
1

ADVANCED DISCRETE MATHEMATICS

M.A./M.Sc. Mathematics (Final)

Directorate of Distance Education

Maharshi Dayanand University

ROHTAK – 124 001

MM-504 & 505

(Option-P
3
)

2

Copyright © 2004, Maharshi Dayanand University, ROHTAK

All Rights Reserved. No part of this publication may be reproduced or stored in a retrieval system

or transmitted in any form or by any means; electronic, mechanical, photocopying, recording or

otherwise, without the written permission of the copyright holder.

Maharshi Dayanand University

ROHTAK – 124 001

Developed & Produced by EXCEL BOOKS PVT. LTD., A-45 Naraina, Phase 1, New Delhi-110 028

3

Contents

UNIT 1: Logic, Semigroups & Monoids and Lattices 5

Part A: Logic

Part B: Semigroups & Monoids

Part C: Lattices

UNIT 2: Boolean Algebra 84

UNIT 3: Graph Theory 119

UNIT 4: Computability Theory 202

UNIT 5: Languages and Grammars 231

4

M.A./M.Sc. Mathematics (Final)

ADVANCED DISCRETE MATHEMATICS

MM- 504 & 505 (P
3
)

Max. Marks : 100

Time : 3 Hours

Note: Question paper will consist of three sections. Section I consisting of one question with ten parts covering whole of

the syllabus of 2 marks each shall be compulsory. From Section II, 10 questions to be set selecting two questions from each

unit. The candidate will be required to attempt any seven questions each of five marks. Section III, five questions to be set,

one from each unit. The candidate will be required to attempt any three questions each of fifteen marks.

Unit I

Formal Logic: Statement, Symbolic representation, totologies, quantifiers, pradicates and validity, propositional

logic.

Semigroups and Monoids: Definitions and examples of semigroups and monoids (including those pertaining

to concentration operations). Homomorphism of semigroups and monoids, Congurence relation and quotient

semigroups, sub semigropups and sub monoids, Direct products basic homomorphism theorem.

Lattices: Lattices as partially ordered sets, their properties. Lattices and algebraic systems. Sub lattices, direct

products and homomorphism. Some special lattices for example complimented and distributive lattices.

Unit II

Boolean Algebra: Boolean Algebra as Lattices. Various Boolean Identities Join-irreducible elements. Atoms

and Minterms. Boolean Forms and their Equivalence. Minterm Boolean Forms, Sum of Products Canonical

Forms. Minimization of Boolean Functions. Applications of Boolean Algebra to Switching Theory (using AND,

OR and NOT gates). The Karnaugh Map method.

Unit III

Graph Theory – Definition of (undirected) Graphs, Paths, Circuits, Cycles and Subgroups. Induced Subgraphs.

Degree of a vertex. Connnectivity. Planar Graphs and their properties. Trees, Duler's Formula for connected

Planar Graphs, Complete and Complete Bipartite Graphs. Kurtowski's Theorem (statement only) and its use.

Spanning Trees. Cut-sets. Fundamental Cut-sets and Cycles. Minimal Spanning Trees and Kruskal's Algorithum.

Matrix Representations of Graphs. Euler's Theorem on the Existence of Eulerian Paths and Circuits. Directed

Graphs. Indegree and Outdegree of a Vertex. Weighted undirected Graphs. Dijkstra's Algorithm. Strong Con-

nectivity & Warshall's Algorithm. Directed Trees. Search Trees. Tree Traversals.

Unit IV

Introductory Computability Theory – Finite state machines and their transition table diagrams. Equivalence

of finite state machines. Reduced Machines, Homomorphism. Finite automata. Acceptors. Non-deterministic

finite automata and Equivalence of its power to that of Deterministic Finite Automata. Moore and Mealy Ma-

chines.

Unit V

Grammar and Languages — Phrase Structure Grammars. Rewriting Rules. Derivations Sentential Forms.

Language generated by Grammar. Regular, Context Free, and Context Sensitive Grammar and Languages.

Regular sets, Regular Expressions and the Pumping Lemma, Kleene's Theorem.

Notions of Syntax Analysis. Polish Notations. Conversion of Infix Expressions to Polish Notations. The Reverse

Polish Notation.

LOGIC, SEMIGROUPS & MONOIDS AND LATTICES

5

Unit-1

Logic, Semigroups & Monoids

and Lattices

PART - A : LOGIC

1.1. Logic is a science of the necessary laws of thought, without which no

employment of the understanding and the reason takes place.

Consider the following argument:

All mathematicians wear sandals

Anyone who wears sandals is an algebraist

Therefore, all mathematicians are algebraist.

Technically, logic is of no use in determining whether any of these statements

is true. However, if the first two statements are true, logic assures us that the

statement.

All mathematicians are algebraists is also true.

Example:- which of sentences are true or false (but not both)?

(a) The only positive integers that divide 7 are 1 and 7 itself.

(b) For every positive integer n, there is a prime number larger than n.

(c) Earth is the only planet in the universe that has life.

Solution:- (a) We call an integer n prime if n>1 and the only positive integers

that divide n are 1 and n itself. Sentence (a) is another way say that 7 is a

prime. Hence sentence (a) is true.

(b) Sentence (b) is another way to say that there are an infinite number of

prime. Hence (b) is true.

(d) Sentence (c) is either true or false (but not both) but no one knows which at

this time.

Definition:- A declarative sentence that is either true or false, but not both is

called a Proposition (or statement).

For example, sentences (a) to (c) in the above example are propositions.

But the sentence

x + y > 0

ADVANCED DISCRETE MATHEMATICS 6

is not a statement because for some values of x and y the sentence is true

whereas for other values of x and y it is false. For example, if x = 1, y = 3, the

sentence is true, but for x = -2, y = 0, it is false.

Similarly, the sentence

Take two crocins is not a statement. It is a command.

The propositions are represented by lower case letters such as p, q and r. We

use the notation p: 1+1=3 to define p to be the proposition 1+1=3.

Many propositions are composite, that is, composed of subpropositions and

various connectives. The “Composite propositions are called compound

propositions.”A proposition which is not compound is said to be primitive.

Thus, a primitive proposition cannot be broken into simpler propositions.

Example:- The sun is shining and it is cold. This is a compound proposition

composed of two propositions

The sun is shining

and

It is cold.

Connected by the connective “and”.

On the other hand, the proposition

London is in Denmark

is primitive statement.

Definition:- The truth values of a compound statement in terms of its

component parts, is called a truth table.

1.2. Basic Logical Operations

The three basic logical operations are

1. Conjunction

2. Disjunction

3. Negation

which correspond, respectively, to “and”, “or” and “not”.

Definition:- The conjunction of two propositions p and q is the proposition

 p and q.

It is denoted by p q.

Example:- Let

p : This child is a boy

q : This child is intelligent

Then

p q : This child is a boy and intelligent.

LOGIC, SEMIGROUPS & MONOIDS AND LATTICES

7

Thus p q is true, if the child is a boy and intelligent both.

Even if one of the component is false, p q is false. Thus

“the proposition p q is true if and only if the proposition p and q are both

true”.

The truth value of the compound proposition p q is defined by the truth table:

 P q p q

 T

 T

 F

 F

 T

 F

 T

 F

 T

 F

 F

 F

Example:- If

p : 1 +1 = 3

q : A decade is 10 years,

then p is false, q is true and the conjunction

p q : 1 +1 = 3 and a decade is 10 years

is false.

Definition:- The disjunction of two proposition p and q is the proposition

p or q

It is denoted by p q.

The compound statement p q is true if at least one of p or q is true. It is false

when both p and q are false.

The truth values of the compound proposition p q is defined by the truth

table:

 P q p q

 T

 T

 F

 F

 T

 F

 T

 F

 T

 T

 T

 F

For example, if

p : 1 + 1 = 3

q : A decade is 10 years,

then p is false, q is true. The disjunction

p q : 1 + 1 = 3 or a decade is 10 years

ADVANCED DISCRETE MATHEMATICS 8

is true.

Definition:- If p is a statement, the negation of p is the statement not p,

denoted by ~p.

Thus ~p is the statement “it is not the case that p”.

Hence if p is true than ~p is false and if p is false, then ~p is true.

The truth table for negation is

 p ~p

 T

 F

 F

 T

Example:- Give the negation of the following statements :

(a) p : 2 + 3 > 1 (b) q : It is cold

Solution:-

(a) ~p : 2 + 3 is not greater than 1. That is, ~p : 2 + 3 1.

Since p is true in this case, ~p is false.

(b) ~q : It is not the case that it is cold. More simply, ~q : It is not cold.

Translating from English to Symbols :- We consider

Example:- Write each of the following sentences symbolically, letting p : “It is

hot” and q : “ It is sunny”:

(a) It is not hot but it is sunny

(b) It is neither hot nor sunny.

Solution:- (a) The convention in logic is that the words “but” and “and” mean

the same thing. Generally, but is used in place of and when the part of the

sentence that follows is in some way unexpected.

The given sentence is equivalent to “ It is not hot and it is sunny” which can be

written symbolically as ~p q.

(c) The phrase neither A nor B means the same as not A and not B. Thus to say

“ IT is neither hot nor sunny” means that it is not hot and it is not sunny.

Therefore the given sentence can be written symbolically as ~p ~q.

Definition:- A “Statement form” or “Propositional form” is an expression

made up of statement variables (such as ~, ,) that becomes a statement

when actual statements are substituted for the component statement variable.

The truth table for a given statement form displays the truth values that

correspond to the different combinations of truth values for the variables.

Example:- Construct a truth table for the statement form:

LOGIC, SEMIGROUPS & MONOIDS AND LATTICES

9

(p q) ~r.

solution:-The truth table for the given statement form is

p q r P q ~r (p q) ~r

T T T

T T F

T F T

T F F

F T T

F T F

F F T

F F F

 T F

 T T

 F F

 F T

 F F

 F T

 F F

 F T

 T

 T

 F

 T

 F

 T

 F

 T

Definition:- Two different compound propositions(or statement forms) are

said to logically equivalent if they have the same truth value no matter what

truth values their constituent propositions have.

We use the symbol for logical equivalent.

Example:- Consider the statements forms

(a) Dogs bark and cats meow

(b) Cats meow and dogs bark

If we take

p : Dogs bark

q : Cats meow,

then (a) and (b) are in logical expression

(a) p q

(b) q p

If we construct the truth tables for p q and q p , we observe that p q and q

 p have same truth values.

 p q p q

 T T

 T F

 F T

 F F

 T

 F

 F

 F

p q q p

T T

T F

F T

F F

T

F

F

F

Thus p q and q p are logically equivalent. That is

p q q p

Example:- Negation of the negation of a statement is equal to the statement.

Thus

ADVANCED DISCRETE MATHEMATICS 10

~(~p) p.

Solution:- The truth table of ~(~p) is

 p ~p ~(~p)

 T

 F

 F

 T

 T

 F

Thus truth values for p and ~(~p) are same and hence p and ~(~p) are logically

equivalent. The logical equivalence ~(~p) p is called Involution Law.

Example:- Show that the statement forms ~(p q) and ~p ~q are not

logically equivalent.

Solution:- Construct the truth table for both statement forms:

 p q ~p ~q p q ~(p q) ~p ~q

 T T

 T F

 F T

 F F

 F F T

 F T F

 T F F

 T T F

 F F

 T F

 T F

 T T

 Thus we have different truth values in rows 2 and 3 and so ~(p q) and

~p ~q are not topologically equivalent.

Remark:- If we consider ~p ~q, then its truth values shall be

F

T

T

T

and hence ~(p q) and ~p ~q are logically equivalent. Symbolically

~(p q) ~p ~q (1)

Analogously,

~(p q) ~p ~q (2)

The above two logical equivalence are known as De Morgan’s Laws of Logic.

Example:- Use De Morgan’s Laws to write the negation of

p : Jim is tall and Jim is thin.

Solution:-The negation of p is

~p : Jim is not tall or Jim is not thin.

LOGIC, SEMIGROUPS & MONOIDS AND LATTICES

11

Definition:- A compound proposition which is always true regardless of truth

values assigned to its component propositions is called a Tautology.

Definition:- A compound proposition which is always false regardless of truth

values assigned to its component propositions is called a Contradiction.

Definition:- A compound proposition which can be either true or false

depending on the truth values of its component propositions is called a

Contingency.

Example:- Consider the statement form

p ~p.

The truth table for this statement form is

 P ~p p ~p

 T

 F

 F

 T

 T

 T

 all T’s

Hence p ~p is a tautology.

Exercise :- Show that p ~p is a contradiction.

Remark:- If and c denote tautology and contradictions respectively, then we

notice that

~ c (1)

and

~c (2)

Also from the above two examples

p ~p (3)

and

p ~p c (4)

the logical equivalence (1), (2), (3) and (4) are known as Complement Laws.

Logical Equivalence involving Tautologies and Contradictions

If t is a tautology and c is a contradiction, then the truth tables for p and p

c are :

ADVANCED DISCRETE MATHEMATICS 12

 p p p c p c

 T

 F

 T

 T

 T

 F

 T

 F

 F

 F

 F

 F

 Same truth values and so p p Same truth values and so p c c

Similarly, the truth tables for p and p c are

 p p

 T

 F

 T

 T

 T

 T

Same truth

values

 So

p

 p c p c

 T

 F

 F

 F

 F

 F

Same truth value and so

 p c p

Thus we have the following logical equivalence:

p p p c c

p p c p (universal bound laws)

These four logical equivalence are known as Identity Law.

Example:- (Idempotent Laws): Consider the truth tables for p p and p p

given below:

 p p p p

 T

 F

 T

 F

 T

 F

 p p p p

 T

 F

 T

 F

 T

 F

We note that

(i) p p and p have same truth values

(ii) p p and p have same truth values

Hence

p p p and p p p

These two logical equivalence are known as Idempotent Laws.

Exercise :- Show that p q q p and p q q p (these logical

equivalences are known as Commutative Laws).

Exercise :- Prove that

p (p q) p

and

p (p q) p .

LOGIC, SEMIGROUPS & MONOIDS AND LATTICES

13

(These logical equivalence are known as Absorption Laws).

Exercise :- Show that

(p q) r p (q r), (p q) r p (q r) (Associative Laws)

and

 p (q r) = (p q) (p r), p (q r) = (p q) (p r) (Distributive Laws)

1.3. Conditional Propositions

Definition:- If p and q are propositions, the compound proposition

if p then q or p implies q

is called a conditional proposition or implication and is denoted by

p q .

The proposition p is called the hypothesis or antecedent whereas the

proposition q is called the conclusion or consequent.

The connective if…then is denoted by the symbol .

It is false when p is true and q is false, otherwise it is true. In particular, if

p is false, then p q is true for any q.

Definition:- A conditional statement that is true by virtue of the fact that its

hypothesis is false is called true by default or vacuously true.

For example, the conditional statement

“ If 3 + 3 = 7, then I am the king of Japan” is true simply because p : 3 + 3 = 7

is false. So it is not the case that p is true and q is false simultaneously.

Thus the truth values of the conditional proposition p q are defined by the

truth table:

p q p q

T T

T F

F T

F F

 T

 F

 T

 T

Each of the following expressions is an equivalent form of the conditional

statement p q:

p implies q

q if p

p only if q

ADVANCED DISCRETE MATHEMATICS 14

p is sufficient condition for q

q is necessary condition for p.

Example:- Restate each proposition in the form of a conditional proposition:

(a) I will eat if I and hungry

(b) 3 + 5 = 8 if it is snowing

(c) when you sing, my ears hurt

(d) Ram will be a good teacher if he teaches well.

(e) A necessary condition for English to win the world series is that they sign a

right handed relief pitcher.

(f) A sufficient condition for Sohan to visit Calcutta is that he goes to Disney

land.

Solution:-

(a) If I am hungry, then I will eat

(b) If it is snowing, then 3 + 5 = 8

(c) If you sing, then my ears hurt

(d) If Ram teaches well, then he will be a good teacher

(e) If English win the world series , then they sign a right handed relief pitcher

(f) If Sohan visit Calcutta, then he goes to Disney land.

Representation of “If …..then” as OR.

Lemma:- Show that for proposition p and q,

p q ~p q

Proof:- The truth values for p q and ~p q are given below:

P q p q ~p ~p q

T

T

F

F

T

F

T

F

T

F

T

T

F

F

T

T

T

F

T

T

 Same truth values

Hence

p q ~p q

Example:- Rewrite the statement in “If….then” form:

LOGIC, SEMIGROUPS & MONOIDS AND LATTICES

15

 Either you get to work on time or you are fired.

Solution:- Let

 ~p : you get to work on time

and

 q : you are fired

then the given statement is ~p q. But

 p : you do not get to work on time.

Hence according to above lemma, the equivalent “If….then” version of the

given statement is

 If you do not get to work on time, then you are fired.

Negation of a conditional statement:- We know that p q is false if and

only if p is true and its conclusion q is false. Also, we have shown above that

 p q ~p q

Taking negation of both sides, we have

 ~(p q) ~(~p q)

 ~(~p) (~q) (De-Morgan’s Law)

 p ~q (Double negative Law or

Involution Law)

(This can also be obtained by constructing the truth tables for ~(p q) and p

~q; the truth tables would have the same truth values proving the logical

equivalence)

Thus

 The negation of “If p then q” is logically equivalent to “p and

not q”.

Example:- Write negations for each of the following statements:

(a) If I am ill, then I cannot go to university

(b) If my car is in the repair shop, then I cannot attend the

class.

Solution:- We know that negation of “ If p then q” is logically equivalent to “p

and not q”. Using this fact, the negations of (a) and (b) are respectively

(1) I am ill and I can go to university

(2) My car is in the repair shop and I can attend the class.

ADVANCED DISCRETE MATHEMATICS 16

Remark:- The negation of a “if…..then” proposition does not start with

the word if.

Definition:- If p q is an implication, then the converse of p q is the

implication q p.

Definition:- The contrapositive of a conditional statement “If p then q” is “If

~q then ~pf”.

In symbols,

 The contrapositive of p q is ~q ~p.

Lemma:- A conditional statement is logically equivalent to its contrapositive.

Solution:- The truth tables of p q and ~q ~p are:

 p q

P q p q

T T

T F

F T

F F

 T

 F

 T

 T

Hence

 ~q ~p

p q ~p ~q ~q ~p

T T

T F

F T

F F

 F F

 F T

 T F

 T T

 T

 F

 T

 T

 p q ~q ~p

Example:- Give the converse and contrapositive of the implications

(a) If it is raining, then I use my umbrella.

(b) If today is Monday, then tomorrow is Tuesday.

Solution:- (a) we have

 p: It is raining

 q : I use my umbrella

The converse is q p: If I use my umbrella, then it is raining.

The contrapositive is ~q ~p: If I do not use my umbrella, then it is not

raining.

(b) we have

 p : Today is Monday

 q : Tomorrow is Tuesday

The converse is q p : If Tomorrow is Tuesday, then today is Monday.

The contrapositive is ~q ~p: If tomorrow is not Tuesday, then today is not

Monday.

Same truth values

ADVANCED DISCRETE MATHEMATICS 36

Definition:- The inverse of the conditional statement p q is ~p ~q.

For example, the inverse of “If today is Easter, then tomorrow is Monday” is

“If today is not Easter, then tomorrow is not Monday”.

Remark:- If a conditional statement is true, then its converse and inverse may

or may not be true. For example, on any Sunday except Ester, the conditional

statement is true in the above example yet its inverse is false.

Only if:- “ p only if q “ means that p can take place only if q takes place also.

That is, if q does not take place, then p cannot take place, i.e. ~q ~p.

Therefore equivalence between a statement and its contrapositive imply that “

if p occurs, then q must also occur”. Hence

 If p and q are statements, “p only if” means “if not q, then not p” or

equivalently “if p then q”.

Remark:- “p only if q” does not mean “p if q”.

Example:- Use contrapositive to rewrite the following statement I n” if

….then” form:

 “Ram will stand first in the class only if he works twelve hours a day.”

Solution:- Version 1: We have

 p : Ram will stand first in the class

 q: he works twelve hours a day

The contrapositive is ~q ~p : If Ram does not works twelve hours a day,

then he will not stand first in the class.

Version 2 : If Ram stands first in the class, then he will work twelve hours a

day.

Definition:- If p and q are statements, the compound statement “p if and only

if q” is called a Biconditional statement or an equivalence. It is denoted by p

 q. Observe that p q is true only when both p and q are true or when both

p and q are false.(i.e. if both p and q have same truth values) and is false if p

and q have opposite truth values.

The biconditional statement has the following truth table:

 p q

 P q p q

 T

 T

 F

 F

 T

 F

 T

 F

 T

 F

 F

 T

LOGIC, SEMIGROUPS & MONOIDS AND LATTICES 37

Lemma:- Show that

 p q (p q) (q p)

Solution:- We know that “ p if and only if q” means that both “ p if q” and “ p

only if q” hold. This means p q should be logically equivalent to (p q)

(q p). We verify it using the truth table:

P q p q q p p q (p q) (q p)

T T

T F

F T

F F

 T

 F

 T

 T

 T

 T

 F

 T

 T

 F

 F

 T

 T

 F

 F

 T

 Same truth values

Hence

 p q (p q) (q p)

Remark:- It follows there for that biconditional statement can be written as the

conjunction of two “if……then” statement namely p q and q p. Also we

know that

 p q ~p q

and so

 q p ~q p

Hence

 p q (p q) (q p)

 (~p q) (~q p)

Thus the statements having or symbol are logically equivalent to

statement having ~, and .

Definition:- Let p and q be statements. Then p is a sufficient condition for q

means “if p then q” p is a necessary condition for q means “ if not p then not

q”.

The hierarchy of operations of logical connectives : The order of operations

of connectives are

 ~, , , ,

1.4. Arguments and Their Validity

Definition:- An argument is a sequence of statements. All statements but the

final one are called premises (or assumptions or hypothesis). The final

statement is called the conclusion.

ADVANCED DISCRETE MATHEMATICS 38

The symbol , read “therefore”, is generally placed just before the

conclusion.

Logical form of an argument : The logical form of an argument can be

obtained from the contents of the given argument. For example, consider the

argument:

If a man is a bachelor, he is unhappy

If a man is unhappy, he dies young

 Bachelors die young.

This argument has the abstract form

If p then q

If q then r

 p r ,

where

p : He is bachelor

q : He is unhappy

r : He dies young

Consider another example:

If Socrates is a human being, then Socrates is mortal

Socrates is a human being

 Socrates is mortal.

The abstract form of this argument is

If p then q

 p

 q,

where

p : Socrates is human being

q : he is mortal

Definition:- An argument is said to be valid if the conclusion is true whenever

all the premises are true.

Definition:- An argument which is not true is called a fallacy.

LOGIC, SEMIGROUPS & MONOIDS AND LATTICES 39

Method to Test Validity of an Argument

1. Identify the premises and conclusion of the argument

2. Construct a truth table showing the truth values of all the premises and

conclusion

3. Find the rows (called critical rows) in which all the premises are true.

4. In each critical row, determine whether the conclusion of the argument is

also true.

(a) If in each critical row the conclusion is also true, then the argument form

is valid.

(b) If there is at least one critical row in which conclusion is false, the

argument form is fallacy (invalid).

Example:- Show that the argument

p

p q

 q

is valid.

Solution:- The premises are p and p q. The conclusion is q. The truth table

is

 Premises Conclusion

 p q p p q q

T T

T F

F T

F F

 T T

 T F

 F T

 F T

 T

 F

 T

 F

In the first row, all the premises are true. Therefore the first row is critical row.

The conclusion in this critical row is also true. Hence the argument is valid.

The argument (discussed above)

p

p q

 q

is known as Law of Detachment.

Example:- Consider the following argument form

p q

Critical row

ADVANCED DISCRETE MATHEMATICS 40

p

 q

An argument of this type is

p q: If the last digit of this number is a 0, then this is divisible by 10

 p : The last digit of this number is a 0

 This number is divisible by 10.

The truth table for the premises and conclusion is

 Premises Conclusion

 P q p q p Q

T T

T F

F T

F F

 T

 F

 T

 T

 T

 T

 F

 F

 T

 F

 T

 F

The first row is critical row and the conclusion I the critical row is true. Hence

the given argument form is Valid.

The fact that this argument form is valid is called Modus ponens. This Latin

term means “Method of affirming” (since the conclusion is an affirmation).

Example:- Consider the argument form

p q

 ~q

~p

An example of this type of argument form is

 If Zeus is human, then Zeus is mortal

 Zeus is not mortal

 Zeus is not human.

The truth table for the premises and conclusion is

 Premises Conclusion

 p q p q ~q ~p

T T

T F

F T

F F

 T F

 F T

 T F

 T T

 F

 F

 T

 T

The last row is critical row and conclusion in this row is also true. Hence the

argument form is valid.

Critical row

Critical row

LOGIC, SEMIGROUPS & MONOIDS AND LATTICES 41

The fact that this argument is valid is called Modus Tollens which means

(Method of denying) since the conclusion is denial.

The above example can be solved by “Method of contradiction” also in the

following way : Suppose that the conclusion is false, i.e, Zeus is human. Then

by the given statement (If…..then) Zeus is mortal. But this contradicts the

premises “Zeus is not mortal”. Hence the argument is valid and so Zeus is not

human.

Exercise :- Using truth table or critical row method, show that the argument

p q

q r

 p r

is universally valid. This argument is known as Rule of Inference or Law of

Syllogism.

Example:- Consider the argument

Smoking is healthy

 If smoking is healthy, then cigarettes are prescribed by physicians

 Cigarettes are prescribed by physicians.

Solution:- In symbols, the argument is

p

p q

 q

The argument is of the form Modus Ponens (or Law of Detachment) and so is

valid. However, the conclusion is false. Observe that the first premises, p : “

Smoking is healthy”, is false. The second premises, p q is then true and

conjunction of the two premises (p (p q)) is false.

Example:- Fill in the blanks of the following arguments so that they become

valid inferences :

(a) If there are more pigeons than there are pigeonholes, then two pigeons

roost in the same hole.

There are more pigeons than there are pigeonholes

 --

(b) If this number is divisible by 6, then it is divisible by 2

This number is not divisible by 2

Solution:- (a) In logical symbols, the argument is

ADVANCED DISCRETE MATHEMATICS 42

p q

p

 -----------.

Hence, by Modus ponens, the answer is q, that is,

Two pigeons roost in the same hole.

(b) In logical symbols, the given premises and conclusion are

p q

~q

------------.

Hence, by Modus tollen, the answer is ~p, that is,

This number is not divisible by 6.

Example:- Using rules of valid inference solve the problem:

(a) If my glasses are on the kitchen table, then I saw them at breakfast

(b) I was reading the newspaper in the living room or I was reading in the

kitchen

(c) If I was reading the newspaper in the living room. Then my glasses are on

the coffee table.

(d) I did not see my glasses at breakfast

(e) If I was reading my book in bed, then my glasses are on the bed table.

(f) If I was reading the newspaper in the kitchen, then my glasses are on the

kitchen table.

Where are the glasses?

Solution:-Let

p : my glasses are on the kitchen table

q : I saw them at breakfast

r : I was reading the newspaper in the living room

s : I was reading the newspaper in the kitchen

t : my glasses are on the coffee table

u : I was reading my book in bed

v : my glasses are on the bed table.

Then the given statements are

(a) p q (b) r s (c) r t

LOGIC, SEMIGROUPS & MONOIDS AND LATTICES 43

(d) ~q (e) u v (f) s p

The following deductions can be made:(1)

 p q by (a)

 ~q by (d)

 ~p by Modus Tollen (2)

 s p by (f)

 ~p by the conclusion of (1)

 ~ s by Modus Tollen (3)

 r s by (b)

 ~s by the conclusion of (2)

 r by disjunctive syllogism(4)

 r t by (c)

 r by the conclusion of (3)

 t by Modus Ponens

Hence t is true and the glasses are on the coffee table.

Contradiction Rule:- If the supposition that the statement p is false leads

logically to a contradiction, then you can conclude that p is true.

In symbols,

~p c, where c is a contradiction

 p

The truth table for the premise and the conclusion of this argument is given

below:

 p ~p c ~p c p

 T

 F

 F

 T

 F

 F

 T

 F

 T

 F

The premises and conclusion are both true in the critical row and hence the

argument is valid.

Example:- Knights and Knaves (Raymond Smullyan’s Description of an

island containing two types of people):

This island contains two types of people: knights who always tell the truth and

Knaves who always lie. A visitor visits the island and approached two natives

who spoke to the visitor as follows:

A says : B is a knight

B says : A and I are of opposite type.

Critical row

ADVANCED DISCRETE MATHEMATICS 44

What are A and B?

Solution:- Suppose A is a knight. Because A always tells the truth, it follows

that B is a knight.

Therefore what B says is true (by the definition of Knight). Therefore A and B

are of opposite type. Thus we arrive at a contradiction: A and B are both

Knights and A and B are of opposite type. Therefore supposition is wrong.

Hence A is not a Knight. So A is a Knave. Therefore what A says is false.

Hence B is not a Knight and so is a Knave. Hence A and B are both Knaves.

1.5. Quantifiers

So far we have studied the compound statements which were made of simple

statements joined by the connectives ~, , , and . That study cannot be

used to determine validity in the majority of everyday and mathematical

situations. For example, the argument

All human being are mortal

Socrates is a human being

 Socrates is mortal

is intuitively correct. Yet its validity cannot be derived using the methods

studied so far. To check the validity of such argument it is necessary to

separate the statements into parts-subjects and predicates. Also we must

analyse and understand the special role played by words denoting quantities

such as All or Some.

Definition:- The symbolic analysis of predicates and quantified statements is

called the predicate calculus whereas the symbolic analysis of ordinary

compound statements is called the Statement Calculus (or prepositional

calculus).

In English grammar, the predicate is the part of a sentence that gives

information about the subject. For example, in the sentence “Ram is a resident

of Karnal”, the word Ram is the subject and the phrase “is a resident of

Karnal” is the predicate. Thus, predicate is the part of the sentence from

which the subject has been removed.

In logic, predicates can be obtained by removing any nouns from a statement.

For example, if P stands for “is a resident of Karnal” and Q stands for “is a

resident of”, then both P and Q are predicate symbols. The sentences “x is a

resident of Karnal” and “x is a resident of y” are denoted as P(x) and Q(x, y)

respectively, where x and y are predicate variables that take values in

appropriate sets.

Definition:- A predicate is a sentence that contains a finite number of

variables and becomes a statement when specific values are substituted for the

variables.

LOGIC, SEMIGROUPS & MONOIDS AND LATTICES 45

The domain of a predicate variable is the set of all values that may be

substituted in place of the variables. The predicates are also known as

“propositional functions or open sentences”.

Definition:- Let P(x) be a predicate and x has domain D. Then the set

{ x D : P(x) is true}

is called the truth set of P(x).

For example, let P(x) be “ x is an integer less than 8” and suppose the domain

os x is the set of all positive integers. Then the truth set of P(x) is {1, 2, 3, 4, 5,

6, 7}

Let P(x) and Q(x) be predicates with common domain D of x. The notation

P(x) Q(x) means that every element in the truth set of P(x) is in the truth set

of Q(x).

Similarly P(x) Q(x) means that P(x) and Q(x) have Identical truth sets.

For example, let

P(x) be “x is a factor of 8”

Q(x) be “x is a factor of 4”

R(x) be “ x < 5 and x 3”

and let the domain of x be set of positive integers (Zahlen).

Then

Truth set of P(x) is {1, 2, 4, 8}

Truth set of Q(x) is {1, 2, 4}

Since every element in the truth set of Q(x) is in the truth set of P(x), Q(x)

P(x).

Further, truth set of R(x) is {1, 2, 4}, which is identical to the truth set of Q(x).

Hence R(x) Q(x).

Definition:- The words that refer to quantities such as “All”, or “some” and

tell for how many elements a given predicate is true are called quantifiers.

By adding quantifier, we can obtain statements from a predicate.

1.6. Universal Quantifiers and Existence Of Quantifiers

Definition:- The symbol denotes “ for all” and is called the Universal

quantifier.

ADVANCED DISCRETE MATHEMATICS 46

Thus the sentence

All human beings are mortal

Can he written as

 x S, x is mortal,

where S denotes the set of all human being.

Definition:- Let P(x) be a predicate and D the domain of x. A statement of the

form “ x D, P(x)” is called a universal statement.

A universal statement P(x) is true if and only if P(x) is true for every x in D

and a universal statement P(x) is false if and only if P(x) is false for at least

one x D.

A value for x for which P(x) is false is called a Counterexample to the

universal statement.]

Example:- Let D = {1, 2, 3, 4} and consider the universal statement

P(x) : x D, x
3
 x

This is true for all values of x D since 1
3
 1, 2

3
 2 and so on.

But the universal statement

Q(x) : n N, n + 2 > 8

is not true because if we take n = 6, then 8 > 8 which is absurd.

Definition:- The symbol denotes “there exists” and is called the existential

quantifier.

For example, the sentence “ There is a University in Kurukshetra” can be

expressed as

 a university u such that u is in Kurukshetra.

or, we can write

 u U such that u is in Kurukshetra, where U is the set of universities.

The words such that are inserted just before the predicate.

Definition:- Let P(x) be a predicate and D is the domain of x. a statement of

the form “ x D such that P(x)” is called an Existential Statement. It is

defined to be true if and only if P(x) is true for at least one x in D.

It is false if and only if P(x) is false for all x in D.

For example the existential statement

 n N : n + 3 < 9

is true since the set

{n : n + 3 < 9} = {1, 2, 3, 4, 5}

LOGIC, SEMIGROUPS & MONOIDS AND LATTICES 47

is not empty.

Example:- Let A = {2, 3, 4, 5}, then the existence statement

 n A : n
2
 = n

is false because there is no element in A whose square is equal to itself.

Definition:- A statement of the form

 x, if P(x) then Q(x)

is called universal conditional statement.

Consider the statement

 x R, if x > 2 then x
2

 > 4

can be written in any of the form

(i) If a real number is greater than 2, then its square is greater than 4

(ii) Whenever a real number is greater than 2, its square is greater than 4
(iii) The square of any real number that is greater than 2 is greater than 4.

(iv) The squares of all real numbers greater than 2 are greater than 4.

On the other hand, consider the statements

(i) All bytes have eight bits

(ii) No fire trucks are green.

These can be written as

(i) x, if x is a byte, then x has eight bits

(ii) x, if x is a fire truck , then x is not green.

Example:- Consider the statement

(i) Polygons p, if p is a square, then p is a rectangle.

This is equivalent to the universal statement

“ squares p, p is a rectangle”.

(ii) a number n such that n is prime and n is even.

This is equivalent to

“ a prime number n such that n is even”.

Remark:- Existential quantification can also be implicit. For example, the

statement

“The number 24 can be written as a sum of two even integers”

can be expressed as

“ even integers m and n such that 24 = m + n”.

ADVANCED DISCRETE MATHEMATICS 48

1. Universal quantification can also be implicit. For example the statement

“If a number is an integer, then it is rational number”

is equivalent to

“ real number x, if x is an integer, then it is a rational

number.”

1.7. Negation of University Statement

Definition:- The negation of a universal statement

 x in D, P(x)

is logically equivalent to a statement of the form

 x in D such that ~P(x)

Thus

~(x D, P(x)) x D, ~P(x)

Hence

The negation of a universal statement “all are” is logically equivalent to an

existential statement “some are not”.

For example, the negation of

(i) “ For all positive integer n, we have n + 2 > 9”

is

“ There exists a positive integer n such that n + 2 0”.

(ii) The negation of

“ All students are intelligent”

 is

“Some students are not intelligent”

or

“ a student who is not intelligent”.

(iii) the negation of

“ No politicians are honest”

is

“ a politician x such that x is honest.”

or

“Some politicians are honest”.

Definition:- The negation of a universal conditional statement is defined by

~(x, P(x) Q(x)) x such that ~(P(x) Q(x)).

Also we know that the negation of if-then statement is

LOGIC, SEMIGROUPS & MONOIDS AND LATTICES 49

~ (P(x) Q(x)) P(x) ~Q(x).

Hence

~(x, P(x) Q(x)) x such that P(x) ~Q(x) ,

that is,

~(x, P(x) Q(x)) x such that P(x) and ~Q(x).

Example:- The negation of

 people p, if p is blond then p has blue eyes

is

 a person p such that p is blond and p does not have blue eyes.

Example:- Suppose there is a bowl and we have no ball in the bowl. Then the

statement

“All the balls in the bowl are blue”

is true “by default” or “ Vacuously true” because there is no ball in the bowl

which is not blue.

If P(x) is a predicate and the domain of x is D = {x1, x2,….,xn), then the

statement

 x D, P(x)

and

P(x1) P(x2) … P(xn)

Are logically equivalent.

For example, let P(x) be

“x . x = x”

and let D = {0, 1}. Then

 x D, P(x)

can be written as

 binary digits x , x . x = x.

This is equivalent to

0 . 0 = 0 and 1 . 1 = 1

which can be written as

P(0) P(1)

Similarly, if P(x) is a predicate and D = (x1, x2, …,xn} then the statements

 x D, P(x)

ADVANCED DISCRETE MATHEMATICS 50

and

P(x1) P(x2) …. P(xn)

are logically equivalent.

Definition:- Let

 x D, if P(x) then Q(x)

be a statement. Then

(i) Contrapositive of this statement is

 x D, if ~Q(x) then ~P(x)

(ii) Converse of this statement is

 x D, if Q(x) then P(x)

(iii) Inverse of this statement is

 x D, if ~P(x) then ~Q(x)

1.8. Universal Modus Ponens

The following argument form is valid

Formal Version Informal Version

 x if P(x) then Q(x) If x makes P(x) true, then x makes Q(x) true

P(a) for a particular a a makes P(x) true

 Q(a) a makes Q(x) true.

An argument of this form is called a Syllogism. The first and second premises

are called its major premises and minor premises respectively.

