a   (b  c)] (identity law) 

Hence  

 a   L = a   R  and so by duality a  L = a  R  
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Therefore 

          L  = (a  b)  c 

            = 0  [(a  b)  c] = 0  L (identity law) 

= (a  a )  [(a  b)  c] = (a  a )  L (complement law) 

             = (a  L)  (a   L) (distributive law) 

            = (a  R)  (a   R) (using A  L = a   R and a   L = a   R] 

= (a  a )  R (distributive law) 

= 0  R (complement law) 

= R (identity law) 

Hence   

(a  b)  c = a (b  c) , 

which completes the proof of the theorem. 

Theorem: Let a be any element of a Boolean algebra B. Then  

(i) Complement of a is unique (uniqueness of complement) 

(ii) (a )  = a (Involution law) 

(iii) 0  = 1 and 1  = 0 

Proof:  (i) Let a  and x be two complements of a  B. Then 

 a  a  = I  and a  a  = 0  (i) 

 a  x = I  and  a  x = 0   (ii) 

and we have 

 a  = a   0      (Identity law) 

     = a   (a  x)   by (ii) 

    = (a   a)  (a   x)        (Distributive law) 

     = I  (a   x)  by (i) 

    = a   x [Identity law] 

Also  

  x = x  0 (Identity law) 

    = x  (a  a )  ,  by (i) 

     = (x  a)  (x  a )     [Distributive law] 

    = I  (x  a )   ,  ( by (ii)) 

    = x  a  = a   x          (Identity and commutative law) 

Hence a  = x and so complement of any element in B is unique. 

(ii) Let a  be a complement of a. Then  

  a  a  = I  and  a  a  = 0 

or ,  by commutativity , 

 a   a = I  and    a   a = 0 

This implies that a is complement of a , that is, 

           a = (a ) . 

(iii) By boundedness law, 

        0  1 = 1 
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and by identity law 

          0  1 = 0 

These two relations imply that 1 is the complement of  0, that is 1 = 0 . 

By principle of duality, we have then 

                  0 = 1 . 

Theorem: Let a, b be elements of a Boolean Algebra. Then (a b)  = a   

b   and (a  b)  = a  b . 

Proof: we have 

(a  b)  (a   b ) = (b  a)  (a   b ) (commutative) 

            = b  (a  (a   b )) (associative) 

            = b [(a  a   (a  b )]  (distributive) 

                     = b [I  (a  b ) (complement) 

           = b  (a  b )         (identity) 

           = b  (b   a)  (commutative) 

            = (b  b )  a    (associative law) 

            = I a      (complement law)  

            = I                (Identity law) 

Also  

 (a  b)  (a   b ) = [(a  b)  a ]  b  (associativity) 

 

            = [a  a )  (b  a )]  b  = [0  (b a )] b

  

  (complement) (distributive) 

            = (b  a )  b   (identity) 

            = b  b   a  = 0  a  = 0 

Hence a   b  is complement of a  b, i.e. (a  b)  = a   b . 

The second part follows by principle of duality. 

We have proved already that Boolean algebra (B, , , , 0, I) satisfies 

associative laws, commutative law and absorption law. Hence every 

Boolean algebra is a lattice with join as  and meet as .  Also 

boundedness law hold in a Boolean algebra.  Thus Boolean algebra 

becomes a bounded lattice. Also Boolean algebra obeys distributive law 

and is complemented. Conversely, every bounded, distributive and 

complemented lattice satisfied all the axiom of a Boolean algebra. Hence 

we can define a Boolean algebra as  

Definition: A Boolean Algebra is a bounded distributive and complemented 

lattice. 
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Now, being a lattice, a Boolean algebra must have a partial ordering. 

Recall that in case of lattice we had defined partial ordering  by a  b if a 

 b = b or a  b = a. 

The following result yields much more than these required conditions: 

Theorem: If a, b are in a Boolean algebra, then the following are 

equivalent: 

(1) a  b = b 

(2) a  b = a  

(3) a   b = I 

(4) a  b  = 0 

Proof: (1)  (2) already proved. 

(1)  (3) :  Suppose a  b = b, then   

a   b = a  (a  b) 

 = (a   a)  b  (associativity) 

 = I  b = I   (complement & boundedness) 

Conversely, suppose a   b = I, then 

a  b = 1  (a  b) = (a   b)  (a  b)  (by assumption of (3)) 

            = (a   a)  b  (distributivity) 

   = 0  b = b   (complement & identity) 

Thus (1)  (3). 

Now we show that (3)  (4). 

Suppose first that (3) holds. Then, using De-Morgan Law and involution, 

we have 

 0 = I  = (a   b )  = a   b  

        = a  b  (Involution) 

Conversely, if (4) holds, then 

                   1 = 0  = (a  b )  = a   b  = a   b 

Thus (3)  (4) 

Hence all the four condition are equivalent. 

Example: Show that the lattice whose diagram is 

     I 

                                           

                          a                       f                  

  e               d       

          

    b                      c      
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     0       

    

is not a Boolean algebra. 

Solution: Elements a and e are both complements of c since c  a = I, c  

a = 0 and c  e = I, c  e = 0 

But in a Boolean algebra complement of an element is unique. Hence the 

given lattice is not a Boolean algebra. 

Definition: Let (B, , , , 0, 1) be a Boolean algebra and S  B. If S 

contains the elements 0 and 1 and is closed under the operation ,  and 

1, then (S, , , , 0, 1) is called Sub-Boolean Algebra. 

In practice, it is sufficient to check closure with respect to the set of 

operations ( ,  ) or ( ,  ) for proving a subset S of B as the sub-Boolean 

algebra. 

The definition of sub-Boolean implies that it is a Boolean algebra. 

But a subset of Boolean algebra can be a Boolean algebra, but not 

necessarily a Boolean subalgebra because it is not closed with respect to 

the operations in B. 

For any Boolean algebra (B, , , , 0, 1), the subsets {0, 1} and the set B 

are both sub-Boolean algebras. 

In addition to these sub-Boolean algebras, consider now any element a  B 

such that a  0 and a  1 and consider the set {a, a , 0, 1}. Obviously this 

set is a sub-Boolean algebra of the given Boolean algebra.  

For example D70 = {1, 2, 5, 7, 10, 14, 35, 70} is a Boolean algebra 

and {1, 2, 35, 70} is a subalgebra of D70. 

 Every element of a Boolean algebra generates a sub-Boolean 

algebra, More generally, any subset of B generates a sub-Boolean algebra. 

Example: Consider the Boolean algebra given in the diagram below: 

                                        I   

                                           

          a         b         

        a b          

          

            a b         

         b              a      

     

                                       0 

Verify whether the following subsets are Boolean algebras or not :  

 S1 = {a, a , 0, 1} 

  S2 = { a  b , a  b , 0, 1} 

  S3 = {a  b , b , a, 1} 

 S4 = {b , a  b , a , 0} 
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S5 = {a, b , 0, 1} 

Solution:  The subset S1 and S2 are sub-Boolean algebras. The subsets S3 

and S4 are Boolean algebras but not sub-Boolean algebras of the given 

Boolean algebra. The subset S5 is not even a Boolean algebra.  

Definition: Let (B1, 1, 1, , 01, 11) and (B1, 2, 2, , 02, 12) be two 

Boolean algebras. The Direct Product of the two Boolean algebras is 

defined to be a Boolean algebra, denoted by,               (B1  B2, 3, 3, , 

03, 11) in which the operations are defined for any (a1, b1) and (a2, b2)  B1 

 B2 as  

 (a1, b1) 3 (a2 , b2) = (a1  1 a2, b1  2 b2) 

 (a1, b1) 3 (a2 , b2) = (a1  1 a2, b1  2 b2) 

     (a1, b1)  = (a1 , b1 ) 

                     03 = (01, 02) and I3 = (I1, I2) 

Thus, from a Boolean algebra B, we can generate B
2
 = B  B,  B

3
 = B  B  

B etc. 

2.3 Boolean Homomorphism  
Definition: Let (B, , , , 0, 1) and (P, , , , , ) be two Boolean 

Algebras. A mapping f : B  P is called a Boolean Homomorphism if all the 

operations of the Boolean Algebra are preserved , that is , for any a, b  B 

 

 f(a  b) = f(a)  f(b) 

 f(a  b) = f(a)  f(b) 

      f(a ) = )a(f  

      f(0) =  

      f(1) =  

The above definition of homomorphism can be simplified by 

asserting that f : B  P preserves either the operations  and  or the 

operations           and . 

We now consider a mapping g : B  P in which the operations  

and  are preserved. Thus g is a lattice homomorphism. Naturally g 

preserves the order and hence it maps the bounds 0 and I into the least 

and the greatest element respectively of the image set g(B)  P. It is 

however, not necessary that g(0) =  and g(1) = .   The complements, if 

defined in terms of g(0) and g(1) in g(B), are preserved, and (g(B), , , 

, g(0), g(1)) is a Boolean algebra. Note that g : B  P is not a a Boolean 

homomorphism, although g : B  g (B) is a Boolean homomorphism. 

In any case, for any mapping from a Boolean Algebra which preserves the 

operations  and , the image set is a Boolean algebra. 

A Boolean homomorphism is called Boolean isomorphism if it is bijective. 

2.4. Representation Theorem 
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Let B be a finite Boolean algebra. We know that an element a in B is called 

an atom (or min term) if a immediately succeed the least element 0 .   Let A 

be the set of atoms of B and let P(A) be the Boolean algebra of all subsets 

of the set A of atoms. Then (as proved in chapter on lattices) each x  0 in 

B can be expressed uniquely (except for order) as the join of atoms (i.e. 

elements of A).  So, let  

  x = a1  a2  ……  an 

Consider the function 

   f : B  P(A) 

defined by  

   f(x) = {a1, a2,……,an} 

for each x = a1  a2 ….  an . 

Stone’s Representation Theorem: Any Boolean Algebra is isomorphic to a 

power set algebra (P(S), , , ~, , S) for some set S. 

Restricting our discussion to finite Boolean Algebra B, the 

representation theorem can be stated as :  

Theorem:  Let B be a finite Boolean Algebra and let A be the set of atoms 

of B. If P(A) is the Boolean Algebra of all subsets of the set A of atoms, 

then the mapping f : B  P(A) is an isomorphism. 

Proof: Suppose B is finite Boolean algebra and P(A) is the Boolean algebra 

of all subsets of the set A of atoms of B. Consider the mapping 

   f : B  P(A) 

defined by  

  f(x) = {a1, a2,….,an}  , 

where x = a1  a2 …. an is the unique representation of x  B as the 

join of atoms                            a1, a2,….,an  A.   If ai are atoms, then we 

know that ai  ai = ai but ai  aj = 0 for ai  aj. 

Let x and y are in the Boolean algebra B and suppose  

  x = a1 …..  ar  b1 ……. bs 

y = b1 ….. bs  c1 …….  ct, 

where  

A = { a1, a2,…, ar, b1, b2,…,bs, c1,…,ct, d1…,dk} 

is the set of atoms of B. Then 

x  y = a1 ….  ar  b1 …. bs  c1… ct 

x  y = b1 ….. bs 

Hence 

        f(x y) = { a1, a2,…., ar, b1, b2,…..,bs, c1, c2….,ct} 

           = { a1,…., ar, b1,…..,bs}  {b1, b2,…..,bs, c1, c2….,ct} 

         = f(x)  f(y) 

and  

      f(x  y) = {b1,……,bs} 

          = { a1, a2…., ar, b1,…..,bs}  {b1,…..,bs, c1,….,ct} 

          = f(x)  f(y) 

Let 

       y = c1 ……  ct  d1 …… dk 

Then 
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 x  y = I and x  y = 0 

and so y = x .  Thus 

 f(x ) = f(y) = {c1 ……ct,d1……dk } 

         = { a1, a2…., ar, b1, b2…..,bs}
c
  

         = (f(x))
c
 .  

Since the representation is unique, f is one-to-one and onto. Hence f is a 

Boolean algebra isomorphism. Thus, every finite Boolean algebra is 

structurally the same as a Boolean algebra of sets. 

If a set A has n elements, then its power set P(A) has 2
n
 elements. Thus we 

have 

Corollary: A finite Boolean algebra has 2
n
 elements for some positive 

integer n. 

Example: Consider the Boolean algebra 

  D70 = {1, 2, 5, 7, 10, 14, 35, 70}  

                   70 

                                           

          10        35        

       14                

          

             5          

         2                                  7      

          

                  1            

   D70 

 

Then the set of atoms of D70 is  

  A = {2, 5, 7} 

The unique representation of each non-atom by atoms is 

  10 = 2  5 

  14 = 2  7 

  35 = 5  7  

  70 = 2  5  7 

The diagram of the Boolean algebra of the power set e(A) of the set A of 

atoms is given below : 

  

        A={2,5,7}  

                                           

   {2,5}                  {5,7}        

       (2,7}                

                

       {5}               

{2}                               {7}       
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P(A) 

We note that the diagram for D70 and P(A) are structurally the same. 

2.5. Boolean Expressions 
Definition: Let x1, x2,…,xn be a set of n variables (or letters or symbols). A 

Boolean Polynomial (Boolean expression, Boolean form or Boolean formula) 

p(x1, x2, …., xn) in the variables x1, x2, …., xn is defined recursively as 

follows: 

 

1. The symbols 0 to 1 are Boolean polynomials 

2. x1, x2, …., xn are all Boolean polynomials 

3. if p(x1, x2, …., xn) and q(x1, x2, …., xn) are two Boolean polynomials, 

then so are 

  p(x1, x2, …., xn)  q(x1, x2, …., xn) 

and 

 p(x1, x2, …., xn)  q(x1, x2, …., xn) 

4. If p(x1, x2, …., xn) is a Boolean polynomial, then so is 

(p(x1, x2, …., xn))  

5. There are no Boolean polynomials in the variables x1, x2, …., xn other 

than those obtained in accordance with rules 1 to 4. 

Thus, Boolean expression is an expression built from the variables given using 

Boolean operations ,  and . 

For example, for variables x, y, z , the expressions 

  p1(x, y, z) = (x  y)  z 

  p2 (x, y, z) = (x  y ) (y  1) 

  p3(x, y, z) = (x (y  z)) (x  (y  1)) 

are Boolean expressions. 

Notice that a Boolean expression is n variables may or may not 

contain all the b variables. Obviously, an infinite number of Boolean 

expressions may be constructed in n variables. 

Definition: A literal is a variable or complemented variable such as x, x , y, 

y , and so on. 

Definition:  A fundamental product is a literal or a product of two or more 

literal in which no two literals involve the same variable. 

For example, 

x  z , x  y   z, x, y , x   y  z 

are fundamental products whereas 

  x  y  x   z and x  y  z  y 

are not fundamental products. 



 112 

Remark: Fundamental product is also called a minterm or complete product.  

In what follows we shall denote x  y by xy. 

Any product of literals can be reduced to either 0 or a fundamental 

product. 

For example, consider x y x  z. Since x  x  = 0 by complement law, 

we have xyx z = 0. 

Similarly, if we consider x y z y, then since y  y = y (idempotent 

law), we have xyzy = xyz, which is a fundamental product. 

Definition:  A fundamental product P1 is said to be contained in (or 

included in) another fundamental Product P2 if the literals of P1 are also 

literals of P2. 

For example, x  z is contained in x  yz but x  z is not contained in x y  z 

since x  is not a literal of xy z. 

Observe that if P1 is contained in P2, say P2 = P1  Q, then, by the absorption 

law,    

  P1  P2 = P1 (P1  Q) = P1 

For example, 

  x  z  x  y z = x  z 

Definition: A Boolean expression E is called a sum-of-products 

expression(disjunctive Normal Form or D NF) if E is a fundamental product 

or the sum (join) of two or more fundamental products none of which is 

contained in another. 

Definition: Two Boolean expression P(x1, x2,…..,xn) and Q(x1, x2,…..,xn) are 

called equivalent (or equal) if one can be obtained from the other by a finite 

number of applications of the identities of a Boolean algebra. 

Definition: Let E be any Boolean expression. A sum of product form of E is 

an equivalent Boolean sum of products expression. 

Example: Consider the expression 

  E1(x, y, z) = x z  + y  z + x y z  

Although the expression E1 is a sum of products, it is not a sum-of-

products expression because, the product x z  is contained in the product x 

y z . But, by absorption law, E1 can be expressed as 

E1(x, y, z) = x z  + y  z + x y z  = x z  + x y z  + y  z = x z  + y  z , 

which is a sum-of-product form for E1. 

2.6. Algorithm for Finding Sum-of-Products Forms 
The input is a Boolean expression E. The output is a sum-of-products 

expression equivalent to E. 

Step 1. Use De Morgan’s Law and involution to move the complement 

operation into any parenthesis untill finally the complement operation 

only applies to variables. Then E will consists only sums and products of 

literals. 

Step 2. Use the distributive operation to next transform E into a sum of 

products. 

Step 3. Use the commutative, idempotent, and complement laws to 

transform each product in E into 0 or a fundamental product. 
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Step 4. Use the absorption law and identity law to finally transform E into 

a sum of products expression. 

For example, we apply the above Algorithm to the Boolean expression. 

  E = ((x y)  z)  ((x  + z) (y  + z ))  

Step 1. Using De Morgan’s laws and involution, we obtain  

  E = ((x y)   z ) ((x   z)   (y   z ))  

     = (x y  z )  [(x  z )  (y  z)] 

Thus E consists only of sum and products of literals.  

Step 2. Using the distributive laws, we obtain  

  E = (x y + z ) x z  + (x y + z’) yz 

     = x y x z  + x z  z  + x y y z + y z z  

Thus E is now a sum of products. 

Step 3.  Using commutative, idempotent and complement law, we obtain 

  E = x y z  + x z  + x y z + 0 

Thus each term in E is a fundamental product or 0. 

Step 4. Using absorption law  

  x z  + x y z  = x z  + (x z   y) 

           = x z  

Hence 

        E = x z  + x y z + 0 

Step 5.  Now using identity law 

       E = x z  + x y z  , 

which is the required sum-of-products expression. 

2.7  Complete Sum-of-Product Expression  
Definition: A Boolean expression E (x1, x2,…., xn) is said to be a complete 

sum-of-product expression (or full disjunctive normal form or disjunctive 

canonical form, or the minterm canonical form) if E is a sum-of-products 

expression where each product involves all the n variables. 

 A fundamental product which involves all the variables is called a 

minterm and there is a maximum of 2
n
 such products for n variables. 

It can be seen that “every non-zero Boolean expression E(x1, x2,…,xn) 

is equivalent to a complete sum-of-product expression and such a 

representation is unique.” 

ALGORITHM FOR OBTAINING COMPLETE SUM OF PRODUCT 

EXPRESSION 
The input is a Boolean sum-of-products expression E(x1, x2,….,xn). 

The output is a complete sum-of-products expression equivalent to E. 

Step 1. Find a product P in E which does not involve the variable xi and 

then multiply P by (xi + xi ) deleting any repeated products (This is 

possible since x + x  = 1 and P + P = P). 

Step 2. Repeat step 1 until every product in E is a minterm, i.e. every 

product P involve all the variables. 
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Example: Express x1  x2 in its complete sum-of-products form in three 

variables x1, x2, x3. 

Solution: We have, using the above stated algorithm, 

x1 + x2 = [x1(x2 + x2 )] + [x2 (x1 + x1 )] 

         = x1 x2 + x1 x2  + x2 x1 + x1  x2 

         = x1 x2 + x1 x2  + x1  x2 

         = x1 x2( x3 + x3 ) + x1 x2 ( x3 + x3 ) + x1  x2(x3 + x 3) 

         = x1 x2 x3 + x1 x2 x3  + x1 x2  x3 + x1 x2  x3  + x1  x2 x3 + x1  x2 x3   , 

which is the complete sum-of-products form in x1, x2, x3. 

2.8 Minimal Sum-of-Products 

Consider a Boolean sum-of-products expression E. Let EL denote the 

number of literals in E (counted according to multiplicity) and let ES denote the 

number of summands in E. For example, let 

   E = x y z  + x  y  z + x y  z  t + x  y z t. 

Then   

 EL = 3 + 3 + 4 + 4 = 14 and ES = 3. 

Let E and F be equivalent Boolean sum-of-products expressions. Then 

E is called simpler than F if  

(i) EL < FL and ES  FL 

or  

(ii) EL  FL and ES < FL 

Definition :  A Boolean sum-of-product expression is called minimal if there 

is no equivalent sum-of-product expression which is simpler than E.  

There can be more than one equivalent minimal sum-of-products expressions. 

Definition : A fundamental product P is called prime implicants of a Boolean 

expression E if P + E = E but no other fundamental product contained in P has 

this property. 

For example, suppose 

  E = x y  + x y z  + x  y z  
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Then, we find first the complete-sum-of-products form of x 

z . Towards this end, we have 

  x z  = x z (y + y ) 

         = x z  y + x z  y      (1) 

Also we know that the complete sum-of-products form is unique, A + E = E, 

where A  0 if and only if the summands in the complete sum-of-products 

form for A are among the summands in the complete sum-of-products form for 

E. We observe that summands x y z  and x y  z  in (1) are in the complete form 

of E given below: 

    E = x y (z + z ) + x y z  + x  y z  

       = x y  z + x y  z  + x y z  + x  y z  

Therefore, by the above argument, 

   x z  + E = E 

Also, the complete sum-of-products form of x is  

  x = x(y + y ) (z + z ) 

     = (x y + x y ) (z + z ) 

     = x y z + x y z  + x y  z + x y  z  

The summand x y z of x is not a summand of E. Hence 

                x + E  E 

Similarly, the complete sum-of-product form of z  is 

  z  = z (x + x ) (y + y ) 

     = (z  x + z  x ) (y + y ) 

     = z  x y + z  x y  + z  x  y + z  x  y  

The summand x  y  z  of z  is not a summand of E. Hence 

  z  + E  E. 

Thus the fundamental products x and z  contained in x z  do not have the 

property P + E = E where as x z  has this property. Hence x z  is a prime 

implicant of E. 

It can be seen “a minimal sum-of-products form for a Boolean 

expression E is a sum of prime implicants of E” 
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2.9. Consensus of Fundamental Products 

Let P1 and P2 be fundamental products such that exactly one variable say xk 

appears uncomplemented in one of P1 and P2 and complemented in the other. 

Then the consensus of P1 and P2 is the product (without repetitions) of the 

literals of P1 and P2 after xk and xk  are deleted. (we do not define the 

consensus of P1 = x and P2 = x ) 

Lemma: Suppose Q is the consensus of P1 and P2. Then P1 + P2 + Q = P1 + P2. 

Proof: Since the literals commute, we can assume without loss of generally 

that 

  P1 = a1 a2…….ar t,  P2 = b1 b2……bs t  

  Q = a1 a2…….ar b1 b2…….bs 

Now Q = Q(t + t ) = Q t + Q t . Because Q t contains P1, P1 + Q t = P1; and 

because Q t  contain P2, 

  P2 + Qt  = P2. 

Hence 

       P1 + P2 + Q = P1 + P2 + Q t + Q t  

                = (P1 + Q t) + (P2 + Q t ) 

     = P1 + P2. 

Example : Find the consensus Q of P1 and P2, where 

(i) P1 = x y z  s, P2 = x y  t 

(ii) P1 = x y , P2 = y  

(iii) P1 = x  y z, P2 = x  y t 

(iv) P1 = x  y z, P2 = x y z . 

Solution: (i) P1 = x y z  s, P2 = x y  t 

Delete y and y  and then multiply the literals of P1 and P2 (without 

repetition) to obtain 

         Q = x z  s t 

 (ii) P1 = x y , P2 = y  

Delete y and y  then multiply the literal of P1 and P2 (without repetition) to 

obtain 

         Q = x 

(iii) P1 = x  y z, P2 = x  y t 
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In this case, no variable appears uncomplemented in one of the products 

and complemented in the other. Hence P1 and P2 have no consensus. 

(iv) P1 = x  y z, P2 = x y z . 

 

Each x and z appear complemented in one of the products and 

uncomplemented in the other. Hence P1 and P2 have no consensus. 

 

CONSENSUS METHOD FOR FINDING PRIME IMPLICANTS 
The following algorithm, known as consensus Method is used to find the 

prime implicants of a Boolean expression. 

ALGORITHM (CONSENSUS METHOD) 
The input is a Boolean expression E = P1 + P2 +…..+ Pm, where Pm are 

fundamental products. The output expresses E as a sum of its prime 

implicants.  

Step 1. Delete any fundamental product Pi which includes any other 

fundamental product Pj (this is permissible by the absorption law) 

Step 2. Add the consensus of any Pi and Pj providing Q does not include 

any of the Pi (this is permissible by the lemma P1 + P2 + …..+ Pn + Q = P1 + 

…        + Pn.) 

Step 3. Repeat Step 1/or Step 2 untill neither can be applied. 

Example : Let 

E(x, y, z) = x y z + x  z  + x y z  + x  y  z + x  y z  

Then  

E = x y z + x  z  + x y z  + x  y  z  (x  y z  include x  z ) 

   = x y z + x  z  + x y z +x  y  z + x y (consensus xy of xyz , xyz  added) 

   = x  z  + x  y  z + x y  (x y z and x y z  include x y) 

   = x  z  + x  y  z + x y + x  y  (consensus x  y  of x  z  and x  y  z added) 

   = x  z  + x y + x  y  (x  y  z include x  y ) 

   = x  z + x y + x  y +y z  (consensus of x z  and xy, which is yz , added) 

After this none of the step in the consensus method will change E. Thus E 

is the sum of its prime implicants x  z , x y, x  y  and y z . 

Use of Consensus method for finding Minimal Sum-of-Products Form 

We have seen that consensus method can be used to express a Boolean 

expression E as a sum of all its prime implicants. Using such a sum, we can 

find a minimal sum-of-products form for E as follows: 

Algorithm: The input is a Boolean expression E = P1 + P2 +……+ Pm, 

where Pi are all prime implicants of E. The output expresses E as a 

minimal sum-of-products. 

Step 1. Express each prime implicant P as a complete sum-of-products. 

Step 2. Delete one by one those prime implicants whose summands appear 

among the summands of the remaining prime implicants. 
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Example: Consider Boolean expression E expressed as the sum of prime 

implicants in the above example. We have 

  E = x  z  + x y + x  y  + y z  

We first convert each prime implicant into complete sum-of-products 

form. We have 

  x  z  = x  z (y + y ) = x  z  y + x  z  y  

  x y = x y(z + z ) = x y z + x y z  

  x  y  = x  y (z + z ) = x  y  z + x  y  z  

  y z  = y z (x + x ) = y z  x + y z  x  

The summands of x  z  appear in the summands of x  y  and y z . So we 

delete x  z  and get 

  E = x y + x  y  + y z      (1) 

The summands of no other prime implicant appear among the summands 

of the remaining prime implicants. Hence expression (1) is a minimal sum-

of-product form for E. In other words, none of the remaining prime 

implicants is superfluous, that is, none can be deleted without changing E. 

2.10 Logic Gates And Circuits 
Definition: Logic circuit (or logic networks) are structures which are built 

up from certain elementary circuit called logical gates. 

LOGIC GATES 
There are three basic logic gates. The lines (wires) entering the gate 

symbol from the left are input lines and the single line on the right is the 

output line. 

1. OR Gate:  An OR gate has input x and y and output z = x  y or z = x + 

y, where addition (or Join) is defined by the truth table. In this case the 

output z = 0 only when inputs x = 0 and y = 0. 

The symbol and the truth table for OR gate are shown in the diagram 

below: 

  

          x   

                     y         z = x + y     

 

        x      y     x + y 

                   1      1        1 

                   1      0        1    

        0      1        1    

                       0      0        0          

 (Truth Table for OR gate) 

2. AND Gate: In this gate the inputs are x and y and output is x  y or x.y 

or xy, where multiplication is defined by the truth table. 

   

          x   

                     y                   z = x  y     

 

O

R 

   AND 
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        x      y  z = x  y 

                   1      1       1 

                   1      0       0    

        0      1       0    

                       0      0       0           

(Truth Table for AND gate) 

Thus output is 1 only when x = 1 ,  y = 1, otherwise it is zero. 

The AND gate may have more than two inputs. The output in such a case will 

be 1 if all the inputs are 1. 