Example:- Consider the argument:

If a number is even, then its square is even

K is a particular number that is even

 K
2
 is even

The major premises of this argument can be written as

 x, if x is even then x
2
 is even

Let

P(x) : “x is even”

Q(x) : “x
2
 is even”

and let k be an even number. Then the argument is

 x, if P(x) then Q(x)

LOGIC, SEMIGROUPS & MONOIDS AND LATTICES 51

P(k) for k

 Q(k)

This form of argument is valid by universal Modus Ponens.

1.9. Universal Modus Tollens

The following argument form is valid

Formal Version Informal Version

 x if P(x) then Q(x) If x makes P(x) true, then x makes Q(x)

true

~Q(a) for a particular a a does not makes Q(x) true

 ~P(a) a does not makes P(x) true.

Example:-

All human being are mortal

Zeus is not mortal

 Zeus is not human

The major premise of this argument can be rewritten as

 x, if x is human, then x is mortal

Let

P(x) : x is human

Q(x) : x is mortal

let Z = Zeus

 Then we have

 x, if P(x) then Q(x)

~Q(Z)

 ~P(Z)

which is valid by Universal Modus Tollens.

Example:- The argument

All professors are absent minded

Tom is not absent minded

 Tom is not a professor.

The major premise can be written as

 x, if x is professor, then x is absent minded.

ADVANCED DISCRETE MATHEMATICS 52

Let

P(x) : x is professor.

Q(x) : x is absent minded.

Z = Tom

Then we have

 x, if P(x) then Q(x)

~Q(Z)

~P(Z).

Hence, by Universal Modus Tollens, Tom is not a professor.

1.10. Use of Diagrams For Validity of Arguments

Consider the argument:

All human beings are mortal

Zeus is not mortal

 Zeus is not a human being.

The two diagrams fit together in only one way as shown below:

mortal

human

being .Zeus

Minor premise Major premise

mortal

.Zeus

Human

being

mortal

LOGIC, SEMIGROUPS & MONOIDS AND LATTICES 53

Since Zeus is outside the mortal disc it is necessarily outside the human beings

disk. Hence the Conclusion is true.

Example:- Use a diagram to show the invalidity of the arguments

All human being are mortal

Felix is mortal

 Felix is a human being.

Solution:- The major premise and a minor premise of the arguments are

shown in the diagrams below :

There are two possibilities to fit these two diagrams into a single one.

(1) (2)

The conclusion “Felix is a human being” is true in the first case but not in the

second. Hence the argument is invalid.

Mortals

Human

being

 Mortal

. Felix

Human

being

.Felix

Mortal

 Mortal

Human

being

. Felix

ADVANCED DISCRETE MATHEMATICS 54

PART B : SEMIGROUPS AND MONOIDS

1.11. Binary Operation and its Properties

Definition. Let A be a non-empty set. Then a mapping f : A A A is called a binary

operation. Thus, a binary operation is a rule that assigns to each ordered pair (a, b) A A an

element of A.

For the sake of simplicity, we write a * b in place of f(a,b).

Examples. 1. Let Z be the set of integers. Then f : Z Z Z defined by f(a,b) = a * b = a+b,

a, b Z is a binary operation on Z because the sum of two integers a and b is again an integer.

Thus, addition of integers is a binary operation.

2. Let N be the set of positive integers. Then f : N N N defined by f(a,b) = a * b = a b is

not a binary operation because difference of two positive integers need not be positive

integer. For example 2-5 is not a positive integer.

3. For the set N of positive integers, let f : N N N be defined by f(a,b) =
b

a
. Then f is

not a binary operation. For example, if a = 2, b = 7, then
b

a
 =

7

2
is not a positive integer.

4. Let Z be the set of all integers. Then f : Z Z Z defined by

f(a,b) = max (a, b)

is a binary operation. For example,

 f(2, 4) = 2 * 4 = max(2,4) = 4 Z .

5. Let A = {a, b, c}. Define * by

x * y = x, x, y A .

Then the table given below defines the operation *

* a b c

a a a a

b b b b

c c c c

Further, if we define . by

 x.y = y, x, y A,

LOGIC, SEMIGROUPS & MONOIDS AND LATTICES 55

then the table given below defines the operation .

. a b c

a a b c

b a b c

c a b c

6. If A = {0, 1}. Then the binary operations and are defined by the following tables :

^ 0 1

0 0 0

1 0 0

and

 0 1

0 0 1

1 1 1

Properties of Binary Operation
1. Commutative Law :- A binary operation * on a set A is said to be commutative if

 a * b = b * a

for any elements a and b in A.

For example, consider the set Z of integers. Since

 a+b = b+a and a.b = b.a,

for a, b Z, the addition and multiplication operations on Z are commutative.

But, on the other hand, subtraction in Z is not commutative since, for example,

 2 3 3 2

Example. Fill in the following table so that the binary operation * is commutative.

* a b c

a b

b c b a

 56

c a c

We note that b * a = c, therefore, for commutativity we must have a * b = c.

Further, c * a = a, hence a * c should also be a.

Further, for commutativity we should have

 c * b = b * c

 = a

Thus c * b should be a .

Note that for commutativity of *, the entries in the table are symmetric with respect to the main

diagonal.

Definition. A binary operation * on a set A is said to be associative if for any elements a, b, c

in A, we have

 a * (b * c) = (a * b) * c

For example, addition and multiplication of integers are associative. But subtraction of

integers is not associative. For example,

 (2 4) 5 = 7 ,

but

 2 (4 5) = 3

Theorem. Let * be a binary operation on a set A. Then any product a1 * a2 * … * an requires no

parenthesis, that is, all possible products are equal.

Proof. We shall prove this result by induction on n. Since * is associative, the theorem holds

for n = 1, 2 and 3. Suppose [a1 a2 … an] denote any product and

(a1 a2 … an) = (… (a1 a2)a3…)an

It is sufficient then to show that

 [a1a2…an] = (a1a2 … an)

Since [a1 a2 … an] denote arbitrary product, there is an m < n such that induction yields

 [a1 a2 … an] = [a1 a2 … am] [am+1 … an]

 = [a1 a2 … am] (am+1 … an)

 = [a1 a2 … am] ((am+1 … an 1)an)

 = ([a1 a2 … am] (am+1 .. an 1))an

 = [a1 … an 1] an

 = (a1 … an 1)an

 = (a1 a2 … an) ,

which proves the result.

 57

Definition. Let * be a binary operation on a set A. An element e in A is called an identity

element for * if for any element a A,

 a * e = e * a = a.

Further e is called right identity if a * e = a and left identity if e * a = a for any a A.

Let e1 the left identity and e2 be the right identity for a binary operation *. Then

 e1e2 = e2 since e1 is left identity

and

 e1 e2 = e1 since e2 is right identity

Hence e1 = e2 and so identity element for a binary operation is unique.

Definition. Let * be a binary operation on a set A and let A has identity element e. Then

inverse of an element a in A is an element b such that

 a * b = b * a = e.

We shall see later on that if * is associative, then the inverse of an element, if it exits, is unique.

Definition. A binary operation * on a set A is said to satisfy the left cancellation law if

a * b = a * c b = c

A binary operation * on a set A is said to obey right cancellation law if

 b * a = c * a b = c

Let Z be the set of integers. Since

 a + b = a + c b = c

and

 b + a = c + a b = c for a, b, c Z,

it follows that addition of integers in Z obeys both cancellation laws.

Similarly multiplication of integers also obey cancellation laws.

On the other hand, matrix multiplication does not obey cancellation

laws. To see it, let

 A =
00

11
 , B =

10

11
 , C =

51

30
 .

Then

 AB = AC =
00

21

but B C .

1.12. Algebraic Systems

 58

Definition. A non-empty set together with a number of binary operations on it is called an

algebraic system.

In what follows, we shall define some algebraic systems :

Definition. A non-empty set S is said to be a semigroup if in S there is defined a binary

operation * satisfying the following property :

If a, b, c S, then

 a * (b * c) = (a * b) * c (Associative Law)

Thus

 A non-empty set S together with an associative binary operation * defined on S is

called a Semi-group.

We denote the semigroup by (S, *).

Definition. A semigroup (S, *) is called commutative if the binary operation * is a

commutative operation, i.e., if

 a * b = b * a for a, b S.

Examples. 1. Let Z be the set of all integers. Then (Z, +) is a commutative semigroup. In

fact, if a, b, c Z, then

(i) a * b = a+b is an integer. Therefore, the operation + on Z is a binary operation.

(ii) a + (b+c) = (a+b) + c, because associative law holds in the set of integers.

(iii) a + b = b + a, because addition in Z is commutative.

2. The set Z of integers with the binary operation of subtraction is not a semi-group since

subtraction is not associative in Z.

3. Let S be a finite set and let F(S) be the collection of all functions f : S S under the

operation of composition of functions. We know that composition of functions is

associative, i.e.

fo(goh) = (fog)oh , f , g , h F(S) .

Hence F(s) is a semigroup.

4. The set P(S), where S is a set, together with the operation of union is a commutative

semigroup.

5. The integers modulo m, denoted by Zm, refer to the set

 Zm = {0, 1, 2,…, m 1} .

The addition in Zm is defined as

 a + b = r,

 59

where r is the remainder when a+b is divided by m. The multiplication in Zm is defined by

 a.b = r,

where r is the remainder when a+b is divided by m .

For example, consider

 Z4 = {0, 1, 2,3}

The addition table is

+ 0 1 2 3

0 0 1 2 3

1 1 2 3 0

2 2 3 0 1

3 3 0 1 2

 We note
 (1+2) + 3 = 3+3 = 2 and 1+(2+3) = 1+1 = 2

Hence

 (1+2)+3 = 1 + (2+3)

In general,

 (a+b) + c = a + (b+c), a, b, c Z4

Hence Z4 is a semi-group.
Definition. A non-empty set S is said to be a monoid if in S there is defined a binary

operation * satisfying the following properties :

(i) If a, b, c S, then

a * (b * c) = (a * b) * c (Associative Law)

(ii) There exists an element e S such that

 e * a = a * e = a for all a S (Existence of identity element)

Thus :

An algebraic system (S, *) is said to be a monoid if

(i) * is a binary operation on non-empty set S

(ii) * is an associative binary operation on S

(iii) There exists an identity element e in S.

It, therefore, follows that

A monoid is a semi-group (S, *) that has an identity element.

Example. 1. In example 3 above, identity function is an identity element for F(S). Hence

F(S) is a monoid.

 60

2. Let M be the set of all n n matrices and let the binary operation * of M be taken as

addition of matrices. Then (M, *) is a monoid. In fact,

(i) The sum of two n n matrices is again a matrix of order n n . Thus the

operation of matrix addition is a binary operation.

(ii) If A, B, C M, then

A + (B+C) = (A+B) + C (Associative Law)

 (iii) The zero matrix acts as additive identity of this monoid because

 A + 0 = 0 + A = A for A M .

Definition. Let A be a non-empty set. A word w on A is a finite sequence of its elements.

For example,

 w = ab ab bb = ab ab
3

is a word on A = {a, b} .

Definition. The number of elements in a word w is called its length and is denoted by l(w).

For example, length of w in the above example is

 l(w) = 6

Definition. Let u and v be two words on a set A. Then the word obtained by writing down the

elements of u followed by the elements of v is called the concatenation of the words u and v

on A.

For example, if A = {a, b, c} and

 u = ab a bbb and v = a c b a b

then

 w = ab abbb ac bab = abab
3
acbab

is the concatenation of u and v.

Let F(A) denote the collection of all words on A under the operation of

concatenation. We note that

 (u v)w = u(v w)

for u, v, w F(A). Hence F(A) is a semigroup known as Free semigroup on A. The

elements of A are called the generator of F(A).

Also, we note that if u, v are two words, then

 l(uv) = l(u) + l(v).

Further, the empty sequence, denoted by , is also considered as a word on A. However, we

do not assume that belongs to the free semigroup F = F(A). The set of all words on A

 61

including is usually denoted by A*. Thus A* is a monoid under concatenation. It is called

the free monoid on A.

Definition. Let (S, *) be a semigroup and T be a subset of S. If T is closed under the operation

* that is, a * b + whenever a, b T, then (T, *) is called a subsemigroup of (S, *).

Definition. Let (S, *) be a monoid with identity e, and let T be a non-empty subset of S. If T

is closed under the operation * and e T, then (T, *) is called a submonoid of (S, *).

Clearly, the associative property holds in any subset of a semigroup and so a subsemigroup

(T, *) of a semigroup (S, *) is itself a semigroup.

Similarly, a submonoid of a monoid is itself a monoid.

Example. 1. Let A be the set of even positive integers. Then (A, .), where . denotes ordinary

multiplication is a subsemigroup of (N, X) since A is closed under multiplication.

Similarly, the set B of odd positive integers form a subsemigroup (B, X) of (N, X).

Also (A, +) is a subsemigroup of (N, .). But (B, +) is not a subsemigroup of (N, +) because B

is not closed under addition. For example, 1+3 = 4 which is not odd.

2. Let (S, *) be a semigroup and a S. If T = {a
i
 : i N} , then (T, *) is a subsemigroup of

(S, *).

3. Let F(A) be a free semigroup on the set A = {a, b}. Let G consists of all even words, that

is, words with even length. The concatenation of two such words is also even. Thus G is

a subsemigroup of F(A).

Theorem. The inverse of every element in a semigroup with identity e is unique.

Proof. We shall use associativity of the binary operation * to prove the uniqueness of the

inverse element.

So, suppose that b and c are two inverses of an element a in a monoid (S, *). Therefore, we

have

 a * b = b * a = e (i)

 a * c = c * a = e (ii)

We note that

 b * (a * c) = b * e, by (ii)

 = b, because e is identity (iii)

and

 (b * a) * c = e * c , by (i)

 = c, because e is identity (iv)

But associativity of binary operation * implies

 b * (a * c) = (b * a) * c

Hence, from (iii) and (iv) it follows that

 62

 b = c ,

proving that inverse, if exist, of every element in a monoid is unique.

1.13 Homomorphism of

Semigroups
We discuss now a method for comparing the algebraic structures of the two

semigroups.

Definition. Let (S, *) and (T, *) be two semigroups. A function f : S T is called a

semigroup homomorphism if

 f(a * b) = f(a) * f(b)

for all a, b S.

If, in addition, f is also onto, we say that T is a homomorphic image of S.

Definition. Let (S, *) and (T, *) be two semigroups. If f : S T is both one-to-one and onto in

addition to being a homomorphism, then f is called an isomorphism from (S, *) to (T, *).

Definition. A homomorphism f from (S, *) to (T, *) is called a monomorphism if f as a map

is injective (one-to-one).

Definition. A homomorphism f from (S, *) to (T, *) is called an Epimorphism if f as a map

is surjective (onto).

Thus we may define isomorophism between two semigroups (S, *) and (T, *) as

Definition. Let (S, *) and (T, *) be two semigroups. Then a homomorphism f : (S, *) (T,

*) is called an isomorphism if it is both monomorphism and epimorphism.

OR

Definition. Let (S, *) and (T, *) be two semigroups. Then a mapping f : S T is called an

isomorphism if

(i) f (a * b) = f(a) * f(b) for all a, b S (semigroup homomorphism)

(ii) f as a map is bijective.

Definition. Let (S, *) and (T, *) be two semigroups. If f : S T is an isomorphism, then the

semigroups (S, *) and (T, *) are called isomorphic. In such a case (T, *) is called isomorphic

image of (S, *).

Examples. 1. Let F(A) be the free semigroup of a set A, and let Z be the semigroup of

integers under addition. Let

 f : F(A) Z

be defined by

 f(w) = l(w), w F(A)

We note that, if u, v F(A), then

 63

 f(uv) = l(uv)

 = l(u) + l(v)

 = f(u) + f(v)

Hence f is a homomorphism. Here, the operation in F(A) is written multiplicatively, whereas

the operation in Z is addition.

2. Let Z be the set of integers and T be the set of all even integers. Then (Z, +) and

(T, +) are semigroups. Let

 f : Z T

be defined by

 f(a) = 2a, a Z

We note that

(i) f(a+b)= 2(a+b)

 = 2a + 2b

 = f(a) + f(b)

Thus f is a homomorphism.

(ii) f(a) = f(b) 2a = 2b

 a = b

Hence f is one-to-one, that is, f is monomorphism.

(iii) Let b be an even integer. Then a =
2

b
 Z and

 f(a) = f
2

b
 = 2

2

b
 = b

Thus to every b T, there is an a Z such that f(a) = b.

Hence f is onto, i.e., f is epimorphism.

Hence f is an isomorphism.

Theorem. Let (S, *) and (T, *) be monoids with identities e and e respectively. Let F : S

T be a homomorphism from (S *) onto (T, *). Then f(e) = e .

Proof. Let b be any element of T. Since f is surjective, there is an element a S such that

f(a) = b. Since e is identity of S, we have

 a * e = a = e * a (i)

and so

 b = f(a)= f(a * e) , by (i)

 = f(a) * f(e) , because f is homomorphism

 64

 = b * f(e)

Also,

 b = f(a) = f(e * a)

 = f(e) * f(a)

 = f(e) * b

Hence

 b * f(e) = f(e) * b = b

and so f(e) is identity for T. Thus, f(e) = e .

Theorem. If f is a homomorphism from a commutative semigroup (S, *) onto a semigroup (T,

*), then (T, *) is also commutative, that is, homomorphic image of an abelian

(commutative) semigroup is abelian.

Proof. Let t1, t2 T. Since f is onto, there exist s1, s2 S such that

 f(s1) = t1 and f(s2) = t2

Then

 t1 * t2 = f(s1) * f(s2)

 = f(s1 * s2) , since f is homomorphism

 = f(s2 * s1), since S is abelian

 = f(s2) * f(s1), since f is homomorphism

 = t2 * t1 .

Hence (T, *) is abelian.

Remark. The converse of the above theorem is not true.

Theorem. Let f : (S, *) (T, *) be semigroup homomorphism. If S is a subsemigroup of (S,

*), then the image of S under f is a subsemigroup of (T, *).

Proof. Let f (S) be the image of S under f and let t1, t2 be in f (S). Then there are s1 and s2 in

S such that

 t1 = f(s1) and t2 = f(s2)

We claim that f(S) is closed under the binary operation * . It is sufficient to show that t1 * t2

f(S). We have, in this direction,

 t1 * t2 = f(s1) * f(s2)

 = f(s1 * s2), because f is homomorphism.

Now since S is a semigroup and s1, s2 S , we have s1 * s2 S (due to closeness of the

peration *). Hence f(s1 * s2) f(S). It follows, therefore, that t1 * t2 f(S).

Further, since the associativity hold in T, it also holds in f(S). Hence f(S) is a

subsemigroup of (T, *).

Theorem. The intersection of two subsemigroups of a semigroup (S, *) is subsemigroup of (S,

*).

 65

Proof. Let (S1, *) and (S2, *) be two subsemigroups of the semigroup (S, *). Let a S1 S2

and b S1 S2 . Then

 a S1 S2 a S1 and a S2

 b S1 S2 b S1 and b S2

Since S1 is a subsemigroup, therefore, a, b S1 implies a * b S1. Similarly, since S2 is a

subsemigroup, a, b S2 implies a * b S2. Hence

 a * b S1 S2

Hence S1 S2 is closed under the operation *. Further associativity in S1 and S2 implies the

associativity of S1 S2 since S1 S2 S1 and S1 S2 S2. Hence S1 S2 is a

subsemigroup of (S, *).

Corollary. Intersection of two submonoids of a monoid (S, *) is a semimonoid of (S, *).

Proof follows the same line as that in the above Theorem.

Remark. Union of two subsemigroups of a semigroup (S, *) need not be a subsemigroup of

(S, *).

For example,

 (S1 , *) = {0, 2, 4, 6, + ….}

and

 (S2, *) = {0, 3, 6, 9, , …}

are subsemigroups of the semigroup (Z, +) of integers. But

 S1 S2 = {0, 2, 3, 4, 6, ….}

is not a subsemigroup of (Z, +), because

 2 S1 S2 , 3 S1 S2 ,

but 2+3 = 5 S1 S2 showing that S1 S2 is not closed under addition.

1.14. Quotient Structure

Definition. An equivalence relation R on a semigroup (S, *) is called a congruence relation if

a R a and b R b imply (a * b) R (a * b).

Examples. 1. Let (Z, +) be the semigroup of integers. Consider the relation R defined on Z

by

 A R b if and only if a b (mod m).

We know that a b (mod m) if m divides a b. We note that

(i) For any integer a, we have a a (mod m), i.e., a R a

(ii) If a R b, then a b (mod m) m | (a b) m|(b a) and so b a (mod m) which

means b R a.

 66

(iii) If a R b and b R c, then

a b(mod m) and b c(mod m)

 m|(a b) and m|(b c)

 m [(a b) + (b c)]

 m|(a c)

 a c (mod m), which means that a R c.

Thus R is reflexive, symmetric and transitive and so is an equivalence relation. Further, if

 a c (mod m) and b d (mod m),

then

 m | (a c) and m | (b d)

 m | [(a c) + (b d)]

 m|[(a+b) (c+d)]

 (a+b) (c+d) (mod m)

 (a+b) R (c+d)

Hence R is a congruence relation.

2. Consider the semigroup (Z, .), where . denotes ordinary multiplication. Let us again

consider the relation R on Z defined by

 a R b if and only if a b (mod m).

This relation is an equivalence relation. Further if a c (mod m) and b d (mod m), then

 m|(a c) and m|(b d)

 m|b(a c) and m|c(b d)

 n|(ab bc) and m|(bc cd)

 m|[(ab bc + bc cd)]

 m|(ab cd)

 ab cd (mod m)

Hence the relation is a congruence relation on (Z, .) .

3. Let F(A) be the free semigroup on a set A. Define u R v if u and v have the same

length. We note that

(i) u R u because u has same length as u

(ii) If u R v, then u and v have same length v and u have same length v R u

(iii) If u R v and v R w, then u and v have same length and also v and w have same length

and so u and w have same length, that is, u R w :

Hence R is an equivalence relation. Further, let u R v and u R v . Then

 67

 l(u) = l(v) and l(u) = l(v) .

Then

 l(uu) = l(vv) = m + n ,

that is

 l(uu) = l(vv)

 uv R vv

Hence R is a congruence relation on F = F(A).

4. Let (Z, +) be the semigroup of integers and let f(x) = x
2

x 2. Let R be a relation defined

on Z by

 a R b if and only if f(a) = f(b).

It can be shown that R is an equivalence relation. Further we note that

 f(1) = f(2) = 0 and so 1 R 2

 f(2) = f(3) = 4 and so 2 R 3.

But

 f(3) = 10 and f(5) = 18 ,

and so

 3 R 5 .

Hence R is not a congruence relation.

1.15 Equivalence Classes

If R is an equivalence relation on the semi-group (S, *) , it will partition S into equivalence

classes. Let [a] be the equivalence class containing a in S and let S/R denote the set of all

equivalence classes, where R is congruence relation.

We define an operation  on the equivalence classes S/R by

 [a]  [b] = [a * b] , a , b S

that is  : S/R S/R S/R is defined by

  ([a], [b]) = [a]  [b] = [a * b]

Then we have

Theorem. Let R be a congruence relation on the semigroup (S, *). Then  : S/R S/R S/R

defined by

  ([a], [b]) = [a]  [b] = [a * b] , a, b S

is a binary operation on S/R and (S/R, ) is a semigroup.

Proof. Suppose that ([a], [b]) = [a], [b]). Then a R a and b R b . Since R is congruence

relation, this implies a * b R a * b . Thus [a * b] = [a * b], that is,  is a well defined

function. Hence  is a binary operation S/R.

 68

Further we note that

[a]  ([b]  [c]) = [a]  [b * c] (by definition of )

 = [a * (b * c)] (by definition of )

 = [(a * b) * c] (Associativity of * in S)

 = [a * b]  [c] (by definition of )

 = ([a]  [b])  [c] (by definition of )

Hence  is an associative operation. This implies that (S/R, ) is a semigroup.

The operation  is called quotient binary relation on S/R constructed from the given binary

relation * on S by the congruence relation R.

The semigroup (S/R, ) is called Quotient Semigroup or Factor Semigroup or

the Quotient of S by R.

Theorem. Let R be the congruence relation on the monoid (S, *), then

(S/R, ) is a monoid.

Proof. We have shown above that (S/R, ) is a semigroup. Further if e is

identity element in(S, *), then [e] is the identity in (S/R, ). Thus (S/R, 

) is semigroup having identity element [e] and so is a monoid.

Theorem. Let R be a congruence relation on a semigroup (S,*) and let

(S/R, ) be the corresponding quotient semigroup. Then the mapping :

S S/R (called the natural mapping) defined by

 (a) = [a]

is an onto homomorphism, known as Natural homomorphism.

Proof. According to definition of , to each [a] in S/R, there is a S such

that [a] = [a]. Hence is subjective. Now let a, b S. Then

 (a * b) = [a * b]

 = [a]  [b]

 = (a)  (b)

Hence is homomorphism onto.

Theorem (Fundamental Theorem of Semi-group Homomorphism). Let f : S

 T be a homomorphism of the semigroup (S, *) onto the semigroup (T,

*). Let R be the relation on S defined by

 a R b if f(a) = f(b) for a, b S

Then

(i) R is a congruence relation on S

(ii) (S/R, ) is isomorphic to (T, *).

(If f is not onto, them (ii) shall be “S/R is isomorphic to f(S)”.

Proof. First we show that R is an equivalence relation. We note that

(i) Since f (a) = f (a), we have a R a.

(ii) If a R b, then f(a) = f (b) or f (b) = f(a) and hence b R a.

(iii) If a R b and b R c , then

f (a) = f (b) and f (b) = f (c)

 69

and hence

 f (a) = f (c)

and so a R c.

Thus the relation R is reflexive, symmetric and transitive and so an

equivalence relation.

Suppose now that

 a R a and b R b .

Then

 f (a) = f (a) and f (b) = f (b)

Since f is homomorphism,

 f(a * b) = f(a) * f(b)

 = f(a) * f(b)

 = f(a * b)

Hence

 (a * b) R(a * b)

and so R is a congruence relation.

Define

 : S/R T

by

 ([a]) = f(a) .

We claim that is well defined. Suppose [a] = [b]. will be well defined

if f(a) = f(b). Now [a] = [b] implies a R b, that is, f(a) = f(b). Hence is a

function (well defined).

Further, if [a], [b] S/R, then

 ([a]  [b]) = ([a * b]), a, b S

 = f(a * b)

 = f(a) * f(b), because f is homomorphism

 = [a] * [b]

So is semigroup homomorphism.

Also

 ([a] = ([b]) f(a) = f(b)

 a R b

 [a] = [b],

and so is one – to – one .

Thus , as a map, is bijective and homomorphism. Hence is an

isomorphism and

 S/R T

Remark. We have proved that the mapping : S S/R is natural

homomorphism. Also, we proved that the mapping : S/R T is an

isomorphism. Thus diagram of the situation becomes

 70

 f

 S T

 S/R

Also, we note that

 (o) (a) = ((a))

 = ([a])

 = f(a) for all a S .

Hence

 o = f

1.16. Direct Product of Semigroups
Let (S, *) and (T, *) be two semigroups. Consider the cartesian

product S T . Define a binary operation * on S T by

 (s1, t1) * (s2, t2) = (s1 * s2, t1 * t2)

In what follows, we prove that (S T, *) is a semigroup.

Theorem. Let (S, *) and (T, *) be semigroups. Then (S T, *) is a

semigroup under the binary operation * defined by

 (s1, t1) * (s2, t2) = (s1 * s2, t1 * t2) .

Proof. If (s1, t1) , (s2, t2) and (s3, t3) S T , then

[(s1, t1) * (s2, t2)] * (s3, t3) = (s1 * s2, t1 * t2) * (s3, t3)

 = ((s1 * (s2 * s3), t1 * (t2) * t3))

 = (s1 * (s2 * s3), t1 * (t2 * t3))

 = (s1, t1) * (s2 * s3, t2 * t3)

 = (s1, t1) * [(s2, t2) * (s3, t3)]

Hence * is associative and so (S T, *) is a semigroup.

Corollary. If (S, *) and (T, *) are monoids, then (S T, *) is also a monoid.

Proof. We have proved above that (S T, *) is a semigroup. We further

note that if eS is identity of (S, *) and eT is identity of (T, *), then for (s1, t1)

 S T, we have

 (eS, eT)* (s1, t1) = (eS * s1, eT * t1)

 = (s1, t1)

and

 (s1, t1) * (eS, eT) = (s1 * eS, t1 * eT)

 = (s1, t1)

Thus

 (s1, t1) * (eS, eT) = (eS, eT) * (s1, t1) = (s1, t1)

showing that (eS, eT) is identity element of (S T, *), that is, (S T, *) is a

semigroup with identity (eS, eT) and hence is a monoid.

 71

PART C : LATTICES

1.17 Definitions and Examples

Definition: A lattice is a partially ordered set (L,) in which every subset

{a, b} consisting of two element has a least upper bound and a greatest

lower bound.

We denote lub({a, b}) by a b and call it join or sum of a and b. Similarly,

we denote GLB({a, b}) by a b and call it meet or product of a and b.

Other symbol used are:

 LUB : , +,

 GLB : *, . ,

Thus Lattice is a mathematical structure with two binary operations, join

and meet. Lattice structures often appear in computing and mathematical

applications.

A totally ordered set is obviously a lattice but not all

partially ordered sets are lattices.

Example 1. Let A be any set and P(A) be its power set. The

partially ordered set (P(A),) is a lattice in which the meet and

join are the same as the operations and respectively. If A has

single element, say a, then P(A) = { , {a}} and

LUB({ , {a}) = {a}

GLB({ , {a}) =

The Hasse diagram of (P(A),) is a chain containing two elements and {a}

as shown below:

 {a}

If A has two elements, say a and b. Then P(A) = { , {a}, {b}, {a, b}}. The

Hasse diagram of {P(A),) is then as shown below :

 {a,b}

 72

 {a} {b}

We note that

1. LUB exists for every two subsets and is L M

2. GLB exists for every two subsets and is in L M

for L, M P A . Hence P A) in a lattice.

Example 2. Consider the poset (N,), where is relation of divisibility. Then

N is a lattice in which

 join of a and b = a b = L C M(a, b)

 meet of a and b = a b = G C D (a, b) for a, b N.

Example 3. Let n be a positive integer and let Dn be the set of all positive

divisors of n. Then Dn is a lattice under the relation of divisibility. The Hasse

diagram of the lattices D8, D20 and D30 are respectively

 D8 = {1, 2, 4, 8}

 20

 4 10

 2 5

 1

 D20 = {1, 2, 4, 5, 10, 20}

and

 30

 6 15

 10

4

 1

8

2

 73

 3

 2 5

 1

 D30 = {1, 2, 3, 5, 6, 10, 15, 30}.

1.18. The Transitive Closure of a Relation

Definition: The Transitive closure of a relation R is the smallest transitive

relation containing R. It is denoted by R .

Example: Let A = {1, 2, 3, 4} and R = [(1, 2), (2, 3), (3, 4), (2, 1)] Find the

transitive closure of R.

Solution: The digraph of R is

 1 3

We note that from vertex 1, we have paths to the vertices 2, 3, 4 and 1. Note

that path from 1 to 1proceeds from 1 to 2 to 1. Thus we see that the ordered

pairs (1, 1), (1, 2), (1, 3) and (1, 4) are in R . Starting from vertex 2, we have

paths to vertices 2, 1, 3 and 4 so the ordered pairs (2, 1), (2, 2), (2, 3) and (2, 4)

are in R . The only other path is from vertex 3 to 4, so we have

R = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (2, 4), (3,4)}

Example: Let R be the set of all equivalence relations on a set A. As such R

consists of subsets of A A and so R is a partially ordered set under the

partial order of set inclusion. If R and S are equivalence relations on A, the

same property may be expressed in relational notations as follows:

 R S if and only if x R y x S y for all x y A.

Then (R,) is a poset. R is a lattice, where the meet of the equivalence

relations R and S is their intersection R S and their join is (R S) , the

transitive closure of their union.

Definition: Let (L,) be a poset and let (L,) be the dual poset. If (L,) is a

lattice, we can show that (L,) is also a lattice. In fact, for any a and b in L, the

L U B of a and b in (L,) is equal to the GLB of a and b in (L,). Similarly,

the GLB of a and b in (L,) is equal to L U B in (L,).

2

4

 74

The operation and are called dual of each other.

Example: Let S be a set and L = P(S). Then (L,) is a lattice and its dual

lattice is (L,), where represents “contains”. We note that in the poset

(L,), the join A B is the set A B and the meet A B is the set A B.

1.19. Cartesian Product of Lattices

Theorem: If (L1,) and (L2,) are lattices, then (L,) is a lattice, where

L = L1 L2 and the partial order of L is the product partial order.

Proof: We denote the join and meet in L1 by 1, and 1 and

the join and meet in L2 by 2 and 2 respectively. We know that

Cartesian product of two posets is a poset. Therefore L = L1 L2

is a poset. Thus all we need to show is that if (a1, b1) and (a2, b2)

L, then (a1, b1) (a2, b2)and (a1, b1) (a2, b2) exist in L.

Further, we know that

 (a1, b1) (a2, b2) = (a1 1 a2 , b1 2 b2)

and

 (a1, b1) (a2, b2) = (a1 1 a2 , b1 2 b2)

Since L1 is lattice, a1 1 a2 and a1 1 a2 exist. Similarly, since L2 is a lattice,

b1 2 b2 and b1 2 b2 exist. Hence (a1, b1) (a2, b2) and (a1, b1) (a2, b2)

both exist and therefore (L,) is a lattice, called the direct product of (L1,)

and (L2,).

Example: Let L1 and L2 be the lattices whose Hasse diagram are given below :

 I1 I2

 a b

 01

 02

 L1 L2

Then L = L1 L2 is the lattice shown in the diagram below:

 (I1, I2)

 (I1, a) (I1, b)

(01,I2)

(I1,02)

 75

 (01, a) (01, b)

 (01, 02)

 L = L1 L2

 1.20. Properties of Lattices
Let (L,) be a lattice and let a, b , c L. Then, from the

definition of (join) and (meet) we have

(i) a a b and b a b; a b is an upper bound of a and b.

(ii) if a c and b c, then a b c; a b is the least bound of a and b.

(iii) a b a and a b b; a b is a lower bound of a and b.

(iv) if c a and c b, then c a b; a b is the greatest lower bound of a

and b

Theorem: Let L be a lattice. Then for every a and b in L,

(i) a b = b if and only if a b

(ii) a b = a if and only if a b

(iii) a b = a if and only if a b = b

Proof: (i) Let a b = b. Since a a b, we have a b.

Conversely, if a b, then since b b, it follows that b is an upper bound of a

and b. Therefore, by the definition of least upper bound, a b b. Also a b

being an upper bound, b a b. Hence a b = b.

(ii) Let a b = a. Since a b b, we have a b.

Conversely, if a b and since a a, a is a lower bound of a and b

and so, by the definition of greatest lower bound, we have

 a a b

Since a b is lower bound,

 a b a

Hence

 a b = a.

(iii) From (ii)

 a b = a a b…….(iv)

 From (i)

 a b a b = b……….(v)

Hence, combining (iv) and (v), we have

 76

 a b = a a b = b.

Example: Let L be a linearly (total) ordered set. Therefore a, b L imply

either a b or b a. Therefore, the above theorem implies that

 a b = a

 a b = a

Thus for every pair of elements a, b in L, a b and a b exist. Hence a

linearly ordered set is a lattice.

Theorem : Let (L,) be a lattice and let a, b, c L. Then we have

L1 : Idempotent property

 (i) a a = a

 (ii) a a = a

L2 : Commutative property

 (i) a b =b a

 (ii) a b = b a

L3 : Associative property

 (i) a (b c) = (a b) c

 (ii) a (b c) = (a b) c

L4 : Absorption property

 (i) a (a b) = a

 (ii) a (a b) = a

Proof: L1 : The idempotent property follows from the definition of LUB and

GLB.

L2 : Commutativity follows from the symmetry of a and b in the definition of

LUB and GLB.

L3 : (i) From the definition of LUB, we have

 a a (b c) (1)

 b c a (b c) (2)

Also b b c and c b c and so transitivity implies

 b a (b c) (3)

and

 c a (b c) (4)

Now, (1) and (3) imply that a (b c) is an upper bound of a and b and hence

by the definition of least upper bound, we have

 77

 a b a (b c) (5)

Also by (4) and (5), a (b c) is an upper bound of c and a b . Therefore

 (a b) c a (b c) (6)

Similarly

 a (b c) (a b) c (7)

Hence, by antisymmetry of the relation , (6) and (7) yield

 a (b c) = (a b) c

The proof of (ii) is analogous to the proof of part (i).

L4 : (i) Since a b a and a a, it follows that a is an upper bound of a b

and a. Therefore, by the definition of least upper bound

 a (a b) a (8)

On the other hand, by the definition of LUB, we have

 a a (a b) (9)

The expression (8) and (9) yields

 a (a b) = a.

(ii) Since a a b and a a, it follows that a is a lower bound of a b and a.

Therefore, by the definition of GLB,

 a a (a b) (10)

Also, by the definition of GLB, we have

 a (a b) a (11)

Then (10) and (11) imply

 a (a b) = a

and the proof is completed.

In view of L3, we can write a (b c) and (a b) c as a b c.

Thus, we can express

 LUB ({a1, a2,….an) as a1 a2 …… an

 GLB ({a1, a2,….an) as a1 a2 …… an

Remark: Using commutativity and absorption property, part (ii) of previous

Theorem can be proved as follows :

 78

Let a b = a. We note that

 b (a b) = b a

 = a b (Commutativity)

But

 b (a b) = b (Absorption property)

Hence

 a b = b

and so by part (i), a b. Hence a b = a if and only if a b.

Theorem: Let (L,) be a lattice. Then for any a, b, c L, the following

properties hold :

1. (Isotonicity) : If a b, then

 (i) a c b c

 (ii) a c b c

This property is called “Isotonicity”.