3. NOT Gate (inverter):  The diagram below shows NOT gate with input x 

and output y = x , where inversion, denoted by the prime, is defined by the 

truth table: 

 

           x                        

                                                    y = x   

   (NOT gate) 

  x y = x  

  1 0 

  0 1 

Truth Table for NOT gate 

For example, if x = 10101, then output x  in NOT gate shall be  

    x  = 01010 

Exercise : Draw logic circuit for a b  + ab  

Logic circuits as a Boolean Algebra: The truth tables for OR, AND and 

NOT gates are respectively identical to the truth tables for the 

propositions            p  q (disjunction, “p or q”),  p  q(Conjunction, “p 

and q”) and ~ p (negation, “not p”). The only difference is that 0 and 1 are 

used instead of F (contradiction) and T (tautology). Thus the logic circuits 

satisfy the same laws as do propositions and hence they form a Boolean 

Algebra.   Hence, we have established the following: 

Theorem: Logic circuits form a Boolean Algebra. 

Example: Express the output of the logic circuit below as a Boolean 

expression. (Here small circle represents complement (NOT)) 

 

                                              

                                                  

NOT 
NOT 

   AND 

O

R 
O

R 

  x 

  y 

t1 

t2 

t 
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Solution: We note that 

  t1 = xy   

  t2 = (x+y)  

  t3 = (x y)  

and so we have  

 t = t1 + t2 + t3  

   = x y  + (x + y)  + (x  y)  

NAND and NOR Gates 

NAND and NOR gates are frequently used in computers. 

NAND gate: It is equivalent to AND gate followed by a NOT gate.   Its 

symbol is 

     

          x   

                     y                      z      

                          NAND gate 

Its truth table is  

        x      y      x y      z = (x y)  

                   1      1             1               0 

                   1      0             0               1 

        0      1             0               1 

                       0      0             0               1           

Thus, the output of a NAND gate is  0 if and only if all the inputs are 1. 

NOR gate: This gate is equivalent to OR gate followed by a NOT gate. Its 

symbol is  

          x   

                     y                      z      

                       NOR Gate 

Its truth table is as shown as: 

        x      y   x + y      (x + y)   

                   1      1             1          0 

                   1      0             1             0  

        0      1             1             0 

                       0      0             0             1 

O

R 
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Thus, the output of NOR gate is 1 if and only if all inputs are 0. 

2.11 Boolean Function 
We know that ordinary polynomials could produce functions by 

substitution. For example, the polynomial x y + y z
3
 produces a function             

f : R
3
  R by letting f(x,y,z) = xy +yz

3
. Thus f (3, 4, 2) = 3. 4 + 4. 2

3
 = 44.  

In a similar way, Boolean polynomials involving n variables produce 

functions from Bn to B. 

Definition: Let (B, . , +, , 0, 1) be a Boolean algebra. A function f : Bn  B 

which is associated with a Boolean expression (polynomial) is n variables 

is called a Boolean function. 

Thus a Boolean function is completely determined by the Boolean 

expression  (x1, x2,….,xn) because it is nothing but the evaluation function 

of the expression. It may be mentioned here that every function g : Bn  B 

needs not be a Boolean function. 

If we assume that the Boolean algebra B is of order 2
m

 for m  1, then the 

number of function from Bn to B is greater than 2
2n

 showing that there are 

functions from Bn to B which are not Boolean functions.   On the other 

hand, for m = 1, that is, for a two element Boolean algebra, the number of 

function from Bn to B is 2
2n

 which is same as the number of distinct 

Boolean expressions in n variable. Hence every function from Bn to B in 

this case is a Boolean function. 

Example: Show that the following Boolean expression are equivalent to 

one-another. Obtain their sum-of-product canonical form. 

(a) (x + y)(x  + z)(y + z) 

(b) (x.z) + (x y) + (yz) 

(c) (x + y)(x  + z) 

(d) x z + x y 

Solution: The binary valuation of the expression are 

x      y      z      x+y    x +z   y+z   (a)     (c)      xz      x y      yz      (b)    (d)       

0      0      0        0       1        0      0        0        0        0         0        0       0 

0      0      1        0       1       1       0        0        0        0         0        0        0 

0      1      0        1       1       1       1        1        0        1         0        1        1 

0      1      1        1       1       1       1        1        0        1         1        1        1 

 

1      0      0        1       0       0       0        0        0        0         0        0        0 

1      0      1        1       1       1       1        1        1        0         0        1        1 

1      1      0        1       0       1       0        0        0        0         0        0        0 

1      1      1        1       1       1       1        1        1        0         1        1        1 

Since the values of the given Boolean expression are equal over every 

triple of the two element Boolean algebra, they are equal. 
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To find the sum-of-product canonical (complete) form, we note that (d) is in 

sum-of-product form. Therefore to find complete sum-of-product form, 

we have 

  (d) = (x z) + (x  y) 

        = x z(y + y ) + (x  y) (z + z ) 

        = x z y + x z y  + x  y z + x  y z   

METHOD TO FIND TRUTH TABLE OF A BOOLEAN FUNCTION 
Consider a logic circuit consisting of 3 input devices x, y, z. Each 

assignment of a set of three bits to the input x, y, z yield an output bit for 

z. There are              2
n
 = 2

3
 = 8 possible ways to assign bits to the input as 

follows:  

   000, 001, 010, 011, 100, 101, 110, 111. 

The assumption is that the sequence of first bits is assigned to x, the 

sequence of second bits to y, and the sequence of third bits to z. Thus the 

above set of inputs may be rewritten in the form 

  x = 00001111, y = 00110011,    z = 01010101 

These three sequences (of 8 bits) contain the eight possible combination of 

the input bits. 

The truth table T = T(L) of the circuit L consists of the output t that 

corresponds to the input sequences x, y, z. 

The truth table is same as we generally have written in vertical columns. 

The difference is that here we write x, y, z and t horizontally. 

Consider a logic circuit L with n input devices. There are many 

ways to form n input sequences x1, x2,….,xn so that they contain 2
n
 

different possible combinations of the input bits (Each sequence must 

contain 2
n
 bits). 

The assignment scheme is:  

x1 : Assign 2
n-1

 bits which are 0 followed by 2
n-1

 bits which are 1. 

x2 : Assign 2
n-2

 bits which are 0 followed by 2
n-2

 bits which are 1. 

x3 : Assign 2
n-3

 bits which are 0 followed by 2
n-3

 bits which are 1. 

and so on. 

The sequence obtained in this way is called “Special Sequence”.  Replacing 

0 by 1 and 1 by 0 in the special sequences yield the complements of the 

special sequences. 

Example: Suppose a logic circuit L has n = 4 input devices x, y, z, t. Then 

2
n
 = 2

4
 = 16 bit special sequences for x, y, z, t are 

x = 0000000011111111 (2
3
 = 8 zeros followed by 8 ones) 

y = 0000111100001111 (2
n-2

 = 2
4-2

 = 4 zeros followed by 4 ones) 

z = 0011001100110011 (2
n-3

 = 2
4-3

 = 2 zeros followed by 2 ones) 

t = 0101010101010101 (2
n-4

 = 2
4-4

 = 2
0
 = 1 zeros followed by 1 one) 

ALGORITHM FOR FINDING TRUTH TABLE FOR A LOGIC 

CIRCUIT LWHERE OUTPUT T IS GIVEN BY A BOOLEAN 

SUM-OF-PRODUCT EXPRESSION IN THE INPUTS. 

The input is a Boolean sum-of-products expression t(x1, x2,….,..). 

Step 1. Write down the special sequences for the inputs x1, x2,….and their 

complements 



 123 

 

Step 2. Find each product appearing in t(x1, x2,….) keeping in mind that 

x1, x2,….=1 is a position if and only if all x1, x2…..have 1 in the position. 
Step 3. Find the sum t of the products keeping in mind that x1 + x2 + …..= 

0 in a position if and only if all x1, x2,…..have 0 in the position. 

2.12 Representation of Boolean Functions using Karnaugh 

Map 
Karnaugh Map is a graphical procedure to represent Boolean function as 

an “or” combination of minterms where minterms are represented by 

squares.  This procedure is easy to use with functions f: Bn  B, if n is not 

greater than 6. We shall discuss this procedure for n = 2, 3, and 4. 

A Karnaugh map structure is an area which is subdivided into 2
n
 cells, one 

for each possible input combination for a Boolean function of n variables. 

Half of the cells are associated with an input value of 1 for one of the 

variables and the other half are associated with an input value of 0 for the 

same variable.  This association of cell is done for each variable, with the 

splitting of the 2
n
 cells yielding a different pair of halves for each distinct 

variable. 

Case of 1 variable: In this case,  the Karnaugh map consists of 2
1
 = 2 

squares. 

 

 

                                                0          1 

                          x         x 

The variable x is represented by the right square and its complement x  by 

the left square. 

Case of 2 variables: For n = 2, the Boolean function is of two variable, say x 

and y. We have 2
2
 = 4 squares, that is, a 2  2 matrix of squares. Each 

squares contains one possible input from B2. 

The variable x appears in the first row of the matrix as x  whereas x 

appears in the second row as x. Similarly y appears in the first column as 

y  and as y in the second column. 

 

  0      1               y        y 

             0                                     x  

 

  1           

           x  
          

    

                             (2 variable Karnaugh Map) 

In this case, x is represented by  the points in lower half of the map and y 

is represented by the points in the right half of the map. 

Definition: Two fundamental products are said to be adjacent if they have 

the same variables and if they differ in exactly one literal. Thus there must 

00 01 

10 11 

  

     x y  

  

     x y 

        

        xy  

     

      xy 
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be an uncomplemented variable in one product which is complemented in 

the other. 

For example, if P1 = x y z  and P2 = x y  z , then they are adjacent. 

The sum of two such adjacent products will be a fundamental product with one 

less literal. 

For example, in the case of above mentioned adjacent products, 

  P1 + P2 = x y z  + x y  z  = x z (y + y ) = x z  (1) = x z . 

We note that two squares in Karnaugh map above are adjacent if 

and only if squares are geometrically adjacent, that is, have a side in 

common. 

We know that a complete sum-of-products Boolean expression E(x, 

y) is a sum of minterms and hence can be represented in the Karnaugh 

map by placing checks in the appropriate square. A prime implicant of 

E(x, y) will be either a pair of adjacent squares in E or an isolated square (a 

square which is not adjacent to other square of E(x, y)).  A minimal sum of 

products for E(x, y) will consists of a minimal number of prime implicants 

which cover all the square of E(x, y). 

Example : Find the prime implicants and a minimal sum-of-products form 

from each of the following complete sum-of-products Boolean expression: 

(a) E1 = x y + x y  (b) E2 = x y + x  y + x  y  

(c) E3 = x y + x  y . 

Solution: (a) The Karnaugh map for E1 is 

        y   y 

          x  

 

                    x  

Check the squares corresponding to x y and x y . We note that E1 consists 

of one prime implicant, the two adjacent square designated by the loop. 

The pair of adjacent square represents the variable x. So x is the only 

prime implicant of E1. Consequently E1 = x is its minimal sum. 

(b) The Karnaugh map for E2 is 

 

                    y            y   

          

             x      

          

          

          

            x 

 

 

Check the squares corresponding to x y, x  y, x  y . The expression E2 

contains two pairs of adjacent squares (designated by two loops) which 

include all the squares of E2. The vertical pair represents y and the 

horizontal pair x . Hence y and x  are the prime implicants of E2. Thus 

   

 

 

          

 

 

 

           

     
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E2 (x, y) = x  + y  

is minimal sum. 

(c) The Karnaugh map for E3 is  

 

 

 

  

                    y           y  

 

  x  

 

  x 

 

Check (tick) the squares corresponding to x y and x  y . The expression E3 

consists of two isolated squares which represent x y and x  y . Hence and x 

y and x  y  are the prime implicants of E3 and so E3 = x y + x  y  is its 

minimal sum.  

 

Case of 3 variables: We now turn to the case of a function f: B3  B  which 

is function of x, y and z. The Karnaugh map corresponding to Boolean 

expression E(x, y, z) is shown in the diagram below:    

       y   y 

 

          00     01     11    10      y z    y z     yz       yz  

      0         x   

 

     1         x  

 

           z 

               z    

Here x, y, z are respectively represented by lower half, right half and 

middle two quarters of the map.  

Similarly, x , y , z  are respectively represented by upper half, left half and 

left and right quarter of the map. 

Definition: By a Basic Rectangle in the Karnaugh map with three variables, 

we mean a square, two adjacent squares or four squares which form a 

one-by four, or a two by-two rectangle. These basic rectangles corresponds 

to fundamental products of three, two and one literal respectively. 

Further, the fundamental product represented by a basic rectangle 

is the product of just those literals that appear in every square of the 

rectangle.  

Let a complete sum of products Boolean expression E(x, y, z) is 

represented in the Karnaugh map by placing checks in the appropriate 

squares. A prime implicant of E will be a maximal basic rectangle of E, 

x y  

  

 

 

xy 

 

000    001  011   010 

 

100    101   111  110    

  

x y z    x y z    x yz    x yz     

 

xy z      xy z     xyz     xyz   
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i.e., a basic rectangle contained in E which is not contained in any larger 

basic rectangle in E. 

A minimal sum-of-products form for E will consist of a minimal 

cover of E, i.e., a minimal number of maximal basic rectangles of E which 

together include all the squares of E. 

Example: Find the prime implicants and a minimal sum-of-products form 

for each of the following complete sum of products Boolean expressions : 

(a)   E1 = x y z + x y z  + x  y z  + x  y  z 

(b)   E2 = x y z + x y z  + x y  z + x  y z + x  y  z 

(c)   E3 = x y z + x y z  + x  y z + x  y  z 

Solution: (a) The Karnaugh map for E1 is  

 

   

      

         

 

We check the four squares corresponding to four summands in E1. Here 

E1 has three prime implicants (maximal basic rectangles) which are 

encircled. These are x y, y z  and x  y  z. All three are needed to cover E1. 

Hence minimal sum for E1 is  

E1 = x y + y z  + x  y  z. 

(b) The Karnaugh map for E2 is    

 

 

  

 

 

 

Check the squares corresponding to the five summands. E2 has two prime 

implicants which are circled. One is the two adjacent squares which 

represent x y, and the other is the two-by-two square which represents z. 

Both are needed to cover E2 so the minimal sum for E2 is 

E2 = x y + z 

(c) The Karnaugh map for E3 is  

 

 

 

 

 

 

  

Check the squares corresponding to the five summands.  Here E3 has 

three prime implicants x y, yz , x  y . All these are needed in a minimal 

cover of E3. Hence E3 has minimal sum as  

  E3 = x y + y z  + x  y  

 

 y z             y z             yz            yz  

 

 y z                y z              yz             yz  

     y z          y z             yz            yz  

  
       
 

 

           

     x  

 

 

     x 

     x  

 

 

     x 

   
 

 

      

         

       
 

 

           

               x  

 

 

     x 
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Remark :  To find the fundamental product represented by a basic 

rectangle, find literals which appear in all the squares of the rectangle.  

Case of 4 Variables: We consider a Boolean function f : B4  B, considered 

as a function of x, y, z and t. Each of the 16 squares (2
4
) corresponds to one 

of the minterms with four variables. 

  x y z t,  x y z t ,……………..,x  y z  t 

We consider first and last columns to be adjacent, and first and last 

rows to be adjacent, both by Wrap around, and we look for rectangles 

with sides of length some power of 2, so the length is 1, 2 or  4.   The 

expression for such rectangles is given by intersecting the large labelled 

rectangles.  

                         00      01       11       10     

 

                           00       

                           01      ,    

    

                           11          

                           10        

    

   

 

 

 

 

 

    

   z                         z 

 

 

                   x                                                                   

                                                                                  y 

 

                   x                                                               y  

 

                                                  

                                                   

                                                   t  

 

A basic rectangle in a four variable Karnaugh map is a square, two 

adjacent squares, four squares which form a one-by-four or two by two 

rectangle or eight square squares which form a two by four rectangle. 

These rectangle correspond to fundamental product with four, three, two 

and one literal respectively. Maximal basic rectangles are prime 

implicants. 

Example: Find the fundamental product P represented by the basic 

rectangle in the Karnaugh map given below : 

0000    0001    0011    0010 

 

0100    0101    0111    0110 

 

1100    1101    1111    1110 

 

1000    1001    1011    1010 

x y z t       x y z t      x y zt     x y zt  

 

x yz t        x yz t       x y z t    x yz t  

 

xyz t         xyz t           xyzt      xyzt  

 

xy z t        xy z t          xy zt    xy zt  

t 
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Solution: We find the literals which appear in all the squares of the basic 

rectangle. Then P will be the product of such literals.  

Here x, y , z  appear in both squares. Hence 

  P = x y  z  

is the fundamental product represented by the basic rectangle in question. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    y t           z t              zt               zt  

          

  x y  

 

 

   x y 

 

 

   xy 

 

 

   xy  
 



 129 

 

Unit-3 

Graph Theory  
 

3.1. Definitions and Examples 
 

Definition: A graph G = (V,E) is a mathematical structure consisting of two 

finite sets V and E. The elements of V are called Vertices (or nodes) and the 

elements of E are called Edges. Each edge 

is associated with a set consisting of either one or two vertices called its 

endpoints. 

The correspondence from edges to endpoints is called edge-endpoint 

function. This function is generally denoted by .   Due to this function, some 

author denote graph by G = (V, E, ). 

Definition: A graph consisting of one vertex and no edges is called a trivial 

graph. 

Definition: A graph whose vertex and edge sets are empty is called a null 

graph. 

Definition: An edge with just one end point is called a loop or a self loop. 

 Thus, a loop is an edge that joins a single endpoint to itself. 

Definition: An edge that is not a self-loop is called a proper edge. 

Definition: If two or more edges of a graph G have the same vertices, then 

these edges are said to be 

parallel or multi-edges. 

Definition: Two vertices that are connected by an edge are called adjacent. 

Definition: An endpoint of a loop is said to be adjacent to itself. 

Definition: An edge is said to be incident on each of its endpoints. 

Definition: Two edges incident on the same endpoint are called adjacent 

edges. 

Definition: The number of edges in a graph G which are incident on a vertex is 

called the degree of  

that vertex. 

Definition: A vertex of degree zero is called an isolated vertex. 

Thus, a vertex on which no edges are incident is called isolated. 

Definition: A graph without multiple edges (parallel edges) and loops is 

called Simple graph. 

Notation: In pictorial representations of a graph, the vertices will be denoted 

by dots and edges by line segments. 
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Example: 1. Let 

                                    V = {1, 2, 3, 4} and E = {e1, e2, e3, e4, e5}. 

Let  be defined by 

   (e1) =   (e5) = {1, 2} 

                                      (e2) = {4, 3} 

   (e3) = {1, 3} 

                                      (e4) = {2, 4} 

 

We note that both edges e1 and e5 have same endpoints {1, 2}. The endpoints 

of e2 are {4, 3}, the endpoints of e3 are {1, 3} and endpoints of e4 are {2, 4}. 

Thus the graph is  

                                                                            

          1       2  

                                  1                          2  
                                                   or           e3                            e4   

                                                                   

                                                                   3                        4   

                                3                                          
       4        e2                                                                             

 

The edges e2 and e3 are adjacent edges because they are incident on the same 

vertex B. 

2. Consider the graph with the vertices A, B , C, D and E pictured in the figure 

below. 

 

 

 
  A                           B 

 

 

 
                C 

 

 

 

          

   D                                E 

 

In this graph, we note that  

No. of edges = 5 

Degree of vertex A = 4 

e1 

e5 

e4 

e3 

e1 

e5 

e2 
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Degree of vertex B = 2 

Degree of vertex C = 3 

Degree of vertex D = 1 

Degree of vertex E = 0 

Sum of the degree of vertices = 4 + 2 + 3 + 1 + 0 =10 

Thus, we observe that  

     
5

1i

deg(vi) = 2e  , 

where deg(vi) denotes the degree of vertex vi and e denotes the number of 

edges. 

 

Euler’s Theorem: (The First Theorem of Graph Theory): The sum of the 

degrees of the vertices of    a graph G is equal to twice the number of edges            

in G. 

   (Thus, total degree of a graph is even) 

Proof: Each edge in a graph contributes a count of 1 to the degree of two 

vertices (end points of  

the edge), That is, each edge contributes 2 to the degree sum. Therefore the 

sum of degrees of the  

vertices is equal to twice the number of edges. 

Corollary: There must be an even number of vertices of odd degree in a given 

graph G. 

Proof: We know, by the Fundamental Theorem, that 

     
n

i 1

deg(vi) = 2  no. of edges 

Thus the right hand side is an even number. Hence to make the left-hand side 

an even number there  

can be only even number of vertices of odd degree. 

Remarks: (i) A vertex of degree d is also called a d-valent vertex. 

(ii) The degree (or valence) of a vertex v in a graph G is the number of proper 

edges incident on v  

plus twice the number of self- loops. 

Theorem: A non-trivial simple graph G must have at least one pair of vertices 

whose degrees are  

equal. 

Proof: Let the graph G has n vertices. Then there appear to be n possible 

degree values, namely 0, 1, ….,n  1. But there cannot be both a vertex of 

degree 0 and a vertex of degree n  1 because if there is a vertex of degree 0 

then each of the remaining n  1 vertices is adjacent to atmost n 2 other 
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vertices. Hence the n vertices of G can realize atmost n 1 possible values for 

their degrees. Hence the pigeonhole principle implies that at least two of the 

vertices have equal degree. 

 

Definition: A graph G is said to simple if it has no parallel edges or loops. In a 

simple graph, an edge with endpoints v and w is denoted by {v, w}. 

Definition: For each integer n  1, let Dn denote the graph with n vertices and 

no edges. Then Dn is called the discrete graph on n vertices. 

For example, we have 

                    and                                              

              D3                                                                  D5 

Definition: Let n  1 be an integer. Then a simple graph with n vertices in 

which there is an edge between  each pair of distinct vertices is called the 

complete Graph on n vertices. It is denoted  by Kn.  

 

 For example, the complete graphs K2, K3 and K4 are shown in the 

figures below: 

 

                                       v3                       v4                   v3 

                                                    

 

                                                                                                     
v1            v2                 v1              v2                 v1                        v2 

        K2                                K3                                                 K4              

Definition: If each vertex of a graph G has the same degree as every other 

vertex, then G is called a regular graph.    

A k-regular graph is a regular graph whose common degree is k. 

 For example, consider K3. The degree of each vertex in K3 is 2. Hence 

K3 is regular. Similarly K4 is regular. Also the graph shown below is regular 

because degree of each vertex here is 2 .  

 

            v4                     v3           
 

                                                        2- regular graph 

 

                    v1                       v2     

 
But this graph is not complete because v2 and v4 have not been connected 

through an edge. Similarly, v1 and v3  are not connected by any edge. 

Thus 

 A Complete graph is always regular but a regular graph need not 

be complete. 
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Example: The oxygen molecule O2, made up of two oxygen atoms linked by a 

double bond can be represented by the regular graph shown below: 

 

              

 

Definition: Let n  1be an integer. Then a graph Ln with n vertices              {v1, 

v2,….,vn} and with edges  

{vi, vi+1} for 1  i < n is called a Linear Graph on n vertices. 

 For example, the linear graphs L2 and L4 are shown in the figure below. 

                                             ,                                                  
           v1                  v2                                  v1               v2             v3          v4  

  L2(or P2)                                                L4(or P4)   

It is also called Path Graph denoted by Pn.      

Definition: A bipartite graph G is a graph whose vertex set V can be 

partitioned into two subsets U and W, such that each edge of G has one 

endpoint in U and one endpoint in W. 

 The pair (U, W) is called a Vertex bipartition of G and U and W are 

called the bipartition subsets. Obviously, a bipartite graph cannot have any self 

loop. 

Example: 1. If Vertices in U are solid vertices and vertices in W are hollow 

vertices, then the following graphs are bipartite graphs: 

          

                                                                             

 

 

                                             ,  

            

 

             

2. The smallest possible simple graph that is not bipartite is the complete 

graph K3 shown below :                                                                                            

                                                                             

 

 

                                        
             K3    

Definition: A complete bipartite graph G is a simple graph whose vertex set 

V can be partitioned into two subsets U = {v1, v2,…,vm) and W =                       

{w1, w2,…,wn}such that for all i, k in    {1, 2,….,m}and j, l in {1, 2,…n} 

(i) there is an edge from each vertex vi to each vertex wj. 
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(ii) there is not an edge from any vertex vi to any other vertex vk. 

(iii) there is not an edge from any vertex wj to any other vertex wl. 

 A complete bipartite graph on (m, n) vertices is denoted by Km,n. 

Example: The complete bipartite graphs K32 and K34 are shown in the figure  

below: 

             v1                                                                        w1 

                                        w1                                   v1  

              v2                                                                        w2 

                                        w2                                      v2  

             v3                                                                          w3 

                             K32                                     v3  

                                                                                             w4 

                                                                                                                       K34 

 

3.2. Subgraphs 

Definition: A graph H is said to be a subgraph of a graph G if and only if 

every vertex in H is also a vertex in  G, every edge in H is also an edge in G 

and every edge in H has the same endpoints as in G. 

 

We may also say that G is a supergraph of H. 

 For example, 

 

  v1            v2                     v1            v2             
   e2        e3              and                               e5           e4 

 

  v3           v4                      v3            v4       

          

 

are subgraphs of the graph given below: 

 

   

   v1       v2 

    e2                                  e4 

          e5               e6 

    v3       v4 

 

 Similarly, the graph 

 

 A                              B 

                          
  

                           

  D                        C 

e1 e1 

e1 

e5 

E 

F 

H G 

E F 

H G 
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is a subgraph of the graph given below: 

          

 A                              B 

                          
  

                           

  D                        C 

 

Definition: A subgraph H is said to be a proper subgraph of a graph G if 

vertex set VH of H is a proper subset of the vertex set VG of G or edge set EH is 

a proper subset of the edge set EG. 

 For example, the subgraphs in the above examples are proper 

subgraphs of the given graphs. 

Definition: A subgraph H is said to span a graph G if VH = VG. 

 Thus H is a spanning sub graph of graph G if it contains all the 

vertices of G. 

 For example the subgraph 

                                  v1                    v2   

     

  

                                                 v5 

 

                                      v3                       v4     

spans the graph 

                                             v1                    v2    

    

                                                    

                                                            v5 

 

                                            v3                     v4 

 

Definition: Let G = (V, E) be a graph. Then the complement of a subgraph 

G´ = (V´, E´) with respect to the graph G is another subgraph G´´ = (V´´, E´´) 

such that E´´ = E  E´ and V´´ contains only the vertices with which the edges 

in E´´ are incident. 

 For example, the subgraph 

                     v1                                         v2 

 

is the complement of the subgraph 

 

 v1                              v2 

         v7               v8 
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        v5              v6  

  v3                        v4 

 

with respect to the graph G shown in the figure below: 

 

v1                               v2 

         v7               v8 

  

        v5               v6  

  v3                        v4 

 

Definition: If G is a simple graph, the complement of G, (Edge 

complement), denoted by G  or G
c
 is a graph such that 

(i) The vertex set of G  is identical to the vertex set of G, that is VG  = VG 

(ii) Two distinct vertices v and w of G  are connected by an edge if and only if 

v and w are not connected by an edge in G. 

 For example, consider the graph G 

               

    

        v1         v3 

 

 

     v4 

    G 

 

Then complement G  of G is the graph 

    v2 

 

        v1                        v3 

 

 

     v4 

             G  

  

Example: Find the complement of the graphs: 

   

                           v2 

 

(a)    v1                           v3 

 

                           v4 

(b) 

        v1              v2  

v2 
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        v3              v4 

( c) Complete graph K4 : 

   

        v1                       v2 

 

 

        v3                       v4 

 

Solution: (a) 

 

   v2 

 

        v1                        v3 

 

                        v4 

(b)  

         v1                    v2 

 

        v3                    v4 

 

(c) Null graph. 

Example: Find the edge complement of the graph G shown below: 

                                  v1 

 

                   v2                      v3 

 

                   v4                      v5 

 

                                  v6         G 

Solution: The edge complement of G is the following graph G
c
  

                              v1 

 

                  v2                   v3 

 

                  v4                   v5 

 

                              v6          

           G
c 

Definition: If a new vertex v is joined to each of the pre-existing vertices of a 

graph G, then the resulting graph is called the Join of G and v or the 

suspension of G from v. It is denoted by G + v. 
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Thus, A graph obtained by joining a new vertex to each of the vertices of a 

given graph G is called the Join of G and v or the suspension of G from v. It 

is denoted by G + v. 

 For example, let G be a graph 

 

          v1                        v2 

 

       v3                                v4 

 

and let v be a vertex.   Then  

 

                            v 

 

            v1                          v2 

 

         v3                              v4 

                          G + v 

is the join of G to v. 

3.3. Isomorphisms of Graphs  

We know that shape or length of an edge and its position in space are not part 

of specification of a graph. For example, the figures 

                              v3        e2      v1    e1      v2  

        v1                      v2         and                                       

                    e2                                                               e3  

           e3             

                       v3 

represent the same graph. 

Definition: Let G and H be graphs with vertex sets V(G) and v(H) and Edge 

sets E(G) and E(H) respectively. Then G is said to isomorphic to H iff there 

exist one-to-one correspondences g : V(G)  v(H) and h : E(G)  E(H) such 

that for all v  V(G) and e  E(G), 

    v is an endpoint of e  g(v) is an endpoint of h(e). 

Definition: The property of mapping endpoints to endpoints is called 

preserving incidence or the  

continuity rule for graph mappings. 

As a consequence of this property, a self-loop must map to a self-loop. 

Thus, two isomorphic graphs are same except for the labeling of their vertices 

and edges. 

 

Example: Show that the graphs 

 

                              e1                 v3 

e5 

e4 
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                    v2 

      v1           e6                 e2          e3 

                    v5 

                                e4            v4 

           G 

and 

     w1 

        f3         f4     w3 

       f1     f2              w2             f5 

      f7       f6     w4 

 w5   

    H 

are isomorphic. 

Solution: To solve this problem, we have to find g: V(G)  V(H) and h : E(G) 

 E(H) such that for all v  V(G) and e  E(G), 

  v is an endpoint of e  g(v) is an endpoint of h(e).  

Since e2 and e3 are parallel (have the same endpoints), h(e2) and h(e3) must also 

be parallel. Thus we have 

 h(e2) = f1 and h(e3) = f2 or h(e2) = f2 and h(e3) = f1. 

Also the endpoints of e2 and e3   must correspond to the endpoints of f1 and f2 

and so  

 g(v3) = w1 and g(v4) = w5 or g(v3) = w5 and g(v4) = w1. 

 Further, we note that v1 is the endpoint of four distinct edges e1, 

e7, e5 and e4 -and so g(v1) should be the endpoint of form distinct edges. We 

observe that w2 is the vertex having four edges and so g(v1) = w2. If g(v3) = w1, 

then since v1 and v3 are endpoints of e1 in G, g(v1) = w2 and g(v3) = w1 must be 

endpoints of h(e1) in H. This implies that h(e1) = f3. 

 Continuing in this way we can find g and h to define the 

isomorphism between G and H. 

 One such pair of functions (of course there exist several) is shown 

below: 

 V(G)                                     V(H)       

          g  

         v1                                                       w1 

        v2                                                       w2 

       v3                                       w3 

        v4                                                       w4 

        v5                                                       w5 
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 E(G)                                     E(H)       

          h  

         e1                                                       f1 

        e2                                                       f2 

       e3                                                        f3 

        e4                                                       f4 

        e5                                                       f5 

                                                                   f6       

       e6     

         e7                                                         f7  

 

 

 

Remark: Each of the following properties is invariant under graph 

isomorphism, where n, m and h are all non-negative integers: 

1. has n vertices 

2. has m edges 

3. has a vertex of degree k 

4. has m vertices of degree k 

 

Example: Examine for isomorphism       

(a)  

                                                        

                                and                                

                                          

                         G                                                                   

                                                                 
                                                             H 

(b) 

                                                               

                  

                          and                     

                                                                

                           G                                                       

                                                                             H 

 



 141 

 

Solution: (a) G has nine edges whereas H has only eight edges. Hence G is not 

isomorphic to H. 

(b) G has a vertex v of degree 4, whereas H has no vertex of degree 4. Hence G  

      is not isomorphic to H 

 

      

3.4 Walks, Paths and Circuits 

Definition: In a graph G, a walk from vertex v0 to vertex vn is a finite 

alternating sequence: 

   {v0, e1, v1, e2,…..,vn 1, en, vn} 

of vertices and edges such that vi-1 and vi are the endpoints of ei. 

The trivial walk from a vertex v to v consists of the single vertex v. 

Definition: In a graph G, a path from the vertex v0 to the vertex vn is a walk 

from v0 to vn that does not contain a repeated edge. 

 Thus a path from v0 to vn is a walk of the form  

  {v0, e1, v1, e2, v2,…..,vn-1, en, vn}, 

where all the edges eI are distinct.  

Definition: In a graph, a simple path from v0 to vn is a path that does not 

contain a repeated vertex. 

 Thus a simple path is a walk of the form 

  {v0, e1,v1, e2, v2,……,vi-1, en, vn}, 

where all the ei are distinct and all the vi are distinct. 

Definition: A walk in a graph G that starts and ends at the same vertex is 

called a closed walk. 

Definition: A closed walk that does not contain a repeated edge is called a 

circuit. 

Thus,  closed a closed path is called a circuit (or a cycle) and so a  circuit is a 

walk of the form 

  {v0, e1, v1, e2, v2,……,vn-1, en, vn}  , 

where v0 = vn and all the ei are distinct. 

Definition: A simple circuit is a circuit that does not have any other repeated 

vertex except the first and the last. 

 Thus, a simple circuit is a walk of the form 
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  {v0, e1, v1, e2,….,vn-1, en, vn}, 

where all the eI are distinct and all the vj are distinct except that v0 = vn. 

Example:  Consider the graph shown below 

 

 

 

 

               e1         

         v1                        v2 

                  e4       e3    

                       

                     v3 

               e5    

 

            v4 

 

We note that e3, e5 is a path.   The walk e1, e2, e3, e5 is a path but it is not a 

simple path because the vertex v1 is repeated (e1 being a self-loop).  The walk 

e2, e3, e4 is a circuit.   The walk e2, e3, e4, e1 is a circuit but it is not simple 

circuit because vertex v, repeats twice (or we may write that v1 met twice). 

Definition:  In a graph the number of edges in the path  {v0, e1, v1, e2,……, en, 

vn} from v0 to vn is called the length of the path. 

Definition: A cycle with k-edges is called a k-cycle or cycle of length k.  

For example, loop is a cycle of length 1. On the other hand, a pair of parallel 

edges e1 and e2, shown below, is a cycle of length 2 

 

                                                                                             e1 

                                                 v1                                v2 

                                                                                         e2 

Definition: A graph is said to be acyclic if it contains no cycle. 

 For example, the graphs 

                                                                     
 

                                    and 

                                                                       
 

 

                                                                                 
are acyclic. 

Theorem: If there is a path from vertex v1 to v2 in a graph with n vertices, then 

there does not exist a path of more than n-1 edges from vertex v1 to v2. 

Proof: Suppose there is a path from v1 to v2. Let 

e2 
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    v1,……..,vi,………,v2 

be the sequence of vertices which the path meets between the vertices v1 and 

v2. Let there be m edges in the path. Then there will be m + 1 vertices in the 

sequence. Therefore if m > n 1, then there will be more than n vertices in the 

sequence. But the graph is with n vertices. Therefore some vertex, say vk, 

appears more than once in the sequence. So the sequence of vertices shall be 

 

   v1,…….,vi,…….,vk,…..,vk,……..,v2. 

Deleting the edges in the path that lead vk back to vk we have a path from v1 to 

v2 that has less edges than the original one. This argument is repeated untill we 

get a path that has n-1 or less edges. 

Definition: Two vertices v1 and v2 of a graph G are said to be connected if and 

only if there is a walk from v1 to v2. 

Definition: A graph G is said to be connected if and only if given any two 

vertices v1 and v2 in G, there is a walk from v1 to v2. 

 Thus, a graph G is connected if there exists a walk between every 

two vertices in the graph. 

Definition: A graph which is not connected is called Disconnected Graph. 

Example: Which of the graph below are connected? 

 

 

(a)                             

            v1                    v2 

                 

                          v3 

 

               v4                     v5 

(b) 

 

           v1                    v2 

 

 

               v3         v4 

 

Solution: Graph (a) is not connected as there is no walk from any of v1, v2, v3, 

v4 to the vertex v5. 

The graph (b) is clearly connected. 

Definition: If a graph G is disconnected, then the various connected pieces of 

G are called the connected components of the graph. 

Example: Consider the graph given below: 
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             v1                     v2                                    v5 

                                                                 e4   

                   e2          e3                     v4                     e5  

                         v3                                           e6    

                                                                                v6 

This graph is disconnected and have two connected components: 

 

                          e1 

H1 :      v1                 v2 

                  with vertex set {v1, v2, v3} and edge set {e1, e2, 

e3} 

                 e2          e3 

                       v3 

 

H2 :                      e4      v5 

               v4                   e5     with vertex set {v4, v5, v6} and edge set {e4, e5, 

e6}.   

                            e6      v6 

 

Example: Find the number of connected components in the graph 

 

                                    
 

                                            
 

                                            
 

                                  
Solution: The connected components are : 

 

                                                                                
 

                                               and                   

 

                                                                    
 

Remark: If a connected component has n vertices, then degree of any vertex 

cannot exceed n-1. 

 

3.5. Eulerian Paths And Circuits 

Definition: A path in a graph G is called an Euler Path if it includes every 

edge exactly once. 
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Definition: A circuit in a graph G is called an Euler Circuit if it includes 

every edge exactly once.  Thus, an Euler circuit (Eulerian trail) for a graph G is 

a sequence of adjacent vertices and edges in G that starts and ends at the same 

vertex, uses every vertex of G at least once, and uses every edge of G exactly 

once. 

Definition: A graph is called Eulerian graph if there exists a Euler circuit for 

that graph. 

Theorem 1. If a graph has an Euler circuit, then every vertex of the graph has 

even degree. 

Proof: Let G be a graph which has an Euler circuit. Let v be a vertex of G. We 

shall show that degree of v is even. By definition, Euler circuit contains every 

edge of graph G. Therefore the Euler circuit contains all edges incident on v. 

We start a journey beginning in the middle of one of the edges adjacent to the 

start of Euler circuit and continue around the Euler circuit to end in the middle 

of the starting edge. Since Euler circuit uses every edge exactly once, the edges 

incident on  v  occur  

 

                                                                                                   
                                                                           

                                                                                       
                                                                      

                                                                                                 
 

in entry / exist pair and hence the degree  of v is a multiple of 2. Therefore the 

degree of v is even. This completes the proof of the theorem. 

We know that contrapositive of a conditional statement is logically equivalent 

to statement. Thus the above theorem is equivalent to: 

Theorem:2. If a vertex of a graph is not of even degree, then it does not have 

an Euler circuit. 

 

                                           or 

“If some vertex of a graph has odd degree, then that graph does not have an 

Euler circuit”. 

Example: Show that the graphs below do not have Euler circuits. 

(a)  

                                         v1                     v2 

 

 

                                         v3                     v4 

(b) 

                                        

v 

Starting point 

v2 
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                                 v1                      

 

 

                                          v4                      v3 

 

 

Solution: In graph (a), degree of each vertex is 3. Hence this does not have a 

Euler circuit. 

In graph (b), we have 

             deg(v2) = 3 

              deg(v4) = 3 

Since there are vertices of odd degree in the given graph, therefore it does not 

have an Euler circuit. 

Remark: The converse of Theorem 1 is not true. There exist graphs in which 

every vertex has even degree but the Euler circuits do not exist. 

 

For example, 

                                                                  

                                                    
 

                                                                 

and 

 

                                  
 

 

                                                 
 

are graphs in which each vertex has degree 2 but these graphs do not have 

Euler circuits since there is no path which uses each vertex at least once. 

Theorem 3.  If G is a connected graph and every vertex of G has even degree, 

then G has an Euler circuit. 

Proof: Let every vertex of a connected graph G has even degree. If G 

consists of a single vertex, the trivial walk from v to v is an Euler circuit. So 

suppose G consists of more than one vertices. We start from any verted v of G. 

Since the degree of each vertex of G is even, if we reach each vertex other than 

v by travelling on one edge, the same vertex can be reached by travelling on 

another previously unused edge. Thus a sequence of distinct adjacent edges can 

be produced indefinitely as long as v is not reached. Since number of edges of 

the graph is finite (by definition of graph), the sequence of distinct edges will 

terminate. Thus the sequence must return to the starting vertex.  We thus obtain 

a sequence of adjacent vertices and edges starting and ending at v without 

repeating any edge. Thus we get a circuit C. 
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If C contains every edge and vertex of G, then C is an Eular circuit. 

If C does not contain every edge and vertex of G, remove all edges of C from 

G and also any vertices that become isolated when the edges of C are removed. 

Let the resulting subgraph be G . We note that when we removed edges of C, 

an even number of edges from each vertex have been removed. Thus degree of 

each remaining vertex remains even. 

Further since G is connected, there must be at least one vertex common to both 

C and G . Let it be w(in fact there are two such vertices). Pick any sequence of 

adjacent vertices and edges of G  starting and ending at w without repeating an 

edge. Let the resulting circuit be C . 

Join C and C  together to create a new circuit C . Now, we observe that if we 

start from v and follow C all the way to reach w and then follow C  all the way 

to reach back to w. Then continuing travelling along the untravelled edges of 

C, we reach v. 

If C  contains every edge an vertex of C, then C  is an Euler circuit. If not, 

then we again repeat our process. Since the graph is finite, the process must 

terminate. 

The process followed has been described in the graph G shown below:  

    G  

                                                                    C           

                           u                             

                                                                            

                                                                                              

                                                                       

                                    C                                                   

                                                       G 

                                                                        

                                         v               

                                                                              
                                                                                            

                                                                          

                                                     C  

 Theorems 1 and 3 taken together imply : 

Theorem 4. (Euler Theorem) A finite connected graph G has an Euler circuit 

if and only if every vertex of G has even degree.  

Thus finite connected graph is Eulerian if and only if each vertex has even 

degree. 

Theorem 5. If a graph G has more than two vertices of odd degree, then there 

can be no Euler path in G.  

Proof : Let v1, v2 and v3 be vertices of odd degree. Since each of these vertices 

had odd degree, any possible Euler path must leave (arrive at) each of v1, v2, v3 

with no way to return (or leave). One vertex of these three vertices may be the 

v 

w 

w 
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beginning of Euler path and another the end but this leaves the third vertex at 

one end of an untravelled edge. Thus there is no Euler path. 

                   v1                                v1 

                   v2                                                v2 

 

                          v3        or                           v3 

                               

 (Graphs having more than two vertices of odd degree). 

Theorem 6. If G is a connected graph and has exactly two vertices of odd 

degree, then there is an Euler path in G. Further, any Euler path in G must 

begin at one vertex of odd degree and end at the other. 

Proof: Let u and v be two vertices of odd degree in the given connected graph 

G. 

                                     u                                       u 

                                                                       e 

                                     v                                      v 

                                     

 

 

 

 

 

 

                                   G                                     G  

If we add the edge e to G, we get a connected graph G  all of whose vertices 

have even degree. Hence there will be an Euler circuit in G . If we omit e from 

Euler circuit, we get an Euler path beginning at u(or v) and edning at v(or u). 

Examples.     Has the graph given below an Eulerian path? 

 

       A                                         C 

                                                                  D 

 

 

Solution: In the given graph, 

    deg(A) = 1 

    deg(B) = 2 

    deg(C) = 2 

    deg(D) = 3 

Thus the given connected graph has exactly two vertices of odd degree. Hence, 

it has an Eulerian path. 

B 
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If it starts from A(vertex of odd degree), then it ends at D(vertex of odd 

degree). If it starts from D(vertex of odd degree), then it ends at A(vertex of 

odd degree). 

But on the other hand if we have the graph as given below :   

                                                                
       A                                         C    , 

                                              D 

                                                e3 

then deg(A) = 1, deg(B) = 3 deg(C) = 1, degree of D = 3 and so we have four 

vertices of odd degree. Hence it does not have Euler path.      

 

Example:     Does the graph given below possess an Euler circuit? 

 

                                                   e7     
         v4                              v3 

          e4                                      
                e5 

       v1                             v2 

 

Solution: The given graph is connected. Further 

    deg(v1) = 3 

    deg(v2) = 4 

    deg(v3) = 3 

    deg(v4) = 4 

Since this connected graph has vertices with odd degree, it cannot have Euler 

circuit. But this graph has Euler path, since it has exactly two vertices of odd 

degree. For example, v3 e2 v2 e7 v4 e6 v2 e1 v1 e4 v4 e3 v3 e5 v1 

 

Example:      Consider the graph 

 

                v2                             v3 

 

 

 

                v1                         

                                                             v4 

Here, deg(v1) = 4, deg(v2) = 4, deg(v3) = 2, deg(v4) = 2. Thus degree of each 

vertex is even. But the graph is not Eulerian since it is not connected. 

Example 4:. The bridges of Konigsberg: The graph Theory began in 1736 

when Leonhard Euler solved the problem of seven bridges on Pregel river in 

the town of Konigsberg in Prussia (now Kaliningrad in Russia). The two 

islands and seven bridges are shown below: 

B e4 e1 

e2 

e3 

e6 

e2 

e1 
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                     --        --    

 

    Bridge      -           -      Bridge         

                     -          -                             Bridge 

              D    ----------    C     

                     -          -  

  Bridge                                Bridge  

 

 

Bridge          -           -            Bridge 

                     --        --       

                     ---------- 

                     ----------                            River      

 

The people of Konigsgerg posed the following question to famous Swiss 

Mathematician Leonhard Euler: 

“Beginning anywhere and ending any where, can a person walk through the 

town of Konigsberg crossing all the seven bridges exactly once? 

Euler showed that such a walk is impossible. He replaced the islands A, B and 

the two sides (banks) C and D of the river by vertices and the bridges as edges 

of a graph. We note then that 

 

   deg(A) = 3 

   deg(B) = 5 

   deg(C) = 3 

   deg(D) = 3 

Thus the graph of the problem is 

 

                                                 A(island) 

 

 

(side of the river) D                               C(side of the river) 

                                                 
                                               B(Island) 

 

Island 

  A 

 

Island 

    B 

------------

----- 
------------

----- 
------------

----- 

------------

----- 

------------

----- 

------------

----- 

------------

----- 

------------

----- 

------------

----- 

------------

----- 
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 (Euler’s graphical representation of seven bridge problem) 

The problem then reduces to  

 “Is there any Euler’s path in the above diagram?”. 

To find the answer, we note that there are more than two vertices having odd 

degree. Hence there exist no Euler path for this graph. 

Definition: An edge in a connected graph is called a Bridge or a Cut Edge if 

deleting that edge creates a disconnected graph. 

For example, consider the graph shown below: 

 

                                             
                    v1                           v2 

                                        e3                e2   

                                                    v3 

                       v4          e4       

                                               v5 

In this graph, if we remove the edge e3, then the graph breaks into two 

Connected Component given below: 

 

                  
                    v1                           v2 

                                                           e2   

                                                    v3 

 

                       v4          e4       

                                               v5 

Hence the edge e3 is a bridge in the given graph. 

METHOD FOR FINDING EULER CIRCUIT 

We know that if every vertex of a non empty connected graph has even degree, 

then the graph has an Euler circuit. We shall make use of this result to find an 

Euler path in a given graph. 

 Consider the graph 

                        v2                                          v6 

                  e1       e2                                  e9          e8   

                                       

            v1                                                          v7 

                     e4         e5                                          e10       e11     

 

                       v4                                      v8    
                                          

                                              

                                               e12 

e1 

e5 

e1 

e5 

v5 e6 v3 e3 



 152 

 

We note that 

 deg(v2) = deg(v4) = deg(v6) = deg(v8) = 2 

 deg(v1) = deg(v3) = deg(v5) = deg(v7) = 4 

Hence all vertices have even degree. Also the given graph is connected. Hence 

the given has an Euler  circuit. We start from the vertex v1 and let  C be  

 

                                  C : v1 v2 v3 v1 

Then C is not an Euler circuit for the given graph but C intersect the rest of the 

graph at v1 and v3.  Let C  be  

                                  C  : v1v4 v3 v5 v7 v6 v5 v8 v7 v1 

 

(In case we start from v3, then C  will be v3 v4 v1 v7 v6 v5 v7 v8 v5) 

Path  C  into C and obtain 

    C  : v1v2 v3 v1 v4 v3 v5 v7 v6 v5 v8 v7 v1 

Or we can write 

    C  : e1e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 

(If we had started from v2, then  C  : v1v2 v3 v4 v1 v7 v6 v5 v7 v8 v5 v3 v1   or 

e1e2 e5 e4 e12 e8 e9 e7 e11 e10 e6 e3 ) 

In C  all edges are covered exactly once. Also every vertex has been covered at 

least once. Hence C  is a Euler circuit. 

 

3.6. Hamiltonian Circuits 

Definition:  A Hamiltonian Path for a graph G is a sequence of adjacent 

vertices and distinct edges in which every vertex of G appears exactly once. 

Definition:  A Hamiltonian Circuit for a graph G is a sequence of adjacent 

vertices and distinct edges in which every vertex of G appears exactly once, 

except for the first and the last which are the same. 

 Definition: A graph is called Hamiltonian if it admits a Hamiltonian circuit. 

Example 1 : A complete graph Kn has a Hamiltonian Circuit.   In particular the 

graphs  

 

                                                                        

                               and  

       K3          

                                                                          
                                                              K4 

are Hamiltonian. 
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Example 2:       The graph shown below does not have a Hamiltonian circuit. 

 

                     v1                                 v4 

                                         v3 

                                           

 

                     v2                                 v5 

 

 

Example 3 : The graph 

                                
 

                                
 

                                        
 

                                
does not have a Hamiltonian circuit. 

Remark: It is clear that only connected graphs can have Hamiltonian 

circuit. However, there is no simple criterion to tell us whether or not a given 

graph has Hamiltonian circuit.   The following results give us some sufficient 

conditions for the existence of Hamiltonian Circuit/path. 

Theorem: Let G be a linear graph of n vertices. If the sum of the degrees for 

each pair of vertices in G is greater than or equal to n 1, then there exists a 

Hamiltonian path in G. 

Theorem: Let G be a connected graph with n vertices. If n  3 and deg(v)  n 

for each vertex v in G, then G had a Hamiltonian Circuit. 

Theorem: Let G be a connected graph with n vertices and let u and v be two 

vertices of G that are not adjacent. If  

 

                                      deg(u) + deg(v)  n,   

then G has a Hamiltonian circuit. 

Corollary : Let G be a connected graph with n vertices. If each vertex has 

degree greater than or equal to n/2, then G has a Hamiltonian circuit. 

Proof: It is given that degree of each vertex is greater than or equal to n/2. 

Hence the sum of the degree of any two vertices is greater than or equal to n/2 

+ n/2 = n. So, by the above theorem, the graph G has a Hamiltonian circuit. 

Theorem: Let n be the number of vertices and m be the number of edges in a 

connected graph G. If 

                                       m  
2

1
(n

2
 – 3n + 6) , 
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then G has a Hamiltonian circuit. 

 The following example shows that the above conditions are not 

necessary for the existence of Hamiltonian path. 

Example :       Let G be the connected graph shown in the figure below: 

 

 

 

                          v8                v7                        v6 

                                                                 
 

  

    v1                                                                       v5 

        

 

                           
                       v2                   v3              v4       

We note that 

   No. of Vertices in G (n) = 8 

   No. of Edges in G (m) = 8 

   Degree of each vertex = 2 

Thus, if u and v are non-adjacent vertices, then 

  deg u + deg v = 2 + 2  = 4  8 

Also 

  
2

1
(n

2
 – 3n + 6) = 1/2 (64 – 24 + 6) = 23 

Clearly 

   m 
2

1
 (n

2
 – 3n + 6) 

Therefore the above two theorems fail. But the given graph has Hamiltonian 

circuit. For example,  

   v1 v2 v3 v4, v5, v6, v7, v8, v1 

is an Hamiltonian circuit for the graph. 

Proposition: Let G be a graph with at least two vertices. If G has a 

Hamiltonian circuit, then G has a subgraph H with the following properties: 

 

(1) H contains every vertex of G 
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(2) H is connected 

(3) H has the same number of edges as vertices 

(4) Every vertex of H has degree 2. 

 The contrapositive of this proposition is 

“If a graph G with at least two vertices does not have a subgraph H satisfying 

(1) – (4), then G does not have a Hamiltonian circuit”. 

Also we know that contrapositive of a statement is logically equivalent to the 

statement. Therefore the above result can be used to show non-existence of a 

Hamiltonian Circuit. 

Example 1:  Does the graph G given below have Hamiltonian circuit? 

 

                     a                                  b 

 

                                          e 

 

                     c                                  d 

 

Solution: The given graph has 

    No. of vertices (n) = 5 

    No. of edges (m) = 8 

    deg(a) = deg(b) = deg(c) = deg(d) = 3 

    deg(e) = 4 

We observe that 

(i)   degree of each vertex is greater than n/2 

(ii)   The sum of any non-adjacent pair of vertices is greater than n 

(iii)   
2

1
(n

2
 – 3n + 6) = 

2

1
 (25 – 15 + 6) = 8 

Thus the condition 

                       m  
2

1
 (n

2
 - 3n + 6) 

is satisfied. 

(iv) The sum of degrees of each pair of vertices in the given graph is greater 

than n 1 = 5 1 = 4. 

Thus four sufficiency condition are satisfied (whereas one condition out of 

these four conditions is sufficient for the existence of Hamiltonian path/graph). 

Hence the graph has a Hamiltonian Circuit. 

For example, the following circuits in G are Hamiltonian: 

 

            a                                 b                   a                                 b 
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                               e                     and                                 e  
 

            c                                 d                   c                                 d 

 

Example 2 : Does the graph shown below has Hamiltonian circuit?  

 

   a                                  b 

 

                                   e 

 

               c                                 d 

 

Solution: Here  

 No. of vertices (n) = 5 

 No. of edge (m) = 4 

 deg(a) = deg(b) = deg(c) = deg(d) = 1 

 deg(e) = 4 

We note that 

(i)  deg(a) = deg(b) = deg(c) = deg(d) 
2

5
 

(ii)  deg(a) + deg(b) = 2  5, that is sum of any non-adjacent pair of 

vertices is not greater than 5 

(iii) 
2

1
 (n

2
 – 3n + 6) = 

2

1
 (25 – 15 + 6) = 8. Therefore the condition   

     m  1/2 (n
2
 – 3n + 6) 

is not satisfied. 

(iv) deg(a) + deg(b) = 2  4, i.e., the condition that sum of degrees of each pair 

of vertices in the graph is not greater than or equal to n 1. 

 Hence no sufficiency condition is satisfied. So we try the 

proposition stated above. 

 Suppose that G has a Hamiltonian circuit, then G should a 

subgraph which contains every vertex of G, and number of vertices and no. of 

edges in H should be same. Thus H should have 5 vertices a, b, c, d, e and 5 

edges. Since G has only 4 edges,  H cannot have more than 4 edges. Hence no 

such subgraph is possible. Hence, the given graph does not have Hamiltonian 

circuit. 

 

3.7. Weighted Graphs 
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Definition:  A weighted graph  is a graph for which each edge or each vertex 

or both is (are) labeled with a numerical value, called its weight. 

 For example, if vertices in a graph denote recreational sites of a 

town and weights of edges denote the distances in kilometers between the sites, 

then the graph shown below is a weighted graph. 

 

 

                                          

                  D                        C 

                   7                              5  

                      11                    14   

            A                                    B 

 

Definition: The weight of an edge (vi, vj) is called distance between the 

vertices vi and vj. 

Definition:  A vertex u is a nearest neighbour of vertex v in a graph if u and v 

are adjacent and no other vertex is joined to v by an edge of lesser weight than 

(u, v). 