2. a c and b c if and only if a b c

3. c a and c b if and only if c a b

4. If a b and c d, then

 (i) a c b d

 (ii) a c b d.

Proof : 1 (i). We know that

 a b = b if and only if a b.

Therefore, to show that a c b c, we shall show that

 (a c) (b c) = b c.

We note that

 (a c) (b c) = [(a c) b] c

 = a (c b) c

 = a (b c) c

 = (a b) (b c)

 = b c (a b = b and c c = c)

 79

The part 1 (ii) can be proved similarly.

2. If a c, then 1(i) implies

 a b c b

But

 b c b c = c

 c b = c (commutativity)

Hence a c and b c if and only if a b c

3. If c a, then 1(ii) implies

 c b a b

But

c b c b = c

Hence c a and c b if and only if c a b.

4 (i) We note that 1(i) implies that

 if a b, then a c b c = c b

 if c d, then c b d b = b d

Hence, by transitivity

a c b d

(ii) We note that 1(ii) implies that

 if a b, then a c b c = c b

 if c d, then c b d b = b d.

Therefore transitivity implies

 a c b d.

Theorem: Let (L,) be a lattice. If a, b, c L, then

 (1) a (b c) (a b) (a c)

 (2) a (b c) (a b) (a c)

These inequalities are called “Distributive Inequalities”.

Proof: We have

 a a b and a a c (i)

Also, by the above theorem, if x y and x z in a lattice, then x y z.

Therefore (i) yields

 80

 a (a b) (a c) (ii)

Also

 b c b a b

and

 b c c a c ,

that is, b c a b and b c a c and so, by the above argument, we

have

 b c (a b) (a c) (iii)

Also, again by the above theorem if x z and y z in a

lattice, then

 x y z

Hence, (ii) and (iii) yield

 a c (b c) (a b) (a c)

This proves (1).

The second distributive inequality follows by using the principle of duality.

Theorem: (Modular Inequality) : Let (L,) be a lattice. If a, b, c L, then

 a c if and only if a (b c) (a b) c

Proof: We know that

 a c a c = c (1)

Also, by distributive inequality,

 a (b c) (a b) (a c)

Therefore using (1) a c if and only if

 a (b c) (a c) c,

which proves the result.

The modular inequalities can be expressed in the following way also:

 (a b) (a c) a [b (a c)]

 (a b) (a c) a [b (a c)]

Example: Let (L,) be a lattice and a, b, c L. If a b c, then

 (i) a b = b c, (ii) (a b) (b c) = (a b) (a c).

Solution: (i) We know that

a b a b = b

and

 81

b c b c = b

Hence a b c implies

a b = b c.

(ii) Since a b and b c, we have

 a b = a and b c = b

Thus

 (a b) (b c) = a b

 = b, since a b a b = b.

Also, a b c a c by transitivity. Then

 a b and a c a b = b , a c = c

and so

 (a b) (a c) = b c

 = b since b c b c = b.

Hence

 (a b) (b c) = b = (a b) (a c),

which proves (ii).

1.21. Lattices as Algebraic System

Definition. A Lattice is an algebraic system (L, ,) with two binary

operations and , called join and meet respectively, on a non-empty set L

which satisfy the following axioms for a, b, c L :

1. Commutative Law :

 a b = b a and a b = b a .

2. Associative Law :

 (a b) c = a (b c)

and

 (a b) c = a (b c)

3. Absorption Law :

(i) a (a b) = a

 82

(ii) a (a b) = a

We note that Idempotent Law follows from axiom 3 above. In fact,

 a a = a [a (a b)] using 3(ii)

 = a using 3(i)

The proof of a a = a follows by principle of duality.

1.22 Partial Order Relations on a Lattice

A partial order relation on a lattice (L) follows as a consequence of the axioms

for the binary operations and .

We define a relation on L such that for a, b L ,

 a b a b = b

or analogously,

 a b a b = a .

We note that

(i) For any a L

 a a = a (idempotent law),

therefore a a showing that is reflexive.

(ii) Let a b and b a. Therefore

 a b = b

 b a = a

But

 a b = b a (Commutative Law in lattice)

Hence

 a = b ,

showing that is antisymmetric.

(iii) Suppose that a b and b c. Therefore a b = b and b c = c . Then

 a c = a (b c)

 = (a b) c (Associativity in lattice)

 = b c

 = c ,

showing that a c and hence is transitive.

 83

This shows that a lattice is a partially ordered set

1.23 Least Upper Bounds and Latest

Lower Bounds in a Lattice

Let (L, ,) be a lattice and let a, b L. We now show that LUB of {a, b}

L with respect to the partial order introduced above is a b and GLB of {a, b}

is a b.

From absorption law

 a (a b) = a

 b (a b) = b

Therefore a a b and b a b, showing that a b is upper bound for {a,

b}. Suppose that there exists c L such that a c, b c. Thus we have

 a c = c and b c = c

and then

 (a b) c = a (b c) = a c = c ,

implying that a b c. Hence a b is the least upper bound of a and b.

Similarly, we can show that a b is GLB of a and b.

The above discussion shows that the two definitions of lattice given so

far are equivalent.

Example: Let Ĉ be collection of sets with binary operations Union and

Intersection of sets. Then (Ĉ, ,) is a lattice. In this lattice, the partial order

relation is set inclusion. In fact, for A, B Ĉ,

 A B iff A B = B

Or

 A B iff A B = A.

For example, the diagram of lattice of subsets of {a, b} is

 {a, b}

 {a} {b}

 84

1.24. Sublattices

Definition: Let (L,) be a lattice. A non-empty subset S of L is called a

sublattice of L if a b S and a b S whenever a S, b S.

Or

Let (L, ,) be a lattice and let S L be a subset of L. Then (S, ,) is

called a sublattice of (L, ,) if and only if S is closed under both

operations of join() and meet().

From the definition it is clear that sublattice itself is a lattice.

However, any subset of L which is a lattice need not be a sublattice.

For example, consider the lattice shown in the diagram:

 I

 e f

 c

 a b

 0

 L

We note that

(i) the subset S shown by the diagram below is not a sublattice of L, since

a b S and a b S.

 I

 e f

 a b

 S

(ii) the set T shown below is not a sublattice of L since a b T.

 85

 I

 a b

 T

However, T is a lattice when considered as a poset by itself.

(iii) the subset of L shown below is a sublattice of L:

 c

 a b

 0

 U

Example: Let A be any set and P(A) its power set. Then (P(A), ,) is a

lattice in which join and meet are union of sets and intersection of sets

respectively.

A family Ĉ of subsets of A such that S T and S T are in Ĉ for S,

T Ĉ is a sublattice of (P(A), ,). Such a family Ĉ is called a ring of

subsets of A and is denoted by (R(A), ,) (This is not a ring in the

sense of algebra). Some author call it lattice of subsets.

Example: The lattice (Dn,) is a sublattice of (N,), where is the relation

of divisibility.

1.25 Lattice Isomorphism
Definition: Let (L1, 1, 1) and (L2, 2, 2) be two lattices. A mapping f :

L1 L2 is called a lattice homomorphism from the lattice the lattice (L1, 1,

1) to (L2, 2, 2) if for any a, b L1,

f(a 1 b) = f(a) 2 f(b) and f(a 1 b) = f(a) 2 f(b)

Thus, here both the binary operations of join and meet are preserved. There

may be mapping which preserve only one of the two operations. Such

mapping are not lattice homomorphism.

Let 1 and 2 be partial order relations on (L1, 1, 1) and

(L2, 2, 2) respectively. Let f : L1 L2 be lattice homomorphism. If

a, b L1, then

 86

 a 1 b a 1 b = b

and so

 f(b) = f(a 1 b)

 = f(a) 2 f(b)

 f(a) 2 f(b)

Thus

 a 1 b f(a) 2 f(b)

Thus order relations are also preserved under lattice homomorphism.

If a lattice homomorphism f: L1 L2 is one-to-one and onto, then it is called

lattice isomorphism.

If there exists an isomorphism between two lattices, then the lattices are called

isomorphic.

Since lattice isomorphism preserves order relation, therefore isomorphic

lattices can be represented by the same diagram in which nodes are replaced by

images.

Theorem: Let A = {a1, a2,….,an} and B = {b1, b2,……bn} be any two finite

sets with n elements. Then the lattices (P(A),) and (P(B),) are isomorphic

and so have identical Hasse-diagram.

Proof: Consider the mapping

f : P(A) P(B)

defined by

 f({an} = {bn}, f({a1, a2,….,am}) = {b1, b2,……bn} for m n .

Then f is bijective mapping and L M f(L) f(M) for subsets L and M of

P(A). Hence P(A) and P(B) are isomorphic.

For example, let A = {a, b, c}, B = {2, 3, 5}. The Hasse-diagram of

P(A) and P(B) are then given below:

 {a,b,c} {2,3,5}

 {a,b} {b,c} {2,3} {3,5}

 {a,c} (2,5)

 87

 {b} {3}

 {a} {c} {2} {5}

Define a mapping f : P(A) P(B) by

 f() = , f({a}) = {2}, f({b}) = {3}, f({c}) = {5}

 f({a, b}) = {2, 3}, f({b, c}) = {3, 5}, f({a, c}) = {2, 5}

 and

f({a, b, c}) = {2, 3, 5}.

This is a bijective mapping satisfying the condition that if S and T are subsets

of A, then S T if and only if f(S) f(T). Hence f is isomorphism and (P(A),

) and (P(B),) are isomorphic.

Thus, for each n = 0, 1, 2,…., there is only one type of lattice and this lattice

depends only on n, the number of elements in the set A, and not on A. It has 2
n

elements. Also, we know that if A has n elements, then all subsets of A can be

represented by sequences of 0’s and 1’s of length n. We can therefore label the

Hasse diagram of a lattice (P(A),) by such sequence of 0’s and 1’s.

For example, lattices of P(A) and P(B) of the last example can be

labeled as below:

 111

 110 011

 101

 010

 100 001

 000

The lattice so obtained is named Bn. The properties of the partial order in Bn

can be described directly as follows:

Let x = a1 a2…..an and y = b1 b2…..bn be any two elements of Bn. Then

(1) x y if and only if ak < bk, k = 1, 2,…..,n, where ak and bk are 0 or 1.

(2) x y = c1 c2….cn, where ck = min(ak, bk).

(3) x y = d1 d2 ….dn, where dk = max(ak, hk).

 88

(4) x has a complement x = z1 z2……zn where zk = 1 if xk = 0 and zk = 0 if xk

= 1.

Remark: (Bn,) under the partial order defined above is isomorphic to

(P(A),), when A has n elements. In such a case x y corresponds to S

T, x y corresponds to S T and x corresponds to A
c
.

Example : Let D6 = {1, 2, 3, 6}, set of divisors of 6. Then D6 is isomorphic to

B2. In fact f : D6 B2 defined by

 f(1) = 00, f(2) = 10, f(3) = 01, f(6) = 11

is an isomorphism.

 6 11

 2 3 10 01

 1 00

 D6 B2

Example: Let A = {a, b} and P(A) = { , {a}, {a, b}} then the lattice (P(A),)

is isomorphic to the lattice (D6, 1) with divisibility as the partial order relation.

In fact, we define a mapping f : D6 P(A) by

 f(1) = , f(2) = {a}, f(3) = {b}, f(6) = {a, b} ,

then f is bijective and we note that

1|2 { } {a} f(1) f(2)

 2|6 {a} {a, b} f(2) f(6)

and so on.

Hence f is isomorphism.

 6 {a,b}

 2 3 {a} {b}

 1

 D6 P ({a, b})

Definition: Let (L, ,) be a lattice. Then lattice homomorphism f : L

L is called an endomorphism.

Definition: Let (L, ,) be lattice. Then the lattice isomorphism f: L L

is called an automorphism.

 89

If f : L L is an endomorphism, then the image set of f is sublattice of L.

Definition: Let (A,) and (B,) be two partially ordered sets. A mapping f

: A B is called order preserving relative to the ordering in A and in

B iff for a, b A,

 a b f (a) f (b)

If A and B are lattices and f : A B is a lattice homomorphism, then f is

order preserving.

Definition: Two partially ordered sets (A,) and (B,) are said to be order

isomorphic if there exists a mapping f : A B which is bijective and both f

and f
-1

 are order preserving.

For lattices (A,) and (B,), an order isomorphism is equivalent to

lattice isomorphism. Hence lattices which are order-isomorphic as partially

ordered sets are isomorphic.

Let (L, ,) be a lattice and let S = {a1, a2….,an} be a finite subset

of L. Then

 LUB of S is represented by a1 a2 ….. an

GLB of S is represented by a1 a2 …… an

Definition: A lattice is called complete if each of its non-empty subsets has a

least upper bound and a greatest lower bound.

Obviously, every finite lattice is complete.

Also every complete lattice must have a least element, denoted by 0 and a

greatest element, denoted by I. The least and greatest elements if exist are

called bound (units, universal bounds) of the lattice.

1.26 Bounded, Complemented and Distributive Lattices

Definition: A lattice L is said to be bounded if it has a greatest element I

and a least element 0.

For the lattice (L, ,) with L = {a1, a2,….,an},

 a1 a2 ….. an = I and a1 a2 ……. an = 0 .

Example : The lattice Z
+

 of all positive integers under partial order of

divisibility is not a bounded lattice since it has a least element (the integer 1)

but no greatest element.

 90

Example: The lattice Z of integers under partial order (less than or equal

to) is not bounded since it has neither a greatest element nor a least element.

Example: Let A be a non-empty set. Then the lattice (P(A),) is bounded.

Its greatest element is A and the least element is empty set .

If (L,) is a bounded Lattice, then for all a L

 0 a I

 a 0 = a, a 0 = 0

 a I = I, a I = a

Thus 0 acts as identity of the operation and I acts as identity of the

operation .

Definition: Let (L , , 0, I) be a bounded lattice with greatest element I

and the least element 0. Let a L. Then an element b L is called a

complement of a if

 a b = I and a b = 0

It follows from this definition that

 0 and I are complement of each other.

Further, I is the only complement of 0. For suppose that c I is a

complement of 0 and c L, then

0 c = I and 0 c = 0

But 0 c = c. Therefore c = I which contradicts c I.

Similarly, 0 is the only complement of I.

Definition: A lattice (L, , , 1, 0) is called complemented if it is bounded

and if every element of L has at least one complement.

Example: The lattice (P(A),) of the power set of any set A is a bounded

lattice, where meet and join operations on e(A) are and respectively.

Its bounds are and A. The lattice (P(A),) is complemented in which the

complement of any subset B of A is A b.

Example: Let L
n
 be the lattice of n tuples of 0 and 1, where partial

ordering is defined for a = (a1, a2,…,an) , b = (b1, b2, ….., bn) L
n

by

 91

 a n b ai bi for all i = 1, 2, …,n ,

where means less than or equal to. Then (L
n
, n) is lattice which is

bounded. For example, the bounds are (0, 0, 0) and (1, 1, 1) for L
3
.

 (1,1,1)

 (1,1,0) (0,1,1)
 (1,0,1)

 (0,1,0)

 (1,0,0) (0,0,1)

 (0,0,0)

The complement of an element of L
n
 can be obtained by interchanging 1 by 0

and 0 by 1 in the n-tuple representing the element. For example,

complement of (1, 0, 1) in L
3
 is (0, 1, 0).

Definition: A lattice (L, ,) is called a distributive lattice if for any

elements a, b and c in L,

(1) a (b c) = (a b) (a c)

(2) a (b c) = (a b) (a c)

Properties (1) and (2) are called distributive properties.

Thus, in a distributive lattice, the operations and are distributive

over each other.

We further note that, by the principle of duality, the condition (1) holds if

and only if (2) holds. Therefore it is sufficient to verify any one of these

two equalities for all possible combinations of the elements of a lattice.

If a lattice L is not distributive, we say that L is non-distributive.

Example: For a set S, the lattice (P(S),) is distributive. The meet and join

operation in P(S) are and respectively. Also we know, by set

theory, that for A, B, C P(S),

 A (B C) = (A B) (A C)

 A (B C) = (A B) (A C).

Example: The five elements lattices given in the following diagrams are

non distributive.

 I I

 a a c

 92

 b

 b c

 o

 (ii)

 o (i)

In fact for the lattice (i), we note that

 a (b c) = a I = a ,

while

 (a b) (a c) = b 0 = b

Hence

 a (b c) (a b) (a c) ,

showing that (i) is non-distributive.

For the lattice (ii) , we have

 a (b c) = a I = a ,

while

 (a b) (a c) = 0 0 = 0 .

Hence

 a (b c) (a b) (a c) ,

showing that (ii) is also non-distributive

Example: The lattice shown in the diagram below is distributive:

 I

 b d

 a c

 0

The distributive properties are satisfied for any ordered triplet chosen

from the given elements.

Theorem: A lattice L is non distributive if and only if it contains a sublattice

isomorphic to any one of the following two five-element lattices:

 I I

 93

 a a c

 b

 b c

 o

 o

(The Proof of this theorem is out of the scope of this book)

Example: Is the following lattice a distributive lattice ?

 I

 d e

 c

 a b

 o

Solution: The given lattice is not distributive since {0, a, d, e, I} is a

sublattice which is isomorphic to the five-element lattice shown below :

 I

 0

Theorem: Every chain is a distributive lattice.

Proof: Let (L,) be a chain and a, b, c L. We shall show that

distributive law holds for any a, b, c L. Two cases arise :

Case 1. Let a b or a c. In this case

 a (b c) = a

and

 94

 (a b) (a c) = a

and hence

 a (b c) = (a b) (a c)

Also, by Principle of Duality

 a (b c) = (a b) (a c)

Case II. Let b a or c a . Then we have

 a (b c) = (b c)

and

 (a b) (a c) = (b c)

Hence

 a (b c) = (b c)

Hence distributive law holds for any a, b, c L.

Theorem: The direct product of any two distributive lattices is a

distributive lattice.

Proof: Let (L1, 1) and (L2, 2) be two lattices in which meet and join are

1, 1 and 2, 2 respectively. Then meet and join in L1 L2 are

defined by

 (a1, b1) (a2, b2) = (a1 1 a2, b1 2 b2) (1)

and

 (a1, b1) (a2, b2) = (a1 1 a2, b1 2 b2) (2)

Since L1 is distributive,

 a1 1(a2 1 a3) = (a1 1 a2) 1 (a1 1 a3) (3)

Since L2 is distributive,

b1 2(b2 2 b3) = (b1 2 b2) 2 (b1 2 b3) (4)

Therefore

(a1, b1) [(a2, b2) (a3, b3)]

= (a1, b1) [(a2 1 a3, b2 2 b3)]

= [(a1 1 (a2 1 a3), b1 2 (b2 2 b3)]

= [(a1 1 a2) 1 (a1 1 a3), (b1 2 b2) 2 (b1 2 b3)]

 (using (3) and (4))

 95

and using (1) and (2), we have

 [(a1, b1) (a2 , b2)] [((a1, b1) (a3 , b3)]

 = (a1 1 a2, b1 2 b2) (a1 1 a3, b1 2 b3)

 = [(a1 1 a2) 1 (a1 1 a3), (b1 2 b2) 2 (b1 2 b3)]

Hence

(a1, b1) [(a2, b2) (a3, b3)] = [(a1, b1) (a2 , b2)] [((a1, b1) (a3 , b3)],

proving that L1 L2 is distributive.

Theorem: Let L be a bounded distributive lattice. If a complement of any

element exists, it is unique.

Proof: Suppose on the contrary that b and c are complements of the

element a L. Then

 a b = I a c = I

 a b = 0 a c = 0

Using distributive law, we have

 b = b 0

 = b (a c)

 = (b a) (b c)

 = (a b) (b c)

 = I (b c)

 = b c

Similarly,

 c = c 0

 = c (a b)

 = (c a) (c b)

 = (a c) (c b)

 = I (c b)

 = I (b c)

 = b c

Hence b = c.

 96

Definition: Let (L, ,) be a lattice. An element a L is said to be join-

irreducible if it cannot be expressed as the join of two distinct elements of

L.

In other words, a L is join-irreducible if for any b, c L

 a = b c a = b or a = c.

For example, prime number under multiplication have this property. In

fact if p is a prime number, then p = a b p a or p = b.

Clearly 0 is join – irreducible.

Further, if a has at least two immediate predecessors, say b and c as in the

diagram below:

 a

 b c

Then a = b c and so a is not join – irreducible.

On the other hand if a has a unique immediate predecessor c, then

 a sup(b1, b2) = b1 b2 for any other elements b1 and b2 because c

would lie between b1, b2 and a.

 a

 c

 b1 b2

In other words, a 0 is join irreducible if and only if a has a unique

predecessor.

Definition: Those elements, which immediately succeed 0, are called atoms.

From the above discussion, it follows that the atoms are join-irreducible.

 a b

 c

However, lattices can have other join-irreducible elements. For example,

the element c in five-element lattice is not an atom, even then it is join

irreducible because it has only one immediate predecessor, namely a.

 97

 I

 c

 b

 a

 o

Let a be an element of a finite lattice which is not join irreducible, then we

can write

 a = b c

If b and c are not join irreducible, then we can write them as the join of

other elements. Since L is finite we shall finally have

 a = d1 d2 d3 …… dn , (1)

where di, i = 1, 2, …,n are join-irreducible. If di precedes dj, then di dj =

dj, so we delete di from the expression. Thus d’s are irredundant, i.e., no d

precedes any other d.

The expression (1) need not be unique. For example, in lattice shown above

 I = a b and I = b c .

Theorem: Let (L, ,) be a finite distributive lattice. Then every a in L

can written uniquely (except for order) as the join of irredundant join

irreducible elements.

Proof: Let a L. Since L is finite, we can express a as the join of

irredundant join irreducible elements (as discussed above). To prove

uniqueness let

 a = b1 b2 ….. bn = c1 c2 ….. cm ,

where bi are irredundant join-irrducible and ci are irrdundant and join-

irreducible. For any given i, we have

 bi (b1 b2 ….. bn) = c1 c2 ….. cm ,

Hence

 bi = bi (c1 c2 ….. cm)

 98

 = (bi c1) (bi c2) ……… (bi cm)

Since bi is join-irreducible, there exists j such that bi = bi cj and so bi

cj.

Similarly, for ci there exists a bk such that cj bk . Hence

 bi cj bk ,

which gives bi = cj = bk since bi are irredundant. Hence bi and ci may be

paired off. Hence the representation for a is unique except for order.

Theorem: Let L be a complemented lattice with unique complements. Then

the join irreducible elements of L, other than 0, are its atoms.

Proof: Suppose a is join irreducible and is not an atom. Then a has a

unique immediate predecessor b 0. Let b be the complement of b

(complement exists since L is complemented). Since b 0, b I. If a

precedes b , then b a b , and so b b = b which is impossible

since b b = I. Thus a does not precede b and so a b must strictly

precede a. Since b is the unique immediate predecessor of a, we also have

that a b precedes b. But a b precedes b .

 a

 b b

 a b

Hence

 a b inf (b, b) = b b = 0

Thus a b = 0. Since a b = a, we also have

 a b = (a b) b = a (b b)

 = a I = I

Therefore b is a complement of a. Since complements are unique, a = b.

This contradicts the assumption that b is an immediate predecessor of a.

Thus the only join irreducible elements of L are its atoms.

Combining this result with the above-proved theorems, we have

Theorem: Let L be a finite complemented distributive lattice. Then every

element a in L is the join of a unique set of atoms.

 99

Unit-2

Boolean Algebra

2.1. Definitions and Examples

Definition: A non-empty set B with two binary operations and , a unary

operation , and two distinct elements 0 and I is called a Boolean Algebra if

the following axioms holds for any elements a, b, c B:

[B1]: Commutative Laws:

 a b = b a and a b = b a

[B2]: Distributive Law:

 a (b c) = (a b) (a c) and a (b c) = (a b) (a c)

[B3]: Identity Laws:

 a 0 = a and a I = a

[B4]: Complement Laws:

 a a = I and a a = 0

We shall call 0 as zero element, 1 as unit element and a the complement of a.

We denote a Boolean Algebra by (B, , , ~, 0, I).

Example 1. Let A be a non-empty set and P(A) be its power set. Then the set

algebra (P(A), , , , , A) is a Boolean algebra.

Example 2 : Let B = {0, 1} be the set of bits (binary digits) with the binary

operations and and the unary operation defined by the following

tables:

 1 0 1 0 1

0

 1 1 1 , 1 1 0 0

1

 0 1 0 0 0 0

Here the operations and are logical operations and

complement of 1 is 0 whereas complement of 0 is 1. Then (B, , ,

 , 0, 1) is a Boolean Algebra. It is the simplest example of a two-

element algebra.

Further, a two element Boolean algebra is the only Boolean algebra whose

diagram is a chain.

 100

Example 3 : Let Bn be the set of n tuples whose members are either 0 or 1. Let

a = (a1, a2,….,an) and b = (b1, b2,….,bn) be any two members of Bn. Then we

define

a 1 b = (a1 b1, a2 b2,…..,an bn)

a 1 b = (a1 b1, a2 b2,…..,an bn) ,

where and are logical operations on {0, 1}, and

 a = (~ a1, ~ a2,…, ~ an) ,

where ~ 0 = 1 and ~1 = 0 .

If 0n represents (0, 0,…..,0) and 1n = (1, 1,……,1), then (Bn, 1, 1, , 0n, 1n)

is a Boolean algebra.

This algebra is known as Switching Algebra and represents a switching

network with n inputs and one output.

Example 4. The poset D30 = {1, 2, 3, 5, 6, 10, 15, 30} has eight element.

Define , and on D30 by

 a b = lcm(a, b) , a b = gcd(a, b) and a =
a

30
.

Then D30 is a Boolean Algebra with 1 as the zero element and 30 as the unit

element.

Example 5: Let S be the set of statement formulas involving n statement

variables. The algebraic system (S, , , ~, F, T) is a Boolean algebra in

which , , ~ denotes the operations of conjunction, disjunction and negation

respectively. The element F and T denotes the formulas which are

contradictions and Tautologies respectively. The partial ordering

corresponding to , is implication .

We have seen that Bn is a Boolean algebra. Using this fact, we can also define

Boolean algebra as follows:

Definition: A finite lattice is called a Boolean Algebra if it is isomorphic with

Bn for some non-negative integer n.

For example, D30 is isomorphic to B3. In fact, the mapping f: D30 B3 defined

by

f(1) = 000, f(2) = 100, f(3) = 010, f(5) = 001,

f(6) = 110, f(10) = 101, f(15) = 011, f(30) = 111

 101

is an isomorphism. Hence D30 is a Boolean algebra.

If a finite L does not contain 2
n
 elements for some non-negative integer n,

then L cannot be a Boolean Algebra.

For example, consider D20 = {1, 2, 4, 5, 10, 20} that has 6 elements and 6 2
n

for any integer n 0. Therefore, D20 is not a Boolean algebra.

If | L | = 2
n
, then L may or not be a Boolean Algebra. If L is

isomorphic to Bn, then it is Boolean algebra, otherwise it is not.

For large value of n, we use the following theorem for determining

whether Dn is a Boolean Algebra or not.

Theorem: Let

 n = p1 p2…….pk,

where pi are distinct primes, known as set of atoms. Then Dn is a Boolean

algebra.

Proof: Let A = {p1, p2,….,pk}. If B A and aB is the product of primes in B,

then
a
B|n. Also any divisor of n must be of the form

a
B for some subset B of A,

where we assume that a = 1. Further, if C and B are subsets of A, then C B

if and only if
a
C|

a
B. Also

a
C B =

a
C

a
B

= gcd(

a
C ,

a
B)

and

a

C B =
 a

C
a

B = lcm (
a
C ,

a
B)

Thus the function f : P(A) Dn defined by

 f(B) =
a
B

is an isomorphism. Since P(A) is a Boolean algebra, it follows that Dn is also a

Boolean algebra.

For example, consider D20, D30, D210, D66, D646. We notice that

(i) 20 cannot be represented as product of distinct primes and so D20 is not a

Boolean algebra.

(ii) 30 = 2.3.5, where 2, 3, 5 are distinct primes. Hence D30 is a Boolean

Algebra.

(iii) 210 = 2.3.5.7 (all distinct primes) and so D210 is a Boolean algebra.

(iv) 66 = 2.3.11 (product of distinct primes) and so D66 is a Boolean algebra.

 102

(v) 646 = 2.17.19 (product of distinct primes) and so D646 is a Boolean

Algebra.

Duality: The dual of any statement in a Boolean algebra B is obtained

by interchanging and and interchanging the zero element and unit

element in the original statement.

For example, the dual of a 0 = 0 is a I = I

Principle of duality: The dual of any theorem in a Boolean Algebra is

also a theorem.

(Thus, dual theorem is proved by using the dual of each step of the proof of

the original statement).

2.2 Properties of a Boolean Algebra

Theorem: Let a, b and c be any elements in a Boolean algebra (B, , , ,

0, I). Then

1. Idempotent Laws:

(i) a a = a (ii) a a = a

2. Boundedness Laws:

(i) a I = I (ii) a 0 = 0

3. Absorption Laws:

(i) a (a b) = a (ii) a (a b) = a

4. Associative Laws:

(i) (a b) c = a (b c) (ii) (a b) c = a (b c)

Proof: It is sufficient to prove first part of each law since second part

follows from the first by principle of duality.

1. (i). We have

a = a 0 (by identity law in a Boolean algebra)

 = a (a a) (by complement law)

 = (a a) (a a) (by distributive law)

 = (a a) I (complement law)

 = a a (identity law) ,

which proves 1(i).

2(i) : We have

a I = (a I) I (identity law)

 = (a I) (a a) (complement law)

 = a (I a) (Distributive law)

 103

 = a a (identity law)

 = I (complement law).

3(i) : we note that

 a (a b) = (a I) (a b) (identity law)

 = a (I b) (distributive law)

 = a (b I) (commutativity)

 = a I (Identity law)

 = a (identity law)

4(i) Let

 L = (a b) c, R = a (b c)

Then

 a L = a [(a b) c]

 = [a (a b)] (a c) (distributive Law)

 = a (a c) (absorption law)

 = a (absorption law)

and

 a R = a [a (b c)]

 = (a a) (a (b c)] (distributive law)

 = a (a (b c)] (idempotent law)

 = a (absorption Law)

Thus a L = a R and so, by duality, a L = a R .

Further,

 a L = a [(a b) c]

 = [a (a b)] (a c) (distributive law)

 = [(a a) (a b)] (a c) (distributive law)

 = [0, (a b)] (a c) (complement Law)

 = (a b)] (a c) (Identity law)

 = a (b c) (distributive law)

On the other hand,

 a R = a [a (b c)]

 = (a a) [a (b c)] (distributive law)

 = 0 [a (b c)] (complement law)

 = a (b c)] (identity law)

Hence

 a L = a R and so by duality a L = a R

 104

Therefore

 L = (a b) c

 = 0 [(a b) c] = 0 L (identity law)

= (a a) [(a b) c] = (a a) L (complement law)

 = (a L) (a L) (distributive law)

 = (a R) (a R) (using A L = a R and a L = a R]

= (a a) R (distributive law)

= 0 R (complement law)

= R (identity law)

Hence

(a b) c = a (b c) ,

which completes the proof of the theorem.

Theorem: Let a be any element of a Boolean algebra B. Then

(i) Complement of a is unique (uniqueness of complement)

(ii) (a) = a (Involution law)

(iii) 0 = 1 and 1 = 0

Proof: (i) Let a and x be two complements of a B. Then

 a a = I and a a = 0 (i)

 a x = I and a x = 0 (ii)

and we have

 a = a 0 (Identity law)

 = a (a x) by (ii)

 = (a a) (a x) (Distributive law)

 = I (a x) by (i)

 = a x [Identity law]

Also

 x = x 0 (Identity law)

 = x (a a) , by (i)

 = (x a) (x a) [Distributive law]

 = I (x a) , (by (ii))

 = x a = a x (Identity and commutative law)

Hence a = x and so complement of any element in B is unique.

(ii) Let a be a complement of a. Then

 a a = I and a a = 0

or , by commutativity ,

 a a = I and a a = 0

This implies that a is complement of a , that is,

 a = (a) .

(iii) By boundedness law,

 0 1 = 1

 105

and by identity law

 0 1 = 0

These two relations imply that 1 is the complement of 0, that is 1 = 0 .

By principle of duality, we have then

 0 = 1 .

Theorem: Let a, b be elements of a Boolean Algebra. Then (a b) = a

b and (a b) = a b .

Proof: we have

(a b) (a b) = (b a) (a b) (commutative)

 = b (a (a b)) (associative)

 = b [(a a (a b)] (distributive)

 = b [I (a b) (complement)

 = b (a b) (identity)

 = b (b a) (commutative)

 = (b b) a (associative law)

 = I a (complement law)

 = I (Identity law)

Also

 (a b) (a b) = [(a b) a] b (associativity)

 = [a a) (b a)] b = [0 (b a)] b

 (complement) (distributive)

 = (b a) b (identity)

 = b b a = 0 a = 0

Hence a b is complement of a b, i.e. (a b) = a b .

The second part follows by principle of duality.

We have proved already that Boolean algebra (B, , , , 0, I) satisfies

associative laws, commutative law and absorption law. Hence every

Boolean algebra is a lattice with join as and meet as . Also

boundedness law hold in a Boolean algebra. Thus Boolean algebra

becomes a bounded lattice. Also Boolean algebra obeys distributive law

and is complemented. Conversely, every bounded, distributive and

complemented lattice satisfied all the axiom of a Boolean algebra. Hence

we can define a Boolean algebra as

Definition: A Boolean Algebra is a bounded distributive and complemented

lattice.

 106

Now, being a lattice, a Boolean algebra must have a partial ordering.

Recall that in case of lattice we had defined partial ordering by a b if a

 b = b or a b = a.

The following result yields much more than these required conditions:

Theorem: If a, b are in a Boolean algebra, then the following are

equivalent:

(1) a b = b

(2) a b = a

(3) a b = I

(4) a b = 0

Proof: (1) (2) already proved.

(1) (3) : Suppose a b = b, then

a b = a (a b)

 = (a a) b (associativity)

 = I b = I (complement & boundedness)

Conversely, suppose a b = I, then

a b = 1 (a b) = (a b) (a b) (by assumption of (3))

 = (a a) b (distributivity)

 = 0 b = b (complement & identity)

Thus (1) (3).

Now we show that (3) (4).

Suppose first that (3) holds. Then, using De-Morgan Law and involution,

we have

 0 = I = (a b) = a b

 = a b (Involution)

Conversely, if (4) holds, then

 1 = 0 = (a b) = a b = a b

Thus (3) (4)

Hence all the four condition are equivalent.

Example: Show that the lattice whose diagram is

 I

 a f

 e d

 b c

 107

 0

is not a Boolean algebra.

Solution: Elements a and e are both complements of c since c a = I, c

a = 0 and c e = I, c e = 0

But in a Boolean algebra complement of an element is unique. Hence the

given lattice is not a Boolean algebra.

Definition: Let (B, , , , 0, 1) be a Boolean algebra and S B. If S

contains the elements 0 and 1 and is closed under the operation , and

1, then (S, , , , 0, 1) is called Sub-Boolean Algebra.

In practice, it is sufficient to check closure with respect to the set of

operations (,) or (,) for proving a subset S of B as the sub-Boolean

algebra.

The definition of sub-Boolean implies that it is a Boolean algebra.

But a subset of Boolean algebra can be a Boolean algebra, but not

necessarily a Boolean subalgebra because it is not closed with respect to

the operations in B.

For any Boolean algebra (B, , , , 0, 1), the subsets {0, 1} and the set B

are both sub-Boolean algebras.

In addition to these sub-Boolean algebras, consider now any element a B

such that a 0 and a 1 and consider the set {a, a , 0, 1}. Obviously this

set is a sub-Boolean algebra of the given Boolean algebra.

For example D70 = {1, 2, 5, 7, 10, 14, 35, 70} is a Boolean algebra

and {1, 2, 35, 70} is a subalgebra of D70.

 Every element of a Boolean algebra generates a sub-Boolean

algebra, More generally, any subset of B generates a sub-Boolean algebra.

Example: Consider the Boolean algebra given in the diagram below:

 I

 a b

 a b

 a b

 b a

 0

Verify whether the following subsets are Boolean algebras or not :

 S1 = {a, a , 0, 1}

 S2 = { a b , a b , 0, 1}

 S3 = {a b , b , a, 1}

 S4 = {b , a b , a , 0}

 108

S5 = {a, b , 0, 1}

Solution: The subset S1 and S2 are sub-Boolean algebras. The subsets S3

and S4 are Boolean algebras but not sub-Boolean algebras of the given

Boolean algebra. The subset S5 is not even a Boolean algebra.

Definition: Let (B1, 1, 1, , 01, 11) and (B1, 2, 2, , 02, 12) be two

Boolean algebras. The Direct Product of the two Boolean algebras is

defined to be a Boolean algebra, denoted by, (B1 B2, 3, 3, ,

03, 11) in which the operations are defined for any (a1, b1) and (a2, b2) B1

 B2 as

 (a1, b1) 3 (a2 , b2) = (a1 1 a2, b1 2 b2)

 (a1, b1) 3 (a2 , b2) = (a1 1 a2, b1 2 b2)

 (a1, b1) = (a1 , b1)

 03 = (01, 02) and I3 = (I1, I2)

Thus, from a Boolean algebra B, we can generate B
2
 = B B, B

3
 = B B

B etc.

2.3 Boolean Homomorphism
Definition: Let (B, , , , 0, 1) and (P, , , , ,) be two Boolean

Algebras. A mapping f : B P is called a Boolean Homomorphism if all the

operations of the Boolean Algebra are preserved , that is , for any a, b B

 f(a b) = f(a) f(b)

 f(a b) = f(a) f(b)

 f(a) =)a(f

 f(0) =

 f(1) =

The above definition of homomorphism can be simplified by

asserting that f : B P preserves either the operations and or the

operations and .