For example, in the above example, B is the nearest neighbour of C, whereas A 

and C are both nearest neighbour of the vertex D. Thus nearest neighbour of 

a set of vertices is not unique. 

Definition:  A vertex u is a nearest neighbour of a set of vertices {v1, v2, 

….,vn} in a graph if u is adjacent to some member vi of the set and no other 

vertex adjacent to member of the set is joined by an edge of lesser weight then 

(u, vi). 

 In the above example if we have set of vertices as {B, D}, C is the 

neatest neighbour of               {B, D} because the edge (C, B) has weight 5 and 

no other vertex adjacent to {B, D} is linked by an edge of lesser weight than 

(C, B). 

Definition: The length of a path in a graph is the sum of lengths of edges in 

the path. 

Definition: Let G (V, E) be a graph and let lij denote the length of edge (vi, vj) 

in G. Then a shortest path from vi to vk is a path such that the sum of lengths 

of its edges  

 

    l12 + l23 +………+ lk 1,k  

is minimum, that is, total edge weight is minimum. 

 

TRAVELLING SALESPERSON PROBLEM 

9 

7 
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This problem requires the determination of a shortest Hamiltonian circuit  in 

a given graph of cities and lines of transportation to minimize the total fare for 

a travelling person who wants to made a tour of n cities visiting each city 

exactly once before returning home. 

The weighted graph model for this problem consists of vertices representing 

cities and edges with weight as distances (fares) between the cities. The 

salesman starts and end his journey at the same city and visits each of n 1 

cities once and only once. We want to find minimum total distance. 

 

We discuss the case of five cities and so consider the following weighted 

graph. 

                                a 

                              

                14                        12 

 7        b                                c         10 

                  5          6       

           13                          8   

 

               d                      e 

We shall use  Nearest Neighbour algorithm to solve the problem: 

 Algorithm: Nearest Neighbour (closest insertion) 

Input: a weighted complete graph G 

Output: a sequence of labeled vertices that forms a Hamiltonian cycle. 

   Start at any vertex v. 

   Initialize l(v) = 0 

   Initialize i = 0 

 While there are unlabeled vertices 

   i : = i + 1 

 Traverse the cheapest edge that join v to an unlabeled vertex, say 

w 

  Set l(w) = i 

           v : = w. 

 For the present example,  

(i) Let us choose a as the starting vertex. Then d is the nearest vertex and then 

(a, d) is the corresponding edge. Thus we have the figure 

           

                             a 

                    

      7   b                         c         

                                     

9 

11 
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               d                   e 

(ii) From d, the nearest vertex is c, so we have a path shown below: 

   

                             a 

                    

      7   b                             c         

                              6       

                                      

          d                           e 

 (iii) From c, the nearest vertex is e. So we have the path as show below: 

  

                             a 

                  

       7   b                           c         

                              6       

                                           8   

                                      
               d                    e 

(iv) From e, the nearest vertex is b and so we have the path 

 

                             a 

                  

     7   b                            c         

                 5           6       

                                         8   

                                     
               d                    e 

 

(v)  Now, from b, the only vertex to be covered is a to form Hamiltonian 

circuit. Thus we have a Hamiltonian circuit as given below. The length of this 

Hamiltonian circuit is  

  

  7 + 6 + 8 + 5 + 14 = 40. 

 

                             a 

                 14               

     7    b                            c         

                  5           6       

                                         8   

                                     
               d                     e 

 

However, this is not Hamiltonian circuit of minimal length. 
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The  total distance of a minimum Hamiltonian  circuit (shown below) is 37. 

 

                             a 

                              
                   

     7   b              9            c    10 

                 5           6       

              

                                      
                                    

 

 Total length = 7 + 6 + 9 + 5 + 10 = 37 

Remark: Unless otherwise stated, try to start from a vertex of largest weight. 

Example 2: Find a Hamiltonian circuit of minimal weight for the graph shown 

below: 

 

                  b                        c 

                                                   8  

                                              9   

            a                                     d 

 

Solution: Starting from the point a and using nearest neighbour method, we 

have the required Hamiltonian circuit as 

 

                                     a b c d a 

with total length as 

                                                           10 + 10 + 8 + 12 = 40 

Definition: A k-factor of a graph is a spanning subgraph of the graph with 

the degree of its  

vertices being k.     
 

 Consider the graph 

  

                          a 

 

            b                    c 

 

            d                    e 

                          
 

Then  

                     
 

 

12 

f 

10 

15 10 
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shows a 1-factor of the given graph. 

Also then, 

              
 

                    

 

                                           
 

 

                                            
 

                      
 

                                     
is a 2-factor of the given graph. 
 

3.8. Matrix Representation of Graphs 
 
A graph can be represented inside a computer by using the adjacency matrix or 

the incidence matrix of the graph. 

Definition: Let G be a graph with n ordered vertices v1, v2,…….,vn. Then the 

adjacency matrix of G is the n  n matrix A(G) = (aij) over the set of non-

negative integers such that 

 aij = the number of edges connecting vi and vj for all i, j = 1, 

2,…,n. 

 We note that if G has no loop, then there is no edge joining vi to vi 

,               i = 1, 2,…,n. Therefore, in this case, all the entries on the main 

diagonal will be 0. 

Further, if G has no parallel edge, then the entries of A(G) are either 0 or 1. 

It may be noted that adjacent matrix of a graph is symmetric. 

Conversely, given a n  n symmetric matrix A(G) = (aij) over the set of non-

negative integers, we can associate with it a graph G, whose adjacency matrix 

is A(G), by letting G have n vertices and joining vi to vertex  vj by aij edges. 

Example 1: Find the adjacency matrix of the graph shown below: 

                          v1                        v2    

                                                    
 

 



 162 

              v3                     v4               v5 

 

Solution: The adjacency matrix A(G) = (aij) is the matrix such that 

 aiJ = No. of edges connecting vi and vj. 

So we have for the given graph 

  

00011

00011

00011

11101

11110

)G(A  

Example 2 : Find the graph that have the following adjacency matrix 

 

Solution: We note that there is a loop at v1 and a loop at v3. There are parallel 

edges between v1, v2; v1, v4; v2, v1; v2 , v3, v3, v2 ; v4, v1. Thus the graph is  

 

 

             

                v1                                  v2 

 

 

 

                 v3                                   v4 

 

 

 

The following theorem is stated without proof. 

3.9. Planar Graphs 

Definition: A graph which can be drawn in the plane so that its edges do not 

cross is said to be planar. 

 

For example, the graph shown below is planar : 

 

                              A 

              

 

               B                      C 

0012

0121

1202

2121
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              D                       E 

 

 Also the complete graph K4 shown below is planar.   

  

               A                             B 

 

 

              C                              D 

In fact, it can be redrawn as  

  

 A                             B 

 

                          ,   

           C                              D    

 

 

so that no edges cross. 

 But the complete map K5 is not planar because in this case, the 

edges cross each others. 

 

      A                                     B 

 

                                          E 

 

                 D                                     C 

                      K5 

 

Definition: An area of the plane that is bounded by edges of the planar graph is 

not further subdivided into subareas is called a region or face of a planar 

graph.  

A face is characterised by the cycle that forms its boundary. 

Definition: A region is said to be finite if its area is finite and infinite if its 

area is infinite. Clearly a planar graph has exactly one infinite region. 

 

For example, consider the graph : 

 

                     1                    2 

 

           5                    6 

 

                     4                    3 

 B 
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    G2 

 

 In graph G2, there are four region A, B, C, D 

 

                               2                                                    1 

                                          1                    2                                       

 

                                                        6               5                            6  

                                            finite region          

      4                       3                                                     

              finite region                                                        4 

                                                      finite region 

 

 

 

 

 

and                                                                             

 

  1                    2 

 

           5                                  D     

 

                     4                    3           

   

                              infinite region  

 

Definition: Let f be a face (region) in a planar graph. The length of the cycle 

(or closed walk) which borders f is called the degree of the region f. It is 

denoted by deg(f). 

In a planar graph we note that each edge either borders two regions or is 

contained in a region and will occur twice in any walk along the border of 

the region.  Thus we have 

Theorem: The sum of the degrees of the regions of a map is equal to twice the 

number of edges. 

For example, in the graph G2, discussed above, we have 

 

   deg(A) = 4, deg(B) = 3, deg(C) = 4, deg (d) = 5  

The sum of degrees of all regions = 4 + 3 + 4 + 5 = 16 

   No. of edges in G2 = 8 

Hence 

  “sum of degrees of region is twice the number of edges”. 
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Theorem (Euler’s formula for connected planar graphs):  If G is a 

connected planar graph with e edges, v vertices and r regions, then 

 

                                    v – e + r = 2 

 

Proof: We shall use induction on the number of edges. Suppose that e = 0. 

Then the graph G consists of a single vertex, say P. Thus G is as shown below: 

 

                                                        P 

and we have 

                       e = 0, v = 1, r = 1  

Thus  

                                1 – 0 + 1 = 2 

and the formula holds in this case. 

 

 

 Suppose that e = 1. Then the graph G is one of the two graphs 

shown below: 

 

                              

                                         ,                                

                                                                   e = 1, v = 1, r = 2 

                   e = 1, v = 2, r = 1        

We see that, in either case, the formula holds. 

 Suppose that the formula holds for connected planar graph with n 

edges. We shall prove that this holds for graph with n + 1 edges. So, let G be 

the graph with n + 1 edges. Suppose first that G contains no cycles. Choose “a” 

vertex v1 and trace a path starting at v1. Ultimately, we will reach a vertex a 

with degree 1, that we cannot leave. 

 

                                                              x    a 

                                                              
 

        ------                             

 

                                      
           G 

We delete “a” and the edge x incident on “a” from the graph G. The resulting 

graph G  has n edges and so by induction hypothesis, the formula holds for G . 

Since G has one more edge than G ,one more vertex than G  and the same 

number of faces as G , it follows that the formula  v – e + r = 2     holds also for 

G. 
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        ------                             

 

                                      

                                  G  

 

 Now suppose that G contains a cycle. Let x be an edge in a cycle. 

 

 

 

 

 

 

 

 

 

 

                                               x          



                                                G 

                                  

Now the edge x is part of a boundary for two faces. We delete the edge x but 

no vertices to obtain the graph G  

 

.   

 

                                       



 

                                            G  

 

Thus G  has n edges and so by induction hypothesis the formula holds. Since G 

has one more face (region) than G , one more edge than G  and the same 

number of vertices as G , it follows that the formula v – e + r = 2 also holds for 

G.   Hence, by Mathematical Induction, the theorem is true. 

 

Remark: Planarity of a graph is not affected if  

(i) an edge is divided into two edges by the insertion of new vertex of degree 2. 

                                       
                                         

                                       
 (ii) two edges that are incident with a vertex of degree 2 are combined as a 

single edge by the removal of that vertex.  
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Definition: Two graphs G1 and G2 are said to be isomorphic to within 

vertices of degree 2                 (or homeomorphic) if they are isomorphic or if 

they can be transformed into isomorphic graphs by repeated insertion and / or 

removal of vertices of degree 2. 

Definition : The repeated insertion/removal of vertices of degree 2 is called 

sequence of series reduction. 

 For example, the graphs 

 

                                                          

                                                        

                                                             

                                       and                          

                                                             

are isomorphic to within vertices of degree 2.  

 If we define a relation R on the set of graphs by G1 R G2 if G1 and 

G2 are homeomorphic, then R is an equivalence relation. Each equivalence 

class consists of a set of mutually homeomorphic graphs. 

 

Example: Show that the graph K33, given below, is not planar. 

 

  

                                                               

 

 

 

                                                               

 

          K3,3 

 

 A problem based on this example can be stated as “Three cities c1, 

c2 and c3 are to be directly connected by express ways to each of three cities c4, 

c5 and c6. Can this road system be designed so that the express ways do not 

cross? This example shows that it cannot be done. 

Solution:  Suppose that K3,3 is planar. Since every cycle has at least four 

edges, each face (region) is bounded by at least four edges. Thus the number of 

edges that bound regions is at least 4r. Also, in a planar graph each edge 

belongs to atmost two bounding cycles. Therefore, 

 

 c1                     c2                      c3                       

c4                     c5                      c6                       
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 2e  4r (sums of degrees of region is equal to twice the number of 

edges) 

But, by Euler’s formula for planar graph, 

                             r = e – v + 2 

Hence 

                                                  2e  4(e – v + 2) (1) 

In case of K3,3 we have 

                               e = 9, v = 6 

and so (1) yields 

                         18  4 (9 – 6 + 2) = 20  , 

which is a contradiction. Therefore K3,3 is not planar. 

Remark: By a argument similar to the above example, we can show that the 

graph K5 (given below)  is not planar. 

  

                                         
 

 

                                                         

                                            

   (non-planar graph K5) 

 We observe that if a graph contains K3,3 or K5 as a subgraph, then 

it cannot be planar. 

 The following theorem, which we state without proof, gives 

necessary and sufficient condition for a graph to be planar. 

Kuratowski’s Theorem: A graph G is planar if and only if G does not contain 

a subgraph homeomorphic to K3,3 or K5. 

 The complete graph K5 and the complete bipartite graph K3,3 are 

called the Kuratowski graphs. 

Example: Using Kuratowski’s Theorem, show that the graph G, shown below, 

is not planar 

 

                                       a  

 

                           f                   b 

                                        g 

                                        h  

                                e 

                                                            c    

                                            d 

                                                G 
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Solution: Let us try to find K3,3 in the graph G. We know that in K3,3, each 

vertex has degree 3. But we note that in G, the degree of a, b, f and e each is 4. 

So we eliminate the edges (a,b) and (f, e) so that all vertices have degree 3. If 

we eliminate one more edge, we will obtain two vertices of degree 2 and we 

can then carry out series reduction. The resulting graph will have nine edges 

Also we know that K3,3 has nine edges. So this approach seems promising. 

Using trial and error, we find that the edge (g, h) should be removed. Then g 

and h have degree 2. 

 

 

 

 

 

 

 

 

                          a                                                                                                   

 

            f                                       b                                                                                     

                                       g                 eliminating the edge (g, h)                           

 

                                               h                                                                                         

                      e                                                                                                    

                                                                      c                                                                               

                                                   d                               

 (Graph obtained by deleting edges (a, b) and (f, e)). 

 

                                            a 

                                           

 

                                    f                             b 

                                                   g 

                

                                                       h 

                                           e                  

                                                                       c 

                                                   d 

             

      (Graph obtained by eliminating the edge (g,h). 

Performing series reduction now, we obtain an isomorphic copy of K3,3. 

 

                          a                                                                                                   

 

            f                                       b                                                                                      
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                      e  

                                                                      c                                                                              

                                                    d 

                         K3,3(obtained by series reduction) 

Hence, by Kurtowski’s Theorem, the given graph G is not planar. 

3.10. Colouring of Graph 

Definition: Let G be a graph. The assignment of colours to the vertices of G, 

one colour to each vertex, so that the adjacent vertices are assigned different 

colours is called vertex colouring  or  colouring of the graph G. 

Definition:  A graph G is n-colourable if there exists a colouring of G which 

uses n colours.  

Definition:  The minimum number of colours required to paint (colour) a 

graph G is called the  chromatic number of G and is denoted by  (G). 

Example: Find the chromatic number for the graph shown in the figure below: 

 

                                 
 

               a                         c 

                              d 

                               

                               e     

        G 

  

Solution: The triangle a b c needs three colours. Suppose that we assign 

colours c1, c2, c3 to a, b and c respectively. Since d is adjacent to a and c, d will 

have different colour than c1 and c3. So we paint d by c2. Then e must be 

painted with a colour different from those of a, d and c, that is, we cannot 

colour e with c1, c2 or c3. Hence, we have to give e a fourth colour c4. Hence 

 

                                      (G) = 4. 

 

3.11  Directed Graphs 

Definition: A directed graph or digraph consists of two finite sets: 

(i) A set V of vertices (or nodes or points) 

(ii) A set E of directed edges (or arcs), where each edge is associated with an 

ordered pair (v, w) of vertices called its endpoints. If edge e is associated with 

the ordered pair (v, w), then e is said to be directed edge from v to w. 

The directed edges are indicated by arrows. 

b 
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We say that edge e = (v, w) is incident from v and is incident into w. 

The vertex v is called initial vertex and the vertex w is called the terminal 

vertex of the  

directed edge (v, w). 

Definition: Let G be a directed graph. The outdegree of a vertex v of G  is the 

number of edges beginning at v. It is denoted by outdeg(v). 

Definition:  Let G be a directed graph. The indegree of a vertex v of G  is the 

number of edges ending at v. It is denoted by indey(v). 

Example: Consider the directed graph  shown below: 

 

 

 

 

  

                       v1 

                 e1        e3            

             v2                       v3 

                             e4 

                                            

             v4                         v5  

                                             e6  

 

Here edge e1 is (v2, v1) whereas e6 is denoted by (v5, v5) and is called a loop. 

The indegree of v2 is 1, outdegree of v2 is 3. 

Definition: A vertex with 0 indegree is called a source, whereas a vertex with 

0 outdegree is called a sink. 

For instance, in the above example, v1 is a sink. 

Definition: If the edges and/or vertices of a directed graph G are labeled with 

some type of data, then G is called a Labeled Directed Graph. 

Definition: Let G be a directed graph with ordered vertices v1, v2, ….., vn. 

The adjacency matrix of G is the matrix A = (aij) over the set of non-

negative integers such that 

 aij = the number of arrows from vi to vj,   i, j = 1, 2, ….,n. 

Example 1: Find the adjacency matrices for the graphs given below: 

 

 

(i)                b                              (ii)  
      a                                 c                                    v1 

                 

 

                                                                         

e2 e5 

v4 

v3 

v2 
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                         d 

 

 

Solution: (i) The edges in the directed graph are  (a, a), (b, b), (c, c), (d, d), (c, 

a), (c, b) and (d, b). Therefore the adjacency matrix A = (aij) is 

 

 

1010

0111

0010

0001

 

 

(ii) The edges in the graph in (ii) are (v2, v3), (v1, v1), (v1, v3), (v3, v1), (v3, v4), 

(v4, v3). Hence the adjacency matrix is  

 

                                     

0100

1001

0100

0101

 

Example 2:  Find the directed graph represented by the adjacency matrix: 

 

 

00000

00011

11000

00100

00010

 

 

Solution:  we observe that a12 = 1, a23 = 1, a34 = 1, a35 =1, a41 =1, a42 =1. Hence 

the digraph is as shown below: 

                v1                       v2                              v3 

                                                                 
 

 

          v4                                                     v5 

 

Definition: In a directed graph, if there is no more than one directed edge in a 

particular direction between a pair of vertices, then it is called simple directed 

graph. 

 

 For example 
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is a simple directed graph. 

A directed graph which is not simple is called directed multigraph. 

3.12. Trees 

Definition: A graph is said to be a Tree if it is a connected acyclic graph. 

A trivial tree is a graph that consists of a single vertex.   An empty tree is a 

tree that does not have any vertices or edges. 

For example, the graphs shown below are all trees. 

                                                                                        

       (i)                                 (ii)                                     

    trivial tree                Tree of 3 vertices                          

                                                                                        

      (iii) 

       Tree of 4 vertices 

 

                            

                                                

                                                           

                                                                                               

                                       

                                                                                                      
 (iv)      (v) 

 Tree of 13 vertices    Tree of 8 vertices 

But the graphs shown below are not trees: 

 

 

                                            

              

 (i)                                                                            

Has a cycle    (ii)                                   

and so is not a tree            has a cycle                             (iii)  

so is not a tree               and so is not a tree      Disconnected graph  

                              and so is not a tree 

Definition:  A collection of disjoint trees is called a forest. 
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Thus a graph is a forest if and only if it is circuit free. 

Definition: A vertex of degree 1 in a tree is called a leaf or a terminal node or 

a terminal vertex. 

Definition: A vertex of degree greater than 1 in a tree is called a Branch node 

or Internal node or Internal vertex. 

Consider the tree shown below: 

                 b                                               f 

                                      a                          e 

                     c                                            g 

 

                 d                                          h               i 

 

In this tree the vertices b, c, d, f, g, and i are leaves whereas the vertices a, e, h 

are branch nodes. 

CHARACTERIZATION OF TREES 

 We have the following interesting characterization of trees: 

Lemma 1: A tree that has more than one vertex has at least one vertex of 

degree 1. 

Proof: Let T be a particular but arbitrary chosen tree having more than one 

vertex. 

                                                                                 

                                

                                                              
 

                                     T                                          v             

 

1. Choose a vertex v of T. Since T is connected and has at least two vertices, v 

is not isolated and there is an edge e incident on v. 

2. If deg (v) > 1, there is an edge e   e because there are, in such a case, at 

least two edges incident on v. Let v  be the vertex at the other end of e . This is 

possible because e  is not a loop by the definition of a tree. 

3. If deg(v ) > 1, then there are at least two edges incident on v . Let e  be the 

other edge different from  e  and v  be the vertex at other end of e . This is 

again possible because T is acyclic. 

4. If deg(v ) > 1, repeat the above process. Since the number of vertices of a 

tree is finite and T is circuit free, the process must terminate and we shall 

arrive at a vertex of degree 1. 

v      e  e v  

e  



 175 

 

Remark: In the proof of the above lemma, after finding a vertex of degree 1, if 

we return to v and move along a path outward from v starting with e, we shall 

reach to a vertex of degree 1 again. Thus it follows that  “Any tree that has 

more than one vertex has at least two vertices of degree 1”. 

 

Lemma 2: There is a unique path between every two vertices in a tree. 

Proof: Suppose on the contrary that there are more than one path between any 

two vertices in a given tree T. Then T has a cycle which contradicts the 

definition of a tree because T is acyclic. Hence the lemma is proved. 

Lemma 3: The number of vertices is one more than the number of edges in a 

tree. 

Or 

For any positive integer n, a tree with n vertices has n-1 edges. 

Proof: We shall prove the lemma by mathematical induction. 

Let T be a tree with one vertex. Then T has no edges, that is, T has 0 edge. But 

0 = 1 – 1. Hence the lemma is true for n = 1. 

Suppose that the lemma is true for k > 1. We shall show that it is then true for k 

+ 1 also. Since the lemma is true for k, the tree has k vertices and k-1 edges. 

Let T be a tree with k +1 vertices. Since k is +ve, k+1  2 and so T has more 

than one vertex. Hence, by Lemma 1, T has a vertex v of degree 1. Also there 

is another vertex w and so there is an edge e connecting v and w. Define a 

subgraph T  of T so that 

  V(T ) = V(T) – {v} 

  E(T ) = E(T) – {e} 

Then number of vertices in T  = (k+1) – 1 = k and since T is circuit free and T  

has been obtained on removing one edge and one vertex, it follows that T  is 

acyclic. Also T  is connected. Hence T  is a tree having k vertices and therefore 

by induction hypothesis, the number of edges in T  is k-1. But then 

No. of edges in T = number of edges in T  + 1  

      = k – 1 + 1 = k 

Thus the Lemma is true for tree having k + 1 vertices. Hence the lemma is true 

by mathematical induction. 

Corollary 1. Let C(G) denote the number of components of a graph. Then a 

forest G on n vertices has n  C(G) edges. 

Proof: Apply Lemma 3 to each component of the forest G. 

Corollary 2. Any graph G on n vertices has at least n – C(G) edges.  
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Proof: If G has cycle-edges, remove them one at a time until the resulting 

graph G* is acyclic. Then G* has n – C(G*) edges by corollary 1. Since we 

have removed only circuit, C(G*) = C(G). Thus G* has n – C(G) edges. Hence 

G has at least n – C(G) edges. 

Lemma 4: A graph in which there is a unique path between every pair of 

vertices is a tree   

(This lemma is converse of Lemma 2). 

Proof: Since there is a path between every pair of points, therefore the graph is 

connected. Since a path between every pair of points is unique, there does not 

exist any circuit because existence of circuit implies existence of distinct paths 

between pair of vertices. Thus the graph is connected and acyclic and so is a 

tree. 

Lemma 5. (converse of Lemma 3) A connected graph G with e = v – 1 is a tree  

Proof:  The given graph is connected and  

   e = v – 1. 

To prove that G is a tree, it is sufficient to show that G is acyclic. Suppose on 

the contrary that G has a cycle. Let m be the number of vertices in this cycle. 

Also, we know that number of edges in a cycle is equal to number of 

vertices in that cycle. Therefore number of edges in the present case is m. 

Since the graph is connected, every vertex of the graph which is not in cycle 

must be connected to the vertices in the cycle. 

                                      

                                 

                                     

                                 

                                      

                                 
Now each edge of the graph that is not in the cycle can connect only one vertex 

to the vertices in the cycle. There are v-m vertices that are not in the cycle. So 

the graph must contain at least v  m edges that are not in the cycle. Thus we 

have 

e    v – m + m = v, 

which is a contradiction to our hypothesis. Hence there is no cycle and so the 

graph in a tree.  

Second proof of Lemma 5: We shall show that a connected graph with v 

vertices and v – 1 edges is a tree. It is sufficient to show that G is acyclic. 

Suppose on the contrary that G is not circuit free and has a non trivial circuit C. 

If we remove one edge of C from the graph G, we obtain a graph G  which is 

connected. 
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                             C                                            

                                                                        

   G         G  

If G  still has a nontrivial circuit, we repeat the above process and remove one 

edge of that circuit obtaining a new connected graph. Continuing this process, 

we obtain a connected graph G* which is circuit free. Hence G* is a tree. Since 

no vertex has been removed, the tree G* has v vertices. Therefore, by Lemma 

3, G* has v-1 edges.  But at least one edge of G has been removed to form G*. 

This means that G* has not more than v – 1 – 1 = v – 2 edges. Thus we arrive 

at a contradiction. Hence our supposition  is wrong and G has no cycle. 

Therefore G is connected and cycle free and so is a tree. 

Lemma 6: A graph G with e = v – 1, that has no circuit is a tree. 

Proof: It is sufficient to show that G is connected. Suppose G is not connected 

and let G , G ….. be connected component of G. Since each of G , G ,…. is 

connected and has no cycle, they all are tree. Therefore, by Lemma 3, 

  e  = v   1 

  e  = v   1 

  ------------ 

  --------------        , 

where e , e , … are the number of edges and v , v ,… are the number of 

vertices in G , G , …respectively. We have, on adding 

  e  + e  + ……= (v  - 1) + (v  -1) +…… 

Since 

  e = e  + e  +….. 

  v = v  + v  +…. , 

we have 

  e < v – 1 , 

which contradicts our hypotheses. Hence G is connected. So G is connected 

and acyclic and is therefore a tree. 

Example: Construct a graph that has 6 vertices and 5 edges but is not a tree. 

Solution: We have, No. of vertices = 6, No. of edges = 5 .   So the condition e 

= v – 1 is satisfied. Therefore, to construct graph with six vertices and 5 edges 

that is not a tree, we should keep in mind that the graph should not be 

connected.   The graph shown below has 6 vertices and 5 edges but is not 

connected. 
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              v1                                            v4 

             v2              v3                        v5                v6        

. 

Definition: A directed graph is said to be a directed tree if it becomes a tree 

when the direction of edges are ignored. 

For example,  the graph shown below is a directed tree.  

 

                 

                                                                         

                  

                                                                                    

Definition: A directed tree is called a rooted tree if there is exactly one vertex 

whose incoming degree is 0 and the incoming degrees of all other vertices are 

1. 

The vertex with incoming degree 0 is called the root of the rooted tree. 

A tree T with root v0 will be denoted by (T, v0). 

Definition: In a rooted tree, a vertex, whose outgoing degree is 0 is called a 

leaf or terminal node, whereas a vertex whose outgoing degree is non - zero is 

called a branch node or an internal node. 

Definition: Let u be a branch node in a rooted tree. Then a vertex v is said to 

be child (son or offspring) of u if there is an edge from u to v. In this case u is 

called parent (father) of  v. 

Definition: Two vertices in a rooted tree are said to be siblings (brothers) if 

they are both children of same parent. 

Definition:  A vertex v is said to be a descendent of a vertex u if there is a 

unique directed path from u to v. 

In this case u is called the ancestor of v. 

Definition: The level (or path length) of a vertex u in a rooted tree is the 

number of edges along the unique path between u and the root. 