We now consider a mapping g : B P in which the operations

and are preserved. Thus g is a lattice homomorphism. Naturally g

preserves the order and hence it maps the bounds 0 and I into the least

and the greatest element respectively of the image set g(B) P. It is

however, not necessary that g(0) = and g(1) = . The complements, if

defined in terms of g(0) and g(1) in g(B), are preserved, and (g(B), , ,

, g(0), g(1)) is a Boolean algebra. Note that g : B P is not a a Boolean

homomorphism, although g : B g (B) is a Boolean homomorphism.

In any case, for any mapping from a Boolean Algebra which preserves the

operations and , the image set is a Boolean algebra.

A Boolean homomorphism is called Boolean isomorphism if it is bijective.

2.4. Representation Theorem

 109

Let B be a finite Boolean algebra. We know that an element a in B is called

an atom (or min term) if a immediately succeed the least element 0 . Let A

be the set of atoms of B and let P(A) be the Boolean algebra of all subsets

of the set A of atoms. Then (as proved in chapter on lattices) each x 0 in

B can be expressed uniquely (except for order) as the join of atoms (i.e.

elements of A). So, let

 x = a1 a2 …… an

Consider the function

 f : B P(A)

defined by

 f(x) = {a1, a2,……,an}

for each x = a1 a2 …. an .

Stone’s Representation Theorem: Any Boolean Algebra is isomorphic to a

power set algebra (P(S), , , ~, , S) for some set S.

Restricting our discussion to finite Boolean Algebra B, the

representation theorem can be stated as :

Theorem: Let B be a finite Boolean Algebra and let A be the set of atoms

of B. If P(A) is the Boolean Algebra of all subsets of the set A of atoms,

then the mapping f : B P(A) is an isomorphism.

Proof: Suppose B is finite Boolean algebra and P(A) is the Boolean algebra

of all subsets of the set A of atoms of B. Consider the mapping

 f : B P(A)

defined by

 f(x) = {a1, a2,….,an} ,

where x = a1 a2 …. an is the unique representation of x B as the

join of atoms a1, a2,….,an A. If ai are atoms, then we

know that ai ai = ai but ai aj = 0 for ai aj.

Let x and y are in the Boolean algebra B and suppose

 x = a1 ….. ar b1 ……. bs

y = b1 ….. bs c1 ……. ct,

where

A = { a1, a2,…, ar, b1, b2,…,bs, c1,…,ct, d1…,dk}

is the set of atoms of B. Then

x y = a1 …. ar b1 …. bs c1… ct

x y = b1 ….. bs

Hence

 f(x y) = { a1, a2,…., ar, b1, b2,…..,bs, c1, c2….,ct}

 = { a1,…., ar, b1,…..,bs} {b1, b2,…..,bs, c1, c2….,ct}

 = f(x) f(y)

and

 f(x y) = {b1,……,bs}

 = { a1, a2…., ar, b1,…..,bs} {b1,…..,bs, c1,….,ct}

 = f(x) f(y)

Let

 y = c1 …… ct d1 …… dk

Then

 110

 x y = I and x y = 0

and so y = x . Thus

 f(x) = f(y) = {c1 ……ct,d1……dk }

 = { a1, a2…., ar, b1, b2…..,bs}
c

 = (f(x))
c
 .

Since the representation is unique, f is one-to-one and onto. Hence f is a

Boolean algebra isomorphism. Thus, every finite Boolean algebra is

structurally the same as a Boolean algebra of sets.

If a set A has n elements, then its power set P(A) has 2
n
 elements. Thus we

have

Corollary: A finite Boolean algebra has 2
n
 elements for some positive

integer n.

Example: Consider the Boolean algebra

 D70 = {1, 2, 5, 7, 10, 14, 35, 70}

 70

 10 35

 14

 5

 2 7

 1

 D70

Then the set of atoms of D70 is

 A = {2, 5, 7}

The unique representation of each non-atom by atoms is

 10 = 2 5

 14 = 2 7

 35 = 5 7

 70 = 2 5 7

The diagram of the Boolean algebra of the power set e(A) of the set A of

atoms is given below :

 A={2,5,7}

 {2,5} {5,7}

 (2,7}

 {5}

{2} {7}

 111

P(A)

We note that the diagram for D70 and P(A) are structurally the same.

2.5. Boolean Expressions
Definition: Let x1, x2,…,xn be a set of n variables (or letters or symbols). A

Boolean Polynomial (Boolean expression, Boolean form or Boolean formula)

p(x1, x2, …., xn) in the variables x1, x2, …., xn is defined recursively as

follows:

1. The symbols 0 to 1 are Boolean polynomials

2. x1, x2, …., xn are all Boolean polynomials

3. if p(x1, x2, …., xn) and q(x1, x2, …., xn) are two Boolean polynomials,

then so are

 p(x1, x2, …., xn) q(x1, x2, …., xn)

and

 p(x1, x2, …., xn) q(x1, x2, …., xn)

4. If p(x1, x2, …., xn) is a Boolean polynomial, then so is

(p(x1, x2, …., xn))

5. There are no Boolean polynomials in the variables x1, x2, …., xn other

than those obtained in accordance with rules 1 to 4.

Thus, Boolean expression is an expression built from the variables given using

Boolean operations , and .

For example, for variables x, y, z , the expressions

 p1(x, y, z) = (x y) z

 p2 (x, y, z) = (x y) (y 1)

 p3(x, y, z) = (x (y z)) (x (y 1))

are Boolean expressions.

Notice that a Boolean expression is n variables may or may not

contain all the b variables. Obviously, an infinite number of Boolean

expressions may be constructed in n variables.

Definition: A literal is a variable or complemented variable such as x, x , y,

y , and so on.

Definition: A fundamental product is a literal or a product of two or more

literal in which no two literals involve the same variable.

For example,

x z , x y z, x, y , x y z

are fundamental products whereas

 x y x z and x y z y

are not fundamental products.

 112

Remark: Fundamental product is also called a minterm or complete product.

In what follows we shall denote x y by xy.

Any product of literals can be reduced to either 0 or a fundamental

product.

For example, consider x y x z. Since x x = 0 by complement law,

we have xyx z = 0.

Similarly, if we consider x y z y, then since y y = y (idempotent

law), we have xyzy = xyz, which is a fundamental product.

Definition: A fundamental product P1 is said to be contained in (or

included in) another fundamental Product P2 if the literals of P1 are also

literals of P2.

For example, x z is contained in x yz but x z is not contained in x y z

since x is not a literal of xy z.

Observe that if P1 is contained in P2, say P2 = P1 Q, then, by the absorption

law,

 P1 P2 = P1 (P1 Q) = P1

For example,

 x z x y z = x z

Definition: A Boolean expression E is called a sum-of-products

expression(disjunctive Normal Form or D NF) if E is a fundamental product

or the sum (join) of two or more fundamental products none of which is

contained in another.

Definition: Two Boolean expression P(x1, x2,…..,xn) and Q(x1, x2,…..,xn) are

called equivalent (or equal) if one can be obtained from the other by a finite

number of applications of the identities of a Boolean algebra.

Definition: Let E be any Boolean expression. A sum of product form of E is

an equivalent Boolean sum of products expression.

Example: Consider the expression

 E1(x, y, z) = x z + y z + x y z

Although the expression E1 is a sum of products, it is not a sum-of-

products expression because, the product x z is contained in the product x

y z . But, by absorption law, E1 can be expressed as

E1(x, y, z) = x z + y z + x y z = x z + x y z + y z = x z + y z ,

which is a sum-of-product form for E1.

2.6. Algorithm for Finding Sum-of-Products Forms
The input is a Boolean expression E. The output is a sum-of-products

expression equivalent to E.

Step 1. Use De Morgan’s Law and involution to move the complement

operation into any parenthesis untill finally the complement operation

only applies to variables. Then E will consists only sums and products of

literals.

Step 2. Use the distributive operation to next transform E into a sum of

products.

Step 3. Use the commutative, idempotent, and complement laws to

transform each product in E into 0 or a fundamental product.

 113

Step 4. Use the absorption law and identity law to finally transform E into

a sum of products expression.

For example, we apply the above Algorithm to the Boolean expression.

 E = ((x y) z) ((x + z) (y + z))

Step 1. Using De Morgan’s laws and involution, we obtain

 E = ((x y) z) ((x z) (y z))

 = (x y z) [(x z) (y z)]

Thus E consists only of sum and products of literals.

Step 2. Using the distributive laws, we obtain

 E = (x y + z) x z + (x y + z’) yz

 = x y x z + x z z + x y y z + y z z

Thus E is now a sum of products.

Step 3. Using commutative, idempotent and complement law, we obtain

 E = x y z + x z + x y z + 0

Thus each term in E is a fundamental product or 0.

Step 4. Using absorption law

 x z + x y z = x z + (x z y)

 = x z

Hence

 E = x z + x y z + 0

Step 5. Now using identity law

 E = x z + x y z ,

which is the required sum-of-products expression.

2.7 Complete Sum-of-Product Expression
Definition: A Boolean expression E (x1, x2,…., xn) is said to be a complete

sum-of-product expression (or full disjunctive normal form or disjunctive

canonical form, or the minterm canonical form) if E is a sum-of-products

expression where each product involves all the n variables.

 A fundamental product which involves all the variables is called a

minterm and there is a maximum of 2
n
 such products for n variables.

It can be seen that “every non-zero Boolean expression E(x1, x2,…,xn)

is equivalent to a complete sum-of-product expression and such a

representation is unique.”

ALGORITHM FOR OBTAINING COMPLETE SUM OF PRODUCT

EXPRESSION
The input is a Boolean sum-of-products expression E(x1, x2,….,xn).

The output is a complete sum-of-products expression equivalent to E.

Step 1. Find a product P in E which does not involve the variable xi and

then multiply P by (xi + xi) deleting any repeated products (This is

possible since x + x = 1 and P + P = P).

Step 2. Repeat step 1 until every product in E is a minterm, i.e. every

product P involve all the variables.

 114

Example: Express x1 x2 in its complete sum-of-products form in three

variables x1, x2, x3.

Solution: We have, using the above stated algorithm,

x1 + x2 = [x1(x2 + x2)] + [x2 (x1 + x1)]

 = x1 x2 + x1 x2 + x2 x1 + x1 x2

 = x1 x2 + x1 x2 + x1 x2

 = x1 x2(x3 + x3) + x1 x2 (x3 + x3) + x1 x2(x3 + x 3)

 = x1 x2 x3 + x1 x2 x3 + x1 x2 x3 + x1 x2 x3 + x1 x2 x3 + x1 x2 x3 ,

which is the complete sum-of-products form in x1, x2, x3.

2.8 Minimal Sum-of-Products

Consider a Boolean sum-of-products expression E. Let EL denote the

number of literals in E (counted according to multiplicity) and let ES denote the

number of summands in E. For example, let

 E = x y z + x y z + x y z t + x y z t.

Then

 EL = 3 + 3 + 4 + 4 = 14 and ES = 3.

Let E and F be equivalent Boolean sum-of-products expressions. Then

E is called simpler than F if

(i) EL < FL and ES FL

or

(ii) EL FL and ES < FL

Definition : A Boolean sum-of-product expression is called minimal if there

is no equivalent sum-of-product expression which is simpler than E.

There can be more than one equivalent minimal sum-of-products expressions.

Definition : A fundamental product P is called prime implicants of a Boolean

expression E if P + E = E but no other fundamental product contained in P has

this property.

For example, suppose

 E = x y + x y z + x y z

 115

Then, we find first the complete-sum-of-products form of x

z . Towards this end, we have

 x z = x z (y + y)

 = x z y + x z y (1)

Also we know that the complete sum-of-products form is unique, A + E = E,

where A 0 if and only if the summands in the complete sum-of-products

form for A are among the summands in the complete sum-of-products form for

E. We observe that summands x y z and x y z in (1) are in the complete form

of E given below:

 E = x y (z + z) + x y z + x y z

 = x y z + x y z + x y z + x y z

Therefore, by the above argument,

 x z + E = E

Also, the complete sum-of-products form of x is

 x = x(y + y) (z + z)

 = (x y + x y) (z + z)

 = x y z + x y z + x y z + x y z

The summand x y z of x is not a summand of E. Hence

 x + E E

Similarly, the complete sum-of-product form of z is

 z = z (x + x) (y + y)

 = (z x + z x) (y + y)

 = z x y + z x y + z x y + z x y

The summand x y z of z is not a summand of E. Hence

 z + E E.

Thus the fundamental products x and z contained in x z do not have the

property P + E = E where as x z has this property. Hence x z is a prime

implicant of E.

It can be seen “a minimal sum-of-products form for a Boolean

expression E is a sum of prime implicants of E”

 116

2.9. Consensus of Fundamental Products

Let P1 and P2 be fundamental products such that exactly one variable say xk

appears uncomplemented in one of P1 and P2 and complemented in the other.

Then the consensus of P1 and P2 is the product (without repetitions) of the

literals of P1 and P2 after xk and xk are deleted. (we do not define the

consensus of P1 = x and P2 = x)

Lemma: Suppose Q is the consensus of P1 and P2. Then P1 + P2 + Q = P1 + P2.

Proof: Since the literals commute, we can assume without loss of generally

that

 P1 = a1 a2…….ar t, P2 = b1 b2……bs t

 Q = a1 a2…….ar b1 b2…….bs

Now Q = Q(t + t) = Q t + Q t . Because Q t contains P1, P1 + Q t = P1; and

because Q t contain P2,

 P2 + Qt = P2.

Hence

 P1 + P2 + Q = P1 + P2 + Q t + Q t

 = (P1 + Q t) + (P2 + Q t)

 = P1 + P2.

Example : Find the consensus Q of P1 and P2, where

(i) P1 = x y z s, P2 = x y t

(ii) P1 = x y , P2 = y

(iii) P1 = x y z, P2 = x y t

(iv) P1 = x y z, P2 = x y z .

Solution: (i) P1 = x y z s, P2 = x y t

Delete y and y and then multiply the literals of P1 and P2 (without

repetition) to obtain

 Q = x z s t

 (ii) P1 = x y , P2 = y

Delete y and y then multiply the literal of P1 and P2 (without repetition) to

obtain

 Q = x

(iii) P1 = x y z, P2 = x y t

 117

In this case, no variable appears uncomplemented in one of the products

and complemented in the other. Hence P1 and P2 have no consensus.

(iv) P1 = x y z, P2 = x y z .

Each x and z appear complemented in one of the products and

uncomplemented in the other. Hence P1 and P2 have no consensus.

CONSENSUS METHOD FOR FINDING PRIME IMPLICANTS
The following algorithm, known as consensus Method is used to find the

prime implicants of a Boolean expression.

ALGORITHM (CONSENSUS METHOD)
The input is a Boolean expression E = P1 + P2 +…..+ Pm, where Pm are

fundamental products. The output expresses E as a sum of its prime

implicants.

Step 1. Delete any fundamental product Pi which includes any other

fundamental product Pj (this is permissible by the absorption law)

Step 2. Add the consensus of any Pi and Pj providing Q does not include

any of the Pi (this is permissible by the lemma P1 + P2 + …..+ Pn + Q = P1 +

… + Pn.)

Step 3. Repeat Step 1/or Step 2 untill neither can be applied.

Example : Let

E(x, y, z) = x y z + x z + x y z + x y z + x y z

Then

E = x y z + x z + x y z + x y z (x y z include x z)

 = x y z + x z + x y z +x y z + x y (consensus xy of xyz , xyz added)

 = x z + x y z + x y (x y z and x y z include x y)

 = x z + x y z + x y + x y (consensus x y of x z and x y z added)

 = x z + x y + x y (x y z include x y)

 = x z + x y + x y +y z (consensus of x z and xy, which is yz , added)

After this none of the step in the consensus method will change E. Thus E

is the sum of its prime implicants x z , x y, x y and y z .

Use of Consensus method for finding Minimal Sum-of-Products Form

We have seen that consensus method can be used to express a Boolean

expression E as a sum of all its prime implicants. Using such a sum, we can

find a minimal sum-of-products form for E as follows:

Algorithm: The input is a Boolean expression E = P1 + P2 +……+ Pm,

where Pi are all prime implicants of E. The output expresses E as a

minimal sum-of-products.

Step 1. Express each prime implicant P as a complete sum-of-products.

Step 2. Delete one by one those prime implicants whose summands appear

among the summands of the remaining prime implicants.

 118

Example: Consider Boolean expression E expressed as the sum of prime

implicants in the above example. We have

 E = x z + x y + x y + y z

We first convert each prime implicant into complete sum-of-products

form. We have

 x z = x z (y + y) = x z y + x z y

 x y = x y(z + z) = x y z + x y z

 x y = x y (z + z) = x y z + x y z

 y z = y z (x + x) = y z x + y z x

The summands of x z appear in the summands of x y and y z . So we

delete x z and get

 E = x y + x y + y z (1)

The summands of no other prime implicant appear among the summands

of the remaining prime implicants. Hence expression (1) is a minimal sum-

of-product form for E. In other words, none of the remaining prime

implicants is superfluous, that is, none can be deleted without changing E.

2.10 Logic Gates And Circuits
Definition: Logic circuit (or logic networks) are structures which are built

up from certain elementary circuit called logical gates.

LOGIC GATES
There are three basic logic gates. The lines (wires) entering the gate

symbol from the left are input lines and the single line on the right is the

output line.

1. OR Gate: An OR gate has input x and y and output z = x y or z = x +

y, where addition (or Join) is defined by the truth table. In this case the

output z = 0 only when inputs x = 0 and y = 0.

The symbol and the truth table for OR gate are shown in the diagram

below:

 x

 y z = x + y

 x y x + y

 1 1 1

 1 0 1

 0 1 1

 0 0 0

 (Truth Table for OR gate)

2. AND Gate: In this gate the inputs are x and y and output is x y or x.y

or xy, where multiplication is defined by the truth table.

 x

 y z = x y

O

R

 AND

 119

 x y z = x y

 1 1 1

 1 0 0

 0 1 0

 0 0 0

(Truth Table for AND gate)

Thus output is 1 only when x = 1 , y = 1, otherwise it is zero.

The AND gate may have more than two inputs. The output in such a case will

be 1 if all the inputs are 1.

3. NOT Gate (inverter): The diagram below shows NOT gate with input x

and output y = x , where inversion, denoted by the prime, is defined by the

truth table:

 x

 y = x

 (NOT gate)

 x y = x

 1 0

 0 1

Truth Table for NOT gate

For example, if x = 10101, then output x in NOT gate shall be

 x = 01010

Exercise : Draw logic circuit for a b + ab

Logic circuits as a Boolean Algebra: The truth tables for OR, AND and

NOT gates are respectively identical to the truth tables for the

propositions p q (disjunction, “p or q”), p q(Conjunction, “p

and q”) and ~ p (negation, “not p”). The only difference is that 0 and 1 are

used instead of F (contradiction) and T (tautology). Thus the logic circuits

satisfy the same laws as do propositions and hence they form a Boolean

Algebra. Hence, we have established the following:

Theorem: Logic circuits form a Boolean Algebra.

Example: Express the output of the logic circuit below as a Boolean

expression. (Here small circle represents complement (NOT))

NOT
NOT

 AND

O

R
O

R

 x

 y

t1

t2

t

 120

Solution: We note that

 t1 = xy

 t2 = (x+y)

 t3 = (x y)

and so we have

 t = t1 + t2 + t3

 = x y + (x + y) + (x y)

NAND and NOR Gates

NAND and NOR gates are frequently used in computers.

NAND gate: It is equivalent to AND gate followed by a NOT gate. Its

symbol is

 x

 y z

 NAND gate

Its truth table is

 x y x y z = (x y)

 1 1 1 0

 1 0 0 1

 0 1 0 1

 0 0 0 1

Thus, the output of a NAND gate is 0 if and only if all the inputs are 1.

NOR gate: This gate is equivalent to OR gate followed by a NOT gate. Its

symbol is

 x

 y z

 NOR Gate

Its truth table is as shown as:

 x y x + y (x + y)

 1 1 1 0

 1 0 1 0

 0 1 1 0

 0 0 0 1

O

R

 121

Thus, the output of NOR gate is 1 if and only if all inputs are 0.

2.11 Boolean Function
We know that ordinary polynomials could produce functions by

substitution. For example, the polynomial x y + y z
3
 produces a function

f : R
3
 R by letting f(x,y,z) = xy +yz

3
. Thus f (3, 4, 2) = 3. 4 + 4. 2

3
 = 44.

In a similar way, Boolean polynomials involving n variables produce

functions from Bn to B.

Definition: Let (B, . , +, , 0, 1) be a Boolean algebra. A function f : Bn B

which is associated with a Boolean expression (polynomial) is n variables

is called a Boolean function.

Thus a Boolean function is completely determined by the Boolean

expression (x1, x2,….,xn) because it is nothing but the evaluation function

of the expression. It may be mentioned here that every function g : Bn B

needs not be a Boolean function.

If we assume that the Boolean algebra B is of order 2
m

 for m 1, then the

number of function from Bn to B is greater than 2
2n

 showing that there are

functions from Bn to B which are not Boolean functions. On the other

hand, for m = 1, that is, for a two element Boolean algebra, the number of

function from Bn to B is 2
2n

 which is same as the number of distinct

Boolean expressions in n variable. Hence every function from Bn to B in

this case is a Boolean function.

Example: Show that the following Boolean expression are equivalent to

one-another. Obtain their sum-of-product canonical form.

(a) (x + y)(x + z)(y + z)

(b) (x.z) + (x y) + (yz)

(c) (x + y)(x + z)

(d) x z + x y

Solution: The binary valuation of the expression are

x y z x+y x +z y+z (a) (c) xz x y yz (b) (d)

0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 1 0 1 1 0 0 0 0 0 0 0

0 1 0 1 1 1 1 1 0 1 0 1 1

0 1 1 1 1 1 1 1 0 1 1 1 1

1 0 0 1 0 0 0 0 0 0 0 0 0

1 0 1 1 1 1 1 1 1 0 0 1 1

1 1 0 1 0 1 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 0 1 1 1

Since the values of the given Boolean expression are equal over every

triple of the two element Boolean algebra, they are equal.

 122

To find the sum-of-product canonical (complete) form, we note that (d) is in

sum-of-product form. Therefore to find complete sum-of-product form,

we have

 (d) = (x z) + (x y)

 = x z(y + y) + (x y) (z + z)

 = x z y + x z y + x y z + x y z

METHOD TO FIND TRUTH TABLE OF A BOOLEAN FUNCTION
Consider a logic circuit consisting of 3 input devices x, y, z. Each

assignment of a set of three bits to the input x, y, z yield an output bit for

z. There are 2
n
 = 2

3
 = 8 possible ways to assign bits to the input as

follows:

 000, 001, 010, 011, 100, 101, 110, 111.

The assumption is that the sequence of first bits is assigned to x, the

sequence of second bits to y, and the sequence of third bits to z. Thus the

above set of inputs may be rewritten in the form

 x = 00001111, y = 00110011, z = 01010101

These three sequences (of 8 bits) contain the eight possible combination of

the input bits.

The truth table T = T(L) of the circuit L consists of the output t that

corresponds to the input sequences x, y, z.

The truth table is same as we generally have written in vertical columns.

The difference is that here we write x, y, z and t horizontally.

Consider a logic circuit L with n input devices. There are many

ways to form n input sequences x1, x2,….,xn so that they contain 2
n

different possible combinations of the input bits (Each sequence must

contain 2
n
 bits).

The assignment scheme is:

x1 : Assign 2
n-1

 bits which are 0 followed by 2
n-1

 bits which are 1.

x2 : Assign 2
n-2

 bits which are 0 followed by 2
n-2

 bits which are 1.

x3 : Assign 2
n-3

 bits which are 0 followed by 2
n-3

 bits which are 1.

and so on.

The sequence obtained in this way is called “Special Sequence”. Replacing

0 by 1 and 1 by 0 in the special sequences yield the complements of the

special sequences.

Example: Suppose a logic circuit L has n = 4 input devices x, y, z, t. Then

2
n
 = 2

4
 = 16 bit special sequences for x, y, z, t are

x = 0000000011111111 (2
3
 = 8 zeros followed by 8 ones)

y = 0000111100001111 (2
n-2

 = 2
4-2

 = 4 zeros followed by 4 ones)

z = 0011001100110011 (2
n-3

 = 2
4-3

 = 2 zeros followed by 2 ones)

t = 0101010101010101 (2
n-4

 = 2
4-4

 = 2
0
 = 1 zeros followed by 1 one)

ALGORITHM FOR FINDING TRUTH TABLE FOR A LOGIC

CIRCUIT LWHERE OUTPUT T IS GIVEN BY A BOOLEAN

SUM-OF-PRODUCT EXPRESSION IN THE INPUTS.

The input is a Boolean sum-of-products expression t(x1, x2,….,..).

Step 1. Write down the special sequences for the inputs x1, x2,….and their

complements

 123

Step 2. Find each product appearing in t(x1, x2,….) keeping in mind that

x1, x2,….=1 is a position if and only if all x1, x2…..have 1 in the position.
Step 3. Find the sum t of the products keeping in mind that x1 + x2 + …..=

0 in a position if and only if all x1, x2,…..have 0 in the position.

2.12 Representation of Boolean Functions using Karnaugh

Map
Karnaugh Map is a graphical procedure to represent Boolean function as

an “or” combination of minterms where minterms are represented by

squares. This procedure is easy to use with functions f: Bn B, if n is not

greater than 6. We shall discuss this procedure for n = 2, 3, and 4.

A Karnaugh map structure is an area which is subdivided into 2
n
 cells, one

for each possible input combination for a Boolean function of n variables.

Half of the cells are associated with an input value of 1 for one of the

variables and the other half are associated with an input value of 0 for the

same variable. This association of cell is done for each variable, with the

splitting of the 2
n
 cells yielding a different pair of halves for each distinct

variable.

Case of 1 variable: In this case, the Karnaugh map consists of 2
1
 = 2

squares.

 0 1

 x x

The variable x is represented by the right square and its complement x by

the left square.

Case of 2 variables: For n = 2, the Boolean function is of two variable, say x

and y. We have 2
2
 = 4 squares, that is, a 2 2 matrix of squares. Each

squares contains one possible input from B2.

The variable x appears in the first row of the matrix as x whereas x

appears in the second row as x. Similarly y appears in the first column as

y and as y in the second column.

 0 1 y y

 0 x

 1

 x

 (2 variable Karnaugh Map)

In this case, x is represented by the points in lower half of the map and y

is represented by the points in the right half of the map.

Definition: Two fundamental products are said to be adjacent if they have

the same variables and if they differ in exactly one literal. Thus there must

00 01

10 11

 x y

 x y

 xy

 xy

 124

be an uncomplemented variable in one product which is complemented in

the other.

For example, if P1 = x y z and P2 = x y z , then they are adjacent.

The sum of two such adjacent products will be a fundamental product with one

less literal.

For example, in the case of above mentioned adjacent products,

 P1 + P2 = x y z + x y z = x z (y + y) = x z (1) = x z .

We note that two squares in Karnaugh map above are adjacent if

and only if squares are geometrically adjacent, that is, have a side in

common.

We know that a complete sum-of-products Boolean expression E(x,

y) is a sum of minterms and hence can be represented in the Karnaugh

map by placing checks in the appropriate square. A prime implicant of

E(x, y) will be either a pair of adjacent squares in E or an isolated square (a

square which is not adjacent to other square of E(x, y)). A minimal sum of

products for E(x, y) will consists of a minimal number of prime implicants

which cover all the square of E(x, y).

Example : Find the prime implicants and a minimal sum-of-products form

from each of the following complete sum-of-products Boolean expression:

(a) E1 = x y + x y (b) E2 = x y + x y + x y

(c) E3 = x y + x y .

Solution: (a) The Karnaugh map for E1 is

 y y

 x

 x

Check the squares corresponding to x y and x y . We note that E1 consists

of one prime implicant, the two adjacent square designated by the loop.

The pair of adjacent square represents the variable x. So x is the only

prime implicant of E1. Consequently E1 = x is its minimal sum.

(b) The Karnaugh map for E2 is

 y y

 x

 x

Check the squares corresponding to x y, x y, x y . The expression E2

contains two pairs of adjacent squares (designated by two loops) which

include all the squares of E2. The vertical pair represents y and the

horizontal pair x . Hence y and x are the prime implicants of E2. Thus



  

 

 125

E2 (x, y) = x + y

is minimal sum.

(c) The Karnaugh map for E3 is

 y y

 x

 x

Check (tick) the squares corresponding to x y and x y . The expression E3

consists of two isolated squares which represent x y and x y . Hence and x

y and x y are the prime implicants of E3 and so E3 = x y + x y is its

minimal sum.

Case of 3 variables: We now turn to the case of a function f: B3 B which

is function of x, y and z. The Karnaugh map corresponding to Boolean

expression E(x, y, z) is shown in the diagram below:

 y y

 00 01 11 10 y z y z yz yz

 0 x

 1 x

 z

 z

Here x, y, z are respectively represented by lower half, right half and

middle two quarters of the map.

Similarly, x , y , z are respectively represented by upper half, left half and

left and right quarter of the map.

Definition: By a Basic Rectangle in the Karnaugh map with three variables,

we mean a square, two adjacent squares or four squares which form a

one-by four, or a two by-two rectangle. These basic rectangles corresponds

to fundamental products of three, two and one literal respectively.

Further, the fundamental product represented by a basic rectangle

is the product of just those literals that appear in every square of the

rectangle.

Let a complete sum of products Boolean expression E(x, y, z) is

represented in the Karnaugh map by placing checks in the appropriate

squares. A prime implicant of E will be a maximal basic rectangle of E,

x y

 

xy



000 001 011 010

100 101 111 110

x y z x y z x yz x yz

xy z xy z xyz xyz

 126

i.e., a basic rectangle contained in E which is not contained in any larger

basic rectangle in E.

A minimal sum-of-products form for E will consist of a minimal

cover of E, i.e., a minimal number of maximal basic rectangles of E which

together include all the squares of E.

Example: Find the prime implicants and a minimal sum-of-products form

for each of the following complete sum of products Boolean expressions :

(a) E1 = x y z + x y z + x y z + x y z

(b) E2 = x y z + x y z + x y z + x y z + x y z

(c) E3 = x y z + x y z + x y z + x y z

Solution: (a) The Karnaugh map for E1 is

We check the four squares corresponding to four summands in E1. Here

E1 has three prime implicants (maximal basic rectangles) which are

encircled. These are x y, y z and x y z. All three are needed to cover E1.

Hence minimal sum for E1 is

E1 = x y + y z + x y z.

(b) The Karnaugh map for E2 is

Check the squares corresponding to the five summands. E2 has two prime

implicants which are circled. One is the two adjacent squares which

represent x y, and the other is the two-by-two square which represents z.

Both are needed to cover E2 so the minimal sum for E2 is

E2 = x y + z

(c) The Karnaugh map for E3 is

Check the squares corresponding to the five summands. Here E3 has

three prime implicants x y, yz , x y . All these are needed in a minimal

cover of E3. Hence E3 has minimal sum as

 E3 = x y + y z + x y

 y z y z yz yz

 y z y z yz yz

 y z y z yz yz

 


  

 x

 x

 x

 x

 

 

 



  

   x

 x

 127

Remark : To find the fundamental product represented by a basic

rectangle, find literals which appear in all the squares of the rectangle.

Case of 4 Variables: We consider a Boolean function f : B4 B, considered

as a function of x, y, z and t. Each of the 16 squares (2
4
) corresponds to one

of the minterms with four variables.

 x y z t, x y z t ,……………..,x y z t

We consider first and last columns to be adjacent, and first and last

rows to be adjacent, both by Wrap around, and we look for rectangles

with sides of length some power of 2, so the length is 1, 2 or 4. The

expression for such rectangles is given by intersecting the large labelled

rectangles.

 00 01 11 10

 00

 01 ,

 11

 10

 z z

 x

 y

 x y

 t

A basic rectangle in a four variable Karnaugh map is a square, two

adjacent squares, four squares which form a one-by-four or two by two

rectangle or eight square squares which form a two by four rectangle.

These rectangle correspond to fundamental product with four, three, two

and one literal respectively. Maximal basic rectangles are prime

implicants.

Example: Find the fundamental product P represented by the basic

rectangle in the Karnaugh map given below :

0000 0001 0011 0010

0100 0101 0111 0110

1100 1101 1111 1110

1000 1001 1011 1010

x y z t x y z t x y zt x y zt

x yz t x yz t x y z t x yz t

xyz t xyz t xyzt xyzt

xy z t xy z t xy zt xy zt

t

 128

Solution: We find the literals which appear in all the squares of the basic

rectangle. Then P will be the product of such literals.

Here x, y , z appear in both squares. Hence

 P = x y z

is the fundamental product represented by the basic rectangle in question.

 y t z t zt zt

  

 x y

 x y

 xy

 xy

 129

Unit-3

Graph Theory

3.1. Definitions and Examples

Definition: A graph G = (V,E) is a mathematical structure consisting of two

finite sets V and E. The elements of V are called Vertices (or nodes) and the

elements of E are called Edges. Each edge

is associated with a set consisting of either one or two vertices called its

endpoints.

The correspondence from edges to endpoints is called edge-endpoint

function. This function is generally denoted by . Due to this function, some

author denote graph by G = (V, E,).

Definition: A graph consisting of one vertex and no edges is called a trivial

graph.

Definition: A graph whose vertex and edge sets are empty is called a null

graph.

Definition: An edge with just one end point is called a loop or a self loop.

 Thus, a loop is an edge that joins a single endpoint to itself.

Definition: An edge that is not a self-loop is called a proper edge.

Definition: If two or more edges of a graph G have the same vertices, then

these edges are said to be

parallel or multi-edges.

Definition: Two vertices that are connected by an edge are called adjacent.

Definition: An endpoint of a loop is said to be adjacent to itself.

Definition: An edge is said to be incident on each of its endpoints.

Definition: Two edges incident on the same endpoint are called adjacent

edges.

Definition: The number of edges in a graph G which are incident on a vertex is

called the degree of

that vertex.

Definition: A vertex of degree zero is called an isolated vertex.

Thus, a vertex on which no edges are incident is called isolated.

Definition: A graph without multiple edges (parallel edges) and loops is

called Simple graph.

Notation: In pictorial representations of a graph, the vertices will be denoted

by dots and edges by line segments.

 130

Example: 1. Let

 V = {1, 2, 3, 4} and E = {e1, e2, e3, e4, e5}.

Let be defined by

 (e1) = (e5) = {1, 2}

 (e2) = {4, 3}

 (e3) = {1, 3}

 (e4) = {2, 4}

We note that both edges e1 and e5 have same endpoints {1, 2}. The endpoints

of e2 are {4, 3}, the endpoints of e3 are {1, 3} and endpoints of e4 are {2, 4}.

Thus the graph is

 1 2

 1 2
 or e3 e4

 3 4

 3
 4 e2

The edges e2 and e3 are adjacent edges because they are incident on the same

vertex B.

2. Consider the graph with the vertices A, B , C, D and E pictured in the figure

below.

 A B

 C

 D E

In this graph, we note that

No. of edges = 5

Degree of vertex A = 4

e1

e5

e4

e3

e1

e5

e2

 131

Degree of vertex B = 2

Degree of vertex C = 3

Degree of vertex D = 1

Degree of vertex E = 0

Sum of the degree of vertices = 4 + 2 + 3 + 1 + 0 =10

Thus, we observe that

5

1i

deg(vi) = 2e ,

where deg(vi) denotes the degree of vertex vi and e denotes the number of

edges.

Euler’s Theorem: (The First Theorem of Graph Theory): The sum of the

degrees of the vertices of a graph G is equal to twice the number of edges

in G.

 (Thus, total degree of a graph is even)

Proof: Each edge in a graph contributes a count of 1 to the degree of two

vertices (end points of

the edge), That is, each edge contributes 2 to the degree sum. Therefore the

sum of degrees of the

vertices is equal to twice the number of edges.

Corollary: There must be an even number of vertices of odd degree in a given

graph G.

Proof: We know, by the Fundamental Theorem, that

n

i 1

deg(vi) = 2 no. of edges

Thus the right hand side is an even number. Hence to make the left-hand side

an even number there

can be only even number of vertices of odd degree.

Remarks: (i) A vertex of degree d is also called a d-valent vertex.

(ii) The degree (or valence) of a vertex v in a graph G is the number of proper

edges incident on v

plus twice the number of self- loops.

Theorem: A non-trivial simple graph G must have at least one pair of vertices

whose degrees are

equal.

Proof: Let the graph G has n vertices. Then there appear to be n possible

degree values, namely 0, 1, ….,n 1. But there cannot be both a vertex of

degree 0 and a vertex of degree n 1 because if there is a vertex of degree 0

then each of the remaining n 1 vertices is adjacent to atmost n 2 other

 132

vertices. Hence the n vertices of G can realize atmost n 1 possible values for

their degrees. Hence the pigeonhole principle implies that at least two of the

vertices have equal degree.

Definition: A graph G is said to simple if it has no parallel edges or loops. In a

simple graph, an edge with endpoints v and w is denoted by {v, w}.

Definition: For each integer n 1, let Dn denote the graph with n vertices and

no edges. Then Dn is called the discrete graph on n vertices.

For example, we have

 and

 D3 D5

Definition: Let n 1 be an integer. Then a simple graph with n vertices in

which there is an edge between each pair of distinct vertices is called the

complete Graph on n vertices. It is denoted by Kn.

 For example, the complete graphs K2, K3 and K4 are shown in the

figures below:

 v3 v4 v3

v1 v2 v1 v2 v1 v2

 K2 K3 K4

Definition: If each vertex of a graph G has the same degree as every other

vertex, then G is called a regular graph.

A k-regular graph is a regular graph whose common degree is k.

 For example, consider K3. The degree of each vertex in K3 is 2. Hence

K3 is regular. Similarly K4 is regular. Also the graph shown below is regular

because degree of each vertex here is 2 .

 v4 v3

 2- regular graph

 v1 v2

But this graph is not complete because v2 and v4 have not been connected

through an edge. Similarly, v1 and v3 are not connected by any edge.

Thus

 A Complete graph is always regular but a regular graph need not

be complete.

 133

Example: The oxygen molecule O2, made up of two oxygen atoms linked by a

double bond can be represented by the regular graph shown below:

Definition: Let n 1be an integer. Then a graph Ln with n vertices {v1,

v2,….,vn} and with edges

{vi, vi+1} for 1 i < n is called a Linear Graph on n vertices.

 For example, the linear graphs L2 and L4 are shown in the figure below.

 ,
 v1 v2 v1 v2 v3 v4

 L2(or P2) L4(or P4)

It is also called Path Graph denoted by Pn.

Definition: A bipartite graph G is a graph whose vertex set V can be

partitioned into two subsets U and W, such that each edge of G has one

endpoint in U and one endpoint in W.

 The pair (U, W) is called a Vertex bipartition of G and U and W are

called the bipartition subsets. Obviously, a bipartite graph cannot have any self

loop.

Example: 1. If Vertices in U are solid vertices and vertices in W are hollow

vertices, then the following graphs are bipartite graphs:

 ,

2. The smallest possible simple graph that is not bipartite is the complete

graph K3 shown below :

 K3

Definition: A complete bipartite graph G is a simple graph whose vertex set

V can be partitioned into two subsets U = {v1, v2,…,vm) and W =

{w1, w2,…,wn}such that for all i, k in {1, 2,….,m}and j, l in {1, 2,…n}

(i) there is an edge from each vertex vi to each vertex wj.

 134

(ii) there is not an edge from any vertex vi to any other vertex vk.

(iii) there is not an edge from any vertex wj to any other vertex wl.

 A complete bipartite graph on (m, n) vertices is denoted by Km,n.

Example: The complete bipartite graphs K32 and K34 are shown in the figure

below:

 v1 w1

 w1 v1

 v2 w2

 w2 v2

 v3 w3

 K32 v3

 w4

 K34

3.2. Subgraphs

Definition: A graph H is said to be a subgraph of a graph G if and only if

every vertex in H is also a vertex in G, every edge in H is also an edge in G

and every edge in H has the same endpoints as in G.

We may also say that G is a supergraph of H.

 For example,

 v1 v2 v1 v2
 e2 e3 and e5 e4

 v3 v4 v3 v4

are subgraphs of the graph given below:

 v1 v2

 e2 e4

 e5 e6

 v3 v4

 Similarly, the graph

 A B

 D C

e1 e1

e1

e5

E

F

H G

E F

H G

 135

is a subgraph of the graph given below:

 A B

 D C

Definition: A subgraph H is said to be a proper subgraph of a graph G if

vertex set VH of H is a proper subset of the vertex set VG of G or edge set EH is

a proper subset of the edge set EG.

 For example, the subgraphs in the above examples are proper

subgraphs of the given graphs.

Definition: A subgraph H is said to span a graph G if VH = VG.

 Thus H is a spanning sub graph of graph G if it contains all the

vertices of G.

 For example the subgraph

 v1 v2

 v5

 v3 v4

spans the graph

 v1 v2

 v5

 v3 v4

Definition: Let G = (V, E) be a graph. Then the complement of a subgraph

G´ = (V´, E´) with respect to the graph G is another subgraph G´´ = (V´´, E´´)

such that E´´ = E E´ and V´´ contains only the vertices with which the edges

in E´´ are incident.

 For example, the subgraph

 v1 v2

is the complement of the subgraph

 v1 v2

 v7 v8

 136

 v5 v6

 v3 v4

with respect to the graph G shown in the figure below:

v1 v2

 v7 v8

 v5 v6

 v3 v4

Definition: If G is a simple graph, the complement of G, (Edge

complement), denoted by G or G
c
 is a graph such that

(i) The vertex set of G is identical to the vertex set of G, that is VG = VG

(ii) Two distinct vertices v and w of G are connected by an edge if and only if

v and w are not connected by an edge in G.

 For example, consider the graph G

 v1 v3

 v4

 G

Then complement G of G is the graph

 v2

 v1 v3

 v4

 G

Example: Find the complement of the graphs:

 v2

(a) v1 v3

 v4

(b)

 v1 v2

v2

 137

 v3 v4

(c) Complete graph K4 :

 v1 v2

 v3 v4

Solution: (a)

 v2

 v1 v3

 v4

(b)

 v1 v2

 v3 v4

(c) Null graph.

Example: Find the edge complement of the graph G shown below:

 v1

 v2 v3

 v4 v5

 v6 G

Solution: The edge complement of G is the following graph G
c

 v1

 v2 v3

 v4 v5

 v6

 G
c

Definition: If a new vertex v is joined to each of the pre-existing vertices of a

graph G, then the resulting graph is called the Join of G and v or the

suspension of G from v. It is denoted by G + v.

 138

Thus, A graph obtained by joining a new vertex to each of the vertices of a

given graph G is called the Join of G and v or the suspension of G from v. It

is denoted by G + v.

 For example, let G be a graph

 v1 v2

 v3 v4

and let v be a vertex. Then

 v

 v1 v2

 v3 v4

 G + v

is the join of G to v.

3.3. Isomorphisms of Graphs

We know that shape or length of an edge and its position in space are not part

of specification of a graph. For example, the figures

 v3 e2 v1 e1 v2

 v1 v2 and

 e2 e3

 e3

 v3

represent the same graph.

Definition: Let G and H be graphs with vertex sets V(G) and v(H) and Edge

sets E(G) and E(H) respectively. Then G is said to isomorphic to H iff there

exist one-to-one correspondences g : V(G) v(H) and h : E(G) E(H) such

that for all v V(G) and e E(G),

 v is an endpoint of e g(v) is an endpoint of h(e).

Definition: The property of mapping endpoints to endpoints is called

preserving incidence or the

continuity rule for graph mappings.

As a consequence of this property, a self-loop must map to a self-loop.

Thus, two isomorphic graphs are same except for the labeling of their vertices

and edges.

Example: Show that the graphs

 e1 v3

e5

e4

 139

 v2

 v1 e6 e2 e3

 v5

 e4 v4

 G

and

 w1

 f3 f4 w3

 f1 f2 w2 f5

 f7 f6 w4

 w5

 H

are isomorphic.

Solution: To solve this problem, we have to find g: V(G) V(H) and h : E(G)

 E(H) such that for all v V(G) and e E(G),

 v is an endpoint of e g(v) is an endpoint of h(e).

Since e2 and e3 are parallel (have the same endpoints), h(e2) and h(e3) must also

be parallel. Thus we have

 h(e2) = f1 and h(e3) = f2 or h(e2) = f2 and h(e3) = f1.

Also the endpoints of e2 and e3 must correspond to the endpoints of f1 and f2

and so

 g(v3) = w1 and g(v4) = w5 or g(v3) = w5 and g(v4) = w1.

 Further, we note that v1 is the endpoint of four distinct edges e1,

e7, e5 and e4 -and so g(v1) should be the endpoint of form distinct edges. We

observe that w2 is the vertex having four edges and so g(v1) = w2. If g(v3) = w1,

then since v1 and v3 are endpoints of e1 in G, g(v1) = w2 and g(v3) = w1 must be

endpoints of h(e1) in H. This implies that h(e1) = f3.

 Continuing in this way we can find g and h to define the

isomorphism between G and H.

 One such pair of functions (of course there exist several) is shown

below:

 V(G) V(H)

 g

 v1 w1

 v2 w2

 v3 w3

 v4 w4

 v5 w5

 140

 E(G) E(H)

 h

 e1 f1

 e2 f2

 e3 f3

 e4 f4

 e5 f5

 f6

 e6

 e7 f7

Remark: Each of the following properties is invariant under graph

isomorphism, where n, m and h are all non-negative integers:

1. has n vertices

2. has m edges

3. has a vertex of degree k

4. has m vertices of degree k

Example: Examine for isomorphism

(a)

 and

 G

 H

(b)

 and

 G

 H

 141

Solution: (a) G has nine edges whereas H has only eight edges. Hence G is not

isomorphic to H.

(b) G has a vertex v of degree 4, whereas H has no vertex of degree 4. Hence G

 is not isomorphic to H

3.4 Walks, Paths and Circuits

Definition: In a graph G, a walk from vertex v0 to vertex vn is a finite

alternating sequence:

 {v0, e1, v1, e2,…..,vn 1, en, vn}

of vertices and edges such that vi-1 and vi are the endpoints of ei.

The trivial walk from a vertex v to v consists of the single vertex v.

Definition: In a graph G, a path from the vertex v0 to the vertex vn is a walk

from v0 to vn that does not contain a repeated edge.

 Thus a path from v0 to vn is a walk of the form

 {v0, e1, v1, e2, v2,…..,vn-1, en, vn},

where all the edges eI are distinct.

Definition: In a graph, a simple path from v0 to vn is a path that does not

contain a repeated vertex.

 Thus a simple path is a walk of the form

 {v0, e1,v1, e2, v2,……,vi-1, en, vn},

where all the ei are distinct and all the vi are distinct.

Definition: A walk in a graph G that starts and ends at the same vertex is

called a closed walk.

Definition: A closed walk that does not contain a repeated edge is called a

circuit.

Thus, closed a closed path is called a circuit (or a cycle) and so a circuit is a

walk of the form

 {v0, e1, v1, e2, v2,……,vn-1, en, vn} ,

where v0 = vn and all the ei are distinct.

Definition: A simple circuit is a circuit that does not have any other repeated

vertex except the first and the last.

 Thus, a simple circuit is a walk of the form

 142

 {v0, e1, v1, e2,….,vn-1, en, vn},

where all the eI are distinct and all the vj are distinct except that v0 = vn.

Example: Consider the graph shown below

 e1

 v1 v2

 e4 e3

 v3

 e5

 v4

We note that e3, e5 is a path. The walk e1, e2, e3, e5 is a path but it is not a

simple path because the vertex v1 is repeated (e1 being a self-loop). The walk

e2, e3, e4 is a circuit. The walk e2, e3, e4, e1 is a circuit but it is not simple

circuit because vertex v, repeats twice (or we may write that v1 met twice).

Definition: In a graph the number of edges in the path {v0, e1, v1, e2,……, en,

vn} from v0 to vn is called the length of the path.

Definition: A cycle with k-edges is called a k-cycle or cycle of length k.

For example, loop is a cycle of length 1. On the other hand, a pair of parallel

edges e1 and e2, shown below, is a cycle of length 2

 e1

 v1 v2

 e2

Definition: A graph is said to be acyclic if it contains no cycle.

 For example, the graphs

 and

are acyclic.

Theorem: If there is a path from vertex v1 to v2 in a graph with n vertices, then

there does not exist a path of more than n-1 edges from vertex v1 to v2.

Proof: Suppose there is a path from v1 to v2. Let

e2

 143

 v1,……..,vi,………,v2

be the sequence of vertices which the path meets between the vertices v1 and

v2. Let there be m edges in the path. Then there will be m + 1 vertices in the

sequence. Therefore if m > n 1, then there will be more than n vertices in the

sequence. But the graph is with n vertices. Therefore some vertex, say vk,

appears more than once in the sequence. So the sequence of vertices shall be

 v1,…….,vi,…….,vk,…..,vk,……..,v2.

Deleting the edges in the path that lead vk back to vk we have a path from v1 to

v2 that has less edges than the original one. This argument is repeated untill we

get a path that has n-1 or less edges.

Definition: Two vertices v1 and v2 of a graph G are said to be connected if and

only if there is a walk from v1 to v2.

Definition: A graph G is said to be connected if and only if given any two

vertices v1 and v2 in G, there is a walk from v1 to v2.

 Thus, a graph G is connected if there exists a walk between every

two vertices in the graph.

Definition: A graph which is not connected is called Disconnected Graph.

Example: Which of the graph below are connected?

(a)

 v1 v2

 v3

 v4 v5

(b)

 v1 v2

 v3 v4

Solution: Graph (a) is not connected as there is no walk from any of v1, v2, v3,

v4 to the vertex v5.

The graph (b) is clearly connected.

Definition: If a graph G is disconnected, then the various connected pieces of

G are called the connected components of the graph.

Example: Consider the graph given below:

 144

 v1 v2 v5

 e4

 e2 e3 v4 e5

 v3 e6

 v6

This graph is disconnected and have two connected components:

 e1

H1 : v1 v2

 with vertex set {v1, v2, v3} and edge set {e1, e2,

e3}

 e2 e3

 v3

H2 : e4 v5

 v4 e5 with vertex set {v4, v5, v6} and edge set {e4, e5,

e6}.

 e6 v6

Example: Find the number of connected components in the graph

Solution: The connected components are :

 and

Remark: If a connected component has n vertices, then degree of any vertex

cannot exceed n-1.

3.5. Eulerian Paths And Circuits

Definition: A path in a graph G is called an Euler Path if it includes every

edge exactly once.

 145

Definition: A circuit in a graph G is called an Euler Circuit if it includes

every edge exactly once. Thus, an Euler circuit (Eulerian trail) for a graph G is

a sequence of adjacent vertices and edges in G that starts and ends at the same

vertex, uses every vertex of G at least once, and uses every edge of G exactly

once.

Definition: A graph is called Eulerian graph if there exists a Euler circuit for

that graph.

Theorem 1. If a graph has an Euler circuit, then every vertex of the graph has

even degree.

Proof: Let G be a graph which has an Euler circuit. Let v be a vertex of G. We

shall show that degree of v is even. By definition, Euler circuit contains every

edge of graph G. Therefore the Euler circuit contains all edges incident on v.

We start a journey beginning in the middle of one of the edges adjacent to the

start of Euler circuit and continue around the Euler circuit to end in the middle

of the starting edge. Since Euler circuit uses every edge exactly once, the edges

incident on v occur

in entry / exist pair and hence the degree of v is a multiple of 2. Therefore the

degree of v is even. This completes the proof of the theorem.

We know that contrapositive of a conditional statement is logically equivalent

to statement. Thus the above theorem is equivalent to:

Theorem:2. If a vertex of a graph is not of even degree, then it does not have

an Euler circuit.

 or

“If some vertex of a graph has odd degree, then that graph does not have an

Euler circuit”.

Example: Show that the graphs below do not have Euler circuits.

(a)

 v1 v2

 v3 v4

(b)

v

Starting point

v2

 146

 v1

 v4 v3

Solution: In graph (a), degree of each vertex is 3. Hence this does not have a

Euler circuit.

In graph (b), we have

 deg(v2) = 3

 deg(v4) = 3

Since there are vertices of odd degree in the given graph, therefore it does not

have an Euler circuit.

Remark: The converse of Theorem 1 is not true. There exist graphs in which

every vertex has even degree but the Euler circuits do not exist.

For example,

and

are graphs in which each vertex has degree 2 but these graphs do not have

Euler circuits since there is no path which uses each vertex at least once.

Theorem 3. If G is a connected graph and every vertex of G has even degree,

then G has an Euler circuit.

Proof: Let every vertex of a connected graph G has even degree. If G

consists of a single vertex, the trivial walk from v to v is an Euler circuit. So

suppose G consists of more than one vertices. We start from any verted v of G.

Since the degree of each vertex of G is even, if we reach each vertex other than

v by travelling on one edge, the same vertex can be reached by travelling on

another previously unused edge. Thus a sequence of distinct adjacent edges can

be produced indefinitely as long as v is not reached. Since number of edges of

the graph is finite (by definition of graph), the sequence of distinct edges will

terminate. Thus the sequence must return to the starting vertex. We thus obtain

a sequence of adjacent vertices and edges starting and ending at v without

repeating any edge. Thus we get a circuit C.

 147

If C contains every edge and vertex of G, then C is an Eular circuit.

If C does not contain every edge and vertex of G, remove all edges of C from

G and also any vertices that become isolated when the edges of C are removed.

Let the resulting subgraph be G . We note that when we removed edges of C,

an even number of edges from each vertex have been removed. Thus degree of

each remaining vertex remains even.

Further since G is connected, there must be at least one vertex common to both

C and G . Let it be w(in fact there are two such vertices). Pick any sequence of

adjacent vertices and edges of G starting and ending at w without repeating an

edge. Let the resulting circuit be C .

Join C and C together to create a new circuit C . Now, we observe that if we

start from v and follow C all the way to reach w and then follow C all the way

to reach back to w. Then continuing travelling along the untravelled edges of

C, we reach v.

If C contains every edge an vertex of C, then C is an Euler circuit. If not,

then we again repeat our process. Since the graph is finite, the process must

terminate.

The process followed has been described in the graph G shown below:

 G

 C

 u

 C

 G

 v

 C

 Theorems 1 and 3 taken together imply :

Theorem 4. (Euler Theorem) A finite connected graph G has an Euler circuit

if and only if every vertex of G has even degree.

Thus finite connected graph is Eulerian if and only if each vertex has even

degree.

Theorem 5. If a graph G has more than two vertices of odd degree, then there

can be no Euler path in G.

Proof : Let v1, v2 and v3 be vertices of odd degree. Since each of these vertices

had odd degree, any possible Euler path must leave (arrive at) each of v1, v2, v3

with no way to return (or leave). One vertex of these three vertices may be the

v

w

w

 148

beginning of Euler path and another the end but this leaves the third vertex at

one end of an untravelled edge. Thus there is no Euler path.

 v1 v1

 v2 v2

 v3 or v3

 (Graphs having more than two vertices of odd degree).

Theorem 6. If G is a connected graph and has exactly two vertices of odd

degree, then there is an Euler path in G. Further, any Euler path in G must

begin at one vertex of odd degree and end at the other.

Proof: Let u and v be two vertices of odd degree in the given connected graph

G.

 u u

 e

 v v

 G G

If we add the edge e to G, we get a connected graph G all of whose vertices

have even degree. Hence there will be an Euler circuit in G . If we omit e from

Euler circuit, we get an Euler path beginning at u(or v) and edning at v(or u).

Examples. Has the graph given below an Eulerian path?

 A C

 D

Solution: In the given graph,

 deg(A) = 1

 deg(B) = 2

 deg(C) = 2

 deg(D) = 3

Thus the given connected graph has exactly two vertices of odd degree. Hence,

it has an Eulerian path.

B

 149

If it starts from A(vertex of odd degree), then it ends at D(vertex of odd

degree). If it starts from D(vertex of odd degree), then it ends at A(vertex of

odd degree).

But on the other hand if we have the graph as given below :

 A C ,

 D

 e3

then deg(A) = 1, deg(B) = 3 deg(C) = 1, degree of D = 3 and so we have four

vertices of odd degree. Hence it does not have Euler path.

Example: Does the graph given below possess an Euler circuit?

 e7
 v4 v3

 e4
 e5

 v1 v2

Solution: The given graph is connected. Further

 deg(v1) = 3

 deg(v2) = 4

 deg(v3) = 3

 deg(v4) = 4

Since this connected graph has vertices with odd degree, it cannot have Euler

circuit. But this graph has Euler path, since it has exactly two vertices of odd

degree. For example, v3 e2 v2 e7 v4 e6 v2 e1 v1 e4 v4 e3 v3 e5 v1

Example: Consider the graph

 v2 v3

 v1

 v4

Here, deg(v1) = 4, deg(v2) = 4, deg(v3) = 2, deg(v4) = 2. Thus degree of each

vertex is even. But the graph is not Eulerian since it is not connected.

Example 4:. The bridges of Konigsberg: The graph Theory began in 1736

when Leonhard Euler solved the problem of seven bridges on Pregel river in

the town of Konigsberg in Prussia (now Kaliningrad in Russia). The two

islands and seven bridges are shown below:

B e4 e1

e2

e3

e6

e2

e1

 150

 -- --

 Bridge - - Bridge

 - - Bridge

 D ---------- C

 - -

 Bridge Bridge

Bridge - - Bridge

 -- --

 ---------- River

The people of Konigsgerg posed the following question to famous Swiss

Mathematician Leonhard Euler:

“Beginning anywhere and ending any where, can a person walk through the

town of Konigsberg crossing all the seven bridges exactly once?

Euler showed that such a walk is impossible. He replaced the islands A, B and

the two sides (banks) C and D of the river by vertices and the bridges as edges

of a graph. We note then that

 deg(A) = 3

 deg(B) = 5

 deg(C) = 3

 deg(D) = 3

Thus the graph of the problem is

 A(island)

(side of the river) D C(side of the river)

 B(Island)

Island

 A

Island

 B

 151

 (Euler’s graphical representation of seven bridge problem)

The problem then reduces to

 “Is there any Euler’s path in the above diagram?”.

To find the answer, we note that there are more than two vertices having odd

degree. Hence there exist no Euler path for this graph.

Definition: An edge in a connected graph is called a Bridge or a Cut Edge if

deleting that edge creates a disconnected graph.

For example, consider the graph shown below:

 v1 v2

 e3 e2

 v3

 v4 e4

 v5

In this graph, if we remove the edge e3, then the graph breaks into two

Connected Component given below:

 v1 v2

 e2

 v3

 v4 e4

 v5

Hence the edge e3 is a bridge in the given graph.

METHOD FOR FINDING EULER CIRCUIT

We know that if every vertex of a non empty connected graph has even degree,

then the graph has an Euler circuit. We shall make use of this result to find an

Euler path in a given graph.

 Consider the graph

 v2 v6

 e1 e2 e9 e8

 v1 v7

 e4 e5 e10 e11

 v4 v8

 e12

e1

e5

e1

e5

v5 e6 v3 e3

 152

We note that

 deg(v2) = deg(v4) = deg(v6) = deg(v8) = 2

 deg(v1) = deg(v3) = deg(v5) = deg(v7) = 4

Hence all vertices have even degree. Also the given graph is connected. Hence

the given has an Euler circuit. We start from the vertex v1 and let C be

 C : v1 v2 v3 v1

Then C is not an Euler circuit for the given graph but C intersect the rest of the

graph at v1 and v3. Let C be

 C : v1v4 v3 v5 v7 v6 v5 v8 v7 v1

(In case we start from v3, then C will be v3 v4 v1 v7 v6 v5 v7 v8 v5)

Path C into C and obtain

 C : v1v2 v3 v1 v4 v3 v5 v7 v6 v5 v8 v7 v1

Or we can write

 C : e1e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12

(If we had started from v2, then C : v1v2 v3 v4 v1 v7 v6 v5 v7 v8 v5 v3 v1 or

e1e2 e5 e4 e12 e8 e9 e7 e11 e10 e6 e3)

In C all edges are covered exactly once. Also every vertex has been covered at

least once. Hence C is a Euler circuit.

3.6. Hamiltonian Circuits

Definition: A Hamiltonian Path for a graph G is a sequence of adjacent

vertices and distinct edges in which every vertex of G appears exactly once.

Definition: A Hamiltonian Circuit for a graph G is a sequence of adjacent

vertices and distinct edges in which every vertex of G appears exactly once,

except for the first and the last which are the same.

 Definition: A graph is called Hamiltonian if it admits a Hamiltonian circuit.

Example 1 : A complete graph Kn has a Hamiltonian Circuit. In particular the

graphs

 and

 K3

 K4

are Hamiltonian.

 153

Example 2: The graph shown below does not have a Hamiltonian circuit.

 v1 v4

 v3

 v2 v5

Example 3 : The graph

does not have a Hamiltonian circuit.

Remark: It is clear that only connected graphs can have Hamiltonian

circuit. However, there is no simple criterion to tell us whether or not a given

graph has Hamiltonian circuit. The following results give us some sufficient

conditions for the existence of Hamiltonian Circuit/path.

Theorem: Let G be a linear graph of n vertices. If the sum of the degrees for

each pair of vertices in G is greater than or equal to n 1, then there exists a

Hamiltonian path in G.

Theorem: Let G be a connected graph with n vertices. If n 3 and deg(v) n

for each vertex v in G, then G had a Hamiltonian Circuit.

Theorem: Let G be a connected graph with n vertices and let u and v be two

vertices of G that are not adjacent. If

 deg(u) + deg(v) n,

then G has a Hamiltonian circuit.

Corollary : Let G be a connected graph with n vertices. If each vertex has

degree greater than or equal to n/2, then G has a Hamiltonian circuit.

Proof: It is given that degree of each vertex is greater than or equal to n/2.

Hence the sum of the degree of any two vertices is greater than or equal to n/2

+ n/2 = n. So, by the above theorem, the graph G has a Hamiltonian circuit.

Theorem: Let n be the number of vertices and m be the number of edges in a

connected graph G. If

 m
2

1
(n

2
 – 3n + 6) ,

 154

then G has a Hamiltonian circuit.

 The following example shows that the above conditions are not

necessary for the existence of Hamiltonian path.

Example : Let G be the connected graph shown in the figure below:

 v8 v7 v6

 v1 v5

 v2 v3 v4

We note that

 No. of Vertices in G (n) = 8

 No. of Edges in G (m) = 8

 Degree of each vertex = 2

Thus, if u and v are non-adjacent vertices, then

 deg u + deg v = 2 + 2 = 4 8

Also

2

1
(n

2
 – 3n + 6) = 1/2 (64 – 24 + 6) = 23

Clearly

 m
2

1
 (n

2
 – 3n + 6)

Therefore the above two theorems fail. But the given graph has Hamiltonian

circuit. For example,

 v1 v2 v3 v4, v5, v6, v7, v8, v1

is an Hamiltonian circuit for the graph.

Proposition: Let G be a graph with at least two vertices. If G has a

Hamiltonian circuit, then G has a subgraph H with the following properties:

(1) H contains every vertex of G

 155

(2) H is connected

(3) H has the same number of edges as vertices

(4) Every vertex of H has degree 2.

 The contrapositive of this proposition is

“If a graph G with at least two vertices does not have a subgraph H satisfying

(1) – (4), then G does not have a Hamiltonian circuit”.

Also we know that contrapositive of a statement is logically equivalent to the

statement. Therefore the above result can be used to show non-existence of a

Hamiltonian Circuit.

Example 1: Does the graph G given below have Hamiltonian circuit?

 a b

 e

 c d

Solution: The given graph has

 No. of vertices (n) = 5

 No. of edges (m) = 8

 deg(a) = deg(b) = deg(c) = deg(d) = 3

 deg(e) = 4

We observe that

(i) degree of each vertex is greater than n/2

(ii) The sum of any non-adjacent pair of vertices is greater than n

(iii)
2

1
(n

2
 – 3n + 6) =

2

1
 (25 – 15 + 6) = 8

Thus the condition

 m
2

1
 (n

2
 - 3n + 6)

is satisfied.

(iv) The sum of degrees of each pair of vertices in the given graph is greater

than n 1 = 5 1 = 4.

Thus four sufficiency condition are satisfied (whereas one condition out of

these four conditions is sufficient for the existence of Hamiltonian path/graph).

Hence the graph has a Hamiltonian Circuit.

For example, the following circuits in G are Hamiltonian:

 a b a b

 156

 e and e

 c d c d

Example 2 : Does the graph shown below has Hamiltonian circuit?

 a b

 e

 c d

Solution: Here

 No. of vertices (n) = 5

 No. of edge (m) = 4

 deg(a) = deg(b) = deg(c) = deg(d) = 1

 deg(e) = 4

We note that

(i) deg(a) = deg(b) = deg(c) = deg(d)
2

5

(ii) deg(a) + deg(b) = 2 5, that is sum of any non-adjacent pair of

vertices is not greater than 5

(iii)
2

1
 (n

2
 – 3n + 6) =

2

1
 (25 – 15 + 6) = 8. Therefore the condition

 m 1/2 (n
2
 – 3n + 6)

is not satisfied.

(iv) deg(a) + deg(b) = 2 4, i.e., the condition that sum of degrees of each pair

of vertices in the graph is not greater than or equal to n 1.

 Hence no sufficiency condition is satisfied. So we try the

proposition stated above.

 Suppose that G has a Hamiltonian circuit, then G should a

subgraph which contains every vertex of G, and number of vertices and no. of

edges in H should be same. Thus H should have 5 vertices a, b, c, d, e and 5

edges. Since G has only 4 edges, H cannot have more than 4 edges. Hence no

such subgraph is possible. Hence, the given graph does not have Hamiltonian

circuit.

3.7. Weighted Graphs

 157

Definition: A weighted graph is a graph for which each edge or each vertex

or both is (are) labeled with a numerical value, called its weight.

 For example, if vertices in a graph denote recreational sites of a

town and weights of edges denote the distances in kilometers between the sites,

then the graph shown below is a weighted graph.

 D C

 7 5

 11 14

 A B

Definition: The weight of an edge (vi, vj) is called distance between the

vertices vi and vj.

Definition: A vertex u is a nearest neighbour of vertex v in a graph if u and v

are adjacent and no other vertex is joined to v by an edge of lesser weight than

(u, v).

For example, in the above example, B is the nearest neighbour of C, whereas A

and C are both nearest neighbour of the vertex D. Thus nearest neighbour of

a set of vertices is not unique.

Definition: A vertex u is a nearest neighbour of a set of vertices {v1, v2,

….,vn} in a graph if u is adjacent to some member vi of the set and no other

vertex adjacent to member of the set is joined by an edge of lesser weight then

(u, vi).

 In the above example if we have set of vertices as {B, D}, C is the

neatest neighbour of {B, D} because the edge (C, B) has weight 5 and

no other vertex adjacent to {B, D} is linked by an edge of lesser weight than

(C, B).

Definition: The length of a path in a graph is the sum of lengths of edges in

the path.

Definition: Let G (V, E) be a graph and let lij denote the length of edge (vi, vj)

in G. Then a shortest path from vi to vk is a path such that the sum of lengths

of its edges

 l12 + l23 +………+ lk 1,k

is minimum, that is, total edge weight is minimum.

TRAVELLING SALESPERSON PROBLEM

9

7

 158

This problem requires the determination of a shortest Hamiltonian circuit in

a given graph of cities and lines of transportation to minimize the total fare for

a travelling person who wants to made a tour of n cities visiting each city

exactly once before returning home.

The weighted graph model for this problem consists of vertices representing

cities and edges with weight as distances (fares) between the cities. The

salesman starts and end his journey at the same city and visits each of n 1

cities once and only once. We want to find minimum total distance.

We discuss the case of five cities and so consider the following weighted

graph.

 a

 14 12

 7 b c 10

 5 6

 13 8

 d e

We shall use Nearest Neighbour algorithm to solve the problem:

 Algorithm: Nearest Neighbour (closest insertion)

Input: a weighted complete graph G

Output: a sequence of labeled vertices that forms a Hamiltonian cycle.

 Start at any vertex v.

 Initialize l(v) = 0

 Initialize i = 0

 While there are unlabeled vertices

 i : = i + 1

 Traverse the cheapest edge that join v to an unlabeled vertex, say

w

 Set l(w) = i

 v : = w.

 For the present example,

(i) Let us choose a as the starting vertex. Then d is the nearest vertex and then

(a, d) is the corresponding edge. Thus we have the figure

 a

 7 b c

9

11

 159

 d e

(ii) From d, the nearest vertex is c, so we have a path shown below:

 a

 7 b c

 6

 d e

 (iii) From c, the nearest vertex is e. So we have the path as show below:

 a

 7 b c

 6

 8

 d e

(iv) From e, the nearest vertex is b and so we have the path

 a

 7 b c

 5 6

 8

 d e

(v) Now, from b, the only vertex to be covered is a to form Hamiltonian

circuit. Thus we have a Hamiltonian circuit as given below. The length of this

Hamiltonian circuit is

 7 + 6 + 8 + 5 + 14 = 40.

 a

 14

 7 b c

 5 6

 8

 d e

However, this is not Hamiltonian circuit of minimal length.

 160

The total distance of a minimum Hamiltonian circuit (shown below) is 37.

 a

 7 b 9 c 10

 5 6

 Total length = 7 + 6 + 9 + 5 + 10 = 37

Remark: Unless otherwise stated, try to start from a vertex of largest weight.

Example 2: Find a Hamiltonian circuit of minimal weight for the graph shown

below:

 b c

 8

 9

 a d

Solution: Starting from the point a and using nearest neighbour method, we

have the required Hamiltonian circuit as

 a b c d a

with total length as

 10 + 10 + 8 + 12 = 40

Definition: A k-factor of a graph is a spanning subgraph of the graph with

the degree of its

vertices being k.

 Consider the graph

 a

 b c

 d e

Then

12

f

10

15 10

 161

shows a 1-factor of the given graph.

Also then,

is a 2-factor of the given graph.

3.8. Matrix Representation of Graphs

A graph can be represented inside a computer by using the adjacency matrix or

the incidence matrix of the graph.

Definition: Let G be a graph with n ordered vertices v1, v2,…….,vn. Then the

adjacency matrix of G is the n n matrix A(G) = (aij) over the set of non-

negative integers such that

 aij = the number of edges connecting vi and vj for all i, j = 1,

2,…,n.

 We note that if G has no loop, then there is no edge joining vi to vi

, i = 1, 2,…,n. Therefore, in this case, all the entries on the main

diagonal will be 0.

Further, if G has no parallel edge, then the entries of A(G) are either 0 or 1.

It may be noted that adjacent matrix of a graph is symmetric.

Conversely, given a n n symmetric matrix A(G) = (aij) over the set of non-

negative integers, we can associate with it a graph G, whose adjacency matrix

is A(G), by letting G have n vertices and joining vi to vertex vj by aij edges.

Example 1: Find the adjacency matrix of the graph shown below:

 v1 v2

 162

 v3 v4 v5

Solution: The adjacency matrix A(G) = (aij) is the matrix such that

 aiJ = No. of edges connecting vi and vj.

So we have for the given graph

00011

00011

00011

11101

11110

)G(A

Example 2 : Find the graph that have the following adjacency matrix

Solution: We note that there is a loop at v1 and a loop at v3. There are parallel

edges between v1, v2; v1, v4; v2, v1; v2 , v3, v3, v2 ; v4, v1. Thus the graph is

 v1 v2

 v3 v4

The following theorem is stated without proof.

3.9. Planar Graphs

Definition: A graph which can be drawn in the plane so that its edges do not

cross is said to be planar.

For example, the graph shown below is planar :

 A

 B C

0012

0121

1202

2121

 163

 D E

 Also the complete graph K4 shown below is planar.

 A B

 C D

In fact, it can be redrawn as

 A B

 ,

 C D

so that no edges cross.

 But the complete map K5 is not planar because in this case, the

edges cross each others.

 A B

 E

 D C

 K5

Definition: An area of the plane that is bounded by edges of the planar graph is

not further subdivided into subareas is called a region or face of a planar

graph.

A face is characterised by the cycle that forms its boundary.

Definition: A region is said to be finite if its area is finite and infinite if its

area is infinite. Clearly a planar graph has exactly one infinite region.

For example, consider the graph :

 1 2

 5 6

 4 3

 B

 164

 G2

 In graph G2, there are four region A, B, C, D

 2 1

 1 2

 6 5 6

 finite region

 4 3

 finite region 4

 finite region

and

 1 2

 5 D

 4 3

 infinite region

Definition: Let f be a face (region) in a planar graph. The length of the cycle

(or closed walk) which borders f is called the degree of the region f. It is

denoted by deg(f).

In a planar graph we note that each edge either borders two regions or is

contained in a region and will occur twice in any walk along the border of

the region. Thus we have

Theorem: The sum of the degrees of the regions of a map is equal to twice the

number of edges.

For example, in the graph G2, discussed above, we have

 deg(A) = 4, deg(B) = 3, deg(C) = 4, deg (d) = 5

The sum of degrees of all regions = 4 + 3 + 4 + 5 = 16

 No. of edges in G2 = 8

Hence

 “sum of degrees of region is twice the number of edges”.

 165

Theorem (Euler’s formula for connected planar graphs): If G is a

connected planar graph with e edges, v vertices and r regions, then

 v – e + r = 2

Proof: We shall use induction on the number of edges. Suppose that e = 0.

Then the graph G consists of a single vertex, say P. Thus G is as shown below:

 P

and we have

 e = 0, v = 1, r = 1

Thus

 1 – 0 + 1 = 2

and the formula holds in this case.

 Suppose that e = 1. Then the graph G is one of the two graphs

shown below:

 ,

 e = 1, v = 1, r = 2

 e = 1, v = 2, r = 1

We see that, in either case, the formula holds.

 Suppose that the formula holds for connected planar graph with n

edges. We shall prove that this holds for graph with n + 1 edges. So, let G be

the graph with n + 1 edges. Suppose first that G contains no cycles. Choose “a”

vertex v1 and trace a path starting at v1. Ultimately, we will reach a vertex a

with degree 1, that we cannot leave.

 x a

 G

We delete “a” and the edge x incident on “a” from the graph G. The resulting

graph G has n edges and so by induction hypothesis, the formula holds for G .

Since G has one more edge than G ,one more vertex than G and the same

number of faces as G , it follows that the formula v – e + r = 2 holds also for

G.

 166

 G

 Now suppose that G contains a cycle. Let x be an edge in a cycle.

 x

 G

Now the edge x is part of a boundary for two faces. We delete the edge x but

no vertices to obtain the graph G

.

 G

Thus G has n edges and so by induction hypothesis the formula holds. Since G

has one more face (region) than G , one more edge than G and the same

number of vertices as G , it follows that the formula v – e + r = 2 also holds for

G. Hence, by Mathematical Induction, the theorem is true.

Remark: Planarity of a graph is not affected if

(i) an edge is divided into two edges by the insertion of new vertex of degree 2.

 (ii) two edges that are incident with a vertex of degree 2 are combined as a

single edge by the removal of that vertex.

 167

Definition: Two graphs G1 and G2 are said to be isomorphic to within

vertices of degree 2 (or homeomorphic) if they are isomorphic or if

they can be transformed into isomorphic graphs by repeated insertion and / or

removal of vertices of degree 2.

Definition : The repeated insertion/removal of vertices of degree 2 is called

sequence of series reduction.