Definition: The height of a rooted tree is the maximum level to any vertex of 

the tree. 

As an example of these terms consider the rooted tree shown below: 

 

                              root………………level 0 

 

                        

 

                 x …………. u…………………..level 1 

 

           

 

      y …….… z.. v………   w…………………level 2 
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                                     t ……… … s………………level 3 

 

Here y is a child of x; x is the parent of y and z. Thus y and z are siblings. The 

descendents of u are v, w, t and s. Levels of vertices are shown in the figure. 

The height of this rooted tree is 3. 

Definition: Let u be a branch node in the tree T = (V, E). Then the subgraph T  

= (V , E ) of T such that the vertices set V  contains u and all of its descendents 

and E  contains all the edges in all directed paths emerging from u is called a 

subtree with u as the root. 

Definition: Let u be a branch node. By a subtree of u, we mean a subtree that 

has child of u as root. 

In the above example, we note that the figure shown below is a subtree of T,  

 

                                              

                           

                                      

 

where as the figure shown below is a subtree of the branch node u .   

 

                             w 

 

 

 

                              s                t 

 

is a subtree of the branch node u. 

Example.  Let 

 V = {v1, v2, v3, v4, v5, v6, v7, v8} 

and let 

 E = ({v2, v1), (v2, v3), (v4, v2), (v4, v5), (v4, v6), (v6, v7), (v5, v8)}. 

Show that (V, E) is rooted tree. Identify the root of this tree. 

Solution: We note that  

Incoming degree of v1 = 1 

Incoming degree of v2 = 1   

Incoming degree of v3 = 1 

Incoming degree of v4 = 0 

u 

w 

v 

  s t 
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Incoming degree of v5 = 1 

Incoming degree of v6 = 1 

Incoming degree of v7 = 1 

Incoming degree of v8 = 1 

Since incoming degree of the vertex v4 is 0, it follows that v4 is root. 

Further,  

Outgoing degree of v1 = 0 

Outgoing degree of v3 = 0 

Outgoing degree of v7 = 0 

Outgoing degree of v8 = 0 

Therefore v1, v2, v7, v8 are leaves.   Also , 

Outgoing degree of v2 = 2 

Outgoing degree of v4 = 3 

Outgoing degree of v5 = 1 

Outgoing degree of v6 = 1 

Now the root v4 is connected to v2, v5 and v6. So, we have 

                                 v4 (root) 

 

 

 

         v5                 v2                   v6 

 

Now v2 is connected to v1 and v3, v5 is connected to v8, v6 is connected to v7. 

Thus, we have 

                               

         

         
 

 

 

 

 

 

 

We thus have a connected acyclic graph and so (V, E) is a rooted tree with root 

v4. 

v4 (root) 

v6 
v2    v5 

   v8    v1    v3 
   v7 
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Definition: A rooted tree in which the edges incident from each branch node 

are labeled with integers 1, 2, 3,…. is called an ordered tree. 

Definition: Two ordered trees are said to be isomorphic if (i) there exists a 

one-to-one correspondence between their vertices and edges and that preserves 

the incident relation (ii) labels of the corresponding edges match. 

In view of this definition, the ordered trees 

 

                              

                              

 

 

 

are not isomorphic. 

Example: Show that the tree T1 and T2 shown in the diagram below are 

isomorphic. 

 

              c                                   1               2 

 

          a                         d                                            3 

                            b              

                                      e                                    4              5 

           T1                                                                                T2 

 

Solution: We observe that in the tree T1, 

    deg(b) = 4 

In the tree T2,  

    deg(3) = 4 

Further deg(a) = deg(1) = 1, deg c = deg(2), deg(d) = deg(4) = deg(e) = 1 = 

deg(5). Thus we may define a function f from the vertices of T1 to the vertices 

of T2 by 

 

              f(a) = 1, f(b) = 3, f(c) = 2, f(d) = 4, f(e) = 5 

This is a one-to-one and onto function. Also adjacency relation is preserved 

because if vi and vj are adjacent vertices in T1, then f(vi) and f(vj) are adjacent 

vertices in T2. Hence T1 is isomorphic to T2. 

 

Example: Show that the tree T1 and T2, shown in the figure below are 

isomorphic 

 

                                   z        s                       u            v          w   

                 

            x           y                              

3 2 

     1  2 

 1 
 2 

     1 

     1 3 

2 
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                                 t                                                l                m 

 

                           T1                                                       T2 

Solution: Let f be a function defined by 

    f(z) = v 

    f(b) = w 

    f(x) = m 

    f(s) = u 

    f(t) = l . 

Then f is an one to one onto mapping which preserves adjacency. HenceT1 and 

T2 are isomorphic. 

Definition: Let T1 and T2 be rooted tree with roots r1 and r2 respectively. Then 

T1 and T2 are isomorphic if there exists a one-to-one, onto function f from the 

vertex set of T1 to the vertex set of T2 such that 

(i) Vertices vi and vj are adjacent in T1 if and only if the vertices f(vi) and f(vj) 

are adjacent in T2. 

(ii) f(r1) = r2 

The function is then called an isomorphism. 

Example: Show that the tree T1 and T2 are isomorphic. 

 

 

   

 

 

 

 

 

 

Solution: We observe that T1 and T2 are rooted tree.  

Define f: (Vertex set of T1)  (Vertex set of T2) by 

   f(v1) = w1 

   f(v2) = w3 

   f(v3) = w4 

   f(v4) = w2 

   f(v5) = w6 

   f(v6) = w7 

   f(v7) = w5 

   f(v8) = w8 

w1  

w4  w3  w2  

w5  w6  w7 

w8 

v1  

v2  v3  v4  

v6  
v7  

v8  

v5  
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Then f is one-to- one and adjacency relation is preserved. Hence f is an 

isomorphism and so the rooted tree T1 and T2 are isomorphic 

Example: Show that the rooted tree shown below are not isomorphic:  

 

 

 

 

 

 

 

 
T1                                                                       T2 

Solution: We observe that the degree of root in T1 is 3, whereas the degree of 

root in T2 is 4. Hence T1 is not isomorphic to T2. 

 

Definition: An ordered tree in which every branch node has atmost n 

offspring’s is called a n-ary tree (or n-tree). 

Definition: An n-ary tree is said to be fully n-ary tree (complete n-ary tree 

or regular n ary tree) if every branch node has exactly n offspring.   

Definition: An ordered tree in which every branch node has almost 2 

offsprings is called a binary tree (or 2 -  tree). 

Definition: A binary tree in which every branch node (internal vertex) has 

exactly two offspring’s is called a fully binary tree. 

 

For example, the tree given below is a binary tree,  

                                 
 

                           
 

                                   

                                    
 

                                 
 

whereas the tree shown below is a fully binary tree. 

 

 
 

                      
 

                                                                            
 

                                                              
 

1  

4  3  2 

6 
7 

a  

b  c d 

g  h  f  
e 

5  
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Definition: Let T1 and T2 be binary trees roots r1 and r2 respectively. Then T1 

and T2 are isomorphic if there is a one to one, onto function f from the vertex 

set of T1 to the vertex set of T2 satisfying 

(i) Vertices vi and vj are adjacent in T1 if and only if the vertices f(vi) and f(vj) 

are adjacent in T2. 

(ii) f(r1) = r2 

(iii) v is a left child of w in T1 if and only if f(v) is a left child of f(w) in T2 

(iv) v is a right child of w in T1 if and only if f(v) is a right child of f(w) in T2. 

The function f is then called an isomorphism between binary tree T1 and T2 

 

Example: Show that the trees given below are isomorphic. 

 

 

                  v1                                 w1 

 

         v2                and               w2 

 

     v3         v4                    w3      w4 

 

Solution: Define f by f(vi) = wi, i = 1, 2, 3, 4. Then f satisfies all the properties 

for isomorphism. Hence T1 and T2 are isomorphic. 

 

Example: Show that the trees given below are not isomorphic. 

 

                       v1                                                 w1 

 

                 v2                                                              w2 

 

            v3                                                                w3 

          

      v4          v5                                                  w4              w5 

 

                           T1                                                                 T2   

 

Solution: Since the root v1 in T1 has a left child but the root w1 in T2 has no left 

child, the binary trees are not isomorphic. 

 

Definition: Let v be a branch node of a binary tree T. The left subtree of v is 

the binary tree whose root is the left child of v, whose vertices consists of the 

left child of v and all its descendents and whose edges consists of all those 

edges of T that connects the vertices of the left subtree together. 

The right subtree can be defined analogously. 

 For example, the left subtree and the right subtree of v in the tree 

(shown below) : 

 root 
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                       v 

                

 w                    s 

                               

                                  

                                                
are respectively 

 

 

 

 

                           w                                                           s 

                                                                                              

                                                       and                                   

                                                                                                    
                  (left subtree of v)                                     (right subtree of v) 

 

3.13 Representation of Arithmetic/Algebraic Expressions  

by Binary Trees 
 

Binary trees are used in computer science to represent algebraic expressions 

involving parentheses. For example, the binary trees 

                        

 

 

                         

  

 

 

 

and 

       

        

 

                                                                                                            

 

 

 

 

 

represent the expressions 

 

  a + b ,    a/b  

 a  b 

 + 

 a  b 

  / 

 * 

 b 

 c  d 

 * 
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and          

  b * (c * d)   

respectively. 

Thus, the central operator acts as root of the tree. 

Example 1: Draw a binary tree to represent 

(i)   (2 – (3  x) + ((x – 3) – (2 + x) 

(ii)   a.b – (c/(d + e)). 

Solution: (i) In this expression + is the central operator. Therefore the root of 

tree is +. The binary tree is  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(ii) Here the central operator is . Therefore it is the root of the tree. We have 

the following binary tree to represent this expression. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To derive this formula we first prove the following result : 

  

     / 

 a  b  c  + 

 d  e 

 + 

    

 2      + 

 3  x  x  3  2  x 
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Theorem: If T is a full binary tree with i internal vertices, then T has i+1 

terminal vertices (leaves) and 2i+1 total vertices. 

Proof:  The vertices of T consists of the vertices that are children (of some 

parent) and the vertices that are not children (of any parent). There is nonchild 

– the root, Since there are i internal vertices, each having two children, there 

are 2i children. Thus the total number of vertices of T is 2i+1 and the number 

of terminal vertices is  

   (2i + 1) – i = i + 1 

This completes the proof. 

In the context of above example, we have  

   No. of leaves = p = i + 1 

Or 

 i = p – 1 

Remark: In case of full n-ary tree, if i denotes the number of branch nodes, 

then total number of vertices of T is   ni + 1 and the number of terminal 

vertices is  

  n i + 1 – i = i(n - 1) + 1 

If p is the number of terminal vertices, then 

  p = i(n – 1) + 1 

or  

  (n – 1) i = p – 1 

Example 1: Find the minimum number of extension cords, each having 4 

outlets, required to connect 22 bulbs to a single electric outlet. 

Solution: Clearly, the graph of the problem is a regular quaternary tree with 22 

leaves. 

Let i denote the internal vertices and p denote the number of leaves, then using 

 

  (n – 1) i = p – 1   ,  

we have 

  (4 – 1) i = 22 – 1 

  or         i =  
3

21
 = 7. 

Thus 7 extension cords as shown below are required.                                          
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                                                                                                       14 

                                                                               13  

       1     2    3   4                 5    6   7       8   9  10    11            12 

                                                                                      

 

 

                                                                                     

                     15     16   17    18                              19   20  21   22  

 

Example: Does there exist a full binary tree with 12 internal vertices and 15 

leaves? 

Solution: We know that if i is the number of branch nodes in a full binary tree, 

then the number of leaves is i + 1. Therefore for a tree with 12 branch nodes, 

the number of leaves should be 13 and not 15. Hence such tree does not exist. 

Theorem: The number bn of different trees on n vertices is  

    bn = 
n

n

n

2

1

1
 

Definition: Let G be a graph, then a subgraph of G which is a tree is called 

tree of the graph. 

Definition: A spanning tree for a graph G is a subgraph of G that contains 

every vertex of G and is a tree. 

   Or 

“A spanning tree for a graph G is a spanning subgroup of G which is a 

tree”. 

Example: Determine a tree and a spanning tree for the connected graph given 

below: 

                                                              
 

                                                                            
 

 

                                                                            
     G 

Solution: The given graph G contains circuits and we know that removal of the 

circuits gives a tree. So, we note that the figure below is a tree. 
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And the figure below is a spanning tree of the graph G. 

 

                                             
 

                                                   
 

                                                   
Example: Find all spanning trees for the graph G shown below: 

 

 

 

 

                          v2                  v3           v6 

 

 

                          v1            v4                  v5 

 

Solution: The given graph G has a circuit v1 v2 v3 v1. We know that removal of 

any edge of the circuit gives a tree. So the spanning trees of G are 

 

v2                  v3            v6        v2                 v3           v6        

 

    ,         ,   

v1            v4                  v5  ,        v1            v4                 v5         
  T1            T2    

 

v2                v3           v6 

 

v1           v4                v5 

                                                          T3 

Remark: We know that a tree with n vertices has exactly n – 1 

edges. Therefore if G is a connected graph with n vertices and m edges, a 

spanning tree of G must have n – 1 edges. Hence the number of edges 

that must be removed before a spanning tree is obtained must be  

     m – (n – 1) = m – n + 1. 

For Illustration, in the above example, n = 6, m = 6, so, we had to 

remove one edge to obtain a spanning tree. 

Definition: A branch of a tree is an edge of the graph that is in the 

tree. 

Definition: A chord (or a link) of a tree is an edge of the graph that is 

not in the tree. 
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It follows from the above remark that the number of chords in a 

tree is equal to m – n + 1, where n is the number of vertices and m is the 

number of edges in the graph related to the tree. 

Definition: The set of the chords of a tree is called the complement of 

the tree. 

Example: Consider the graph discussed in the above example. We 

note that the edge (v2, v3) is a branch of the tree T1, whereas (v1, v3) is a 

chord of the tree T1. 

Theorem: A graph G has a spanning tree if and only if G is 

connected. 

Proof: Suppose first that a graph G has a spanning tree T. If v and 

w are vertices of G, then they are also vertices in T and since T is a tree 

there is a path from v to w in T. This path is also a path in G. Thus every 

two vertices are connected in G. Hence G is connected. 

Conversely, suppose that G is connected. If G is acyclic, then G is 

its own spanning tree and we are done. So suppose that G contains a cycle 

C1. If we remove an edge from the cycle, the subgraph of G so obtained is 

also connected. If it is acyclic, then it is a spanning tree and we are done. If 

not, it has at least one circuit, say C2 . Removing one edge from C2, we get 

a subgraph of G which is connected. Continuing in this way, we obtain a 

connected circuit free subgraph T of G. Since T contains all vertices of G, 

it is a spanning tree of G. 

Cayley’s Formula : The number of spanning trees of the complete 

graph Kn, n  2 is n
n-2

. 

(Proof of this formula is out of scope of this book) 

Example: Find all the spanning trees of K4. 

Solution: According to Cayley’s formula, K4 has 4
4-2

 = 4
2
 = 16 

different spanning trees. 

                                    v4                         v3 

 

 

                                     v1                         v2 

         K4 

Here n = 4, so the number of edges in any tree should be n – 1 = 4 – 1 = 3. But 

here number of edges is equal to 6. So to get a tree, we have to remove three 

edges of K4. The 16 spanning trees so obtained are shown below: 

 

                      v4                         v3       v4                       v3       

 

 

                      v1                         v2       v1                       v2       

 

                       v4                        v3      v4                        v3 
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                       v1                        v2       v1                        v2 

 

 

                     v4                        v            v4                        v3  

 

 

                     v1                         v2      v1                         v2  

 

 

 

 

                        v4                       v3      v4                     v3  

 

 

                        v1                       v2     v1                      v2 

 

                   v4                        v3       v4                        v3  

 

 

                   v1                        v2       v1                        v2       
 

                    v4                        v3      v4                       v3  

 

 

                    v1                        v2      v1                        v2 

 

 

                   v4                         v3       v4                       v3       
 

 

                   v1                         v2       v1                        v2       

 

 

                     v4                        v3      v4                        v3 

 

 

                    v1                        v2      v1                        v2 

 

3.14. Shortest Path Problem 

Let s and t be two vertices of a connected weighted graph G. Shortest Path 

problem is to find a path from s to t whose total edge weight is minimum. 

We now discuss Algorithm due to E. W. Dijkstra which efficiently solve the 

shortest path problem. The idea is to grow a Disjkstra tree, starting at the 
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vertex s, by adding, at each iteration, a frontier edge, whose non-tree end point 

is as close as possible to s. The algorithm involves assigning labels to vertices. 

For each tree vertex x, let dist [x] denote the distance from vertex s to x and for 

each edge e in the given weighted graph G, let w(e) be its edge – weight. 

After each iteration, the vertices in the Dijkstra tree (the labeled vertices) are 

those to which the shortest paths from s have been found. 

Priority of the Frontier Edges : Let e be a frontier edge and let its P - value 

be given by 

    P(e) = dist [x] + w(e), 

where x is the labeled end point of e and w(e) is the edge – 

weight of e. Then 

(i) The edge with the smallest P – value is given the highest priority. 

(ii) The P – value of this highest priority edge e gives the distant from the 

vertex s to the unlabeled endpoint of e.  

We are now in a position to describe Dijkstra shortest path algorithm. 

DIJKSTRA’S SHORTEST PATH ALGORITHM 

Input : A connected weighted graph G with non-negative edge-weights and a 

vertex s of G. 

Output : A spanning tree T of G, rooted at the vertex s, whose path from s to 

each vertex v is a shortest path from s to v in G and a vertex labeling giving the 

distance from s to each vertex. 

Initialize the Dijkstra tree T as vertex s. 

Initialize the set of frontier edges for the tree T as empty. 

    dist : [s] = 0.   

Write label 0 on vertex s. 

While Dijkstra tree T does not yet span G. 

For each frontier edge e for T, 

Let x be the labeled endpoint of edge e. 

Let y be the unlabeled endpoint of edge e. 

Set    P(e) = dist [x] + w(e) 

Let e be a frontier edge for T that has smallest P – value  

Let x be the labeled endpoint of edge e 

Let y be the unlabeled endpoint of edge e 

Add edge e (and vertex y) to tree T 



 193 

 

    dist [y] : P(e) 

Write label dist [y] on vertex y. 

Return Dijkstra tree T and its vertex labels. 

Example : Apply Dijkstra algorithm to find shortest path from s to each other 

vertex in the graph given below :  

                                         

                                  s       

                                    13                         8 

                      v                                               z 

           11       

         7 

                   w                     6             17     16 

                                                                         y 

                                   14                              5 

                                                         x 

If t is the labeled endpoint of edge e, then P – values are given by  

    P(e) = dist [t] + w(e), 

where dist [t] = distance from s to t and w(e) is the edge weight of edge e.  For 

each vertex v, dist [v] appears in the parenthesis.    Iteration tree at the end of 

each iteration is drawn in dark line 

 

 Iteration 1                  Iteration 2 

                          s(0)                 s(0)  

                  13                          8             13      8  

v                                               z (8) v                                            z(8) 

 11                  11  

       7                             7  

w                 6                   w               

                                         17     y    6     17             y 

  

               14                          5    14                

                                  x             x 

 

 

 

dist [s] = 0     P(sw) = 13 (minimum) 

 

 

 

dist [z] = 8 P(zy) = 8 + 7 = 15  dist [s] = 0 P(zy) = 8 + 7 =15 

(minimum) 

  P(sy) = 16   dist [z] = 8 P(zx) = 8 + 17 = 25 

  P(zv) = 8 + 10 = 18  dist [w] = 13 P(zv) = 8 + 10 = 18 

10

0 

10
0 

10
0 

5 

16 16 

13

20 
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  P(zw) = 8 + 11 = 19    P(sy) = 16 

  P(zx) = 8 + 17 = 25           P(wx) = 13 + 14 = 27 

 

 

 

 

 

                   

 Iteration 3                         Iteration 4 

                        s (0)                   s(0)  

            13                          8      13              8  

v                                               z(8)                                                    z (8) 

  11                       11  

       7            7  

                  6                         6                     16  

                                                 y(15)   w(13)        y(15)

  

                  14                              5      14     5 

                                  x                x 

 

dist [s] = 0 P(zv) = 18 (minimum)  Dist [s] = 0 P(yx) = 20 

(minimum) 

dist [z] = 8 P(zx) = 8 + 17 = 15  Dist [z] = 8 P(zx) = 8 + 17 = 25 

dist [w]= 13 P(wx) = 13 + 14 = 27  Dist [w] = 13 P(vx) = 18 + 6 = 

14 

dist [y] = 15 P(yx) = 15 + 5 = 20  Dist [y] = 15 P(wx) = 13 + 14 = 

27 

      Dist [v] = 18 

Iteration 5 

                                         s(0)     

                                                              

               v(18)                                               z (8) 

                  

          

              w(13)                                       

                                                                         y (15) 

                                                                 

dist [s] = 0                                        x (20) 

dist [z] = 8 

dist [w] =13 

dist [y] =15 

dist [x] = 20 

which are the required shortest paths from s to any other point. The Dijkstra 

tree is shown in dark lines. 

                                        s(0)      

                                                              

10

0 

16 

17 

10 

w(13) 

v(18) 

17 
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  c         1          d 

               v(18)                                               z (8) 

                  

          

              w(13)                                       

                                                                         y (15) 

                                                                 

                                                         x (20) 

Example: Find a shortest path from s to t and its length for the graph given 

below: 

 

     

       2       2    

           s                          1                t        

                 2                               2       

 

Solution: Let x be the labeled endpoint of edge e, then P-values are given by 

    P(c) = dist [x] + w(e), 

where dist [x] denotes the distance from s to x and w(e) is the weight of the 

edge e. 

For each vertex v, dist [v] appears in the bracket. Iteration tree at the end of 

each iteration is shown in dark lines. 

                  Iteration 1     Iteration 2 

 

       2       2            2                 2 

       s(0)                          1              t s(0)                         1                t 

                 1                               2           1                              2    

 

dist [s] = 0 P(c d) = 2     dist [s] =0 P(a b) = 2 + 3 = 5 

dist [c] = 1 P(s a) = 2 (minimum)    dist [c] = 1 P(c d) = 1 + 1 = 2 

                 (minimum) 

  P(s b) =     dist [a] = 2 P(d t) =  

  P(s t) =     P(b t) =  

  P(d t) =     P(a d) = 3 

  P(b t) =  

 

Iteration 3     Iteration 4 
 

 2               2        2       2 

 s(0)                          1               t s(0)                            1             t(4) 

           1                               2      1                               2    

   

 

dist [s] = 0   P(d t) = 2 (minimum) dist [s] =0 P(a b) = 5 

  a         3          b 

 c(1)       1        d  c(1)         1       d 

  a          3          b   a          3          b 

  a(2)    3           b   a(2)    3            b 

 c(1)       1        d(2)  c(1)       1        d(2) 
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dist [c] = 1   P(a b) = 5  dist [c] = 1 P(b t) =  

dist [a] = 2   P(b t) =   dist [a] = 2  

dist [d] = 2    dist [d] = 2  

     dist [t] =4  

 

 

  Iteration 5 

    

       2       2    

        s(0)                         1                t(4)        

                 2                               2       

    

dist [s] =0  

dist [c] =1 

dist [a] = 2 

dist [d] = 2 

dist [t] = 4 

dist [b] = 5 

 

Thus, the Dijkstra tree is 

 a(2)  b(5)     

                  

       s(0)                                            t(4)        

                                                         
  c(1)  d(2)     

Thus the shortest path is scdt and its length is 4. 

 

3.15. Shortest Path if all Edges Have Length 1 

If all edges in a connected graph G have length 1, then a shortest path v1  vk 

is the path that has the smallest number of edges among all paths v1  vk in 

the given graph G. 

Moore’s Breadth First Search Algorithm 

This method of finding shortest path in a connected graph G from a vertex s to 

a vertex t is used when all edges have length 1. 

 

Input : Connected graph G = (V, E), in which one vertex is denoted by s and 

one by t and each edge (vi, vj) has length 1. 

Initially all vertices are unlabeled. 

Output : A shortest path s  t in G = (V, E). 

1. Label s with 0. 

2. Set vi = 0 

3. Find all unlabeled vertices adjacent to a vertex labeled vi. 

  a(2)    3           b(5) 

 c(1)       1        d(2) 
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4. Label the vertices just found with vi+1 

5. If vertex t is labeled, then “back tracking” gives the shortest path. If k is 

level of t(i.e., t = vk), then  

Output : vk, vk-1, ………v1, 0. 

Else increase i by 1. Go to step 3. 

End Moore. 

Remark : There could be several shortest path from s to t. 

Example : Use B F S algorithm to find shortest path from s to t in the 

connected graph G given below: 

 

      b(2)    c(3) 

                                                             
 

                  a(1)  

 

 

          s(0)           d(2)                         t(3) 

                                                       e(2) 

 

                   f(1)        

Solution : Label s with 0 and then label the adjacent vertices with 1. Thus two 

vertices have been labeled by 1. Now Label the adjacent vertices of all vertices 

labeled by 1 with label 2. Thus three vertices have been labeled with 2. Label 

the vertices adjacent to these vertices (labeled by 2) with 3. Thus two vertices 

have been labeled with 3. We have reached t. Now back tracking yields the 

following shortest paths 

 

t(3), e(2), f(1), s(0), that is, s f e t  

or 

t(3), b(2), a(1), s(0), that is s a b t  

or  

t(3), e(2), a(1), s(0), that is, s a e t 

Thus there are three possible shortest paths of length 3. 

 

3.16 Minimal Spanning Tree 

Definition : Let G be a weighted graph. A spanning tree of G with minimum 

weight is called minimal spanning tree of G. 

We discuss two algorithms to find a minimal spanning tree for a weighted 

graph G. 
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PRIM ALGORITHM 

Prim algorithm builds a minimal spanning tree T by expanding outward in 

connected links from some vertex. In this algorithm one edge and one vertex 

are added at each step. The edge added is the one of least weight that connects 

the vertices already in T with those not in T. 

Input : A connected weighted graph G with n vertices 

Output : The set of edges E in a minimal spanning tree.  

1. Choose a vertex v1 of G. Let V = {v1} and E = {  }. 

2. Choose a nearest neighbour vi of V that is adjacent to vj , vj  V and for 

which the edge (vi, vj) does not form a cycle with member of E. Add vi to V 

and add (vi, vj) to E. 

3. Repeat step 2 till number of edges in T is n – 1. Then V contains all n 

vertices of G and E contains the edges of a minimal spanning tree for G. 

Definition: A greedy algorithm is an algorithm that optimizes the choice at 

each iteration without regard to previous choices. 

For example, Prim algorithm is a greedy algorithm. 

Example: Find a minimal spanning tree for the graph shown below :  

 

    

    
   4 7             11  

     d 

   1             6  

         f     e 

     

Solution: We shall use Prim algorithm to find the required minimal 

spanning tree.  We note that number of vertices in this connected weighted 

graph is 6. Therefore the tree will have 5 edges.  

We start with any vertex, say c. The nearest neighbour of c is f and (c f) does 

not form a cycle. Therefore (c, f) is the first edge selected. 

Now we consider the set of vertices V = {c, f}. The vertex a is nearest 

neighbour to V = {c, f} and the edge (c, a) does not form a cycle with the 

member of set of edges selected so far. Thus 

   E = {(c, f) , (c, a)} and V = {c, f, a}. 

The vertex b is now nearest neighbour to V = {c, f, a} and the edge (a, b) do 

not form a cycle with the member of E = {(c, f), (c, a)}.  Thus 

   E = {(c, f), (c, a), (a, b)} and V = {c, f, a, b} 

9 

a 2 b 

c 8 
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Now the edge (b, c) cannot be selected because it forms a cycle with the 

members of E. We note that d is the nearest point to V = {c, f, a, b} and (c, d) 

is the edge which does not form a cycle with members of E = {(c, f), (c, a), (a, 

b)}.  Thus we get 

  E = {(c, f), (c, a), (a, b)}, (c, d)},     V = {c, f, a, b, d} 

The nearest vertex to V is now e and (d, e) in the corresponding 

edge. Thus 

  E = {(c, f), (c, a), (a, b), (d, e), V = {c, f, a, b, d, e} 

Since number of edges in the Prim Tree is 5, the process is complete. The 

minimal spanning tree is shown below : 

   

    
   4              

      
   1             6  

               

The length of the tree is 1 + 4 + 2 + 8 + 6 = 21 

Example : Using Prim algorithm, find the minimal spanning tree of the 

following graph :  

 

         
        3               4  

                                                        

    a          c 

           1  

 3  2  

  d 

 

Solution : Pick up the vertex a. Then  

  E = { }  and  V = {a}. 