 For example, the graphs

 and

are isomorphic to within vertices of degree 2.

 If we define a relation R on the set of graphs by G1 R G2 if G1 and

G2 are homeomorphic, then R is an equivalence relation. Each equivalence

class consists of a set of mutually homeomorphic graphs.

Example: Show that the graph K33, given below, is not planar.

 K3,3

 A problem based on this example can be stated as “Three cities c1,

c2 and c3 are to be directly connected by express ways to each of three cities c4,

c5 and c6. Can this road system be designed so that the express ways do not

cross? This example shows that it cannot be done.

Solution: Suppose that K3,3 is planar. Since every cycle has at least four

edges, each face (region) is bounded by at least four edges. Thus the number of

edges that bound regions is at least 4r. Also, in a planar graph each edge

belongs to atmost two bounding cycles. Therefore,

 c1 c2 c3

c4 c5 c6

 168

 2e 4r (sums of degrees of region is equal to twice the number of

edges)

But, by Euler’s formula for planar graph,

 r = e – v + 2

Hence

 2e 4(e – v + 2) (1)

In case of K3,3 we have

 e = 9, v = 6

and so (1) yields

 18 4 (9 – 6 + 2) = 20 ,

which is a contradiction. Therefore K3,3 is not planar.

Remark: By a argument similar to the above example, we can show that the

graph K5 (given below) is not planar.

 (non-planar graph K5)

 We observe that if a graph contains K3,3 or K5 as a subgraph, then

it cannot be planar.

 The following theorem, which we state without proof, gives

necessary and sufficient condition for a graph to be planar.

Kuratowski’s Theorem: A graph G is planar if and only if G does not contain

a subgraph homeomorphic to K3,3 or K5.

 The complete graph K5 and the complete bipartite graph K3,3 are

called the Kuratowski graphs.

Example: Using Kuratowski’s Theorem, show that the graph G, shown below,

is not planar

 a

 f b

 g

 h

 e

 c

 d

 G

 169

Solution: Let us try to find K3,3 in the graph G. We know that in K3,3, each

vertex has degree 3. But we note that in G, the degree of a, b, f and e each is 4.

So we eliminate the edges (a,b) and (f, e) so that all vertices have degree 3. If

we eliminate one more edge, we will obtain two vertices of degree 2 and we

can then carry out series reduction. The resulting graph will have nine edges

Also we know that K3,3 has nine edges. So this approach seems promising.

Using trial and error, we find that the edge (g, h) should be removed. Then g

and h have degree 2.

 a

 f b

 g eliminating the edge (g, h)

 h

 e

 c

 d

 (Graph obtained by deleting edges (a, b) and (f, e)).

 a

 f b

 g

 h

 e

 c

 d

 (Graph obtained by eliminating the edge (g,h).

Performing series reduction now, we obtain an isomorphic copy of K3,3.

 a

 f b

 170

 e

 c

 d

 K3,3(obtained by series reduction)

Hence, by Kurtowski’s Theorem, the given graph G is not planar.

3.10. Colouring of Graph

Definition: Let G be a graph. The assignment of colours to the vertices of G,

one colour to each vertex, so that the adjacent vertices are assigned different

colours is called vertex colouring or colouring of the graph G.

Definition: A graph G is n-colourable if there exists a colouring of G which

uses n colours.

Definition: The minimum number of colours required to paint (colour) a

graph G is called the chromatic number of G and is denoted by (G).

Example: Find the chromatic number for the graph shown in the figure below:

 a c

 d

 e

 G

Solution: The triangle a b c needs three colours. Suppose that we assign

colours c1, c2, c3 to a, b and c respectively. Since d is adjacent to a and c, d will

have different colour than c1 and c3. So we paint d by c2. Then e must be

painted with a colour different from those of a, d and c, that is, we cannot

colour e with c1, c2 or c3. Hence, we have to give e a fourth colour c4. Hence

 (G) = 4.

3.11 Directed Graphs

Definition: A directed graph or digraph consists of two finite sets:

(i) A set V of vertices (or nodes or points)

(ii) A set E of directed edges (or arcs), where each edge is associated with an

ordered pair (v, w) of vertices called its endpoints. If edge e is associated with

the ordered pair (v, w), then e is said to be directed edge from v to w.

The directed edges are indicated by arrows.

b

 171

We say that edge e = (v, w) is incident from v and is incident into w.

The vertex v is called initial vertex and the vertex w is called the terminal

vertex of the

directed edge (v, w).

Definition: Let G be a directed graph. The outdegree of a vertex v of G is the

number of edges beginning at v. It is denoted by outdeg(v).

Definition: Let G be a directed graph. The indegree of a vertex v of G is the

number of edges ending at v. It is denoted by indey(v).

Example: Consider the directed graph shown below:

 v1

 e1 e3

 v2 v3

 e4

 v4 v5

 e6

Here edge e1 is (v2, v1) whereas e6 is denoted by (v5, v5) and is called a loop.

The indegree of v2 is 1, outdegree of v2 is 3.

Definition: A vertex with 0 indegree is called a source, whereas a vertex with

0 outdegree is called a sink.

For instance, in the above example, v1 is a sink.

Definition: If the edges and/or vertices of a directed graph G are labeled with

some type of data, then G is called a Labeled Directed Graph.

Definition: Let G be a directed graph with ordered vertices v1, v2, ….., vn.

The adjacency matrix of G is the matrix A = (aij) over the set of non-

negative integers such that

 aij = the number of arrows from vi to vj, i, j = 1, 2, ….,n.

Example 1: Find the adjacency matrices for the graphs given below:

(i) b (ii)
 a c v1

e2 e5

v4

v3

v2

 172

 d

Solution: (i) The edges in the directed graph are (a, a), (b, b), (c, c), (d, d), (c,

a), (c, b) and (d, b). Therefore the adjacency matrix A = (aij) is

1010

0111

0010

0001

(ii) The edges in the graph in (ii) are (v2, v3), (v1, v1), (v1, v3), (v3, v1), (v3, v4),

(v4, v3). Hence the adjacency matrix is

0100

1001

0100

0101

Example 2: Find the directed graph represented by the adjacency matrix:

00000

00011

11000

00100

00010

Solution: we observe that a12 = 1, a23 = 1, a34 = 1, a35 =1, a41 =1, a42 =1. Hence

the digraph is as shown below:

 v1 v2 v3

 v4 v5

Definition: In a directed graph, if there is no more than one directed edge in a

particular direction between a pair of vertices, then it is called simple directed

graph.

 For example

 173

is a simple directed graph.

A directed graph which is not simple is called directed multigraph.

3.12. Trees

Definition: A graph is said to be a Tree if it is a connected acyclic graph.

A trivial tree is a graph that consists of a single vertex. An empty tree is a

tree that does not have any vertices or edges.

For example, the graphs shown below are all trees.

 (i) (ii)

 trivial tree Tree of 3 vertices

 (iii)

 Tree of 4 vertices

 (iv) (v)

 Tree of 13 vertices Tree of 8 vertices

But the graphs shown below are not trees:

 (i)

Has a cycle (ii)

and so is not a tree has a cycle (iii)

so is not a tree and so is not a tree Disconnected graph

 and so is not a tree

Definition: A collection of disjoint trees is called a forest.

 174

Thus a graph is a forest if and only if it is circuit free.

Definition: A vertex of degree 1 in a tree is called a leaf or a terminal node or

a terminal vertex.

Definition: A vertex of degree greater than 1 in a tree is called a Branch node

or Internal node or Internal vertex.

Consider the tree shown below:

 b f

 a e

 c g

 d h i

In this tree the vertices b, c, d, f, g, and i are leaves whereas the vertices a, e, h

are branch nodes.

CHARACTERIZATION OF TREES

 We have the following interesting characterization of trees:

Lemma 1: A tree that has more than one vertex has at least one vertex of

degree 1.

Proof: Let T be a particular but arbitrary chosen tree having more than one

vertex.

 T v

1. Choose a vertex v of T. Since T is connected and has at least two vertices, v

is not isolated and there is an edge e incident on v.

2. If deg (v) > 1, there is an edge e e because there are, in such a case, at

least two edges incident on v. Let v be the vertex at the other end of e . This is

possible because e is not a loop by the definition of a tree.

3. If deg(v) > 1, then there are at least two edges incident on v . Let e be the

other edge different from e and v be the vertex at other end of e . This is

again possible because T is acyclic.

4. If deg(v) > 1, repeat the above process. Since the number of vertices of a

tree is finite and T is circuit free, the process must terminate and we shall

arrive at a vertex of degree 1.

v e e v

e

 175

Remark: In the proof of the above lemma, after finding a vertex of degree 1, if

we return to v and move along a path outward from v starting with e, we shall

reach to a vertex of degree 1 again. Thus it follows that “Any tree that has

more than one vertex has at least two vertices of degree 1”.

Lemma 2: There is a unique path between every two vertices in a tree.

Proof: Suppose on the contrary that there are more than one path between any

two vertices in a given tree T. Then T has a cycle which contradicts the

definition of a tree because T is acyclic. Hence the lemma is proved.

Lemma 3: The number of vertices is one more than the number of edges in a

tree.

Or

For any positive integer n, a tree with n vertices has n-1 edges.

Proof: We shall prove the lemma by mathematical induction.

Let T be a tree with one vertex. Then T has no edges, that is, T has 0 edge. But

0 = 1 – 1. Hence the lemma is true for n = 1.

Suppose that the lemma is true for k > 1. We shall show that it is then true for k

+ 1 also. Since the lemma is true for k, the tree has k vertices and k-1 edges.

Let T be a tree with k +1 vertices. Since k is +ve, k+1 2 and so T has more

than one vertex. Hence, by Lemma 1, T has a vertex v of degree 1. Also there

is another vertex w and so there is an edge e connecting v and w. Define a

subgraph T of T so that

 V(T) = V(T) – {v}

 E(T) = E(T) – {e}

Then number of vertices in T = (k+1) – 1 = k and since T is circuit free and T

has been obtained on removing one edge and one vertex, it follows that T is

acyclic. Also T is connected. Hence T is a tree having k vertices and therefore

by induction hypothesis, the number of edges in T is k-1. But then

No. of edges in T = number of edges in T + 1

 = k – 1 + 1 = k

Thus the Lemma is true for tree having k + 1 vertices. Hence the lemma is true

by mathematical induction.

Corollary 1. Let C(G) denote the number of components of a graph. Then a

forest G on n vertices has n C(G) edges.

Proof: Apply Lemma 3 to each component of the forest G.

Corollary 2. Any graph G on n vertices has at least n – C(G) edges.

 176

Proof: If G has cycle-edges, remove them one at a time until the resulting

graph G* is acyclic. Then G* has n – C(G*) edges by corollary 1. Since we

have removed only circuit, C(G*) = C(G). Thus G* has n – C(G) edges. Hence

G has at least n – C(G) edges.

Lemma 4: A graph in which there is a unique path between every pair of

vertices is a tree

(This lemma is converse of Lemma 2).

Proof: Since there is a path between every pair of points, therefore the graph is

connected. Since a path between every pair of points is unique, there does not

exist any circuit because existence of circuit implies existence of distinct paths

between pair of vertices. Thus the graph is connected and acyclic and so is a

tree.

Lemma 5. (converse of Lemma 3) A connected graph G with e = v – 1 is a tree

Proof: The given graph is connected and

 e = v – 1.

To prove that G is a tree, it is sufficient to show that G is acyclic. Suppose on

the contrary that G has a cycle. Let m be the number of vertices in this cycle.

Also, we know that number of edges in a cycle is equal to number of

vertices in that cycle. Therefore number of edges in the present case is m.

Since the graph is connected, every vertex of the graph which is not in cycle

must be connected to the vertices in the cycle.

Now each edge of the graph that is not in the cycle can connect only one vertex

to the vertices in the cycle. There are v-m vertices that are not in the cycle. So

the graph must contain at least v m edges that are not in the cycle. Thus we

have

e v – m + m = v,

which is a contradiction to our hypothesis. Hence there is no cycle and so the

graph in a tree.

Second proof of Lemma 5: We shall show that a connected graph with v

vertices and v – 1 edges is a tree. It is sufficient to show that G is acyclic.

Suppose on the contrary that G is not circuit free and has a non trivial circuit C.

If we remove one edge of C from the graph G, we obtain a graph G which is

connected.

 177

 C

 G G

If G still has a nontrivial circuit, we repeat the above process and remove one

edge of that circuit obtaining a new connected graph. Continuing this process,

we obtain a connected graph G* which is circuit free. Hence G* is a tree. Since

no vertex has been removed, the tree G* has v vertices. Therefore, by Lemma

3, G* has v-1 edges. But at least one edge of G has been removed to form G*.

This means that G* has not more than v – 1 – 1 = v – 2 edges. Thus we arrive

at a contradiction. Hence our supposition is wrong and G has no cycle.

Therefore G is connected and cycle free and so is a tree.

Lemma 6: A graph G with e = v – 1, that has no circuit is a tree.

Proof: It is sufficient to show that G is connected. Suppose G is not connected

and let G , G ….. be connected component of G. Since each of G , G ,…. is

connected and has no cycle, they all are tree. Therefore, by Lemma 3,

 e = v 1

 e = v 1

 -------------- ,

where e , e , … are the number of edges and v , v ,… are the number of

vertices in G , G , …respectively. We have, on adding

 e + e + ……= (v - 1) + (v -1) +……

Since

 e = e + e +…..

 v = v + v +…. ,

we have

 e < v – 1 ,

which contradicts our hypotheses. Hence G is connected. So G is connected

and acyclic and is therefore a tree.

Example: Construct a graph that has 6 vertices and 5 edges but is not a tree.

Solution: We have, No. of vertices = 6, No. of edges = 5 . So the condition e

= v – 1 is satisfied. Therefore, to construct graph with six vertices and 5 edges

that is not a tree, we should keep in mind that the graph should not be

connected. The graph shown below has 6 vertices and 5 edges but is not

connected.

 178

 v1 v4

 v2 v3 v5 v6

.

Definition: A directed graph is said to be a directed tree if it becomes a tree

when the direction of edges are ignored.

For example, the graph shown below is a directed tree.

Definition: A directed tree is called a rooted tree if there is exactly one vertex

whose incoming degree is 0 and the incoming degrees of all other vertices are

1.

The vertex with incoming degree 0 is called the root of the rooted tree.

A tree T with root v0 will be denoted by (T, v0).

Definition: In a rooted tree, a vertex, whose outgoing degree is 0 is called a

leaf or terminal node, whereas a vertex whose outgoing degree is non - zero is

called a branch node or an internal node.

Definition: Let u be a branch node in a rooted tree. Then a vertex v is said to

be child (son or offspring) of u if there is an edge from u to v. In this case u is

called parent (father) of v.

Definition: Two vertices in a rooted tree are said to be siblings (brothers) if

they are both children of same parent.

Definition: A vertex v is said to be a descendent of a vertex u if there is a

unique directed path from u to v.

In this case u is called the ancestor of v.

Definition: The level (or path length) of a vertex u in a rooted tree is the

number of edges along the unique path between u and the root.

Definition: The height of a rooted tree is the maximum level to any vertex of

the tree.

As an example of these terms consider the rooted tree shown below:

 root………………level 0

 x …………. u…………………..level 1

 y …….… z.. v……… w…………………level 2

 179

 t ……… … s………………level 3

Here y is a child of x; x is the parent of y and z. Thus y and z are siblings. The

descendents of u are v, w, t and s. Levels of vertices are shown in the figure.

The height of this rooted tree is 3.

Definition: Let u be a branch node in the tree T = (V, E). Then the subgraph T

= (V , E) of T such that the vertices set V contains u and all of its descendents

and E contains all the edges in all directed paths emerging from u is called a

subtree with u as the root.

Definition: Let u be a branch node. By a subtree of u, we mean a subtree that

has child of u as root.

In the above example, we note that the figure shown below is a subtree of T,

where as the figure shown below is a subtree of the branch node u .

 w

 s t

is a subtree of the branch node u.

Example. Let

 V = {v1, v2, v3, v4, v5, v6, v7, v8}

and let

 E = ({v2, v1), (v2, v3), (v4, v2), (v4, v5), (v4, v6), (v6, v7), (v5, v8)}.

Show that (V, E) is rooted tree. Identify the root of this tree.

Solution: We note that

Incoming degree of v1 = 1

Incoming degree of v2 = 1

Incoming degree of v3 = 1

Incoming degree of v4 = 0

u

w

v

 s t

 180

Incoming degree of v5 = 1

Incoming degree of v6 = 1

Incoming degree of v7 = 1

Incoming degree of v8 = 1

Since incoming degree of the vertex v4 is 0, it follows that v4 is root.

Further,

Outgoing degree of v1 = 0

Outgoing degree of v3 = 0

Outgoing degree of v7 = 0

Outgoing degree of v8 = 0

Therefore v1, v2, v7, v8 are leaves. Also ,

Outgoing degree of v2 = 2

Outgoing degree of v4 = 3

Outgoing degree of v5 = 1

Outgoing degree of v6 = 1

Now the root v4 is connected to v2, v5 and v6. So, we have

 v4 (root)

 v5 v2 v6

Now v2 is connected to v1 and v3, v5 is connected to v8, v6 is connected to v7.

Thus, we have

We thus have a connected acyclic graph and so (V, E) is a rooted tree with root

v4.

v4 (root)

v6
v2 v5

 v8 v1 v3
 v7

 181

Definition: A rooted tree in which the edges incident from each branch node

are labeled with integers 1, 2, 3,…. is called an ordered tree.

Definition: Two ordered trees are said to be isomorphic if (i) there exists a

one-to-one correspondence between their vertices and edges and that preserves

the incident relation (ii) labels of the corresponding edges match.

In view of this definition, the ordered trees

are not isomorphic.

Example: Show that the tree T1 and T2 shown in the diagram below are

isomorphic.

 c 1 2

 a d 3

 b

 e 4 5

 T1 T2

Solution: We observe that in the tree T1,

 deg(b) = 4

In the tree T2,

 deg(3) = 4

Further deg(a) = deg(1) = 1, deg c = deg(2), deg(d) = deg(4) = deg(e) = 1 =

deg(5). Thus we may define a function f from the vertices of T1 to the vertices

of T2 by

 f(a) = 1, f(b) = 3, f(c) = 2, f(d) = 4, f(e) = 5

This is a one-to-one and onto function. Also adjacency relation is preserved

because if vi and vj are adjacent vertices in T1, then f(vi) and f(vj) are adjacent

vertices in T2. Hence T1 is isomorphic to T2.

Example: Show that the tree T1 and T2, shown in the figure below are

isomorphic

 z s u v w

 x y

3 2

 1 2

 1
 2

 1

 1 3

2

 182

 t l m

 T1 T2

Solution: Let f be a function defined by

 f(z) = v

 f(b) = w

 f(x) = m

 f(s) = u

 f(t) = l .

Then f is an one to one onto mapping which preserves adjacency. HenceT1 and

T2 are isomorphic.

Definition: Let T1 and T2 be rooted tree with roots r1 and r2 respectively. Then

T1 and T2 are isomorphic if there exists a one-to-one, onto function f from the

vertex set of T1 to the vertex set of T2 such that

(i) Vertices vi and vj are adjacent in T1 if and only if the vertices f(vi) and f(vj)

are adjacent in T2.

(ii) f(r1) = r2

The function is then called an isomorphism.

Example: Show that the tree T1 and T2 are isomorphic.

Solution: We observe that T1 and T2 are rooted tree.

Define f: (Vertex set of T1) (Vertex set of T2) by

 f(v1) = w1

 f(v2) = w3

 f(v3) = w4

 f(v4) = w2

 f(v5) = w6

 f(v6) = w7

 f(v7) = w5

 f(v8) = w8

w1

w4 w3 w2

w5 w6 w7

w8

v1

v2 v3 v4

v6
v7

v8

v5

 183

Then f is one-to- one and adjacency relation is preserved. Hence f is an

isomorphism and so the rooted tree T1 and T2 are isomorphic

Example: Show that the rooted tree shown below are not isomorphic:

T1 T2

Solution: We observe that the degree of root in T1 is 3, whereas the degree of

root in T2 is 4. Hence T1 is not isomorphic to T2.

Definition: An ordered tree in which every branch node has atmost n

offspring’s is called a n-ary tree (or n-tree).

Definition: An n-ary tree is said to be fully n-ary tree (complete n-ary tree

or regular n ary tree) if every branch node has exactly n offspring.

Definition: An ordered tree in which every branch node has almost 2

offsprings is called a binary tree (or 2 - tree).

Definition: A binary tree in which every branch node (internal vertex) has

exactly two offspring’s is called a fully binary tree.

For example, the tree given below is a binary tree,

whereas the tree shown below is a fully binary tree.

1

4 3 2

6
7

a

b c d

g h f
e

5

 184

Definition: Let T1 and T2 be binary trees roots r1 and r2 respectively. Then T1

and T2 are isomorphic if there is a one to one, onto function f from the vertex

set of T1 to the vertex set of T2 satisfying

(i) Vertices vi and vj are adjacent in T1 if and only if the vertices f(vi) and f(vj)

are adjacent in T2.

(ii) f(r1) = r2

(iii) v is a left child of w in T1 if and only if f(v) is a left child of f(w) in T2

(iv) v is a right child of w in T1 if and only if f(v) is a right child of f(w) in T2.

The function f is then called an isomorphism between binary tree T1 and T2

Example: Show that the trees given below are isomorphic.

 v1 w1

 v2 and w2

 v3 v4 w3 w4

Solution: Define f by f(vi) = wi, i = 1, 2, 3, 4. Then f satisfies all the properties

for isomorphism. Hence T1 and T2 are isomorphic.

Example: Show that the trees given below are not isomorphic.

 v1 w1

 v2 w2

 v3 w3

 v4 v5 w4 w5

 T1 T2

Solution: Since the root v1 in T1 has a left child but the root w1 in T2 has no left

child, the binary trees are not isomorphic.

Definition: Let v be a branch node of a binary tree T. The left subtree of v is

the binary tree whose root is the left child of v, whose vertices consists of the

left child of v and all its descendents and whose edges consists of all those

edges of T that connects the vertices of the left subtree together.

The right subtree can be defined analogously.

 For example, the left subtree and the right subtree of v in the tree

(shown below) :

 root

 185

 v

 w s

are respectively

 w s

 and

 (left subtree of v) (right subtree of v)

3.13 Representation of Arithmetic/Algebraic Expressions

by Binary Trees

Binary trees are used in computer science to represent algebraic expressions

involving parentheses. For example, the binary trees

and

represent the expressions

 a + b , a/b

 a b

 +

 a b

 /

 *

 b

 c d

 *

 186

and

 b * (c * d)

respectively.

Thus, the central operator acts as root of the tree.

Example 1: Draw a binary tree to represent

(i) (2 – (3 x) + ((x – 3) – (2 + x)

(ii) a.b – (c/(d + e)).

Solution: (i) In this expression + is the central operator. Therefore the root of

tree is +. The binary tree is

(ii) Here the central operator is . Therefore it is the root of the tree. We have

the following binary tree to represent this expression.

To derive this formula we first prove the following result :

 /

 a b c +

 d e

 +

 2 +

 3 x x 3 2 x

 187

Theorem: If T is a full binary tree with i internal vertices, then T has i+1

terminal vertices (leaves) and 2i+1 total vertices.

Proof: The vertices of T consists of the vertices that are children (of some

parent) and the vertices that are not children (of any parent). There is nonchild

– the root, Since there are i internal vertices, each having two children, there

are 2i children. Thus the total number of vertices of T is 2i+1 and the number

of terminal vertices is

 (2i + 1) – i = i + 1

This completes the proof.

In the context of above example, we have

 No. of leaves = p = i + 1

Or

 i = p – 1

Remark: In case of full n-ary tree, if i denotes the number of branch nodes,

then total number of vertices of T is ni + 1 and the number of terminal

vertices is

 n i + 1 – i = i(n - 1) + 1

If p is the number of terminal vertices, then

 p = i(n – 1) + 1

or

 (n – 1) i = p – 1

Example 1: Find the minimum number of extension cords, each having 4

outlets, required to connect 22 bulbs to a single electric outlet.

Solution: Clearly, the graph of the problem is a regular quaternary tree with 22

leaves.

Let i denote the internal vertices and p denote the number of leaves, then using

 (n – 1) i = p – 1 ,

we have

 (4 – 1) i = 22 – 1

 or i =
3

21
 = 7.

Thus 7 extension cords as shown below are required.

 188

 14

 13

 1 2 3 4 5 6 7 8 9 10 11 12

 15 16 17 18 19 20 21 22

Example: Does there exist a full binary tree with 12 internal vertices and 15

leaves?

Solution: We know that if i is the number of branch nodes in a full binary tree,

then the number of leaves is i + 1. Therefore for a tree with 12 branch nodes,

the number of leaves should be 13 and not 15. Hence such tree does not exist.

Theorem: The number bn of different trees on n vertices is

 bn =
n

n

n

2

1

1

Definition: Let G be a graph, then a subgraph of G which is a tree is called

tree of the graph.

Definition: A spanning tree for a graph G is a subgraph of G that contains

every vertex of G and is a tree.

 Or

“A spanning tree for a graph G is a spanning subgroup of G which is a

tree”.

Example: Determine a tree and a spanning tree for the connected graph given

below:

 G

Solution: The given graph G contains circuits and we know that removal of the

circuits gives a tree. So, we note that the figure below is a tree.

 189

And the figure below is a spanning tree of the graph G.

Example: Find all spanning trees for the graph G shown below:

 v2 v3 v6

 v1 v4 v5

Solution: The given graph G has a circuit v1 v2 v3 v1. We know that removal of

any edge of the circuit gives a tree. So the spanning trees of G are

v2 v3 v6 v2 v3 v6

 , ,

v1 v4 v5 , v1 v4 v5
 T1 T2

v2 v3 v6

v1 v4 v5

 T3

Remark: We know that a tree with n vertices has exactly n – 1

edges. Therefore if G is a connected graph with n vertices and m edges, a

spanning tree of G must have n – 1 edges. Hence the number of edges

that must be removed before a spanning tree is obtained must be

 m – (n – 1) = m – n + 1.

For Illustration, in the above example, n = 6, m = 6, so, we had to

remove one edge to obtain a spanning tree.

Definition: A branch of a tree is an edge of the graph that is in the

tree.

Definition: A chord (or a link) of a tree is an edge of the graph that is

not in the tree.

 190

It follows from the above remark that the number of chords in a

tree is equal to m – n + 1, where n is the number of vertices and m is the

number of edges in the graph related to the tree.

Definition: The set of the chords of a tree is called the complement of

the tree.

Example: Consider the graph discussed in the above example. We

note that the edge (v2, v3) is a branch of the tree T1, whereas (v1, v3) is a

chord of the tree T1.

Theorem: A graph G has a spanning tree if and only if G is

connected.

Proof: Suppose first that a graph G has a spanning tree T. If v and

w are vertices of G, then they are also vertices in T and since T is a tree

there is a path from v to w in T. This path is also a path in G. Thus every

two vertices are connected in G. Hence G is connected.

Conversely, suppose that G is connected. If G is acyclic, then G is

its own spanning tree and we are done. So suppose that G contains a cycle

C1. If we remove an edge from the cycle, the subgraph of G so obtained is

also connected. If it is acyclic, then it is a spanning tree and we are done. If

not, it has at least one circuit, say C2 . Removing one edge from C2, we get

a subgraph of G which is connected. Continuing in this way, we obtain a

connected circuit free subgraph T of G. Since T contains all vertices of G,

it is a spanning tree of G.

Cayley’s Formula : The number of spanning trees of the complete

graph Kn, n 2 is n
n-2

.

(Proof of this formula is out of scope of this book)

Example: Find all the spanning trees of K4.

Solution: According to Cayley’s formula, K4 has 4
4-2

 = 4
2
 = 16

different spanning trees.

 v4 v3

 v1 v2

 K4

Here n = 4, so the number of edges in any tree should be n – 1 = 4 – 1 = 3. But

here number of edges is equal to 6. So to get a tree, we have to remove three

edges of K4. The 16 spanning trees so obtained are shown below:

 v4 v3 v4 v3

 v1 v2 v1 v2

 v4 v3 v4 v3

 191

 v1 v2 v1 v2

 v4 v v4 v3

 v1 v2 v1 v2

 v4 v3 v4 v3

 v1 v2 v1 v2

 v4 v3 v4 v3

 v1 v2 v1 v2

 v4 v3 v4 v3

 v1 v2 v1 v2

 v4 v3 v4 v3

 v1 v2 v1 v2

 v4 v3 v4 v3

 v1 v2 v1 v2

3.14. Shortest Path Problem

Let s and t be two vertices of a connected weighted graph G. Shortest Path

problem is to find a path from s to t whose total edge weight is minimum.

We now discuss Algorithm due to E. W. Dijkstra which efficiently solve the

shortest path problem. The idea is to grow a Disjkstra tree, starting at the

 192

vertex s, by adding, at each iteration, a frontier edge, whose non-tree end point

is as close as possible to s. The algorithm involves assigning labels to vertices.

For each tree vertex x, let dist [x] denote the distance from vertex s to x and for

each edge e in the given weighted graph G, let w(e) be its edge – weight.

After each iteration, the vertices in the Dijkstra tree (the labeled vertices) are

those to which the shortest paths from s have been found.

Priority of the Frontier Edges : Let e be a frontier edge and let its P - value

be given by

 P(e) = dist [x] + w(e),

where x is the labeled end point of e and w(e) is the edge –

weight of e. Then

(i) The edge with the smallest P – value is given the highest priority.

(ii) The P – value of this highest priority edge e gives the distant from the

vertex s to the unlabeled endpoint of e.

We are now in a position to describe Dijkstra shortest path algorithm.

DIJKSTRA’S SHORTEST PATH ALGORITHM

Input : A connected weighted graph G with non-negative edge-weights and a

vertex s of G.

Output : A spanning tree T of G, rooted at the vertex s, whose path from s to

each vertex v is a shortest path from s to v in G and a vertex labeling giving the

distance from s to each vertex.

Initialize the Dijkstra tree T as vertex s.

Initialize the set of frontier edges for the tree T as empty.

 dist : [s] = 0.

Write label 0 on vertex s.

While Dijkstra tree T does not yet span G.

For each frontier edge e for T,

Let x be the labeled endpoint of edge e.

Let y be the unlabeled endpoint of edge e.

Set P(e) = dist [x] + w(e)

Let e be a frontier edge for T that has smallest P – value

Let x be the labeled endpoint of edge e

Let y be the unlabeled endpoint of edge e

Add edge e (and vertex y) to tree T

 193

 dist [y] : P(e)

Write label dist [y] on vertex y.

Return Dijkstra tree T and its vertex labels.

Example : Apply Dijkstra algorithm to find shortest path from s to each other

vertex in the graph given below :

 s

 13 8

 v z

 11

 7

 w 6 17 16

 y

 14 5

 x

If t is the labeled endpoint of edge e, then P – values are given by

 P(e) = dist [t] + w(e),

where dist [t] = distance from s to t and w(e) is the edge weight of edge e. For

each vertex v, dist [v] appears in the parenthesis. Iteration tree at the end of

each iteration is drawn in dark line

 Iteration 1 Iteration 2

 s(0) s(0)

 13 8 13 8

v z (8) v z(8)

 11 11

 7 7

w 6 w

 17 y 6 17 y

 14 5 14

 x x

dist [s] = 0 P(sw) = 13 (minimum)

dist [z] = 8 P(zy) = 8 + 7 = 15 dist [s] = 0 P(zy) = 8 + 7 =15

(minimum)

 P(sy) = 16 dist [z] = 8 P(zx) = 8 + 17 = 25

 P(zv) = 8 + 10 = 18 dist [w] = 13 P(zv) = 8 + 10 = 18

10

0

10
0

10
0

5

16 16

13

20

 194

 P(zw) = 8 + 11 = 19 P(sy) = 16

 P(zx) = 8 + 17 = 25 P(wx) = 13 + 14 = 27

 Iteration 3 Iteration 4

 s (0) s(0)

 13 8 13 8

v z(8) z (8)

 11 11

 7 7

 6 6 16

 y(15) w(13) y(15)

 14 5 14 5

 x x

dist [s] = 0 P(zv) = 18 (minimum) Dist [s] = 0 P(yx) = 20

(minimum)

dist [z] = 8 P(zx) = 8 + 17 = 15 Dist [z] = 8 P(zx) = 8 + 17 = 25

dist [w]= 13 P(wx) = 13 + 14 = 27 Dist [w] = 13 P(vx) = 18 + 6 =

14

dist [y] = 15 P(yx) = 15 + 5 = 20 Dist [y] = 15 P(wx) = 13 + 14 =

27

 Dist [v] = 18

Iteration 5

 s(0)

 v(18) z (8)

 w(13)

 y (15)

dist [s] = 0 x (20)

dist [z] = 8

dist [w] =13

dist [y] =15

dist [x] = 20

which are the required shortest paths from s to any other point. The Dijkstra

tree is shown in dark lines.

 s(0)

10

0

16

17

10

w(13)

v(18)

17

 195

 c 1 d

 v(18) z (8)

 w(13)

 y (15)

 x (20)

Example: Find a shortest path from s to t and its length for the graph given

below:

 2 2

 s 1 t

 2 2

Solution: Let x be the labeled endpoint of edge e, then P-values are given by

 P(c) = dist [x] + w(e),

where dist [x] denotes the distance from s to x and w(e) is the weight of the

edge e.

For each vertex v, dist [v] appears in the bracket. Iteration tree at the end of

each iteration is shown in dark lines.

 Iteration 1 Iteration 2

 2 2 2 2

 s(0) 1 t s(0) 1 t

 1 2 1 2

dist [s] = 0 P(c d) = 2 dist [s] =0 P(a b) = 2 + 3 = 5

dist [c] = 1 P(s a) = 2 (minimum) dist [c] = 1 P(c d) = 1 + 1 = 2

 (minimum)

 P(s b) = dist [a] = 2 P(d t) =

 P(s t) = P(b t) =

 P(d t) = P(a d) = 3

 P(b t) =

Iteration 3 Iteration 4

 2 2 2 2

 s(0) 1 t s(0) 1 t(4)

 1 2 1 2

dist [s] = 0 P(d t) = 2 (minimum) dist [s] =0 P(a b) = 5

 a 3 b

 c(1) 1 d c(1) 1 d

 a 3 b a 3 b

 a(2) 3 b a(2) 3 b

 c(1) 1 d(2) c(1) 1 d(2)

 196

dist [c] = 1 P(a b) = 5 dist [c] = 1 P(b t) =

dist [a] = 2 P(b t) = dist [a] = 2

dist [d] = 2 dist [d] = 2

 dist [t] =4

 Iteration 5

 2 2

 s(0) 1 t(4)

 2 2

dist [s] =0

dist [c] =1

dist [a] = 2

dist [d] = 2

dist [t] = 4

dist [b] = 5

Thus, the Dijkstra tree is

 a(2) b(5)

 s(0) t(4)

 c(1) d(2)

Thus the shortest path is scdt and its length is 4.

3.15. Shortest Path if all Edges Have Length 1

If all edges in a connected graph G have length 1, then a shortest path v1 vk

is the path that has the smallest number of edges among all paths v1 vk in

the given graph G.

Moore’s Breadth First Search Algorithm

This method of finding shortest path in a connected graph G from a vertex s to

a vertex t is used when all edges have length 1.

Input : Connected graph G = (V, E), in which one vertex is denoted by s and

one by t and each edge (vi, vj) has length 1.

Initially all vertices are unlabeled.

Output : A shortest path s t in G = (V, E).

1. Label s with 0.

2. Set vi = 0

3. Find all unlabeled vertices adjacent to a vertex labeled vi.

 a(2) 3 b(5)

 c(1) 1 d(2)

 197

4. Label the vertices just found with vi+1

5. If vertex t is labeled, then “back tracking” gives the shortest path. If k is

level of t(i.e., t = vk), then

Output : vk, vk-1, ………v1, 0.

Else increase i by 1. Go to step 3.

End Moore.

Remark : There could be several shortest path from s to t.

Example : Use B F S algorithm to find shortest path from s to t in the

connected graph G given below:

 b(2) c(3)

 a(1)

 s(0) d(2) t(3)

 e(2)

 f(1)

Solution : Label s with 0 and then label the adjacent vertices with 1. Thus two

vertices have been labeled by 1. Now Label the adjacent vertices of all vertices

labeled by 1 with label 2. Thus three vertices have been labeled with 2. Label

the vertices adjacent to these vertices (labeled by 2) with 3. Thus two vertices

have been labeled with 3. We have reached t. Now back tracking yields the

following shortest paths

t(3), e(2), f(1), s(0), that is, s f e t

or

t(3), b(2), a(1), s(0), that is s a b t

or

t(3), e(2), a(1), s(0), that is, s a e t

Thus there are three possible shortest paths of length 3.

3.16 Minimal Spanning Tree

Definition : Let G be a weighted graph. A spanning tree of G with minimum

weight is called minimal spanning tree of G.

We discuss two algorithms to find a minimal spanning tree for a weighted

graph G.

 198

PRIM ALGORITHM

Prim algorithm builds a minimal spanning tree T by expanding outward in

connected links from some vertex. In this algorithm one edge and one vertex

are added at each step. The edge added is the one of least weight that connects

the vertices already in T with those not in T.

Input : A connected weighted graph G with n vertices

Output : The set of edges E in a minimal spanning tree.

1. Choose a vertex v1 of G. Let V = {v1} and E = { }.

2. Choose a nearest neighbour vi of V that is adjacent to vj , vj V and for

which the edge (vi, vj) does not form a cycle with member of E. Add vi to V

and add (vi, vj) to E.

3. Repeat step 2 till number of edges in T is n – 1. Then V contains all n

vertices of G and E contains the edges of a minimal spanning tree for G.

Definition: A greedy algorithm is an algorithm that optimizes the choice at

each iteration without regard to previous choices.