The nearest neighbour of V is b or d and the corresponding edges are (a, b) or 

(a, d). We choose arbitrarily (a, b) and have 

  E = {(a, b)},  V = {a, b} 

Now d is the nearest neighbour of V = {a, b} and the corresponding edge (a, d) 

does not form cycle with (a, b). Thus we get 

  E = {(a, b), (a, d)},   V = {a, b, d}. 

Now e is the nearest neighbour of {a, b, d} and (d, e) does not 

form cycle with {(a, b), (c, d)}. Hence 

  E = {(a, b), (a, d), (d, e)},   V = {a, b, d, e} 

       2 

   3    e      2 

       8 

b 
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Now c is the nearest neighbour of V = {a, b, d, e} and the corresponding edges 

are (e, c), (d, c). Thus we have, choosing (e, c) , 

 

   E = {(a, b), (c, d), (d, e), (e, c)},   V = {a, 

b, d, e, c} 

   Total weight = 3 + 3 + 1 + 2  = 9 

(If we choose (d, c), then total weight is 3 + 3 + 1 + 2 = 9.) 

The minimal tree is  

 

                                                                     
   3             3 

                                                  or                                         

            1                  3       1          2 

  

                           3                                                                             

 

KRUSKAL’S ALGORITHM 

In Kruskal’s algorithm, the edges of a weighted graph are 

examined one by one in order of increasing weight. At each stage an 

edge with least weight out of edge-set remaining at that stage is added 

provided this additional edge does not create a circuit with the members 

of existing edge set at that stage. After n – 1 edges have been added, 

these edges together with the n vertices of the connected weighted 

graph form a minimal tree. 
 

ALGORITHM 

Input : A connected weighted graph G with n vertices and the set E = {e1, 

e2,……….,ek} of weighted edges of G. 

Output : The set of edges in a minimal spanning tree T for G. 

Step 1. Initialize T to have all vertices of G and no edges. 

Step 2. Choose an edge e1 in E of least weight. Let  

   E* = {e1}, E = E  {e1} 

Step 3. Select an edge ei in E of least weight that does not form circuit with 

members of E*. Replace E* by E*  {ei} and E with E  {ei}. 

 

Step 4. Repeat step 3 until number of edges in E* is equal to n – 1. 

Example : Use Kruskal’s algorithm to determine a minimal spanning tree for 

the connected weighted graph G shown below : 

 

2 
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         4      5   

     3      3      

                v1                                                       v3 

          2         6     2    

                        v4                                     v5 

       

Solution : The given weighted graph has five vertices. The minimal spanning 

tree would have therefore 4 edges. 

Let 

 

               E = {(v1, v2), (v1, v4), (v1, v5), (v2, v3), (v1, v3),  

                                         (v2, v4), (v4, v5), (v5, v3), (v3, v4)} 

The edges (v2, v4) and (v3, v5) have minimum weight. We choose arbitrarily 

one of these, say  

(v2, v4). Thus 

 

   E* = {(v2, v4)},  

E = E  {(v2 , v4)}. 

The edge (v3, v5) has minimum weight, so we pick it up. We have thus 

   E* = {(v2, v4), (v3, v5)},  

 E = E  {(v2, v4), (v3, v5)} 

The edges (v1, v4) and (v1, v5) have minimum weight in the remaining edge set. 

We pick (v1, v4) say, as it does not form a cycle with E*. Thus 

 

E* = {(v2, v4), (v3, v5), (v1, v4),  

  E = E  {(v2, v4), (v3, v5), (v1, v4)}   

Now the edge (v1, v5) has minimum weight in E \ {(v1, v4), (v3, v5), (v1, v4)} 

and it does not form a cycle with E*. So, we have 

 

   E* = {(v2, v4), (v3, v5), (v1, v4), (v1, v5)} 

and  

   E = E  {(v2, v4), (v3, v5), (v1, v4), (v1, v5)} 

Thus all the four edges have been selected. The minimal tree has the edges. 

   (v2, v4), (v3, v5), (v1, v4), (v1, v5) 

and is shown below : 

 v1 

 

 

v1 

7 

5 
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                         v2                  3                  3               v3 

 

            2           2   

                                        v4                          v5 

          (Minimal Spanning tree) 

 

Remark : In the  above example, if we had chosen (e, f) in place of (c, f) in the 

last step, then the minimal spanning tree would have been 

                                    a                         b 

      2       2                   3    

                                              c                          d 

             

                          e                3                 

 f 

    (minimal spanning tree) 

3.17  Cut Sets 

Let G be a connected graph. We know that the distance between two vertices 

v1 and v2, denoted by d(v1, v2), is the length of the shortest path. 

Definition: The diameter of a connected graph G, denoted by diam (G), is the 

maximum distance between any two vertices in G. 

 For example, in graph G shown below, we have 

 

                               a                               b 

 

 

                                                                  c 

                                         d    

 

 

                                                                 e 

                                                            G                                                                                                                                               

d(a, e) = 3, d(a, c) = 2, d(b, e) = 2 and diam (G) = 3. 

Definition: A vertex in a connected graph G is called a cut point if G – v is 

disconnected, where          G  v is the graph obtained from G by deleting v 

and all edges containing v. 

For example, in the above graph, d is a cut point. 

Definition: An edge e of a connected graph G is called a bridge (or cut edge) 

if G – e is disconnected, where G – e is the graph obtained by deleting the edge 

e. 
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For example, consider the graph G shown below : 

 

 

 

 

 

 

 

 

 

                                                e1   

 

                               a                               b 

                                                                     

                                                  e3               
                                                                  c 

                                         d    

                                         e5 

                                                                    

                                                                 e 

                                                              G  

We observe that G – e3 is disconnected. Hence the edge e3 is a bridge. 

Definition: A minimal set C of edges in a connected graph G is said to be a cut 

set (or minimal edge – cut) if the subgraph G – C has more connected 

components than G has.  

 For example, in the above graph, if we delete the edge (b, d) = e3, the 

resulting subgraph        G – e3 is as shown below : 

                                                 e1   

 

                               a                               b 

                                                            

                                                                   e4 

                                                                  c 

                                                                                                      d    

                                                     e5 

                                                                    

                                                             e   

Thus G – e3 has two connected components 

 

                                                 e1   

 

                               a                               b                                   d 

                                                                                 and                            e5      

e2 e2 

e2 

e2 

e4 
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                                                                   e4 

                                                                  c                                                    e    

So, in this example, the cut set consists of single edge (b, d) = e3, which is 

called edge or bridge. 

Example: Find a cut set for the graph given below: 

 

 

 

 

  

                                         
   e1                e5           e2 

                 

               v1                                    v3   

                 e7           

    e4                  e3  

                                        v4 

 

Solution : The given graph is connected. It is sufficient to reduce the graph 

into two connected components. To do so we have to remove the edges e1, e4, 

e5, e6, e7. The two connected components are 

 

     
      e8               e2 

            v1                            v5         and                                 v3 

                                                                   e3      

                                                        
But, if we remove any proper subset of {e1, e4, e5, e6, e7}, then there is no 

increase in connected components of G. 

Hence 

             {e1, e4, e5, e6, e7} 

is a cut set. 

Example: Find a cut set for the graph 

 

                                       b                                 e 

   e1                         e3            e7                  e8 

                                    

               a                                                        e9              g   

                             
    e2                 e4                 e10                     e11         

                                       c                                  f 

                                                    G  

Solution: The given graph is a connected graph. We note that removal of the 

edges e7 and e10 creates two connected components of G shown below:  

v5     e6    
e8 

v2 

v2 

v4 

e5 

e6 
  d 
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                                       b                                 e 

   e1                         e3                                 e8 

                                  d  

               a                                                      e9              g   

                             
 e2                       e4                                            e11         

                                         c                                f 

Hence the set {e7, e10} is a cut set for the given graph G. 

Theorem: Let G be a connected graph with n vertices. Then G is a tree if and 

only if every edge of G is a bridge (cut edge). 

               (This theorem asserts that every edge in a tree is a bridge). 

Proof: Let G be a tree. Then it is connected and has n – 1 edges (proved 

already). Let e be an arbitrary edge of G. Since G – e has n – 2 edges, and also 

we know that a graph G with n vertices has at least n – c(G) edges, it follows 

that n – 2  n – c(G – e). Thus G – e has at least two components. Thus 

removal of the edge e created more components than in the graph G. Hence e is 

a cut edge. This proves that every edge in a tree is a bridge. 

 Conversely, suppose that G is connected and every edge of G is a 

bridge. We have to show that G is a tree. To prove it, we have only to show 

that G is circuit – free. Suppose on the contrary that there exists a cycle 

between two points x and y in G. Then any edge on this cycle is  

 

                                                                             
                                            x                 y 

not a cut edge which contradicts the fact that every edge of G is a cut edge. 

Hence G has no cycle. Thus G is connected and acyclic and so is a tree. 

3.18  Relation Between Spanning Trees, Circuits 

and Cut Sets 
 

A spanning tree contains a unique path between any two vertices in the graph. 

Therefore, addition of a chord to the spanning tree yields a subgraph that 

contains exactly one circuit. For example, consider the graph G shown below: 

 

                                                      v1 

 

 

                                      v2                     v3 

 

 

                                      v4                     v5 

                                            G 

For this graph, the figure given below is a spanning tree : 

e5 

e6 
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                                                      v1 

 

 

                                      v2                     v3 

 

 

                                      v4                     v5 

            (Spanning tree) 

 

The chords of this tree are (v1, v2) and (v2, v4). If we add (v1, v2) to this 

spanning tree, we get a circuit v1 v1 v2 v3 v1. Similarly addition of (v2, v4) gives 

one more circuit v2 v3 v5 v4 v2. If there are v vertices and e edges in a graph, 

then there are e – v + 1 chords in a spanning tree. Therefore, if we add all the 

chords to the spanning tree, there will be e – v + 1 circuits in the graph. 

Definition: Let v be the number of vertices and e be the number of edges in a 

graph G. Then the set of e – v + 1 circuits obtained by adding e – v + 1 chords 

to a spanning tree of G is called the fundamental system of circuits relative 

to the spanning tree. 

A circuit in the fundamental system is called a fundamental circuit. 

For example, {v1, v2, v3, v1} is the fundamental circuit corresponding to 

the chord (v1, v2). 

On the other hand, since each branch of a tree is cut edge, removal of 

any branch from a spanning tree breaks the spanning tree into two trees. For 

example, if we remove (v1, v3) from the above figured spanning tree, the 

resulting components are shown in the figure below :  

 

                                            v1 

 

                                      v2                     v3 

 

 

                                      v4                     v5 

 

Thus, to every branch in a spanning tree, there is a corresponding cut set. 

But, in a spanning tree, there are v – 1 branches. Therefore, there are v – 1 cut 

sets corresponding to v – 1 branches. 

Definition: The set of v – 1 cut sets corresponding to v – 1 branches in a 

spanning tree of a graph with v vertices is called the fundamental system of 

cut sets relative to the spanning tree. 
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A cut – set in the fundamental system of cut – sets is called a 

fundamental cut set. 

For example, the fundamental cut – sets in the spanning tree (figured 

above) is  

{(v1, v2), (v1, v3)}, {(v1, v3), (v2, v3), (v3, v4)},  

                      {(v3, v5), (v4, v5)}, {v2, v4), (v4, v5)}. 

Theorem: A circuit and the complement of any spanning tree must have at 

least one edge in common. 

Proof: We recall that the set of all chords of a tree is called the complement of 

the tree. Suppose on the contrary that a circuit has no common edge with the 

complement of a spanning tree. This means the circuit is wholly contained in 

the spanning tree. This contradicts the fact that a tree is acyclic (circuit – free). 

Hence a circuit has at least one edge in common with complement of a 

spanning tree. 

Theorem: A cut – set and any spanning tree must have at least one edge in 

common. 

Proof: Suppose on the contrary that there is a cut set which does not have a 

common edge with a spanning tree. Then removal of cut set has not effect on 

the tree, that is, the cut set will not separate the graph into two components. 

But this contradicts the definition of a cut set. Hence the result. 

Theorem: Every circuit has an even number of edges in common with every 

cut – set. 

Proof: We know that a cut – set divides the vertices of the graph into two 

subsets each being set of vertices in one of the two components. Therefore a 

path connecting two vertices in one subset must traverse the edges in the cut 

set an even number of times. Since a circuit is a path from some vertex to 

itself, it has an even number of edges in common with every cut – set. 

3.19 Tree Searching 

Let T be a binary tree of height h  1 and root v. Since h  1, v has at 

least one child : vL                     and / or vR.    Now vL and vR are the roots of 

the left and right subtrees of v called TL and TR respectively. 

 

                                                      v Level  0 

 

 

                        vL                                              vR      Level  1 

 

                                                                           Level  2 
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                                                                      Level  3 

 

                                                                           Level   4 

 

 

          Left subtree TL   Right subtree TR 

         (dotted circle)                              (dotted circle)  

Definition: Performing appropriate tasks at a vertex is called visiting the 

vertex. 

Definition: The process of visiting each vertex of a tree in some specified 

order is called searching the tree or walking or traversing the tree. 

We now discuss methods of searching a tree. 

PREORDER SEARCH METHOD 

Input : the root v of a binary tree. 

Output : Vertices of a binary tree using pre-order traversal  

1. Visit v 

2. If vL (left child of v) exists, then apply the algorithm to (T(vL), vL) 

3. If vR (right child of v) exists, then apply this algorithm to (T(vR), vR). 

End of Algorithm preorder. 

 In other words, preorder search of a tree consists of the following steps: 

Step 1. Visit the root 

Step 2. Search the left subtree if it exists 

Step 3. Search the right subtree if it exists. 

Example 1: Find binary tree representation of the expression 

 (a – b)  (c + (d  e)) 

and represent the expression in string form using pre-order traversal. 

Solution: In the given expression,  is the central operator and therefore shall 

be the root of the binary tree. Then the operator – acts as vL and the operator + 

acts as vR. Thus the tree representation of the given expression is  

                                              

 

                 –                                            + 

 

          a               b                      c                  

 

                                                              d                e 
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The result of the pre-order traversal to this binary tree is the string 

     – a b + c  d e 

This form of the expression is called prefix form or polish form of the 

expression 

   (a – b)  (c + (d  e)) 

 In a polish form, the variables a, b, c,…are called operands and –, +, , 

 are called operators. We observe that, in polish form, the operands follow 

the operator. 

PROCEDURE TO EVALUATE AN EXPRESSION GIVEN IN 

POLISH FORM 

 To find the value of a polish form, we proceed as follows: 

Move from left to right until we find a string of the form K x y, where K is 

operator and x, y are operands. 

Evaluate x K y and substitute the answer for the string K x y. Continue this 

procedure until only one number remains. 

Example: Find parenthesized form of the polish expression  

    – + A B C 

Solution: The parenthesized form of the given polish expression is derived a 

follows: 

   – (A + B) C 

   (A + B) – C  

The corresponding binary tree is 

 

 

 

 

POSTORDER SEARCH METHOD 

Algorithm 

+ C 

– 

B A 
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Step 1. Search the left subtree if it exists 

Step 2. Search the right subtree if it exists 

Step 3. Visit the root 

End of algorithm 

Example: Represent the expression 

   (A + B) * (C – D) 

as a binary tree and write the result of postorder search for that tree. 

Solution: The binary tree expression (as shown earlier) of the given algebraic 

expression is 

 

 

 

 

 

The result of postorder search of this tree is 

    A B + C D – * 

This form of the expression is called postfix form of the expression or reverse 

polish form of the expression. 

In postfix form, the operator follows its operands. 

Example: Find the parenthesized form of the postfix form  

   A B C * * C D E + / – 

Solution: We have 

1.    A B C * * C D E + / – 

2.    A (B * C) * C (D + E) / - 

3.    (A * (B * C)) (C / (D + E)) – 

4.    (A * (B * C)) – (C / (D + E)) 

The corresponding binary tree is  

 

 

 

 

+ – 

D C 

*  / 

+ C 

– 

* 

A B 

B 

* A 
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Example:  Evaluate the postfix form 

   21 – 342  +  

Solution: We have 

   21 – 342  +  

   = (2 – 1) 342  +  

   = 13 (4  2) +  

   = 132 +  

   = 1 (3 + 2)  

   = 15  

   = 1  5 

   = 5 . 

 

 

                                             

                                       

                                 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C D E 
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Unit-4 

Computability Theory  

 

4.1. Finite State Machine  

Definition: A finite – state machine (or complete sequential machine) is an 

abstract model of a machine with a primitive internal memory. A finite state 

machine M consists of  

(1) A finite set I of input symbols 

(2) A finite set S of “internal” states 

(3) A finite set O of output symbols 

(4) An initial stage s0 in S 

(5) A next – stage function f : S  I  S 

(6) An output function g : S  I  O 

A finite state machine M is denoted by  

   M = M (I, S, O, s0, f, g). 

Example: 1. Let us take 

   I = {a, b} 

   S = {s0, s1, s2) 

   O = {x, y, z} 

Initial State is s0 

Next state function f : S  I   S defined by 

   f (s0, a) = s1,   f (s1, a) = s2,    f (s2, a) = s0 

   f (s0, b) = s2,   f (s1, b) = s1,      f (s2, b) = s1 

Output function g : S  I  O defined by  

   g (s0, a) = x,    g(s1, a) = x,      g(s2, a) = z 

   g (s0, b) = y,    g(s1, b) = z,      g(s2, b) = y/ 

Then M = M(I, S, O, s0, f, g) in a finite state machine. 

TRANSITION (STATE) TABLE AND TRANSITION (STATE) DIAGRAM 

   There are two ways of representing a finite state machine M in a 

compact form: 
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(A) : Transition (State) Table : In this table the functions f and g are 

represented by a table.  

Thus, in case of the above example, the transition table is  

 

  

      f     g 

I 

S 
a     b a     b 

s0 

s1 

s2 

s1   s2 

s2    s1 

s0   s1 

x    y 

x    z 

z    y 

 

(B) Transition (State) diagram: A transition diagram of a finite state machine 

M is a labeled directed graph in which there is a node for each state symbol in 

S and each node is lebeled by a state symbol with which it is associated. The 

initial stage is indicated by an arrow. Moreover, if f(si, aj) = sk and g(si, aj) = 

Or, then there is an arrow (arc) from si to sk which is labeled with the pair aj, 

Or. We usually put the input symbol aj near the base of the arrow (near si) and 

the output symbol Or near the centre of the arrow. (Also, we can represent it 

by ai /Oi near the centre of the arrow) 

Thus, the transition diagram of the finite state machine in 

the above example is                                                                                     

a/x                b/z 

 

        x 

                           

      a          b           OR    a/z   b/y      b/y      a/x                       

        b                                 z           

                       a                              

                        y       y                                         

                                                      

          z                  b              x  

                                

             a 

 

Example:   Let I = {a, b}, O = {0, 1} and S {s0, s1}.   Let so be the initial state.  

Define f : S  I  S by 

   f(s0, a) = s0, f(s0, b) = s1, f(s1, a) = s1, f(s1, b) = s1  

and define g : S  I  O by 

   g(s0, a) = 0, g(s0, b) = 1, g(s1, a) =1, g(s1, b) = 0 

Then M = M(I, S, O, s0, f, g) is a finite state machine. Its transition table 

representation is given below: 

 s1  s0 

 s2 

 s1  s0 

 s2 
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      f     G 

I 

S 

a     b a     b 

s0 

s1 

s0   s1 

s1    s1 

0    1 

1    0  

The transition diagram for this finite state machine is  

                              a/0                                           a/1                                                  

                                                            

 

     

                                                                         b/0                               

                                        b/1 

Remark: We can regard the finite state machine M = M(I, S, O, s0, f, g) as a 

simple computer. We begin in state S, input a string over I, and produce a 

string of output. 

INPUT AND OUTPUT STRINGS 

Let M = M(I, S, O, s0, f, g) be a finite state machine. An input string for M is 

a string over I. 

The string 

   y1 y2 ……..yn 

is the output string for M corresponding to the input string 

   x1 x2……...xn 

if there exists states s0, s1, ……,sn  S such that 

   si = f(si-1, xi) for i = 1, 2,……,n 

   yi = g(si-1, xi) fo i = 1, 2,…….,n 

Example:  In the above example, we had taken 

   I = {a, b}, O = {0, 1} and S {s0, s1} 

with 

   f(s0, a) = s0, f(s0, b) = s1, f(s1, a) = s1, f(s1, b) = s1 

   

and 

   g(s0, a) = 0, g(s0, b) = 1, g(s1, a) = 1, g(s1, b) = 0 

We had shown that M = M(I, S, O, s0, f, g) is a F S M. We want to find the 

output string to the input string 

 s0  s1 
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   a a b a b b a 

for this machine. 

Initially we are in a state s0.   The first symbol input is a.  Therefore the output 

is g(s0, a) = 0. The edge points out to S0. Next symbol input is again a. So again 

we have g(s0, a) = 0 as the output and the edge points out to s0 . Next b is the 

input symbol and so g(s0, b) = 1 as the output and there is a state of change s1.   

Next symbol is a, so g(s1, a) = 1 as the output and the state is s1. Now b is input 

and so g(s1, b) = 0 as the output. Again b is input and s1 is the state, so g(s1, b) 

= 0. The last input symbol is a and the state is s1. Therefore g(s1, a) = 1 as the 

output symbol. 

Thus the output string is  

 

   0 0 1 1 0 0 1 

Example: Consider the F S M of example …. Let the input string be  

   a b a a b. 

we begin by taking S0 as the initial stage. Using State diagram we have 

 

                   a, x              b, z           a, x a, z       b, y 

 s0              s1               s1          s2           s0              s2       

Hence the output string is  

   x z x z y 

BINARY ADDITION 

We want to describe a finite state machine M which can perform binary 

addition. Suppose that the machine is given the input 

   1 1 0 1 0 1 1       

           + 0 1 1 1 0 1 1          , 

then we want to have the output to be the binary sum 

   1 0 1 0  0 1 1 0 

Thus the input is the string of pairs of digits to be added: 

   11, 11, 00, 11, 01, 11, 10, b  , 

where b denotes blank spaces and the output should be the string 

   0, 1, 1, 0, 0, 1, 0, 1 

We also want the machine to enter a state called “stop” when the machine 

finishes the addition. 

The input symbols are 
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b b 

   I = {00, 01, 10, 11, b} 

and the output symbols are 

   O = {0, 1, b} 

The machine that we construct will have three states: 

   S = {carry(c), no carry (nc), stop(s)}. 

In this case nc is the initial state. 

In fact, given an input x y, we take one of three actions : 

(A) we add x and y if carry bit is 0 

(B) we add x, y and 1 if carry bit is 1 

(C) we stop 

Next, we consider the possible inputs at each vertex. For examples if 00 is 

input to nc, we should output 0 and remain in the state nc. Thus nc has a loop 

labeled 00/0. As another example, if 11 is input to c, we compute 1 + 1 = 11. In 

this case we output 1 and remain in the state C. Thus C has a loop labeled 11/1. 

As a final example, if we are in state NC and 11 is input, we should output 0 

and move to the state G. By considering all possibilities, we arrive at the 

transition diagram given below: 

          

          

                                                              

                                                                                 

                

     

                                                                                          

                                                                                      

 

 

 

 

Limitation of Machines: There is no finite state machine which can 

perform binary multiplication. 

Generalization of f and g in the definition of F S M: Consider a 

sequence x0 x1 …… of input symbols.  Let s0 be the initial stage. Then the 

next state s1 of the machine for the input x0 is given by s1 = f(s0, x0) = f1(s0, 

x0) say, where f = f1: S  I  S. Next consider the change in state due to 

second input symbol x1 and the next state is s2 = f(s1, x1) = f(f1(s0, x0), x1) = 

f2(s0, x0 x1), where         f2: S  I
2
  S. The next state due to third input 

symbol x2 is s3 = f(s2, x2) = f(f2(s0, x0 x1), x2) =          f3(s0 x0 x1 x2), where f3 : 

S  I
3
  S. Continuing in this fashion, we can define a function 

 

  nc C 

S 

 00/0 

 10/1 

 11/0 

 00/1 

 10/0 

01/0 

11/1 

 01/1 
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   fn : S  I
n
  S such that 

   sn = f(fn-1(s0, x0 x1….xn-2), xn-1) = fn(s0, x0 x1…..xn-1) 

Similarly, the output symbol 00, 01, ….. can be described with the help of g 

as shown below : 

   o0 = g(s0, x0) = g1(s0, x0) 

   o1 = g(s1, x1) = g(f1(s0, x0), x1) = g2(s0, x0, x1) 

   ------------------ 

   on 1 = g(sn 1, xn 1) = gn(s0, x0 x1….xn 1) . 

4.2. Equivalence of Finite State Machines 

The aim of this section is to obtain an equivalent minimal machine for 

some given machine. First we treat equivalent states. Intuitively, two states 

are equivalent if and only if they produce the same output for any input 

sequence.   Thus we can make the following definition: 

Definition: Let M = M{I, S, O, s0, f, g) be a finite state machine. Two states 

si, sj  S are said to be equivalent, written as si  sj ,  if and only if  

       g(si, x) = g(sj, x) for every word x  I*,   

where I* denotes the set of words on the input alphabets.   

It can be seen that the relation  is an equivalence relation. 

Theorem: Let s be any state in a finite – state machine and let x and y be 

any words. Then 

   f(s, x y) = f(f(s, x), y) 

and  

   g(s, x y) = g(f(s, x), y). 

Proof: We shall prove the theorem by induction on length of y. Let y = a.  

Then 

   f(s, x a) = f(f(s, x), a) 

Assume that the equation is true for any y of length n, that is,  

   f(s, x y) = f(f(s, x), y)  

We want to show that it is true for y having n + 1 symbols. 

From the generalized definition, we can write               

  f(s, x y a) = f(f(s, x y), a) = f(f(f(s, x), y), a) 

by the induction hypothesis. Taking s  = f(s, x) ,we have 
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   f (f (f (S, x), y), a) = f ( f(s , y), a) 

           = f(s , y  a) 

           = f( f(s, x), y a) 

The result regarding g may be established similarly. 

Theorem: Let M = M(I, S, O, s0, f, g) be a finite state machine. If the states 

si and sj are equivalent, then for any input sequence x, 

   f(si, x) = f(sj, x), 

that is, if two states are equivalent, then their next states are also 

equivalent. 

Proof: Since si  sj, it follows by definition that 

   g(si, x y) = g(sj, x y)    (1) 

for any input word x y. Then, by the above theorem, (1) reduces to  

   g(f(si, x) y) = g(f(sj, x), y) 

for any y belonging to the set of words I*, which in term of definition of 

equivalence of states implies 

   f(si, x)  f(sj, x) , 

that is the next states are equivalent. 

Definition: Let M = (I, S, O, s0, f, g) be a finite state machine. Then for 

some positive integer k, si is said to be k – equivalent to sj if and only if 

   g(si, x) = g(sj, x) for all x such that | x |  k. 

Obviously, equivalence of states is  a generalization of k –equivalence of 

states for all k, that is, 

     si  sj  si    sj 

but not conversely. 

Definition: Let M = (I, S, O, si, f, g) and M  =  (I, S , O, si , f , g ) be finite – 

state machines.  Then M is said to be equivalent to M , written as M  M  if 

and only if for all si  S, there exists an s j  S  such that 

   si  sj 

and for all sj  S , there exists an si  S such that 

   si  s j. 