For example, Prim algorithm is a greedy algorithm.

Example: Find a minimal spanning tree for the graph shown below :

 4 7 11

 d

 1 6

 f e

Solution: We shall use Prim algorithm to find the required minimal

spanning tree. We note that number of vertices in this connected weighted

graph is 6. Therefore the tree will have 5 edges.

We start with any vertex, say c. The nearest neighbour of c is f and (c f) does

not form a cycle. Therefore (c, f) is the first edge selected.

Now we consider the set of vertices V = {c, f}. The vertex a is nearest

neighbour to V = {c, f} and the edge (c, a) does not form a cycle with the

member of set of edges selected so far. Thus

 E = {(c, f) , (c, a)} and V = {c, f, a}.

The vertex b is now nearest neighbour to V = {c, f, a} and the edge (a, b) do

not form a cycle with the member of E = {(c, f), (c, a)}. Thus

 E = {(c, f), (c, a), (a, b)} and V = {c, f, a, b}

9

a 2 b

c 8

 199

Now the edge (b, c) cannot be selected because it forms a cycle with the

members of E. We note that d is the nearest point to V = {c, f, a, b} and (c, d)

is the edge which does not form a cycle with members of E = {(c, f), (c, a), (a,

b)}. Thus we get

 E = {(c, f), (c, a), (a, b)}, (c, d)}, V = {c, f, a, b, d}

The nearest vertex to V is now e and (d, e) in the corresponding

edge. Thus

 E = {(c, f), (c, a), (a, b), (d, e), V = {c, f, a, b, d, e}

Since number of edges in the Prim Tree is 5, the process is complete. The

minimal spanning tree is shown below :

 4

 1 6

The length of the tree is 1 + 4 + 2 + 8 + 6 = 21

Example : Using Prim algorithm, find the minimal spanning tree of the

following graph :

 3 4

 a c

 1

 3 2

 d

Solution : Pick up the vertex a. Then

 E = { } and V = {a}.

The nearest neighbour of V is b or d and the corresponding edges are (a, b) or

(a, d). We choose arbitrarily (a, b) and have

 E = {(a, b)}, V = {a, b}

Now d is the nearest neighbour of V = {a, b} and the corresponding edge (a, d)

does not form cycle with (a, b). Thus we get

 E = {(a, b), (a, d)}, V = {a, b, d}.

Now e is the nearest neighbour of {a, b, d} and (d, e) does not

form cycle with {(a, b), (c, d)}. Hence

 E = {(a, b), (a, d), (d, e)}, V = {a, b, d, e}

 2

 3 e 2

 8

b

 200

Now c is the nearest neighbour of V = {a, b, d, e} and the corresponding edges

are (e, c), (d, c). Thus we have, choosing (e, c) ,

 E = {(a, b), (c, d), (d, e), (e, c)}, V = {a,

b, d, e, c}

 Total weight = 3 + 3 + 1 + 2 = 9

(If we choose (d, c), then total weight is 3 + 3 + 1 + 2 = 9.)

The minimal tree is

 3 3

 or

 1 3 1 2

 3

KRUSKAL’S ALGORITHM

In Kruskal’s algorithm, the edges of a weighted graph are

examined one by one in order of increasing weight. At each stage an

edge with least weight out of edge-set remaining at that stage is added

provided this additional edge does not create a circuit with the members

of existing edge set at that stage. After n – 1 edges have been added,

these edges together with the n vertices of the connected weighted

graph form a minimal tree.

ALGORITHM

Input : A connected weighted graph G with n vertices and the set E = {e1,

e2,……….,ek} of weighted edges of G.

Output : The set of edges in a minimal spanning tree T for G.

Step 1. Initialize T to have all vertices of G and no edges.

Step 2. Choose an edge e1 in E of least weight. Let

 E* = {e1}, E = E {e1}

Step 3. Select an edge ei in E of least weight that does not form circuit with

members of E*. Replace E* by E* {ei} and E with E {ei}.

Step 4. Repeat step 3 until number of edges in E* is equal to n – 1.

Example : Use Kruskal’s algorithm to determine a minimal spanning tree for

the connected weighted graph G shown below :

2

 201

 4 5

 3 3

 v1 v3

 2 6 2

 v4 v5

Solution : The given weighted graph has five vertices. The minimal spanning

tree would have therefore 4 edges.

Let

 E = {(v1, v2), (v1, v4), (v1, v5), (v2, v3), (v1, v3),

 (v2, v4), (v4, v5), (v5, v3), (v3, v4)}

The edges (v2, v4) and (v3, v5) have minimum weight. We choose arbitrarily

one of these, say

(v2, v4). Thus

 E* = {(v2, v4)},

E = E {(v2 , v4)}.

The edge (v3, v5) has minimum weight, so we pick it up. We have thus

 E* = {(v2, v4), (v3, v5)},

 E = E {(v2, v4), (v3, v5)}

The edges (v1, v4) and (v1, v5) have minimum weight in the remaining edge set.

We pick (v1, v4) say, as it does not form a cycle with E*. Thus

E* = {(v2, v4), (v3, v5), (v1, v4),

 E = E {(v2, v4), (v3, v5), (v1, v4)}

Now the edge (v1, v5) has minimum weight in E \ {(v1, v4), (v3, v5), (v1, v4)}

and it does not form a cycle with E*. So, we have

 E* = {(v2, v4), (v3, v5), (v1, v4), (v1, v5)}

and

 E = E {(v2, v4), (v3, v5), (v1, v4), (v1, v5)}

Thus all the four edges have been selected. The minimal tree has the edges.

 (v2, v4), (v3, v5), (v1, v4), (v1, v5)

and is shown below :

 v1

v1

7

5

 202

 v2 3 3 v3

 2 2

 v4 v5

 (Minimal Spanning tree)

Remark : In the above example, if we had chosen (e, f) in place of (c, f) in the

last step, then the minimal spanning tree would have been

 a b

 2 2 3

 c d

 e 3

 f

 (minimal spanning tree)

3.17 Cut Sets

Let G be a connected graph. We know that the distance between two vertices

v1 and v2, denoted by d(v1, v2), is the length of the shortest path.

Definition: The diameter of a connected graph G, denoted by diam (G), is the

maximum distance between any two vertices in G.

 For example, in graph G shown below, we have

 a b

 c

 d

 e

 G

d(a, e) = 3, d(a, c) = 2, d(b, e) = 2 and diam (G) = 3.

Definition: A vertex in a connected graph G is called a cut point if G – v is

disconnected, where G v is the graph obtained from G by deleting v

and all edges containing v.

For example, in the above graph, d is a cut point.

Definition: An edge e of a connected graph G is called a bridge (or cut edge)

if G – e is disconnected, where G – e is the graph obtained by deleting the edge

e.

 203

For example, consider the graph G shown below :

 e1

 a b

 e3
 c

 d

 e5

 e

 G

We observe that G – e3 is disconnected. Hence the edge e3 is a bridge.

Definition: A minimal set C of edges in a connected graph G is said to be a cut

set (or minimal edge – cut) if the subgraph G – C has more connected

components than G has.

 For example, in the above graph, if we delete the edge (b, d) = e3, the

resulting subgraph G – e3 is as shown below :

 e1

 a b

 e4

 c

 d

 e5

 e

Thus G – e3 has two connected components

 e1

 a b d

 and e5

e2 e2

e2

e2

e4

 204

 e4

 c e

So, in this example, the cut set consists of single edge (b, d) = e3, which is

called edge or bridge.

Example: Find a cut set for the graph given below:

 e1 e5 e2

 v1 v3

 e7

 e4 e3

 v4

Solution : The given graph is connected. It is sufficient to reduce the graph

into two connected components. To do so we have to remove the edges e1, e4,

e5, e6, e7. The two connected components are

 e8 e2

 v1 v5 and v3

 e3

But, if we remove any proper subset of {e1, e4, e5, e6, e7}, then there is no

increase in connected components of G.

Hence

 {e1, e4, e5, e6, e7}

is a cut set.

Example: Find a cut set for the graph

 b e

 e1 e3 e7 e8

 a e9 g

 e2 e4 e10 e11

 c f

 G

Solution: The given graph is a connected graph. We note that removal of the

edges e7 and e10 creates two connected components of G shown below:

v5 e6
e8

v2

v2

v4

e5

e6
 d

 205

 b e

 e1 e3 e8

 d

 a e9 g

 e2 e4 e11

 c f

Hence the set {e7, e10} is a cut set for the given graph G.

Theorem: Let G be a connected graph with n vertices. Then G is a tree if and

only if every edge of G is a bridge (cut edge).

 (This theorem asserts that every edge in a tree is a bridge).

Proof: Let G be a tree. Then it is connected and has n – 1 edges (proved

already). Let e be an arbitrary edge of G. Since G – e has n – 2 edges, and also

we know that a graph G with n vertices has at least n – c(G) edges, it follows

that n – 2 n – c(G – e). Thus G – e has at least two components. Thus

removal of the edge e created more components than in the graph G. Hence e is

a cut edge. This proves that every edge in a tree is a bridge.

 Conversely, suppose that G is connected and every edge of G is a

bridge. We have to show that G is a tree. To prove it, we have only to show

that G is circuit – free. Suppose on the contrary that there exists a cycle

between two points x and y in G. Then any edge on this cycle is

 x y

not a cut edge which contradicts the fact that every edge of G is a cut edge.

Hence G has no cycle. Thus G is connected and acyclic and so is a tree.

3.18 Relation Between Spanning Trees, Circuits

and Cut Sets

A spanning tree contains a unique path between any two vertices in the graph.

Therefore, addition of a chord to the spanning tree yields a subgraph that

contains exactly one circuit. For example, consider the graph G shown below:

 v1

 v2 v3

 v4 v5

 G

For this graph, the figure given below is a spanning tree :

e5

e6

 206

 v1

 v2 v3

 v4 v5

 (Spanning tree)

The chords of this tree are (v1, v2) and (v2, v4). If we add (v1, v2) to this

spanning tree, we get a circuit v1 v1 v2 v3 v1. Similarly addition of (v2, v4) gives

one more circuit v2 v3 v5 v4 v2. If there are v vertices and e edges in a graph,

then there are e – v + 1 chords in a spanning tree. Therefore, if we add all the

chords to the spanning tree, there will be e – v + 1 circuits in the graph.

Definition: Let v be the number of vertices and e be the number of edges in a

graph G. Then the set of e – v + 1 circuits obtained by adding e – v + 1 chords

to a spanning tree of G is called the fundamental system of circuits relative

to the spanning tree.

A circuit in the fundamental system is called a fundamental circuit.

For example, {v1, v2, v3, v1} is the fundamental circuit corresponding to

the chord (v1, v2).

On the other hand, since each branch of a tree is cut edge, removal of

any branch from a spanning tree breaks the spanning tree into two trees. For

example, if we remove (v1, v3) from the above figured spanning tree, the

resulting components are shown in the figure below :

 v1

 v2 v3

 v4 v5

Thus, to every branch in a spanning tree, there is a corresponding cut set.

But, in a spanning tree, there are v – 1 branches. Therefore, there are v – 1 cut

sets corresponding to v – 1 branches.

Definition: The set of v – 1 cut sets corresponding to v – 1 branches in a

spanning tree of a graph with v vertices is called the fundamental system of

cut sets relative to the spanning tree.

 207

A cut – set in the fundamental system of cut – sets is called a

fundamental cut set.

For example, the fundamental cut – sets in the spanning tree (figured

above) is

{(v1, v2), (v1, v3)}, {(v1, v3), (v2, v3), (v3, v4)},

 {(v3, v5), (v4, v5)}, {v2, v4), (v4, v5)}.

Theorem: A circuit and the complement of any spanning tree must have at

least one edge in common.

Proof: We recall that the set of all chords of a tree is called the complement of

the tree. Suppose on the contrary that a circuit has no common edge with the

complement of a spanning tree. This means the circuit is wholly contained in

the spanning tree. This contradicts the fact that a tree is acyclic (circuit – free).

Hence a circuit has at least one edge in common with complement of a

spanning tree.

Theorem: A cut – set and any spanning tree must have at least one edge in

common.

Proof: Suppose on the contrary that there is a cut set which does not have a

common edge with a spanning tree. Then removal of cut set has not effect on

the tree, that is, the cut set will not separate the graph into two components.

But this contradicts the definition of a cut set. Hence the result.

Theorem: Every circuit has an even number of edges in common with every

cut – set.

Proof: We know that a cut – set divides the vertices of the graph into two

subsets each being set of vertices in one of the two components. Therefore a

path connecting two vertices in one subset must traverse the edges in the cut

set an even number of times. Since a circuit is a path from some vertex to

itself, it has an even number of edges in common with every cut – set.

3.19 Tree Searching

Let T be a binary tree of height h 1 and root v. Since h 1, v has at

least one child : vL and / or vR. Now vL and vR are the roots of

the left and right subtrees of v called TL and TR respectively.

 v Level 0

 vL vR Level 1

 Level 2

 208

 Level 3

 Level 4

 Left subtree TL Right subtree TR

 (dotted circle) (dotted circle)

Definition: Performing appropriate tasks at a vertex is called visiting the

vertex.

Definition: The process of visiting each vertex of a tree in some specified

order is called searching the tree or walking or traversing the tree.

We now discuss methods of searching a tree.

PREORDER SEARCH METHOD

Input : the root v of a binary tree.

Output : Vertices of a binary tree using pre-order traversal

1. Visit v

2. If vL (left child of v) exists, then apply the algorithm to (T(vL), vL)

3. If vR (right child of v) exists, then apply this algorithm to (T(vR), vR).

End of Algorithm preorder.

 In other words, preorder search of a tree consists of the following steps:

Step 1. Visit the root

Step 2. Search the left subtree if it exists

Step 3. Search the right subtree if it exists.

Example 1: Find binary tree representation of the expression

 (a – b) (c + (d e))

and represent the expression in string form using pre-order traversal.

Solution: In the given expression, is the central operator and therefore shall

be the root of the binary tree. Then the operator – acts as vL and the operator +

acts as vR. Thus the tree representation of the given expression is

 – +

 a b c

 d e

 209

The result of the pre-order traversal to this binary tree is the string

 – a b + c d e

This form of the expression is called prefix form or polish form of the

expression

 (a – b) (c + (d e))

 In a polish form, the variables a, b, c,…are called operands and –, +, ,

 are called operators. We observe that, in polish form, the operands follow

the operator.

PROCEDURE TO EVALUATE AN EXPRESSION GIVEN IN

POLISH FORM

 To find the value of a polish form, we proceed as follows:

Move from left to right until we find a string of the form K x y, where K is

operator and x, y are operands.

Evaluate x K y and substitute the answer for the string K x y. Continue this

procedure until only one number remains.

Example: Find parenthesized form of the polish expression

 – + A B C

Solution: The parenthesized form of the given polish expression is derived a

follows:

 – (A + B) C

 (A + B) – C

The corresponding binary tree is

POSTORDER SEARCH METHOD

Algorithm

+ C

–

B A

 210

Step 1. Search the left subtree if it exists

Step 2. Search the right subtree if it exists

Step 3. Visit the root

End of algorithm

Example: Represent the expression

 (A + B) * (C – D)

as a binary tree and write the result of postorder search for that tree.

Solution: The binary tree expression (as shown earlier) of the given algebraic

expression is

The result of postorder search of this tree is

 A B + C D – *

This form of the expression is called postfix form of the expression or reverse

polish form of the expression.

In postfix form, the operator follows its operands.

Example: Find the parenthesized form of the postfix form

 A B C * * C D E + / –

Solution: We have

1. A B C * * C D E + / –

2. A (B * C) * C (D + E) / -

3. (A * (B * C)) (C / (D + E)) –

4. (A * (B * C)) – (C / (D + E))

The corresponding binary tree is

+ –

D C

* /

+ C

–

*

A B

B

* A

 211

Example: Evaluate the postfix form

 21 – 342 +

Solution: We have

 21 – 342 +

 = (2 – 1) 342 +

 = 13 (4 2) +

 = 132 +

 = 1 (3 + 2)

 = 15

 = 1 5

 = 5 .

C D E

 212

Unit-4

Computability Theory

4.1. Finite State Machine

Definition: A finite – state machine (or complete sequential machine) is an

abstract model of a machine with a primitive internal memory. A finite state

machine M consists of

(1) A finite set I of input symbols

(2) A finite set S of “internal” states

(3) A finite set O of output symbols

(4) An initial stage s0 in S

(5) A next – stage function f : S I S

(6) An output function g : S I O

A finite state machine M is denoted by

 M = M (I, S, O, s0, f, g).

Example: 1. Let us take

 I = {a, b}

 S = {s0, s1, s2)

 O = {x, y, z}

Initial State is s0

Next state function f : S I S defined by

 f (s0, a) = s1, f (s1, a) = s2, f (s2, a) = s0

 f (s0, b) = s2, f (s1, b) = s1, f (s2, b) = s1

Output function g : S I O defined by

 g (s0, a) = x, g(s1, a) = x, g(s2, a) = z

 g (s0, b) = y, g(s1, b) = z, g(s2, b) = y/

Then M = M(I, S, O, s0, f, g) in a finite state machine.

TRANSITION (STATE) TABLE AND TRANSITION (STATE) DIAGRAM

 There are two ways of representing a finite state machine M in a

compact form:

 213

(A) : Transition (State) Table : In this table the functions f and g are

represented by a table.

Thus, in case of the above example, the transition table is

 f g

I

S
a b a b

s0

s1

s2

s1 s2

s2 s1

s0 s1

x y

x z

z y

(B) Transition (State) diagram: A transition diagram of a finite state machine

M is a labeled directed graph in which there is a node for each state symbol in

S and each node is lebeled by a state symbol with which it is associated. The

initial stage is indicated by an arrow. Moreover, if f(si, aj) = sk and g(si, aj) =

Or, then there is an arrow (arc) from si to sk which is labeled with the pair aj,

Or. We usually put the input symbol aj near the base of the arrow (near si) and

the output symbol Or near the centre of the arrow. (Also, we can represent it

by ai /Oi near the centre of the arrow)

Thus, the transition diagram of the finite state machine in

the above example is

a/x b/z

 x

 a b OR a/z b/y b/y a/x

 b z

 a

 y y

 z b x

 a

Example: Let I = {a, b}, O = {0, 1} and S {s0, s1}. Let so be the initial state.

Define f : S I S by

 f(s0, a) = s0, f(s0, b) = s1, f(s1, a) = s1, f(s1, b) = s1

and define g : S I O by

 g(s0, a) = 0, g(s0, b) = 1, g(s1, a) =1, g(s1, b) = 0

Then M = M(I, S, O, s0, f, g) is a finite state machine. Its transition table

representation is given below:

 s1 s0

 s2

 s1 s0

 s2

 214

 f G

I

S

a b a b

s0

s1

s0 s1

s1 s1

0 1

1 0

The transition diagram for this finite state machine is

 a/0 a/1

 b/0

 b/1

Remark: We can regard the finite state machine M = M(I, S, O, s0, f, g) as a

simple computer. We begin in state S, input a string over I, and produce a

string of output.

INPUT AND OUTPUT STRINGS

Let M = M(I, S, O, s0, f, g) be a finite state machine. An input string for M is

a string over I.

The string

 y1 y2 ……..yn

is the output string for M corresponding to the input string

 x1 x2……...xn

if there exists states s0, s1, ……,sn S such that

 si = f(si-1, xi) for i = 1, 2,……,n

 yi = g(si-1, xi) fo i = 1, 2,…….,n

Example: In the above example, we had taken

 I = {a, b}, O = {0, 1} and S {s0, s1}

with

 f(s0, a) = s0, f(s0, b) = s1, f(s1, a) = s1, f(s1, b) = s1

and

 g(s0, a) = 0, g(s0, b) = 1, g(s1, a) = 1, g(s1, b) = 0

We had shown that M = M(I, S, O, s0, f, g) is a F S M. We want to find the

output string to the input string

 s0 s1

 215

 a a b a b b a

for this machine.

Initially we are in a state s0. The first symbol input is a. Therefore the output

is g(s0, a) = 0. The edge points out to S0. Next symbol input is again a. So again

we have g(s0, a) = 0 as the output and the edge points out to s0 . Next b is the

input symbol and so g(s0, b) = 1 as the output and there is a state of change s1.

Next symbol is a, so g(s1, a) = 1 as the output and the state is s1. Now b is input

and so g(s1, b) = 0 as the output. Again b is input and s1 is the state, so g(s1, b)

= 0. The last input symbol is a and the state is s1. Therefore g(s1, a) = 1 as the

output symbol.

Thus the output string is

 0 0 1 1 0 0 1

Example: Consider the F S M of example …. Let the input string be

 a b a a b.

we begin by taking S0 as the initial stage. Using State diagram we have

 a, x b, z a, x a, z b, y

 s0 s1 s1 s2 s0 s2

Hence the output string is

 x z x z y

BINARY ADDITION

We want to describe a finite state machine M which can perform binary

addition. Suppose that the machine is given the input

 1 1 0 1 0 1 1

 + 0 1 1 1 0 1 1 ,

then we want to have the output to be the binary sum

 1 0 1 0 0 1 1 0

Thus the input is the string of pairs of digits to be added:

 11, 11, 00, 11, 01, 11, 10, b ,

where b denotes blank spaces and the output should be the string

 0, 1, 1, 0, 0, 1, 0, 1

We also want the machine to enter a state called “stop” when the machine

finishes the addition.

The input symbols are

 216

b b

 I = {00, 01, 10, 11, b}

and the output symbols are

 O = {0, 1, b}

The machine that we construct will have three states:

 S = {carry(c), no carry (nc), stop(s)}.

In this case nc is the initial state.

In fact, given an input x y, we take one of three actions :

(A) we add x and y if carry bit is 0

(B) we add x, y and 1 if carry bit is 1

(C) we stop

Next, we consider the possible inputs at each vertex. For examples if 00 is

input to nc, we should output 0 and remain in the state nc. Thus nc has a loop

labeled 00/0. As another example, if 11 is input to c, we compute 1 + 1 = 11. In

this case we output 1 and remain in the state C. Thus C has a loop labeled 11/1.

As a final example, if we are in state NC and 11 is input, we should output 0

and move to the state G. By considering all possibilities, we arrive at the

transition diagram given below:

Limitation of Machines: There is no finite state machine which can

perform binary multiplication.

Generalization of f and g in the definition of F S M: Consider a

sequence x0 x1 …… of input symbols. Let s0 be the initial stage. Then the

next state s1 of the machine for the input x0 is given by s1 = f(s0, x0) = f1(s0,

x0) say, where f = f1: S I S. Next consider the change in state due to

second input symbol x1 and the next state is s2 = f(s1, x1) = f(f1(s0, x0), x1) =

f2(s0, x0 x1), where f2: S I
2
 S. The next state due to third input

symbol x2 is s3 = f(s2, x2) = f(f2(s0, x0 x1), x2) = f3(s0 x0 x1 x2), where f3 :

S I
3
 S. Continuing in this fashion, we can define a function

 nc C

S

 00/0

 10/1

 11/0

 00/1

 10/0

01/0

11/1

 01/1

 217

 fn : S I
n
 S such that

 sn = f(fn-1(s0, x0 x1….xn-2), xn-1) = fn(s0, x0 x1…..xn-1)

Similarly, the output symbol 00, 01, ….. can be described with the help of g

as shown below :

 o0 = g(s0, x0) = g1(s0, x0)

 o1 = g(s1, x1) = g(f1(s0, x0), x1) = g2(s0, x0, x1)

 on 1 = g(sn 1, xn 1) = gn(s0, x0 x1….xn 1) .

4.2. Equivalence of Finite State Machines

The aim of this section is to obtain an equivalent minimal machine for

some given machine. First we treat equivalent states. Intuitively, two states

are equivalent if and only if they produce the same output for any input

sequence. Thus we can make the following definition:

Definition: Let M = M{I, S, O, s0, f, g) be a finite state machine. Two states

si, sj S are said to be equivalent, written as si sj , if and only if

 g(si, x) = g(sj, x) for every word x I*,

where I* denotes the set of words on the input alphabets.

It can be seen that the relation is an equivalence relation.

Theorem: Let s be any state in a finite – state machine and let x and y be

any words. Then

 f(s, x y) = f(f(s, x), y)

and

 g(s, x y) = g(f(s, x), y).

Proof: We shall prove the theorem by induction on length of y. Let y = a.

Then

 f(s, x a) = f(f(s, x), a)

Assume that the equation is true for any y of length n, that is,

 f(s, x y) = f(f(s, x), y)

We want to show that it is true for y having n + 1 symbols.

From the generalized definition, we can write

 f(s, x y a) = f(f(s, x y), a) = f(f(f(s, x), y), a)

by the induction hypothesis. Taking s = f(s, x) ,we have

 218

 f (f (f (S, x), y), a) = f (f(s , y), a)

 = f(s , y a)

 = f(f(s, x), y a)

The result regarding g may be established similarly.

Theorem: Let M = M(I, S, O, s0, f, g) be a finite state machine. If the states

si and sj are equivalent, then for any input sequence x,

 f(si, x) = f(sj, x),

that is, if two states are equivalent, then their next states are also

equivalent.

Proof: Since si sj, it follows by definition that

 g(si, x y) = g(sj, x y) (1)

for any input word x y. Then, by the above theorem, (1) reduces to

 g(f(si, x) y) = g(f(sj, x), y)

for any y belonging to the set of words I*, which in term of definition of

equivalence of states implies

 f(si, x) f(sj, x) ,

that is the next states are equivalent.

Definition: Let M = (I, S, O, s0, f, g) be a finite state machine. Then for

some positive integer k, si is said to be k – equivalent to sj if and only if

 g(si, x) = g(sj, x) for all x such that | x | k.

Obviously, equivalence of states is a generalization of k –equivalence of

states for all k, that is,

 si sj si sj

but not conversely.

Definition: Let M = (I, S, O, si, f, g) and M = (I, S , O, si , f , g) be finite –

state machines. Then M is said to be equivalent to M , written as M M if

and only if for all si S, there exists an s j S such that

 si sj

and for all sj S , there exists an si S such that

 si s j.

The relation is an equivalence relation.

k

 219

For example, consider two finite state machines whose

transition tables are

 f g

 I

S

0 1 0 1

s0

s1

s2

s3

s4

s5

s5 s3

s1 s4

s1 s3

s1 s2

s5 s2

s4 s1

0 1

0 0

0 0

0 0

0 1

0 1

 M(I, S, O, Si, f, g)

and

 f g

I

S

0 1 0 1

s0

s1

s2

s3

s3 s2

s1 s0

s1 s2

s0 s1

0 1

0 0

0 0

0 1

 M (I, S , O, S , f , g)

Observe that s0 in M is equivalent to s0 and s4 in M; s1 in M is equivalent to

s1 in M; s2 in M is equivalent to s2 and s3 in M, and s3 in M is equivalent to

s5 in M. Also note that the functions g and g are same for the indicated

correspondence, but this is only a necessary condition for equivalence, not a

sufficient one.

Definition: A finite state machine M = (I, S, O, si, f, g) is said to be reduced if

and only if si sj implies that si = sj for all states si, sj S.

 220

Thus, a reduced finite state machine is one in which each state is

equivalent to itself and to no other. The partition of S in such machine has

all its equivalence classes consisting of a single element.

CONSTRUCTION OF A REDUCES FINITE STATE MACHINE

WHICH IS EQUIVALENT TO

SOME GIVEN MACHINE

Let M be a given machine. Let the set of states S be partitioned in a set of

equivalence classes [s] such that partition P = U[s]. Let be the function

defined on the partition P such that ([s]) = s , where s is an arbitrary fixed

element of [s], called a representative. Clearly s s in M. Let S in M be

defined as

 S = {s : there exists s S such that ([s]) = s }

and let I = I and O = O, that is, both machines will have the same input and

output alphabets. The functions f and g are defined as follows :

 f (s , a) = ([f(s , a)])

and

 g (s , a) = g(s , a),

where s is both in S and S . Therefore, the reduced machine is M = (I, S , O,

si f , g).

Remark: Applying this procedure to the machines in the last example, we

see that M is equivalent reduced machine of the machine M.

Theorem: Let M = M(I, S, O, si, f, g) be a finite – state machine. Then there

exists an equivalent machine M with a set of states S such that S S and

M is reduced.

 (Proof of this theorem is out of the scope of the course)

Definition: Let M = (I, S, O, si, f, g) and M = (I, S , O, si , f , g) be two

finite state machines. Let be a mapping from S into S . Then is called a

finite state homorphism if

Iaallfor
)a),s(('g)a,s(g

)a),S(('f)a,s(f(

If is further a one - one and onto function, then M is said to be

isomorphic to M .

Finite – state machines are used in compilers where they usually perform

the task of a scanner. The machine in such a case identify variable names,

operators, constants, etc. A machine which performs this scanning task is

called an acceptor.

 221

4.3. Finite – State Automata

Definition: A finite state automaton (.F S A) or simply an automaton M or

finite state acceptor consists of

(1) a finite set I, called the input alphabet of input symbols

(2) a finite set S of states

(3) a subset A of S of accepting states

(4) an initial state s0 in S

(5) a next state function f from S I S.

Such an automaton is denoted by M = (I, S, A, s0, f) . Thus, finite automaton

does not have an output alphabet, instead it has a set of acceptance state. The

plural of automaton is automata.

Example : Let

I = {a, b}, S = {s0, s1, s2}, A = {s2}, s0 S, the initial state and f is given by the

table

 f

 I

S

a b

s0

s1

s2

S0 s1

s0 s2

s0 s2

The transition diagram of a finite – state automation is usually drawn with

accepting states in double circles. Thus transition diagram for the example in

question is

 a b

Example: Let

I = {a, b}, input symbols

S = {s0, s1, s2}, internal states

 s0 s1 s2

b b

a

a

 222

A = {s0, s1}, yes states (accepting states)

s0, initial state

Next state function f : S I S defined by

 f(s0, a) = s0, f(s1, a) = s0, f(s2,a) = s2

f(s0, b) = s1, f(s1, b) = s2, f(s2,b) = s2

Then M = (I, S, A, s0, f) is a finite state automaton. Its transition table is

 f

I
S

a b

s0

s1

s2

s0 s1

s0 s2

s2 s2

and the transition diagram is

If a string is input to a finite state automaton, we will end at either an accepting

or a non-accepting state. The status of this final state determines whether the

string is accepted by the finite state automaton.

Definition: Let M = (I, S, A, f, s0) be a finite state automaton. Let x1…xn be

a string over I. If there exist states s0, s1,……,sn such that

 f(si-1, xi) = si for i = 1, 2, ….,n

and

 si A,

then we say that the string x1…..xn is accepted by A.

We call the directed path P (s0,…, sn) the path representing x1,….,xn in M.

Thus M accepts x1 …. xn if and only if path P ends at an accepting state.

Example: Design a finite state automation that accepts precisely those

strings over {a, b} that contain no a’s.

Solution: We want to have two states:

 A : an a was found

 s1
 s2

b

a

b

b

a

a

 s0

 223

 NA : No a’s were found

The state NA is the initial state and the only accepting state.

 b a

 b

If f is next – state function, then

 f(NA, a) = A, f(NA, b) = NA

 f(A, a) = A, f(A, b) = A

Example: Design a finite – state – automaton that accepts precisely those

strings over {a, b} that contains an odd number of a’s.

Solution: There shall be two states:

E : An even number of a’s was found

O : An odd number of a’s was found

The initial state is E and the accepting state is O.

 a

 b

 a

 b

If f is next – state function, then we have

 f(E, a) = O

 f(E, b) = E

 f(O, a) = E

 f(O, b) = O

Example : Let M = {I, S, A, s0, f) be a finite state automaton with

 I = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

 S = {s0, s1, s2}

 A = {s0}

 a {0, 3, 6, 9}, b {1, 4, 7}, c {2, 5, 8}.

Next – state function f defined by

 f(s0, a) = s0, f(s0, b) = s1, f(s0, c) = s2

 A

a
NA

E
 O

 224

2 5 8

f(s1, a) = s1, f(s1, b) = s2, f(s1, c) = s0

f(s2, a) = s2, f(s2, b) = s0, f(s2, c) = s1

Draw transition table and transition diagram for this F.S.A. Does this

automaton accept 258 and 142 ?

Solution: The transition table for F.S.A. is

 f

 I

S

a b c

 s0

 s1

 s2

s0 s1 s2

s1 s2 s0

s2 s0 s1

The transition diagram for this F.S.A. is

 0,3,6,9

 1,4,7 0,3,6,9

 2,5,8

 1,4,7 1,4,7 2,5,8

 2,5,8

 0,3,6,9

Here A = {s0} is the initial stage and also is an acceptor. Further, we note that

 f(s0, 258) = f (f (s0, 25), 8)

 = f (f (f(s0, 2), 5), 8)

 = f (f (s2,5), 8)

 = f (s1, 8) = s0 A

Thus, the string 258 determines the path

 s0 s2 s1 s0 A

Hence 258 is accepted by the given Finite State Automation.

 s0
s1

s2

 225

 1 4 2

On the other hand,

 f(s0, 142) = f (f (s0, 14), 2)

 = f (f (f(s0, 1), 4), 2)

 = f (f (s1, 4), 2)

 = f (s2, 2)

 = s1 A

Thus, the string 142 determines the path

 s0 s1 s2 s1 A .

Hence 142 is not accepted by the given Finite State Automaton.

Example: Construct F S A which will accept precisely those strings from I =

{a, b} which end in two b’s.

Solution: As per our requirement b b should be accepted by M but or b

should not be accepted. Thus we need three states: s0 (the initial state) , s1 and

s2 as shown below:

 b b

The state s2 should be the accepting state. Further f(s0, a) should not be equal to

s1, because then a b may be the last letters. f(s2, a) should not be equal to s2,

otherwise ba would be last letters. However, f(s2, b) may be equal to s2 because

in that case we have last two letters as b’s. Thus the automaton is as shown

below :

 a

 b b b

 a a

 Example: Let I = {a,b}. Construct an automaton M such that L(M) consists of

those strings where the number of b’s is divisible by 3.

Solution: We take s0 as the initial state. If we define the next state function

f by

 f(s0, b) = s1

 f(s1, b) = s2

 f(s2, b) = s0

and take s0 as the accepting state, then M shall be

 a

 S0 S1 S2

 s0 s1 s2

s0

s1 s2

b b

 226

 a a

 b

Example: Let I = {a, b}. Construct an automaton M such that L(M)

consists of those words which begin with a and end with b.

Solution: Let s0 be the initial state. If we define f as

 f(s0, a) = s1, f(s1,b) = s2 (accepting state)

Then, we have three states as

 a b

Now we cannot take f(s0, b) = s0 or f(s0, b) = s1, because then b will be

starting letter. So, we have to take f(s0, b) = s3. We cannot take f(s3,a) = s0,

s1, s2 because in that case the string would end in a. We cannot have f(s2, a)

= s2, because then a will be last letter. Thus The automaton M will be

 a,b

 b

 b b

 b

 a

In this automaton, any string shall begin with a and end in b.

4.4. Non – Deterministic Finite State Automaton

Definition: A non – deterministic finite – state automaton is a 5 – tuple M = (I,

S, A, s0, f) consisting of

(1) A finite set I of input symbols

(2) A finite set S of states

(3) A subset A of S of accepting states

(4) An initial state function s0 S

(5) A next state function f from S I into P(S)

 s1 s1 s2

 s0 s1 s2

 s3

 227

Thus, in a non – deterministic finite state automaton, the next state function

leads us to a set of states, whereas in a finite state automaton, the next state

function takes us to a uniquely defined state.

Example: Find the transition diagram for N D F S A

 M = (I, S, A, s0, f),

where

 I = {0, 1}, S = {s0, s1, s2, s3}, A = {s2, s3}

and the next state function f is given by

 f

I

S

0 1

s0

s1

s2

s3

 {s0, s1} {s3}

{s0} {s1,s3}

 {s0,s2}

 {s1, s2,s3} {s1}

Solution: Here the initial state is s0 and the accepting states are s2 and s3.

The transitional diagram of this N D F S A is

Definition: Let M = (I, S, A, s0, f) be a non – deterministic finite state

automaton. The null string is accepted by M if and only if s0 A. If w = a1

a2…..an is a non – null string over I and there exists states s0, s1, ….., sn

such that

(1) s0 is the initial state

(2) si = f(si 1, ai)

(3) sn A ,

 s0 s1

 s2 s3

0

0

1

0

0

1

1
1 1 1 0

0

 228

 0

then we say that w is accepted by M.

We denote by AC(M), the set of strings accepted by M and say that M accept

AC(M).

Definition: Two non – deterministic finite state automata M and M are said to

be equivalent if

 AC(M) = AC(M) .

Example: Let

 M = (I, S, A, s0, f)

be a N D F S A with

 I = {0, 1}, S = {s0, s1, s2, s3, s4}, A = {s2, s4},

so as the initial state and the next state function defined by the transition

table given below:

 f

 I

S

 0 1

s0

s1

s2

s3

s4

{s0, s3} {s0,s1}

 {s2}

{s2} {s2}

{s4}

{s4} {s4}

Determine whether M accept the words (i) w = 010 and (ii)

w = 01001.

Solution: (i) The word w = 010 determines the path s0 {s0, s3} f(s0,

1) f(s3, 1) = {s0, s1}

 = {s0, s1} f(s0, 0) f(s1, 0) = {s0, s3} = {s0, s3}

But A {s0, s3} = {s2, s4} {s0, s3} = . Hence the word w = 010 is not

acceptable to the given non – deterministic finite state automaton.

(ii) We have seen above that

 s0 {s0, s3} {s0, s1} {s0, s3}

 0 1

 0 1 0

 229

Therefore the word w = 01001 determines the path

s0 {s0, s3} {s0, s1} {s0, s3} f(s0, 0) f(s3, 0)

 = {s0, s3} {sn}

 = {s0, s3, s4} f(s0, 1) f(s3, 1} f(s4, 1}

 = {s0, s1} {s4}

 = {s0, s1, s4}

so that

 A {s0, s1, s4} = {s2, s4} {s0, s1, s4} = {s4} .