The relation  is an equivalence relation. 

k 
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For example, consider two finite state machines whose 

transition tables are 

 

 

 

      f     g 

          I 

S 

0      1 0     1 

s0 

s1 

s2 

s3 

s4 

s5 

s5    s3 

s1      s4 

s1    s3 

s1    s2 

s5    s2 

s4    s1 

0    1 

0    0 

0    0 

0    0 

0    1 

0    1 

                            M(I, S, O, Si, f, g) 

and  

          f          g  

              

I 

S

 

0     1 0     1 

s0 

s1 

s2 

s3 

s3    s2  

s1      s0  

s1    s2  

s0    s1  

0    1 

0    0 

0    0 

0    1 

         M (I, S , O, S , f , g ) 

Observe that s0  in M  is equivalent to s0 and s4 in M; s1  in M  is equivalent to 

s1 in M; s2  in M  is equivalent to s2 and s3 in M, and s3  in M  is equivalent to 

s5 in M. Also note that the functions g and g  are same for the indicated 

correspondence, but this is only a necessary condition for equivalence, not a 

sufficient one. 

Definition: A finite state machine M = (I, S, O, si, f, g) is said to be reduced if 

and only if si  sj implies that si = sj for all states si, sj  S. 
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Thus, a reduced finite state machine is one in which each state is 

equivalent to itself and to no other. The partition of S in such machine has 

all its equivalence classes consisting of a single element. 

CONSTRUCTION OF A REDUCES FINITE STATE MACHINE 

WHICH IS EQUIVALENT TO  

SOME GIVEN MACHINE 

Let M be a given machine. Let the set of states S be partitioned in a set of 

equivalence classes [s] such that partition P = U[s]. Let  be the function 

defined on the partition P such that ([s]) = s , where s  is an arbitrary fixed 

element of [s], called a representative. Clearly s   s in M. Let S  in M  be 

defined as  

                      S  = {s  : there exists s  S such that ([s]) = s } 

and let I  = I and O  = O, that is, both machines will have the same input and 

output alphabets. The functions f  and g  are defined as follows :  

   f (s , a) = ([f(s , a)]) 

and 

   g (s , a) = g(s , a), 

where s  is both in S and S . Therefore, the reduced machine is M  = (I, S , O, 

si  f , g ). 

Remark: Applying this procedure to the machines in the last example, we 

see that M  is equivalent reduced machine of the machine M. 

Theorem: Let M = M(I, S, O, si, f, g) be a finite – state machine. Then there 

exists an equivalent machine M  with a set of states S  such that S   S and 

M  is reduced. 

  (Proof of this theorem is out of the scope of the course) 

Definition: Let M = (I, S, O, si, f, g) and M  = (I, S , O, si , f , g ) be two 

finite state machines. Let  be a mapping from S into S . Then  is called a 

finite state homorphism if  

Iaallfor
)a),s(('g)a,s(g

)a),S(('f)a,s(f(
 

If  is further a one - one and onto function, then M is said to be 

isomorphic to M . 

Finite – state machines are used in compilers where they usually perform 

the task of a scanner. The machine in such a case identify variable names, 

operators, constants, etc.  A machine which performs this scanning task is 

called an acceptor. 
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4.3. Finite – State Automata 

Definition: A finite state automaton (.F S A) or simply an automaton M or 

finite state acceptor consists of  

(1) a finite set I, called the input alphabet of input symbols 

(2) a finite set S of states  

(3) a subset A of S of accepting states 

(4) an initial state s0 in S 

(5) a next state function f from S  I  S. 

Such an automaton is denoted by M = (I, S, A, s0, f) .  Thus, finite automaton 

does not have an output alphabet, instead it has a set of acceptance state. The 

plural of automaton is automata. 

Example : Let 

I = {a, b}, S = {s0, s1, s2}, A = {s2}, s0  S, the initial state and f is given by the 

table 

      f 

       I 

S 

a     b 

s0 

s1 

s2 

S0   s1 

s0    s2 

s0   s2 

The transition diagram of a finite – state automation is usually drawn with 

accepting states in double circles. Thus transition diagram for the example in 

question is  

                        a                                                                      b 

                                      

 

       

                                               

                                                        

                                                                     

Example: Let 

I = {a, b}, input symbols 

S = {s0, s1, s2}, internal states 

  s0   s1   s2 

b b 

a 

a 
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A = {s0, s1}, yes states (accepting states) 

s0, initial state 

Next state function f : S  I  S defined by 

   f(s0, a) = s0, f(s1, a) = s0, f(s2,a) = s2 

f(s0, b) = s1, f(s1, b) = s2, f(s2,b) = s2 

Then M = (I, S, A, s0, f) is a finite state automaton. Its transition table is  

 

 

           f 

       

I 
S 

a        b 

s0 

s1 

s2 

s0      s1 

s0        s2 

s2      s2 

 

and the transition diagram is  

 

                                                                                                 

                                                    

 

                                                                                                         

                                               

If a string is input to a finite state automaton, we will end at either an accepting 

or a non-accepting state. The status of this final state determines whether the 

string is accepted by the finite state automaton. 

Definition: Let M = (I, S, A, f, s0) be a finite state automaton. Let x1…xn be 

a string over I. If there exist states s0, s1,……,sn such that  

 

   f(si-1, xi) = si for i = 1, 2, ….,n 

and  

   si  A, 

then we say that the string x1…..xn is accepted by A. 

We call the directed path P (s0,…, sn) the path representing x1,….,xn in M. 

Thus M accepts x1 …. xn if and only if path P ends at an accepting state. 

Example: Design a finite state automation that accepts precisely those 

strings over {a, b} that contain no a’s. 

Solution: We want to have two states: 

   A : an a was found 

   s1 
  s2 

b 

a 

b 

b 

a 

a 

 s0 
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   NA : No a’s were found 

The state NA is the initial state and the only accepting state. 

                        b                                      a                                                                         

                                           

                                                                      b 

       

 

If f is next – state function, then  

   f(NA, a) = A, f(NA, b) = NA 

   f(A, a) = A, f(A, b) = A 

Example: Design a finite – state – automaton that accepts precisely those 

strings over {a, b} that contains an odd number of a’s. 

Solution: There shall be two states: 

E : An even number of a’s was found 

O : An odd number of a’s was found 

The initial state is E and the accepting state is O.  

                                                                                                                                       

                                   a        

                                                                    b 

       

                                     a      

           b                                    

If f is next – state function, then we have 

   f(E, a) = O 

   f(E, b) = E 

   f(O, a) = E 

   f(O, b) = O                                             

Example : Let M = {I, S, A, s0, f) be a finite state automaton with 

   I = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} 

   S = {s0, s1, s2} 

   A = {s0} 

   a  {0, 3, 6, 9}, b  {1, 4, 7}, c  {2, 5, 8}. 

Next – state function f defined by 

   f(s0, a) = s0,  f(s0, b) = s1,  f(s0, c) = s2 

   A 

 

a 
NA 

  

E 
    O 
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2 5 8 

f(s1, a) = s1,  f(s1, b) = s2,  f(s1, c) = s0 

f(s2, a) = s2,  f(s2, b) = s0,  f(s2, c) = s1 

Draw transition table and transition diagram for this F.S.A. Does this 

automaton accept 258 and  142 ? 

Solution: The transition table for F.S.A. is  

 

 f 

      I 

S 

a        b      c 

   s0 

   s1 

   s2 

s0      s1     s2 

s1        s2       s0 

s2      s0        s1 

 

The transition diagram for this F.S.A. is  

 

            0,3,6,9                                                   

                                        1,4,7                               0,3,6,9 

 

                                  

                                        2,5,8       

 

                                     1,4,7          1,4,7  2,5,8               

                 2,5,8 

 

 

                                                        

 

                       0,3,6,9 

Here A = {s0} is the initial stage and also is an acceptor. Further, we note that  

   f(s0, 258) = f ( f (s0, 25), 8) 

         = f ( f ( f(s0, 2), 5), 8) 

        = f (f (s2,5), 8) 

        = f (s1, 8) = s0  A 

Thus,  the string 258 determines the path 

 

   s0   s2   s1  s0  A  

Hence 258 is accepted by the given Finite State Automation.  

  s0 
s1 

s2 
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 1  4  2 

On the other hand, 

   f(s0, 142) = f ( f (s0, 14), 2) 

         = f ( f ( f(s0, 1), 4), 2) 

        = f (f (s1,  4), 2) 

        = f (s2, 2) 

    = s1  A 

Thus,  the string 142 determines the path 

   s0  s1  s2  s1  A . 

Hence 142 is not accepted by the given Finite State Automaton. 

Example:  Construct F S A which will accept precisely those strings from I = 

{a, b} which end in two b’s. 

Solution: As per our requirement b b should be accepted by M but  or b 

should not be accepted. Thus we need three states:   s0 (the initial state) , s1 and 

s2  as shown below: 

 

                                      b                                   b 

 

The state s2 should be the accepting state. Further f(s0, a) should not be equal to 

s1, because then a b may be the last letters. f(s2, a) should not be equal to s2, 

otherwise ba would be last letters. However, f(s2, b) may be equal to s2 because 

in that case we have last two letters as b’s. Thus the automaton is as shown 

below :  

 

 

                        a 

                                       b                                   b                            b         

                                               a                      a 

 Example: Let I = {a,b}. Construct an automaton M such that L(M) consists of 

those strings where the number of b’s is divisible by 3. 

Solution: We take s0 as the initial state. If we define the next state function  

f  by  

   f(s0, b) = s1 

   f(s1, b) = s2 

   f(s2, b) = s0 

and take s0 as the accepting state, then M shall be  

 

                                                               a 

 S0  S1  S2 

 s0  s1  s2 

s0 

s1 s2 

b b 
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        a                                                                             a 

                                            b 

 

Example: Let I = {a, b}.  Construct an automaton M such that L(M) 

consists of those words which begin with a and end with b. 

Solution: Let s0 be the initial state. If we define f as 

   f(s0, a) = s1, f(s1,b) = s2  (accepting state)     

Then, we have three states as  

                                      a                                   b 

 

Now we cannot take f(s0, b) = s0 or f(s0, b) = s1, because then b will be 

starting letter. So, we have to take f(s0, b) = s3. We cannot take f(s3,a) = s0, 

s1, s2 because in that case the string would end in a. We cannot have f(s2, a) 

= s2, because then a will be last letter. Thus The automaton M will be  

 

                                                    a,b  

 

 

                          b 

                                                                         b                               b     

                                      b                                    

                                                                                               

                                                                          a 

 

In this automaton, any string shall begin with a and end in b. 

4.4. Non – Deterministic Finite State Automaton 

Definition: A non – deterministic finite – state automaton is a 5 – tuple M = (I, 

S, A, s0, f) consisting of  

(1) A finite set I of input symbols 

(2) A finite set S of states 

(3) A subset A of S of accepting states 

(4) An initial state function s0  S 

(5) A next state function f from S  I into P(S) 

 s1  s1  s2 

 s0  s1  s2 

 s3 
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Thus, in a non – deterministic finite state automaton, the next state function 

leads us to a set of states, whereas in a finite state automaton, the next state 

function takes us to a uniquely defined state. 

 

Example: Find the transition diagram for N D F S A 

   M = (I, S, A, s0, f), 

where 

   I = {0, 1}, S = {s0, s1, s2, s3}, A = {s2, s3} 

and the next state function f is given by 

 

 f 

              

I 

S 

0                 1 

s0 

s1 

s2 

s3 

   {s0, s1}         {s3} 

{s0}                 {s1,s3} 

 {s0,s2} 

  {s1, s2,s3}     {s1} 

Solution:  Here the initial state is s0 and the accepting states are s2 and s3. 

The transitional diagram of this N D F S A is  

 

                                            

                                                                                     

                                                          

                                              

                                                                    

                                                                               

 

 

                                                     

                                                                             

                                                   

 

Definition: Let M = (I, S, A, s0, f) be a non – deterministic finite state 

automaton. The null string is accepted by M if and only if s0  A. If w = a1 

a2…..an is a non – null string over I and there exists states s0, s1, ….., sn 

such that  

 

(1) s0 is the initial state 

(2) si = f(si 1, ai) 

(3) sn  A  , 

  s0   s1 

  s2   s3 

0 

0 

1 

0 

0 

1 

1 
1 1 1 0 

0 
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 0 

then we say that w is accepted by M. 

We denote by AC(M), the set of strings accepted by M and say that M accept 

AC(M). 

Definition: Two non – deterministic finite state automata M and M  are said to 

be equivalent if 

   AC(M) = AC(M ) . 

Example: Let 

   M = (I, S, A, s0, f) 

be a N D F S A with 

   I = {0, 1}, S = {s0, s1, s2, s3, s4}, A = {s2, s4}, 

so as the initial state and the next state function defined by the transition 

table given below:   
 

             f 

      I 

S 

 0                  1 

s0 

s1 

s2 

s3 

s4 

{s0, s3}       {s0,s1} 

                      {s2} 

{s2}            {s2} 

{s4}               

{s4}            {s4}        

 

Determine whether M accept the words  (i) w = 010  and  (ii) 

w = 01001. 

Solution: (i) The word w = 010 determines the path s0          {s0, s3}         f(s0, 

1)  f(s3, 1) = {s0, s1}  

  = {s0, s1}         f(s0, 0)  f(s1, 0) = {s0, s3}   = {s0, s3} 

But A  {s0, s3} = {s2, s4}  {s0, s3} =  . Hence the word w  = 010 is not 

acceptable to the given non – deterministic finite state automaton. 

(ii) We have seen above that 

   s0       {s0, s3}             {s0, s1}          {s0, s3} 

 0   1 

 0  1  0 
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Therefore the word w = 01001 determines the path 

s0       {s0, s3}             {s0, s1}          {s0, s3}              f(s0, 0)  f(s3, 0)  

      = {s0, s3}  {sn} 

      = {s0, s3, s4}     f(s0, 1)  f(s3, 1}  f(s4, 1} 

      = {s0, s1}    {s4} 

      = {s0, s1, s4} 

so that  

   A  {s0, s1, s4} = {s2, s4}  {s0, s1, s4} = {s4}  . 

Hence the string 01001 is acceptable to the given N D F S A. 

4.5  The Equivalence of  D F S A  and   N D F S A 

We have seen that in the definition of finite state automaton, the next state 

function is from S  I into S, whereas in the definition of N D F S A, the next 

state function is from S  I into P(S). Thus, every D F S A is an N D F S A, 

that is, the class of languages accepted by N D F S A includes the languages 

accepted by D F S A. However, these are the only languages accepted by N D 

F S A. In other words, for every N D F S A, we can construct an equivalent 

D F S A. In this direction, we have the following : 

Theorem: Let L be a set accepted by a non – deterministic finite automaton. 

Then there exists a deterministic finite automaton that accepts L. 

Proof: Let M = (I, S, A, s0, f) be an N D F S A accepting L. Define a D F S A, 

   M  = (I, S , A , s0 , f ) 

as follows: 

The states of M  are all the subsets of the set of all states of M , that is, S  = 2
S
. 

Also s0  = {s0} and  A  is the set of all states in S  containing a final state of M, 

that is, A  = {s  S  : s  A  }. 

Further, for s  S  and a  I, let 

   f (s, a) = 
s
 f( , a) 

To prove that M  accept the same language as M, it is sufficient to show that 

for any string x  I* (the set of strings formed by I),  

 0  1  0 

 0 

 1 
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   f *(s0 , x) = f* (s0, x)    (1) 

We shall prove (1) by using induction on the length of the input string x. 

If x = , then 

   f *(s0, x) = f *(s0 , ) 

       = s0  (by definition of f *) 

       = {s0} by the definition of s0  

       = f*(s0, ) (by the definition of f*) 

       = f*(s0, x) 

Thus (1) holds for | x | = 0 (i.e. for x = ). 

The induction hypothesis is that x is a string satisfying 

   f *(s0 , x) = f*(s0, x) 

and we want to show that 

   f *(s0 , x a) = f*(s0, x a) for a I. 

To show it, we have 

  f *(s0 , x a) = f  (f * (s0 , x), a) (by the definition of f *) 

           = f (f*(s0, x), a) (by induction hypothesis) 

           = 
)x,s(*f 0

f( , a) (by the definition of f  ) 

          = f*(s0, x a) (by the definition of f*) 

We know that a string x is accepted by M  if f *(s0 , x)  A  that is, if f* (s0, x) 

 A  and using the definition of A , it follows that this is true if and only if 

 

   f*(s0, x)  A  ,  

that is, if f*(s0, x)  A, that is, if x is accepted by M. Thus x is accepted by M  

if and only if x is accepted by M. This completes the proof of the theorem. 

Example: Construct deterministic finite state automaton equivalent to the 

following non – deterministic finite state automaton : 

   M = ({0, 1}, {s0, s1}, s0, {s1}, f) ,  

where f is given by the table 

 

 f 
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I 

S 

0                 1 

s0 

s1 

{s0, s1}      {s1} 

               {s0, s1} 

 

Solution: Let  

   M  = {{0, 1}, { , {s0}, {s1}, {s0, s1}, s0  = {s0}, A , f } 
be the D F S A, where 

   A  = {s { , (s0, {s1}, {s0, s1} : s  {s1}   

and         = {s1} and {s0, s1} (Accepting states) 

        f (s, a) = 
s
 f( , a) for s  { , {s0}, {s1}, {s0, s1}} 

We have 

{s0} as the initial state  

The finite set of states is { , {s0}, {s1}, {s0, s1}} 
The finite set of inputs is {0, 1} 

The accepting states are [s1] and [s0, s1]. 

Now 

   f ( , 0) =  and f ( , 1) =  

   f ([s0], 0) = f(s0, 0) = [s0, s1] 

   f ([s0], 1) = f(s0, 1) = [s1] 

   f ([s1], 0) = f(s1, 0) =  

   f ([s1], 1) = f(s1, 1) = [s0, s1] 

   f ([s0, s1], 0) = f(s0, 0)  f{s1, 0} 

            = {s0, s1}  {s1} 

            = [s0, s1] 

   f ({s0, s1}, 1) = f(s0, 1)  f(s1, 1) 

              = {s1}  {s0, s1} 

              = [s0, s1] 

Hence the next state function and the transition diagram for D F S A are as 

given below :  

 

  

 f  
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      I 

S 

0                 1 

 

[s0] 

[s1] 

[s0, s1] 

  

[s0, s1]         [s1] 

                   [s0, s1] 

  [s0, s1]        [s0, s1] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                     

 

 

It may be mentioned here that a state which is never entered may be deleted 

from the transition diagram.   In view of this, the above transition diagram 

becomes  
 

 

 

 

 

 

 

                     

 

 

Thus, we note that if  N D F S A has n states, then D F S A will have 2
n
 

states. 

 

Example: Draw transition diagram of the N D F S A  

      [ s0]   [s1] [s0 s1] 

0 

1 

1 

1 

0 

0 

1 

       [s1] [s0 s1] 

0 

1 

0 
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M  = ({a, b}, {s0, s1, s2}, {s0}, s0, f), 

where f is given by  

 

             f 

              

I 

S 

   a                b 

s0 

s1 

s2 

 

                    {s1,s2} 

{s2}           {s0,s1} 

{s0}               

 

Also find equivalent D F S A. 

Solution: Here 

Initial stage is s0 

Set of Accepting state is {s0} 

Finite set of states is {s0, s1, s2} 

Finite set of inputs is {a, b} 

Hence the transition diagram is 

 

                                                                              

                                                                               

                                                                           

                                                                           

 

                                                               

Let 

M  = ({0, 1}, { , {s0}, {s1}, {s2}, {s0, s1},  

{s0, s2}, {s1, s2} {s0, s1, s2}} s0 , A , f ) 

be the equivalent D F S A, where 

   s0  = [s0] 

and set of accepting states  is 

A  = {s  { , {s0},...., {s0, s1, s2} : s  {s0}  } 

     = {s0}, {s0, s1}, {s0, s2}, {s0, s1, s2} 

Further 

f (  , a) =  , f (  , b) =  

f ([s0] , a) = f(s0 , a) =   ,   f ([s0] ,b) = f(s0 , b) = [s1 s2] 

 s0  s1  s2 

b 

b 
a 

b 

a 

b 
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f ([s1] , a) = f(s1 , a) = [s2]  ,   f ([s1] , b) = f(s1 , b) = [s0 s1] 

f ([s2] , a) = f(s2 , a) = [s0]  ,   f ([s2] , b) = f(s2 , b) =  

f ([s0 s1] , a) = f(s0, a)  f(s1 , a) = [s2]   ,   f ([s0 s1] , b) = [s0 s1 s2] 

f ([s0 s2] , a) = f(s0 , a)  f(s2 , a) = [s0] ,  

f ([s0 s2] , b) = f(s0 , b)  f(s2 , b) = [s1 s2] 

f ([s1 s2] , a) = f(s1 , a)  f(s2 , a) = [s0 s2] ,  

f ([s1 s2] , b) = f(s1 , b)  f(s2 , b) = [s0 s1]  

f ([s0 s1 s2] , a) = f(s0 , a)  f(s1 , a)  f(s2 , a) = [s0 s2] ,  

f ([s0 s1 s2] , b) = f(s0 , b)  f(s1 , b)  f(s2 , b) 

 = [s0 s1 s2] 

Thus, the transition table of D F S A is 

 

 

             F 

       I 

S 

 a                 b 

 
[s0] 

[s1] 

[s2] 
[s0 s1] 

[s0 s2] 

[s1 s2] 

[s0 s1 s2] 

 

                 

             [s1 s2]                  

[s2]          [s0 s1] 

 [s0]              

 [s2]           [s0 s1 s2] 

 [s0]           [s1 s2] 

[s0, s2]       [s0, s1] 

[s0 s2]        [s0 s1 s2] 

 

 

 

The transition diagram of deterministic finite state automaton is therefore as 

shown in the diagram below: 

                                              b 

 

 

                a                              b                                   b           

          

       a   

   

 

         a          b      

  

 s0  [s0 s2] [s1 s2]  [s0 s1] 

[s2] [s1] 

  

 [s0 s1 s2] 
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                             a                       a                                     

          

                                             b      

b    

      a          

            b 

           

                                                                        a 

                     a       b                                 

 

Since the state [s1] is never entered, it may be removed . 

4.6 Moore Machine and Mealy Machine 

We have seen that in case of finite automaton, the output is limited to a binary 

signal “accept” or “don t accept”. However, some models in which the output 

is chosen from some other alphabet have also been considered. There are two 

different approaches. 

(1) If the output function depends only on the present state and is independent 

of the current input, the model is called a Moore Machine. 

(2) If the output function is a function of transition, i.e. a function of present 

state and the present input, the model is called a Mealy Machine. 

MOORE MACHINE 
A Moore machine is a six – tuple 

   (I, S, O, s0, f, g), 

where  

(1) I is a finite set of input symbols 

(2) S is a finite set of internal states 

(3) O is a finite set of output symbols 

(4) s0 is the initial state 

(5) f is the transition (next – state) function from S  I into S  

(6) g is the output function mapping S into O. 

The output in response to input a1 a2……….an, n  0 is g(s0) g(s1)……g(sn), 

where s0, s1,……..sn is the sequence of states such that 

   f(si-1, ai) = si , 1  i  n. 

Moore Machine gives output g(s0) in response to input  (empty string). 
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Obviously, D F S A is a special case of a Moore Machine, where the output 

alphabet is  {0, 1} and the state s is “accepting” if and only if g(s) = 1. 

Example: Let 

   M = (I, S, O, s0, f, g) 

be a Moore Machine, where 

   I = {0, 1}, S = {s0, s1, s2, s3} 

   O = {0, 1}, s0 is initial state , 

f is transition function such that 

   f(s0, 0) = s3,  f(s0, 1) = s1 

   f(s1, 0) = s1,  f(s1, 1) = s2 

   f(s2, 0) = s2,  f(s2, 1) = s3 

   f(s3, 0) = s3,  f(s3, 1) = s0  ,  

and g is the output function such that 

 g(s0) = 0, g(s1) = 1,  g(s2) = 0,  g(s3) = 0 

Determine the transition table for M and the output string for the input string 

0111. 

Solution: The transition table for this Moore machine is 

        f                               G 

              I 

S 

0            1    

      s0 

      s1 

      s2 

      s3 

s3                s1 

s1                s2 

s2                s3 

s3                

s0 

         0 

         1 

         0 

         0 

 

The input string is 0111. We note that 

For empty string , the output is g(s0) = 0 

   f(s0, 0) = s3 and g(s3) = 0 

   f(s3, 1) = s0 and g(s0) = 0 

   f(s0, 1) = s1 and g(s1) = 1 
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   f(s1, 1) = s2 and g(s2) = 0 

Thus the output string is  

   0 0 0 1 0. 

MEALY MACHINE 

A Mealy Machine M is a six – tuple 

   (I, S, O, s0, f, g), 

where  

(1) I is a finite set of input symbols 

(2) S is a finite set of internal states 

(3) O is a finite set of output symbols 

(4) s0 is the initial state 

(5) f is the transition (next – state) function from S  I into S  

(6) g is the output function mapping S  I  into O. 

The output given by M in response to input a1 a2….an  is g(s0, a1) g(s1, a2) g(s2, 

a3)……g(sn-1, an), where s0, s1,…..sn is the sequence of states such that g(si-1, ai) 

= si, 1  i  n. 

Note that the output sequence in case of Mealy Machine has length n, 

whereas the length of output sequence in case of Moore Machine is n + 1. 

Further, Mealy Machine gives output  for the input string . 

4.7 Equivalence of Moore and Mealy Machines 

We know that the output string length in case of Mealy machine is one less 

than the output string length in case of Moore machine. 

Neglecting the response of a Moore machine to input , we say that Moore 

Machine M and Mealy machine M  are equivalent if for all input string v 

   k M  (v) = M (v), 

where M  (v) and M (v) are output produced by M  and M on input v and k is 

output of M for its initial state. 

Theorem: Let M1 = (I, S, O, s0, f, g) be a Moore machine. Then there is a 

Mealy machine M2 =          (I, S, O, s0, f, g ) which is equivalent to M1. 

Proof: Define g  : S  I  O by  

   g (s, a) = g(f(s, a) , for all s  S and a  I. 
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Then M1 and M2 enter the same sequence of states on the same input and with 

each transition M2 emits the output that M1 associates with the state entered. 

Example: Let the transition table of a Moore machine M1 = ({0, 1}, {s0, s1, s2, 

s3}, {0, 1}, s0, f, g) be as given below: 

 

 

 

        f                               g 

           

I 

S 

0            1    

      s0 

      s1 

      s2 

      s3 

s3                s1 

s1                s2 

s2                s3 

s3                

s0 

         0 

         1 

         0 

         0 

 

Construct a Mealy machine M2 equivalent to M. 

Solution: Let 

       M2 = ({0, 1}, {s0, s1, s2, s3}, {0, 1}, f, g , s0) 

be the equivalent Mealy machine, where 

  g (s, a) = g(f(s, a) , s  S, a  I. 

Thus 

   g (s0, 0) = g(f(s0, 0) = g(s3) = 0 

   g (s0, 1) = g(f(s0, 1) = g(s1) = 1 

   g (s1, 0) = g(f(s1, 0) = g(s1) = 1 

   g (s1, 1) = g(f(s1, 1) = g(s2) = 0 

   g (s2, 0) = g(f(s2, 0) = g(s2) = 0 

   g (s2, 1) = g(f(s2, 1) = g(s3) = 0 

   g (s3, 0) = g(f(s3, 0) = g(s3) = 0 

   g (s3, 1) = g(f(s3, 1) = g(s0) = 0 

Thus the transition table for Mealy machine is  
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        f                               g  

              

I 

S 

0            1   0             1 

  s0 

      s1 

      s2 

      s3 

s3                s1 

s1                s2 

s2                s3 

s3                

s0 

 0             1 

 1             0 

 0             0 

 0             0 

  

Theorem: Let M1 = (I, S, O, s0, f, g) be a Mealy machine. Then there is a 

Moore machine M2 =  (I, S , O, s0 , f , g ) which is equivalent to M1. 

Proof: Let b0 be arbitrary member of finite set O of output symbols.   Set 

   M2 = (I, S  O, O, [s0, b0], f , g ) 

Thus the states of M2 consists of pairs [q, b], where q  S, b  O. 

Define f  by 

   f ([q, b], a) = [f(q, a), g(q, a)] 

and g  by 

   g ([q, b]) = b. 

The component b in a state [q, b] is the output made by M1 on some transition 

into state q. Only the first component of M2’s states determine the moves made 

by the machine M2. Induction on n shows that M1 enters states q0, q1, …..,qn on 

input a1 a2…….an and emits outputs b1, b2….,bn, then M2 enters states [q0, b0], 

[q1, b1],……,[qn, bn] and emits outputs b0, b1, b2…..,bn. 

Example: Let M1 be a Mealy machine whose transition table is  

 

        f                               g 

           I 

S 

0            1   0             1 

      s0 

      s1 

      s2 

      s3 

s3                s1 

s1                s2 

s2                s3 

s3                

 0             1 

 1             0 

 0             0 

 0             0 
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s0 

 

Find equivalent Moore Machine M2. 

Solution: The states M2 are  

[s0, 0], [s1, 0], [s1, 0], [s1, 1], [s2, 0], [s2, 1], [s3, 0], [s3, 1]. 

We select b0 = 0 making [s0, 0] as start state for M2. 

The transitions and outputs of M2 are as follows: 

  f ([s0, 0], 0) = [f(s0, 0), g(s0, 0)] = [s3, 0]; g ([s0, 0]) = 0 

  f ([s0, 0], 1) = [f(s0, 1), g(s0, 1)] = [s1, 1]; g ([s0, 0]) = 0 

  f ([s0, 1], 0) = [f(s0, 0), g(s0, 0)] = [s3, 0]; g ([s0, 1]) = 1 

  f ([s0, 1], 1) = [f(s0, 1), g(s0, 1)] = [s1, 1]; g ([s0, 1]) = 1 

  f ([s1, 0], 0) = [f(s1, 0), g(s1, 0)] = [s1, 0]; g ([s1, 0]) = 0 

  f ([s1, 0], 1) = [f(s1, 1), g(s1, 1)] = [s2, 0]; g ([s1, 0]) = 0 

  f ([s1, 1], 0) = [f(s1, 0), g(s1, 0)] = [s1, 0]; g ([s1, 1] ) = 1 

  f ([s1, 1], 1) = [f(s1, 1), g(s1, 1)] = [s2, 0]; g ([s1, 1]) = 1 

  f ([s2, 0], 0) = [f(s2, 0), g(s2, 0)] = [s2, 0]; g ([s2, 0]) = 0 

  f ([s2, 0], 1) = [f(s2, 1), g(s2, 1)] = [s3, 0]; g ([s2, 0]) = 0 

  f ([s2, 1], 0) = [f(s2, 0), g(s2, 0)] = [s2, 0]; g ([s2, 1]) = 1 

  f ([s2, 1], 1) = [f(s2, 1), g(s2, 1)] = [s3, 0]; g ([s2, 1]) = 1 

  f ([s3, 0], 0) = [f(s3, 0), g(s3, 0)] = [s3, 0]; g ([s3, 0]) = 0 

  f ([s3, 0], 1) = [f(s3, 1), g(s3, 1)] = [s0, 0]; g ([s3, 0]) = 0 

  f ([s3, 1], 0) = [f(s3, 0), g(s3, 0)] = [s3, 0]; g ([s3, 1]) = 1 

  f ([s3, 1], 1) = [f(s3, 1), g(s3, 1)] = [s0, 0]; g ([s3, 1]) = 1 

Thus the transition table and transition diagram of Moore machine M2 which is 

equivalent to given Mealy machine M1 are : 

        f                            g  

           

I 

S 

0               1                    

 [s0, 0] 

  * [s0, 1] 

     [s1, 0] 

[

s3, 0]    

[s1, 1] 

     0              

     1   *           

     0               
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     [s1, 1] 

     [s2, 0] 

  * [s2, 1] 

       [s3, 0] 

  * [s3, 1] 

[s3, 0]    [s1, 1] 

[s1, 0]    [s2, 0] 

[s1, 0]    [s2, 0] 

[s2, 0]    [s3, 0] 

[s2, 0]    [s3, 0] 

[s3, 0]    [s0, 0] 

[s3, 0]    [s0, 0] 

     1              

     0 

     1   * 

     0 

     1   * 

and 

         

                                              

     

 

                          

                                                                              

       

The states [s0, 1] , [s2, 1], [s3, 1] can never be entered and so have been 

removed from the diagram. 

Leaving aside the outputs corresponding to the removed states which have 

been marked by * in the transition table, the outputs are 0, 0, 1, 0, 0 .  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[s0, 0] [s1, 0] [s3, 0] 

[s1, 1] 

1 

0 0 

[s2, 0] 

1 
0 0 1 

1 1 

0 
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Unit-5  

Languages and Grammars 
 

Formal languages are used to model nature languages and to communicate with 

computers. Before giving definition to formal language, we define some 

elementary notions.  

5.1 Basic Concepts  

Definition: Let A be a non – empty set of symbols. Then a finite sequence of 

the elements of A is called a word or string w on the set A. For example, 

   w = a b b a a a b 

is a string on A = {a, b}. 

The set A is called alphabet and its elements are called letters. The empty 

sequence of letters is also considered as a string and is denoted by ,  or 1. 

This is called empty word. 

The set of all words on the set A is denoted by A*. 

The length of the string (word) w is the number of elements in the string and 

is denoted by l(w) or   |w|. The length of  is 0. 

For example, thus the length of the word w cited above is 7. 

Definition: Let u and v be two strings on alphabet A. The concatenation of u 

and v is the word obtained by writing down the letters of u followed by the 

letters of v.  It is denoted by uv. 

For example, if u = a b c a b and v = c c a b b a, then concatenation of u and v 

is  

   u v = a b c a b c c a b b a = a
4
 b

4
 c

3
 

We observe that 

   l(u v) = l(u) + l(v). 

Also, we note that for any words u, v, w, we have 

   (u v) w = u(v w) 
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Thus, the concatenation operation on an alphabet A is associative, but not 

commutative because  u v  v u. 

Definition: Let u = x1 x2………xn be a word on an alphabet A. Then any 

sequence v = xi xi+1……….xj is called a subword of  u. 

The subword which begins with the first letter of u is called an initial segment 

of u. 

For example, x1, x2, x3 is an initial segment of u. 

Let F denote the set of all non – empty words from an alphabet A with the 

operation of concatenation. We know that F is a semi – group, called Free 

semigroup over A or the free semigroup generated by A. 

Further, since  is an identity element for the operation of concatenation, A* 

becomes a monoid and is called Free monoid over A.  

5.2. Language, Regular Expressions and Language Defined  

Regular Expressions 

Definition: Let A be a finite set of symbols. A (formal) language L over A is a 

subset of A*, the set of all string over A. 

For example, let A = {a, b}. Then the set L of all strings over A containing an 

odd number of a’s is a language over A. 

Similarly, {a, ab, ab
2
, …….} is a language over A. This consists of all words 

beginning with a and followed by zero or more b’s. 

Let L1 and L2 be languages over an alphabet A. Then the concatenation of L1 

and L2, denoted by L1L2 , is the language defined by 

   L1 L2 = {u v : u  L1, v  L2} 

Thus L1 L2 is the set of all words formed by the concatenation of a word from 

L1 with a word from L2. For example, let 

   L1 = { a, b
3
}, L2 = {a

3
, a b

2
, b} 

Then 

   L1 L2 = {a
4
, a

2 
b

2
, a b, b

3
 a

3
, b

3
 a b

2
, b

4
} 

is a language. 

Since concatenation of words is associative, it follows that concatenation of 

languages is associative. 
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Definition: The Power of a language L are defined as  

   L
0
 = {  }, L

1
 = L, L

2
 = LL, ……., L

m+1
 = L

m
 L, m > 1. 

Definition: The unary operation L* of a language L, called the Kleene closure 

of L is defined as the infinite union 

  L* = L
0
  L

1
  L

2
  …… = 

1k

kL  

If we leave apart L
0
 = {  }, then we write  

       L
+
 = L

1
  L

2
  ……….= 

1k

kL . 

Definition: The regular expressions over an alphabet A and the sets they 

denote are defined recursively as follows: 

(1) The empty string  is a regular expression and denotes the set { }. 

(2)  or ( ) is a regular expression and denote the empty set. 

(3) Each letter a in A is a regular expression and denotes the set {a}. 

(4) If r is a regular expression denoting the language R, then (r*) is a regular 

expression on and denotes the set R*. 

(5) If r and s are regular expression denoting the language R and S , then (r  s) 

or (r + s) is a regular expression and denotes the set R  S. 

(6) If r and s are regular expressions denoting the languages (sets) R and S, 

then (r s) is a regular expression and denotes the set R S. 

Thus, a regular expression r is a special kind of a string (word) which uses the 

letters of A and the five symbols 

  (      ) , * , .  ,  ,  (or ) 

For example, 

(i) the regular expression (0 + 1)* denotes all the strings of 0’s and 1’s. 

(ii) the regular expressions (1 + 10)* denotes all the strings of 0’s and 1’s and 

beginning with 1 and not having two consecutive 0’s. 

(iii) The regular expression (0 + 1)* 00 (0 + 1)* denotes all the strings of 0’s 

and 1’s with at least two consecutive 0’s. 

(iv) (0 + 1)* 0 1 1 denotes all strings of 0’s and 1’s ending in 0 1 1 
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(v) 0* 1* 2* denotes all the strings with any number of 0’s followed by any 

number of 1’s followed by any number of 2’s. 

Definition: The language L(r) over A defined by a regular expression r over 

A is as follows: 

(1) L( ) = { } 

(2) L( ( ) ) = , the empty set 

(3) L(a) = {a}, where a is a letter in A. 

(4) L(r*) = (L(r))*, the Kleene closure of L(r). 

(5) L(r1 + r2) = L(r1)  L(r2), the union of languages 

(6) L(r1 r2) = L(r1) L(r2), the concatenation of the languages. 

Definition: Let L be a language over A. Then L is said to be a regular 

language over A if there exists a regular expression r over A such that L = 

L(r). 

Example: Let A = {a, b}. If 

(i) r = a*, then L(r) consists of all powers of a 

(ii) r = a a*, then L(r) consists of all positive powers of a, that is all words in a 

excluding the empty word. 

(iii) r = a + b*, then L(r) consists of a or any word in b, that is  

 

   L(r) = { a, , b , b
2
…..} 

(iv) r = (a + b)*, then L(r) consists of all strings of a and b, i.e. all words 

(strings) over A. 

(v) r = (a + b)* a a, then L(r) denoted all strings of a and b ending in a a, i.e. 

L(s) consists of the concatenation of any word in A with a a (or a
2
). 

Example: Let L = {a
m

 b
n
 : m, n > 0} be a language over A = {a, b}. Find a 

regular expression r such that  

   L = L(r)                                                   

Solution: The given language L consists of strings beginning with one or more 

a’s followed by one or more b’s. Hence  

   R = a a* b b* 

5.3 Language Determined by a Finite – State Automaton 

Let M be a finite state automaton with input set A. Then M defines a language 

over A, denoted by L(M), as follows: 



 246 

Let u = a1 a2……….an be a string on A. Then u determines a sequence of states 

   s0  s1  s2  ……… sn 

where s0 is the initial state and  

   f(si-1, ai) = si for i  1. 

In other words,  u determines the path 

   s0  s1 s2, ……………,  sn 

 A finite state machine M is said to accept (recognize) the word u if the final 

state sn belong to an accepting state in A (subset of internal states S). 

The language L(M) of the finite state automaton M is the collection of all 

words from the input set A which are accepted by M. 

Example: Determine the language L(M) of the finite state automaton whose 

transition diagram is given below 

                                      b                                  b   

 

                                     a                                      

 

                       a                                                a,b 

Solution: Let M = (I, S, A, s0, f) be the finite – state automaton. Then, we note 

that s0 is the initial  state, S = {s0, s1, s2} and  

   f(s0, a) = a, f(s, b) = s1 

   f(s1, a) = s0, f(s1, b) = s2 

   f(s2, a) = s2, f(s2, b) = s2. 

Also A = {s0, s1}and I = {a, b}. 

We note that 

(i) We can never leave s2 

(ii) The state s2 is the only rejecting (non – accepting) state 

(iii) a string in which there appear two successive b’s is not accepted by M. 

Thus L(M) consists of all strings (words) from I = {a, b} which do not have 

two successive b’s. 

Example: Find the language accepted by the automaton M shown in the 

transition diagram below: 

 

   b               a 

                    a                     a                         a                                        

a1 a2 an 

s0 
s1 

   s2 

 s0  s1  s2  s3  s4 
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              b                b         

   

            b         

        

     a         b 

                    

Solution: Let  M = (I, S, A, s0, f) be the F S A. Then, we have 

   I = {a, b}, S = {s0, s1, s2, s3, s4}, s0 is the initial state, 

   A = {s4} 

and f is given by 

   f(s0, a) = s1, f(s0, b) = s0, f(s1, a) = s2, f(s2, a) = s2, f(s2, b) 

= b, 

   f(s3, b) = s4, f(s3, a) = s1, f(s4, b) = s4, f(s4, a) = s4. 

We note that  

   s0  s1  s2  s3  s4 (accepting state) 

 

  s0  s0  s1  s2  s3  s4   (accepting state) 

 

s0  s0  s1  s2  s3  s4  s4  s4 (accepting state) 

 

Hence, L(M) consists of all words which contain a a b b as a subword. 

5.4. Grammars 

Definition: A phrase – structure Grammar or simply a Grammar G 

consists of 

(1) A finite set N of non – terminal symbols (or variables) 

(2) A finite set T of terminal symbols, where N  T =  

(3) A finite subset P of [(N  T)*  T*]  (N  T)*, called the set of 

productions. Thus a production is an ordered pair (A, B), written as A  B, 

where A  [(N  T)*  T*] must include at least one non – terminal symbol 

whereas B  (N  T)* can consist of any combination of non – terminals and 

terminal symbols. 

(4) A starting symbol   N. 

A grammar G is denoted by G(N, T, P, ). 

Terminals will be denoted by lower case letters a, b, c,… whereas non – 

terminals will be denoted by A, B, C……. 

Example: Let 

a a b b 

a b b a b 

a b b b a a b 
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   N = { , A} 

   T = {a, b} 

   P = {   b ,   b A, A  a A, A  b} , 

where  is the starting symbol. 

Then G = ( N, T, P, ) is a grammar. 

Since      b ,   b A 

and  

   A  a A, A  b , 

we can also write the productions as  

     (b , b A), A  (a A, b) . 

Definition: Let G = (N, T, P, ) be a grammar and let    be a production. 

If x  y  (N  T)*, then x  y is said to be directly derivable from x  y and 

we write 

   x  y  x  y. 

Further, if i  (N  T)* for i = 1, 2, ……, n, and i+1 is directly derivable 

from i for i = 1, 2, ……, n-1, we say that n is derivable from 1 and write 

       1  n  .  

We call 

   1  2  3 ………  n  , 

the derivation of n (from 1). 

By convention, any element of (N  T)* is derivable from itself. 

Definition: The language generated by a grammar G, written L(G), consists of 

all strings over T derivable from the start symbol . Thus 

   L(G) = { v  T* :  ……..  v} 

Definition: A sentential form is any derivative of the unique non – terminal 

symbol S.  

The language L(G) generated by the grammar G is the set of all sentential 

forms whose symbols are terminals.  
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Example: Let 

   G = {N, T, , P} 

be a grammar, where 

N = { }, T = {a, b},  is starting symbol, and the production P are 

   P = {   a ,    a ,   b and   b }. 

Obtain sentential form and find the language generated by G. 

Solution: We note that 

      a 

        a a 

       b  a a  

      b b  a a  

       b b b a a 

Thus b
3
 a

2
 = b b b a a is a sentential form. Hence the language generated by G 

is 

   L(G) = {b
n
 a

m
 : n  0, m  0}. 

Definition: Let G = (N, T, P, ) be a grammar and let  be the null string. If 

every production is of the form 

    A     ,  

where ,   (N  T)*, A  N,   (N  T)*  { }. Then G is called a 

context – sensitive              (or type – 1) grammar.  

Definition: A grammar G = (N, T, P, ) is said to be context – free                      

(or type – 2) grammar if the productions are of the form. 

           A  , 

where A  N,   (N T)*. 

Thus, in this case, we can replace A by  regardless of A where A appears. 

Definition:  A grammar G = (N, T, P, ) is said to be regular (or type – 3) 

grammar if every production is of the form 
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   A  a or A  a B or A   , 

where A, B  N, a  T. 

Thus, in this case, we replace a non – terminal symbol by a terminal symbol, 

by a terminal symbol followed by a non – terminal symbol, or by the null 

string. 

We further note that a regular grammar is context free grammar and that a 

context free grammar with no productions of the form A   is a context – 

sensitive grammar. 

Example: Name the type of the grammar G defined by T = {a, b, c}, N =              

{ , A, B, C, D, E}, starting symbol  and productions 

 

  a A B,   a B, A  a A c, A  a c, B  D c, D  b, 

   C D  C E, C E  D E, D E  D C, C c  D c c. 

 

Also find its language. 

Solution: The production C E  D E says that we can replace C by D if C is 

followed by E. The production C c  D c c says that we can replace C by D C 

if C is followed by c. 

Thus the grammar is context – sensitive. 

We can derive D C from C D since 

   C D  C E  D E  D C. 

We note that  

  a A B  a a A c B  a a a c c B  a a a C C D c  

 a a a C D C c  a a a D C C c  a a a D C D c c  

 a a a D D C c c  a a a D D D c c c  a a a b b b c c c 

Thus a
3
 b

3
 c

3
 is in L(G). Proceeding in this way, we can show that 

   L(G) = {a
n
 b

n
 c

n
 : n  N}. 

Example: Determine, whether the given grammar is context – sensitive, 

context free, regular or none of these: 

   G = (N, T, , P), 

Where N = { , A}, T = {a, b}, starting symbol is  and the productions are 
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  b ,    A, A  a , A b A, A  a,   b. 

Solution: We note that 

(i) A  , A  N,   (N  T)* 

Hence the grammar is context – free grammar. 

(ii) A  a or A  a B, A  N, B  N, a  T. 

Hence the grammar is regular. 

(iii) The grammar is also context sensitive because 

    A     ,   

where ,   (N  T)*, A  N,   (N  T)*  { }. 

 

Example :    Find a context-free grammar G which generates the language  

 

  L = { a
n
 b

n 
:  n > 0} .  

Solution :  Here  

  T = {a, b} .  

If we consider the productions 

    ab ,        a  b ,  

then we note that  

    a  b   a ab b  

    a  b  a a  b b   a a a b b b  

    a  b  a a  b b  a a a  b b b  a a a a b b b b  

   ………………. 

In general  

  L(G) =  {a
n
 b

n
 ,  n > 0 } .  

Hence the grammar with production 

    ab,    a  b  

generates L(G).  

5.5 Derivation Trees of Context – Free Grammars 

Let G be a context free grammar. An ordered rooted tree which represents any 

derivation of a word in L(G) is called a Derivation Tree or parse tree. 
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Example: Consider the language 

   L = {a
n
 b

n
 : n > 0} 

We have seen that context free grammar which generates L(G) is 

   N = { }, T = {a, b}, P = {   a  b,   a b} 

The word w = a a a b b b is derived as  

     a  b  a a  b b  a a a b b b 

The following figure will therefore be its derivation tree: 

 

    

           a    b 

        

           a    b 

         

           a    b 

Example: Find the derivation tree for the word a a b a in L(G) where G has the 

productions 

     a A, A  a B, B  b B, B  a. 

Solution: The word a a b a is derived as 

     a A  a(a B)  a a (b B)  a a b a 

and therefore the derivation tree of a a b a is 

 

    

                 a               A 

             a               B 

        b              B 

           a 

 

Definition: A language is said to be context – sensitive if there is a context – 

sensitive grammar G with L = L(G). 

Definition: A language is said to be context free if there is a context – free 

grammar G with            L = L(G). 

Definition: A language is said to be regular if there is a regular grammar G 

with L = L(G). 

Example: Is the language 
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   L = {a
n
 b

n
, n = 1, 2, …..} 

over {a, b} context free? 

Solution: Let G be grammar defined by  

   N = { }, T = {a, b},  is staring symbol and production 

as  

     a  b ,   a b 

Then derivation of  are 

     a  b 

        a a  b b  

 

       --------------- 

       --------------- 

        a
n-1

  b
n-1

 

        a
n-1

 a b b
n-1

 = a
n
 b

n
. 

Thus the grammar G generates the language L(G). Also the grammar G is 

context free. Hence the language L = [a
n
 b

n
, n = 1, 2, …..] is context free 

language. 

5.6  Similarity of Regular Grammar and Finite State Automata 

We now show that regular grammar and finite state automata are 

essentially the same. After that we would be able to say that 

     “A language is a regular set (or just regular) if it is accepted by some 

finite automaton.” 

Theorem: Let M be a finite – state automaton given as a transition diagram. 

Let  be the initial state. Let T be the set of input symbols and let N be the set 

of states. Let P be the set of productions 

    s  x s  

if there is an edge labeled x from the state s to the state s ,  and  

              s   

if s is an accepting state.  Let 

   G = (N, T, P, ) 

be the regular grammar.   Then the set of strings accepted by M is equal to 

L(G). 



 254 

Proof: Let AC(M) denote the set of strings by M. We first show that AC(M)  

L(G). So, let                AC(M). If  is the null string, then  is an accepting 

state. In this case G contains the production. 

      

The derivation 

          (i) 

shows that   L(G). 

Now let   AC(M) and let  is not a null string. Then 

    = a1 a2………an, ai  T. 

Since  is accepted by M, there is a path 

   ( , s1, s2,……..,sn)  , 

where sn is an accepting state with edges successively labeled a1,……, an. It 

follows that G contains the productions 

     a1 s1 

   s1  a2 s2 

   ------------- 

   ------------- 

   sn-1  an sn 

Since sn is an accepting state, G also contains the production 

   sn  . 

The derivation 

     a1 s1 

        a1 a2 s2 

        a1 a2 a3 s3 

        --------------- 

        ---------------  

         a1 a2 …. an sn 

         a1 a2……an  (sn  )   (ii) 

shows that  = a1 a2……..an  L(G). 

It remains to show that L(G)  Ac(M). Suppose that   L(G). If  is the null 

string, then  must result from the derivation 
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Thus the production    is in the grammar. Hence  is an accepting state in 

M and so   Ac(M). 

Now let   L(G) be a non – null string. Then  

    = a1 a2……….an  ,  ai  T. 

So there is a derivation of the form (ii). If in the transition diagram, we begin at 

 and trace the path 

   ( , s1, s2,……., sn) , 

we can generate the string . The last production used in (ii) is sn  . Thus 

the last state reached is an accepting state. Therefore,  is accepted by M, that 

is, L(G)  A c(M). Hence 

   L(G) = A c(M) . 

Thus, Given a finite state automaton M, we can construct a regular 

grammar G such that the set of strings accepted by M is equal to L(G). 

Example: Let G(T, N, P, ) be a regular grammar, where 

   T = {a, b}, N = { , A},  is starting symbol and  

   P = {   b  ,   a A , A b A , A  b}. 

Does there exist finite state automaton corresponding to G? 

Solution: Let the inputs symbol be the terminal symbols and the states be the 

non – terminal symbols, where  is the initial state. 

For each production of the form 

   s  x s , 

draw an edge from state s to state s  and label it x. Thus the productions 

     b  ,   a A , A  b A 

yield the graph 

 

  b   b 

   a        b 

        

 

The last production A  b is equivalent to two productions 

   A 
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  A  bB  and B    ,  

where B is  an additional and Mor – terminal symbol.  

 

 The productions  

 

    b   ,     a A  ,  A  bA ,   A  bB  

gives us the graph  

 

  b   b 

   a        b 

        , 

and the production 

   B   

indicates that B is an accepting state. 

We note that  

(i) Vertex A has no outgoing edge labeled as a 

(ii) Vertex B has no outgoing edge 

(iii) A has two outgoing edges labeled as b . 

Thus, the above graph is not finite – state automation but a non – 

deterministic finite state automation (I, S, A, , f), where I = {a, b},  S = { , 

A, B}, A = {B}, initial state  and next state function f is defined by 

              F 

S a                    b 

 

A 

B 

{A}             { } 

               {A, B} 

                   

We further notice that 

(i) the string b b a b b is in L(G) since 

   b  b  

       b b  

       b b a A 

I 

   A  B 
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       b b a b A 

       b b a b b B 

       b b a b b 

Also the string b b a b b is accepted by the non-deterministic finite state 

automation obtained above since the path 

         A  A  B  

which ends at state B(Accepting state) represents the string b b a b b  

Theorem: Let G(T, N, P, ) be a regular grammar and let I = T , S =                  

N  {F}, where F  N  T,  as initial state, A = {F}  {s : s    P} and f 

be defined by 

   F(s, x) = {s  : s  x s   P}  {F : s  x F  P}. 

Then the non – deterministic finite state automaton M = (I, S, A, , f) accept 

the strings L(G).  

(The proof is same as the proof for finite state automation). 

5.7  Kleene Theorem and Pumping Lemma  

We know that a non – deterministic finite state automaton can be converted 

into an equivalent finite state automaton. 

Thus it follows that 

Theorem (Kleene) : A language L is regular if and only if there exists a finite 

– state automaton that accept strings in L. 

Theorem (Pumping Lemma) : Let M be an automaton over A such that  

(i) M has k states s0, s1…….., sk 

(ii) M accepts a word v from A where | v | > k. 

Then 

   w = x y z, 

where, for every m, vm = x y
m

z is accepted by M.  

Proof: Let s0, s1,……..,sk be the states of automaton M over A and let M 

accepts a word v = a1 a2….an over A such that n > k. Let the sequence of states 

determined by the word v be  

b a b b b 
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   P = (s0, s1, ……, sn) . 

Since n > k, two of the states in P must be equal.   Suppose si = sj, i < j. Letting 

   x = a1 a2…..ai, y = ai+1 ai+2……aj  , z = aj+1 aj+2….an 

We see that x y ends in si = sj and so x y
2
, x y

3
,…., xy

m
 (for all m) also end in 

si. Thus for every m, vm = x y
m

 z ends in sn, which is an accepting state 

 

              y = ai+1,…..aj   

 

     x = a1a2…. ai 

                                                                  z = aj+1…an 

 

Example: Show that language L = {a
m

 b
m

 : m is positive} is not regular. 

Solution: Suppose on the contrary that L is regular. Then, by Kleene Theorem, 

there exists a finite state automaton M which accept L = {a
m

 b
m

 : m is 

positive}. Suppose M has k states. Let v = a
k
 b

k
 be a word. Then length of               

v is greater than k, the number of states in M. Therefore, by Pumping Lemma, 

   v = x y z , y  . 

and x y
2
 z is also accepted by M. 

If y consists of only a’s or only b’s, then v2 = x y
2
 z will not have same number 

of a’s or b’s. If y consists of both a’s and b’s, then v2 will have a’s following 

b’s. In either case v2 does not belong to L which is a contradiction. Thus L is 

not regular. 

5.8 Ambiguous Grammar 

Definition: A context – free grammar G is called a ambiguous grammar if 

there is at least one string in L(G) which has more than one derivation trees. 

Example: Show that grammar G with productions 

   S  a S , S  S a , S  a 

is ambiguous. 

Solution: We note that the string a a a can be generated by four derivation 

trees 

 

 S     S 

  a   S              a   S 

  a   S ,    S     a 

    a     a    

 s0 
si=sj  sn 
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S S 

 (S  a S  a a S  a a a)  (S  a S  a S a  a a a) 

       

       

           S          a and    S      a 

           S          a              a    S 

           a        a 

  (S  S a  S S a  a a a)      (S  S a  a S a  a a a) 

Hence G is ambiguous. 

Example: Show that the grammar 

   G = ({S}, {a, +}, S, P) 

with production 

   P = (S  S + S, S  a)  

is ambiguous. 

 

Solution: We note that word a + a + a can be generated in two ways : 

(i) S  S + S         S 

         S + S + S            S      S 

         a + S + S  a + a + S           a        S    S 

         a + a + a              

(ii) S  S + S         S 

          S + S + S          S      S 

          S + S + a           S    S  a 

          a + S + a      

          a + a + a 

Thus, the word a + a + a has two derivation tree. Hence G is ambiguous.   

  

 

 

 

 

 

 

 