Hence the string 01001 is acceptable to the given N D F S A.

4.5 The Equivalence of D F S A and N D F S A

We have seen that in the definition of finite state automaton, the next state

function is from S I into S, whereas in the definition of N D F S A, the next

state function is from S I into P(S). Thus, every D F S A is an N D F S A,

that is, the class of languages accepted by N D F S A includes the languages

accepted by D F S A. However, these are the only languages accepted by N D

F S A. In other words, for every N D F S A, we can construct an equivalent

D F S A. In this direction, we have the following :

Theorem: Let L be a set accepted by a non – deterministic finite automaton.

Then there exists a deterministic finite automaton that accepts L.

Proof: Let M = (I, S, A, s0, f) be an N D F S A accepting L. Define a D F S A,

 M = (I, S , A , s0 , f)

as follows:

The states of M are all the subsets of the set of all states of M , that is, S = 2
S
.

Also s0 = {s0} and A is the set of all states in S containing a final state of M,

that is, A = {s S : s A }.

Further, for s S and a I, let

 f (s, a) =
s
 f(, a)

To prove that M accept the same language as M, it is sufficient to show that

for any string x I* (the set of strings formed by I),

 0 1 0

 0

 1

 230

 f *(s0 , x) = f* (s0, x) (1)

We shall prove (1) by using induction on the length of the input string x.

If x = , then

 f *(s0, x) = f *(s0 ,)

 = s0 (by definition of f *)

 = {s0} by the definition of s0

 = f*(s0,) (by the definition of f*)

 = f*(s0, x)

Thus (1) holds for | x | = 0 (i.e. for x =).

The induction hypothesis is that x is a string satisfying

 f *(s0 , x) = f*(s0, x)

and we want to show that

 f *(s0 , x a) = f*(s0, x a) for a I.

To show it, we have

 f *(s0 , x a) = f (f * (s0 , x), a) (by the definition of f *)

 = f (f*(s0, x), a) (by induction hypothesis)

 =
)x,s(*f 0

f(, a) (by the definition of f)

 = f*(s0, x a) (by the definition of f*)

We know that a string x is accepted by M if f *(s0 , x) A that is, if f* (s0, x)

 A and using the definition of A , it follows that this is true if and only if

 f*(s0, x) A ,

that is, if f*(s0, x) A, that is, if x is accepted by M. Thus x is accepted by M

if and only if x is accepted by M. This completes the proof of the theorem.

Example: Construct deterministic finite state automaton equivalent to the

following non – deterministic finite state automaton :

 M = ({0, 1}, {s0, s1}, s0, {s1}, f) ,

where f is given by the table

 f

 231

I

S

0 1

s0

s1

{s0, s1} {s1}

 {s0, s1}

Solution: Let

 M = {{0, 1}, { , {s0}, {s1}, {s0, s1}, s0 = {s0}, A , f }
be the D F S A, where

 A = {s { , (s0, {s1}, {s0, s1} : s {s1}

and = {s1} and {s0, s1} (Accepting states)

 f (s, a) =
s
 f(, a) for s { , {s0}, {s1}, {s0, s1}}

We have

{s0} as the initial state

The finite set of states is { , {s0}, {s1}, {s0, s1}}
The finite set of inputs is {0, 1}

The accepting states are [s1] and [s0, s1].

Now

 f (, 0) = and f (, 1) =

 f ([s0], 0) = f(s0, 0) = [s0, s1]

 f ([s0], 1) = f(s0, 1) = [s1]

 f ([s1], 0) = f(s1, 0) =

 f ([s1], 1) = f(s1, 1) = [s0, s1]

 f ([s0, s1], 0) = f(s0, 0) f{s1, 0}

 = {s0, s1} {s1}

 = [s0, s1]

 f ({s0, s1}, 1) = f(s0, 1) f(s1, 1)

 = {s1} {s0, s1}

 = [s0, s1]

Hence the next state function and the transition diagram for D F S A are as

given below :

 f

 232

 I

S

0 1

[s0]

[s1]

[s0, s1]

[s0, s1] [s1]

 [s0, s1]

 [s0, s1] [s0, s1]

It may be mentioned here that a state which is never entered may be deleted

from the transition diagram. In view of this, the above transition diagram

becomes

Thus, we note that if N D F S A has n states, then D F S A will have 2
n

states.

Example: Draw transition diagram of the N D F S A

 [s0] [s1] [s0 s1]

0

1

1

1

0

0

1

 [s1] [s0 s1]

0

1

0

 233

M = ({a, b}, {s0, s1, s2}, {s0}, s0, f),

where f is given by

 f

I

S

 a b

s0

s1

s2

 {s1,s2}

{s2} {s0,s1}

{s0}

Also find equivalent D F S A.

Solution: Here

Initial stage is s0

Set of Accepting state is {s0}

Finite set of states is {s0, s1, s2}

Finite set of inputs is {a, b}

Hence the transition diagram is

Let

M = ({0, 1}, { , {s0}, {s1}, {s2}, {s0, s1},

{s0, s2}, {s1, s2} {s0, s1, s2}} s0 , A , f)

be the equivalent D F S A, where

 s0 = [s0]

and set of accepting states is

A = {s { , {s0},...., {s0, s1, s2} : s {s0} }

 = {s0}, {s0, s1}, {s0, s2}, {s0, s1, s2}

Further

f (, a) = , f (, b) =

f ([s0] , a) = f(s0 , a) = , f ([s0] ,b) = f(s0 , b) = [s1 s2]

 s0 s1 s2

b

b
a

b

a

b

 234

f ([s1] , a) = f(s1 , a) = [s2] , f ([s1] , b) = f(s1 , b) = [s0 s1]

f ([s2] , a) = f(s2 , a) = [s0] , f ([s2] , b) = f(s2 , b) =

f ([s0 s1] , a) = f(s0, a) f(s1 , a) = [s2] , f ([s0 s1] , b) = [s0 s1 s2]

f ([s0 s2] , a) = f(s0 , a) f(s2 , a) = [s0] ,

f ([s0 s2] , b) = f(s0 , b) f(s2 , b) = [s1 s2]

f ([s1 s2] , a) = f(s1 , a) f(s2 , a) = [s0 s2] ,

f ([s1 s2] , b) = f(s1 , b) f(s2 , b) = [s0 s1]

f ([s0 s1 s2] , a) = f(s0 , a) f(s1 , a) f(s2 , a) = [s0 s2] ,

f ([s0 s1 s2] , b) = f(s0 , b) f(s1 , b) f(s2 , b)

 = [s0 s1 s2]

Thus, the transition table of D F S A is

 F

 I

S

 a b

[s0]

[s1]

[s2]
[s0 s1]

[s0 s2]

[s1 s2]

[s0 s1 s2]

 [s1 s2]

[s2] [s0 s1]

 [s0]

 [s2] [s0 s1 s2]

 [s0] [s1 s2]

[s0, s2] [s0, s1]

[s0 s2] [s0 s1 s2]

The transition diagram of deterministic finite state automaton is therefore as

shown in the diagram below:

 b

 a b b

 a

 a b

 s0 [s0 s2] [s1 s2] [s0 s1]

[s2] [s1]

 [s0 s1 s2]

 235

 a a

 b

b

 a

 b

 a

 a b

Since the state [s1] is never entered, it may be removed .

4.6 Moore Machine and Mealy Machine

We have seen that in case of finite automaton, the output is limited to a binary

signal “accept” or “don t accept”. However, some models in which the output

is chosen from some other alphabet have also been considered. There are two

different approaches.

(1) If the output function depends only on the present state and is independent

of the current input, the model is called a Moore Machine.

(2) If the output function is a function of transition, i.e. a function of present

state and the present input, the model is called a Mealy Machine.

MOORE MACHINE
A Moore machine is a six – tuple

 (I, S, O, s0, f, g),

where

(1) I is a finite set of input symbols

(2) S is a finite set of internal states

(3) O is a finite set of output symbols

(4) s0 is the initial state

(5) f is the transition (next – state) function from S I into S

(6) g is the output function mapping S into O.

The output in response to input a1 a2……….an, n 0 is g(s0) g(s1)……g(sn),

where s0, s1,……..sn is the sequence of states such that

 f(si-1, ai) = si , 1 i n.

Moore Machine gives output g(s0) in response to input (empty string).

 236

Obviously, D F S A is a special case of a Moore Machine, where the output

alphabet is {0, 1} and the state s is “accepting” if and only if g(s) = 1.

Example: Let

 M = (I, S, O, s0, f, g)

be a Moore Machine, where

 I = {0, 1}, S = {s0, s1, s2, s3}

 O = {0, 1}, s0 is initial state ,

f is transition function such that

 f(s0, 0) = s3, f(s0, 1) = s1

 f(s1, 0) = s1, f(s1, 1) = s2

 f(s2, 0) = s2, f(s2, 1) = s3

 f(s3, 0) = s3, f(s3, 1) = s0 ,

and g is the output function such that

 g(s0) = 0, g(s1) = 1, g(s2) = 0, g(s3) = 0

Determine the transition table for M and the output string for the input string

0111.

Solution: The transition table for this Moore machine is

 f G

 I

S

0 1

 s0

 s1

 s2

 s3

s3 s1

s1 s2

s2 s3

s3

s0

 0

 1

 0

 0

The input string is 0111. We note that

For empty string , the output is g(s0) = 0

 f(s0, 0) = s3 and g(s3) = 0

 f(s3, 1) = s0 and g(s0) = 0

 f(s0, 1) = s1 and g(s1) = 1

 237

 f(s1, 1) = s2 and g(s2) = 0

Thus the output string is

 0 0 0 1 0.

MEALY MACHINE

A Mealy Machine M is a six – tuple

 (I, S, O, s0, f, g),

where

(1) I is a finite set of input symbols

(2) S is a finite set of internal states

(3) O is a finite set of output symbols

(4) s0 is the initial state

(5) f is the transition (next – state) function from S I into S

(6) g is the output function mapping S I into O.

The output given by M in response to input a1 a2….an is g(s0, a1) g(s1, a2) g(s2,

a3)……g(sn-1, an), where s0, s1,…..sn is the sequence of states such that g(si-1, ai)

= si, 1 i n.

Note that the output sequence in case of Mealy Machine has length n,

whereas the length of output sequence in case of Moore Machine is n + 1.

Further, Mealy Machine gives output for the input string .

4.7 Equivalence of Moore and Mealy Machines

We know that the output string length in case of Mealy machine is one less

than the output string length in case of Moore machine.

Neglecting the response of a Moore machine to input , we say that Moore

Machine M and Mealy machine M are equivalent if for all input string v

 k M (v) = M (v),

where M (v) and M (v) are output produced by M and M on input v and k is

output of M for its initial state.

Theorem: Let M1 = (I, S, O, s0, f, g) be a Moore machine. Then there is a

Mealy machine M2 = (I, S, O, s0, f, g) which is equivalent to M1.

Proof: Define g : S I O by

 g (s, a) = g(f(s, a) , for all s S and a I.

 238

Then M1 and M2 enter the same sequence of states on the same input and with

each transition M2 emits the output that M1 associates with the state entered.

Example: Let the transition table of a Moore machine M1 = ({0, 1}, {s0, s1, s2,

s3}, {0, 1}, s0, f, g) be as given below:

 f g

I

S

0 1

 s0

 s1

 s2

 s3

s3 s1

s1 s2

s2 s3

s3

s0

 0

 1

 0

 0

Construct a Mealy machine M2 equivalent to M.

Solution: Let

 M2 = ({0, 1}, {s0, s1, s2, s3}, {0, 1}, f, g , s0)

be the equivalent Mealy machine, where

 g (s, a) = g(f(s, a) , s S, a I.

Thus

 g (s0, 0) = g(f(s0, 0) = g(s3) = 0

 g (s0, 1) = g(f(s0, 1) = g(s1) = 1

 g (s1, 0) = g(f(s1, 0) = g(s1) = 1

 g (s1, 1) = g(f(s1, 1) = g(s2) = 0

 g (s2, 0) = g(f(s2, 0) = g(s2) = 0

 g (s2, 1) = g(f(s2, 1) = g(s3) = 0

 g (s3, 0) = g(f(s3, 0) = g(s3) = 0

 g (s3, 1) = g(f(s3, 1) = g(s0) = 0

Thus the transition table for Mealy machine is

 239

 f g

I

S

0 1 0 1

 s0

 s1

 s2

 s3

s3 s1

s1 s2

s2 s3

s3

s0

 0 1

 1 0

 0 0

 0 0

Theorem: Let M1 = (I, S, O, s0, f, g) be a Mealy machine. Then there is a

Moore machine M2 = (I, S , O, s0 , f , g) which is equivalent to M1.

Proof: Let b0 be arbitrary member of finite set O of output symbols. Set

 M2 = (I, S O, O, [s0, b0], f , g)

Thus the states of M2 consists of pairs [q, b], where q S, b O.

Define f by

 f ([q, b], a) = [f(q, a), g(q, a)]

and g by

 g ([q, b]) = b.

The component b in a state [q, b] is the output made by M1 on some transition

into state q. Only the first component of M2’s states determine the moves made

by the machine M2. Induction on n shows that M1 enters states q0, q1, …..,qn on

input a1 a2…….an and emits outputs b1, b2….,bn, then M2 enters states [q0, b0],

[q1, b1],……,[qn, bn] and emits outputs b0, b1, b2…..,bn.

Example: Let M1 be a Mealy machine whose transition table is

 f g

 I

S

0 1 0 1

 s0

 s1

 s2

 s3

s3 s1

s1 s2

s2 s3

s3

 0 1

 1 0

 0 0

 0 0

 240

s0

Find equivalent Moore Machine M2.

Solution: The states M2 are

[s0, 0], [s1, 0], [s1, 0], [s1, 1], [s2, 0], [s2, 1], [s3, 0], [s3, 1].

We select b0 = 0 making [s0, 0] as start state for M2.

The transitions and outputs of M2 are as follows:

 f ([s0, 0], 0) = [f(s0, 0), g(s0, 0)] = [s3, 0]; g ([s0, 0]) = 0

 f ([s0, 0], 1) = [f(s0, 1), g(s0, 1)] = [s1, 1]; g ([s0, 0]) = 0

 f ([s0, 1], 0) = [f(s0, 0), g(s0, 0)] = [s3, 0]; g ([s0, 1]) = 1

 f ([s0, 1], 1) = [f(s0, 1), g(s0, 1)] = [s1, 1]; g ([s0, 1]) = 1

 f ([s1, 0], 0) = [f(s1, 0), g(s1, 0)] = [s1, 0]; g ([s1, 0]) = 0

 f ([s1, 0], 1) = [f(s1, 1), g(s1, 1)] = [s2, 0]; g ([s1, 0]) = 0

 f ([s1, 1], 0) = [f(s1, 0), g(s1, 0)] = [s1, 0]; g ([s1, 1]) = 1

 f ([s1, 1], 1) = [f(s1, 1), g(s1, 1)] = [s2, 0]; g ([s1, 1]) = 1

 f ([s2, 0], 0) = [f(s2, 0), g(s2, 0)] = [s2, 0]; g ([s2, 0]) = 0

 f ([s2, 0], 1) = [f(s2, 1), g(s2, 1)] = [s3, 0]; g ([s2, 0]) = 0

 f ([s2, 1], 0) = [f(s2, 0), g(s2, 0)] = [s2, 0]; g ([s2, 1]) = 1

 f ([s2, 1], 1) = [f(s2, 1), g(s2, 1)] = [s3, 0]; g ([s2, 1]) = 1

 f ([s3, 0], 0) = [f(s3, 0), g(s3, 0)] = [s3, 0]; g ([s3, 0]) = 0

 f ([s3, 0], 1) = [f(s3, 1), g(s3, 1)] = [s0, 0]; g ([s3, 0]) = 0

 f ([s3, 1], 0) = [f(s3, 0), g(s3, 0)] = [s3, 0]; g ([s3, 1]) = 1

 f ([s3, 1], 1) = [f(s3, 1), g(s3, 1)] = [s0, 0]; g ([s3, 1]) = 1

Thus the transition table and transition diagram of Moore machine M2 which is

equivalent to given Mealy machine M1 are :

 f g

I

S

0 1

 [s0, 0]

 * [s0, 1]

 [s1, 0]

[

s3, 0]

[s1, 1]

 0

 1 *

 0

 241

 [s1, 1]

 [s2, 0]

 * [s2, 1]

 [s3, 0]

 * [s3, 1]

[s3, 0] [s1, 1]

[s1, 0] [s2, 0]

[s1, 0] [s2, 0]

[s2, 0] [s3, 0]

[s2, 0] [s3, 0]

[s3, 0] [s0, 0]

[s3, 0] [s0, 0]

 1

 0

 1 *

 0

 1 *

and

The states [s0, 1] , [s2, 1], [s3, 1] can never be entered and so have been

removed from the diagram.

Leaving aside the outputs corresponding to the removed states which have

been marked by * in the transition table, the outputs are 0, 0, 1, 0, 0 .

[s0, 0] [s1, 0] [s3, 0]

[s1, 1]

1

0 0

[s2, 0]

1
0 0 1

1 1

0

 242

Unit-5

Languages and Grammars

Formal languages are used to model nature languages and to communicate with

computers. Before giving definition to formal language, we define some

elementary notions.

5.1 Basic Concepts

Definition: Let A be a non – empty set of symbols. Then a finite sequence of

the elements of A is called a word or string w on the set A. For example,

 w = a b b a a a b

is a string on A = {a, b}.

The set A is called alphabet and its elements are called letters. The empty

sequence of letters is also considered as a string and is denoted by , or 1.

This is called empty word.

The set of all words on the set A is denoted by A*.

The length of the string (word) w is the number of elements in the string and

is denoted by l(w) or |w|. The length of is 0.

For example, thus the length of the word w cited above is 7.

Definition: Let u and v be two strings on alphabet A. The concatenation of u

and v is the word obtained by writing down the letters of u followed by the

letters of v. It is denoted by uv.

For example, if u = a b c a b and v = c c a b b a, then concatenation of u and v

is

 u v = a b c a b c c a b b a = a
4
 b

4
 c

3

We observe that

 l(u v) = l(u) + l(v).

Also, we note that for any words u, v, w, we have

 (u v) w = u(v w)

 243

Thus, the concatenation operation on an alphabet A is associative, but not

commutative because u v v u.

Definition: Let u = x1 x2………xn be a word on an alphabet A. Then any

sequence v = xi xi+1……….xj is called a subword of u.

The subword which begins with the first letter of u is called an initial segment

of u.

For example, x1, x2, x3 is an initial segment of u.

Let F denote the set of all non – empty words from an alphabet A with the

operation of concatenation. We know that F is a semi – group, called Free

semigroup over A or the free semigroup generated by A.

Further, since is an identity element for the operation of concatenation, A*

becomes a monoid and is called Free monoid over A.

5.2. Language, Regular Expressions and Language Defined

Regular Expressions

Definition: Let A be a finite set of symbols. A (formal) language L over A is a

subset of A*, the set of all string over A.

For example, let A = {a, b}. Then the set L of all strings over A containing an

odd number of a’s is a language over A.

Similarly, {a, ab, ab
2
, …….} is a language over A. This consists of all words

beginning with a and followed by zero or more b’s.

Let L1 and L2 be languages over an alphabet A. Then the concatenation of L1

and L2, denoted by L1L2 , is the language defined by

 L1 L2 = {u v : u L1, v L2}

Thus L1 L2 is the set of all words formed by the concatenation of a word from

L1 with a word from L2. For example, let

 L1 = { a, b
3
}, L2 = {a

3
, a b

2
, b}

Then

 L1 L2 = {a
4
, a

2
b

2
, a b, b

3
 a

3
, b

3
 a b

2
, b

4
}

is a language.

Since concatenation of words is associative, it follows that concatenation of

languages is associative.

 244

Definition: The Power of a language L are defined as

 L
0
 = { }, L

1
 = L, L

2
 = LL, ……., L

m+1
 = L

m
 L, m > 1.

Definition: The unary operation L* of a language L, called the Kleene closure

of L is defined as the infinite union

 L* = L
0
 L

1
 L

2
 …… = 

1k

kL

If we leave apart L
0
 = { }, then we write

 L
+
 = L

1
 L

2
 ……….= 

1k

kL .

Definition: The regular expressions over an alphabet A and the sets they

denote are defined recursively as follows:

(1) The empty string is a regular expression and denotes the set { }.

(2) or () is a regular expression and denote the empty set.

(3) Each letter a in A is a regular expression and denotes the set {a}.

(4) If r is a regular expression denoting the language R, then (r*) is a regular

expression on and denotes the set R*.

(5) If r and s are regular expression denoting the language R and S , then (r s)

or (r + s) is a regular expression and denotes the set R S.

(6) If r and s are regular expressions denoting the languages (sets) R and S,

then (r s) is a regular expression and denotes the set R S.

Thus, a regular expression r is a special kind of a string (word) which uses the

letters of A and the five symbols

 () , * , . , , (or)

For example,

(i) the regular expression (0 + 1)* denotes all the strings of 0’s and 1’s.

(ii) the regular expressions (1 + 10)* denotes all the strings of 0’s and 1’s and

beginning with 1 and not having two consecutive 0’s.

(iii) The regular expression (0 + 1)* 00 (0 + 1)* denotes all the strings of 0’s

and 1’s with at least two consecutive 0’s.

(iv) (0 + 1)* 0 1 1 denotes all strings of 0’s and 1’s ending in 0 1 1

 245

(v) 0* 1* 2* denotes all the strings with any number of 0’s followed by any

number of 1’s followed by any number of 2’s.

Definition: The language L(r) over A defined by a regular expression r over

A is as follows:

(1) L() = { }

(2) L(()) = , the empty set

(3) L(a) = {a}, where a is a letter in A.

(4) L(r*) = (L(r))*, the Kleene closure of L(r).

(5) L(r1 + r2) = L(r1) L(r2), the union of languages

(6) L(r1 r2) = L(r1) L(r2), the concatenation of the languages.

Definition: Let L be a language over A. Then L is said to be a regular

language over A if there exists a regular expression r over A such that L =

L(r).

Example: Let A = {a, b}. If

(i) r = a*, then L(r) consists of all powers of a

(ii) r = a a*, then L(r) consists of all positive powers of a, that is all words in a

excluding the empty word.

(iii) r = a + b*, then L(r) consists of a or any word in b, that is

 L(r) = { a, , b , b
2
…..}

(iv) r = (a + b)*, then L(r) consists of all strings of a and b, i.e. all words

(strings) over A.

(v) r = (a + b)* a a, then L(r) denoted all strings of a and b ending in a a, i.e.

L(s) consists of the concatenation of any word in A with a a (or a
2
).

Example: Let L = {a
m

 b
n
 : m, n > 0} be a language over A = {a, b}. Find a

regular expression r such that

 L = L(r)

Solution: The given language L consists of strings beginning with one or more

a’s followed by one or more b’s. Hence

 R = a a* b b*

5.3 Language Determined by a Finite – State Automaton

Let M be a finite state automaton with input set A. Then M defines a language

over A, denoted by L(M), as follows:

 246

Let u = a1 a2……….an be a string on A. Then u determines a sequence of states

 s0 s1 s2 ……… sn

where s0 is the initial state and

 f(si-1, ai) = si for i 1.

In other words, u determines the path

 s0 s1 s2, ……………, sn

 A finite state machine M is said to accept (recognize) the word u if the final

state sn belong to an accepting state in A (subset of internal states S).

The language L(M) of the finite state automaton M is the collection of all

words from the input set A which are accepted by M.

Example: Determine the language L(M) of the finite state automaton whose

transition diagram is given below

 b b

 a

 a a,b

Solution: Let M = (I, S, A, s0, f) be the finite – state automaton. Then, we note

that s0 is the initial state, S = {s0, s1, s2} and

 f(s0, a) = a, f(s, b) = s1

 f(s1, a) = s0, f(s1, b) = s2

 f(s2, a) = s2, f(s2, b) = s2.

Also A = {s0, s1}and I = {a, b}.

We note that

(i) We can never leave s2

(ii) The state s2 is the only rejecting (non – accepting) state

(iii) a string in which there appear two successive b’s is not accepted by M.

Thus L(M) consists of all strings (words) from I = {a, b} which do not have

two successive b’s.

Example: Find the language accepted by the automaton M shown in the

transition diagram below:

 b a

 a a a

a1 a2 an

s0
s1

 s2

 s0 s1 s2 s3 s4

 247

 b b

 b

 a b

Solution: Let M = (I, S, A, s0, f) be the F S A. Then, we have

 I = {a, b}, S = {s0, s1, s2, s3, s4}, s0 is the initial state,

 A = {s4}

and f is given by

 f(s0, a) = s1, f(s0, b) = s0, f(s1, a) = s2, f(s2, a) = s2, f(s2, b)

= b,

 f(s3, b) = s4, f(s3, a) = s1, f(s4, b) = s4, f(s4, a) = s4.

We note that

 s0 s1 s2 s3 s4 (accepting state)

 s0 s0 s1 s2 s3 s4 (accepting state)

s0 s0 s1 s2 s3 s4 s4 s4 (accepting state)

Hence, L(M) consists of all words which contain a a b b as a subword.

5.4. Grammars

Definition: A phrase – structure Grammar or simply a Grammar G

consists of

(1) A finite set N of non – terminal symbols (or variables)

(2) A finite set T of terminal symbols, where N T =

(3) A finite subset P of [(N T)* T*] (N T)*, called the set of

productions. Thus a production is an ordered pair (A, B), written as A B,

where A [(N T)* T*] must include at least one non – terminal symbol

whereas B (N T)* can consist of any combination of non – terminals and

terminal symbols.

(4) A starting symbol N.

A grammar G is denoted by G(N, T, P,).

Terminals will be denoted by lower case letters a, b, c,… whereas non –

terminals will be denoted by A, B, C…….

Example: Let

a a b b

a b b a b

a b b b a a b

 248

 N = { , A}

 T = {a, b}

 P = { b , b A, A a A, A b} ,

where is the starting symbol.

Then G = (N, T, P,) is a grammar.

Since b , b A

and

 A a A, A b ,

we can also write the productions as

 (b , b A), A (a A, b) .

Definition: Let G = (N, T, P,) be a grammar and let be a production.

If x y (N T)*, then x y is said to be directly derivable from x y and

we write

 x y x y.

Further, if i (N T)* for i = 1, 2, ……, n, and i+1 is directly derivable

from i for i = 1, 2, ……, n-1, we say that n is derivable from 1 and write

 1 n .

We call

 1 2 3 ……… n ,

the derivation of n (from 1).

By convention, any element of (N T)* is derivable from itself.

Definition: The language generated by a grammar G, written L(G), consists of

all strings over T derivable from the start symbol . Thus

 L(G) = { v T* : …….. v}

Definition: A sentential form is any derivative of the unique non – terminal

symbol S.

The language L(G) generated by the grammar G is the set of all sentential

forms whose symbols are terminals.

 249

Example: Let

 G = {N, T, , P}

be a grammar, where

N = { }, T = {a, b}, is starting symbol, and the production P are

 P = { a , a , b and b }.

Obtain sentential form and find the language generated by G.

Solution: We note that

 a

 a a

 b a a

 b b a a

 b b b a a

Thus b
3
 a

2
 = b b b a a is a sentential form. Hence the language generated by G

is

 L(G) = {b
n
 a

m
 : n 0, m 0}.

Definition: Let G = (N, T, P,) be a grammar and let be the null string. If

every production is of the form

 A ,

where , (N T)*, A N, (N T)* { }. Then G is called a

context – sensitive (or type – 1) grammar.

Definition: A grammar G = (N, T, P,) is said to be context – free

(or type – 2) grammar if the productions are of the form.

 A ,

where A N, (N T)*.

Thus, in this case, we can replace A by regardless of A where A appears.

Definition: A grammar G = (N, T, P,) is said to be regular (or type – 3)

grammar if every production is of the form

 250

 A a or A a B or A ,

where A, B N, a T.

Thus, in this case, we replace a non – terminal symbol by a terminal symbol,

by a terminal symbol followed by a non – terminal symbol, or by the null

string.

We further note that a regular grammar is context free grammar and that a

context free grammar with no productions of the form A is a context –

sensitive grammar.

Example: Name the type of the grammar G defined by T = {a, b, c}, N =

{ , A, B, C, D, E}, starting symbol and productions

 a A B, a B, A a A c, A a c, B D c, D b,

 C D C E, C E D E, D E D C, C c D c c.

Also find its language.

Solution: The production C E D E says that we can replace C by D if C is

followed by E. The production C c D c c says that we can replace C by D C

if C is followed by c.

Thus the grammar is context – sensitive.

We can derive D C from C D since

 C D C E D E D C.

We note that

 a A B a a A c B a a a c c B a a a C C D c

 a a a C D C c a a a D C C c a a a D C D c c

 a a a D D C c c a a a D D D c c c a a a b b b c c c

Thus a
3
 b

3
 c

3
 is in L(G). Proceeding in this way, we can show that

 L(G) = {a
n
 b

n
 c

n
 : n N}.

Example: Determine, whether the given grammar is context – sensitive,

context free, regular or none of these:

 G = (N, T, , P),

Where N = { , A}, T = {a, b}, starting symbol is and the productions are

 251

 b , A, A a , A b A, A a, b.

Solution: We note that

(i) A , A N, (N T)*

Hence the grammar is context – free grammar.

(ii) A a or A a B, A N, B N, a T.

Hence the grammar is regular.

(iii) The grammar is also context sensitive because

 A ,

where , (N T)*, A N, (N T)* { }.

Example : Find a context-free grammar G which generates the language

 L = { a
n
 b

n
: n > 0} .

Solution : Here

 T = {a, b} .

If we consider the productions

 ab , a b ,

then we note that

 a b a ab b

 a b a a b b a a a b b b

 a b a a b b a a a b b b a a a a b b b b

 ……………….

In general

 L(G) = {a
n
 b

n
 , n > 0 } .

Hence the grammar with production

 ab, a b

generates L(G).

5.5 Derivation Trees of Context – Free Grammars

Let G be a context free grammar. An ordered rooted tree which represents any

derivation of a word in L(G) is called a Derivation Tree or parse tree.

 252

Example: Consider the language

 L = {a
n
 b

n
 : n > 0}

We have seen that context free grammar which generates L(G) is

 N = { }, T = {a, b}, P = { a b, a b}

The word w = a a a b b b is derived as

 a b a a b b a a a b b b

The following figure will therefore be its derivation tree:

 a b

 a b

 a b

Example: Find the derivation tree for the word a a b a in L(G) where G has the

productions

 a A, A a B, B b B, B a.

Solution: The word a a b a is derived as

 a A a(a B) a a (b B) a a b a

and therefore the derivation tree of a a b a is

 a A

 a B

 b B

 a

Definition: A language is said to be context – sensitive if there is a context –

sensitive grammar G with L = L(G).

Definition: A language is said to be context free if there is a context – free

grammar G with L = L(G).

Definition: A language is said to be regular if there is a regular grammar G

with L = L(G).

Example: Is the language

 253

 L = {a
n
 b

n
, n = 1, 2, …..}

over {a, b} context free?

Solution: Let G be grammar defined by

 N = { }, T = {a, b}, is staring symbol and production

as

 a b , a b

Then derivation of are

 a b

 a a b b

 a
n-1

 b
n-1

 a
n-1

 a b b
n-1

 = a
n
 b

n
.

Thus the grammar G generates the language L(G). Also the grammar G is

context free. Hence the language L = [a
n
 b

n
, n = 1, 2, …..] is context free

language.

5.6 Similarity of Regular Grammar and Finite State Automata

We now show that regular grammar and finite state automata are

essentially the same. After that we would be able to say that

 “A language is a regular set (or just regular) if it is accepted by some

finite automaton.”

Theorem: Let M be a finite – state automaton given as a transition diagram.

Let be the initial state. Let T be the set of input symbols and let N be the set

of states. Let P be the set of productions

 s x s

if there is an edge labeled x from the state s to the state s , and

 s

if s is an accepting state. Let

 G = (N, T, P,)

be the regular grammar. Then the set of strings accepted by M is equal to

L(G).

 254

Proof: Let AC(M) denote the set of strings by M. We first show that AC(M)

L(G). So, let AC(M). If is the null string, then is an accepting

state. In this case G contains the production.

The derivation

 (i)

shows that L(G).

Now let AC(M) and let is not a null string. Then

 = a1 a2………an, ai T.

Since is accepted by M, there is a path

 (, s1, s2,……..,sn) ,

where sn is an accepting state with edges successively labeled a1,……, an. It

follows that G contains the productions

 a1 s1

 s1 a2 s2

 sn-1 an sn

Since sn is an accepting state, G also contains the production

 sn .

The derivation

 a1 s1

 a1 a2 s2

 a1 a2 a3 s3

 a1 a2 …. an sn

 a1 a2……an (sn) (ii)

shows that = a1 a2……..an L(G).

It remains to show that L(G) Ac(M). Suppose that L(G). If is the null

string, then must result from the derivation

 255

Thus the production is in the grammar. Hence is an accepting state in

M and so Ac(M).

Now let L(G) be a non – null string. Then

 = a1 a2……….an , ai T.

So there is a derivation of the form (ii). If in the transition diagram, we begin at

 and trace the path

 (, s1, s2,……., sn) ,

we can generate the string . The last production used in (ii) is sn . Thus

the last state reached is an accepting state. Therefore, is accepted by M, that

is, L(G) A c(M). Hence

 L(G) = A c(M) .

Thus, Given a finite state automaton M, we can construct a regular

grammar G such that the set of strings accepted by M is equal to L(G).

Example: Let G(T, N, P,) be a regular grammar, where

 T = {a, b}, N = { , A}, is starting symbol and

 P = { b , a A , A b A , A b}.

Does there exist finite state automaton corresponding to G?

Solution: Let the inputs symbol be the terminal symbols and the states be the

non – terminal symbols, where is the initial state.

For each production of the form

 s x s ,

draw an edge from state s to state s and label it x. Thus the productions

 b , a A , A b A

yield the graph

 b b

 a b

The last production A b is equivalent to two productions

 A

 256

 A bB and B ,

where B is an additional and Mor – terminal symbol.

 The productions

 b , a A , A bA , A bB

gives us the graph

 b b

 a b

 ,

and the production

 B

indicates that B is an accepting state.

We note that

(i) Vertex A has no outgoing edge labeled as a

(ii) Vertex B has no outgoing edge

(iii) A has two outgoing edges labeled as b .

Thus, the above graph is not finite – state automation but a non –

deterministic finite state automation (I, S, A, , f), where I = {a, b}, S = { ,

A, B}, A = {B}, initial state and next state function f is defined by

 F

S a b

A

B

{A} { }

 {A, B}

We further notice that

(i) the string b b a b b is in L(G) since

 b b

 b b

 b b a A

I

 A B

 257

 b b a b A

 b b a b b B

 b b a b b

Also the string b b a b b is accepted by the non-deterministic finite state

automation obtained above since the path

 A A B

which ends at state B(Accepting state) represents the string b b a b b

Theorem: Let G(T, N, P,) be a regular grammar and let I = T , S =

N {F}, where F N T, as initial state, A = {F} {s : s P} and f

be defined by

 F(s, x) = {s : s x s P} {F : s x F P}.

Then the non – deterministic finite state automaton M = (I, S, A, , f) accept

the strings L(G).

(The proof is same as the proof for finite state automation).

5.7 Kleene Theorem and Pumping Lemma

We know that a non – deterministic finite state automaton can be converted

into an equivalent finite state automaton.

Thus it follows that

Theorem (Kleene) : A language L is regular if and only if there exists a finite

– state automaton that accept strings in L.

Theorem (Pumping Lemma) : Let M be an automaton over A such that

(i) M has k states s0, s1…….., sk

(ii) M accepts a word v from A where | v | > k.

Then

 w = x y z,

where, for every m, vm = x y
m

z is accepted by M.

Proof: Let s0, s1,……..,sk be the states of automaton M over A and let M

accepts a word v = a1 a2….an over A such that n > k. Let the sequence of states

determined by the word v be

b a b b b

 258

 P = (s0, s1, ……, sn) .

Since n > k, two of the states in P must be equal. Suppose si = sj, i < j. Letting

 x = a1 a2…..ai, y = ai+1 ai+2……aj , z = aj+1 aj+2….an

We see that x y ends in si = sj and so x y
2
, x y

3
,…., xy

m
 (for all m) also end in

si. Thus for every m, vm = x y
m

 z ends in sn, which is an accepting state

 y = ai+1,…..aj

 x = a1a2…. ai

 z = aj+1…an

Example: Show that language L = {a
m

 b
m

 : m is positive} is not regular.

Solution: Suppose on the contrary that L is regular. Then, by Kleene Theorem,

there exists a finite state automaton M which accept L = {a
m

 b
m

 : m is

positive}. Suppose M has k states. Let v = a
k
 b

k
 be a word. Then length of

v is greater than k, the number of states in M. Therefore, by Pumping Lemma,

 v = x y z , y .

and x y
2
 z is also accepted by M.

If y consists of only a’s or only b’s, then v2 = x y
2
 z will not have same number

of a’s or b’s. If y consists of both a’s and b’s, then v2 will have a’s following

b’s. In either case v2 does not belong to L which is a contradiction. Thus L is

not regular.

5.8 Ambiguous Grammar

Definition: A context – free grammar G is called a ambiguous grammar if

there is at least one string in L(G) which has more than one derivation trees.

Example: Show that grammar G with productions

 S a S , S S a , S a

is ambiguous.

Solution: We note that the string a a a can be generated by four derivation

trees

 S S

 a S a S

 a S , S a

 a a

 s0
si=sj sn

 259

S S

 (S a S a a S a a a) (S a S a S a a a a)

 S a and S a

 S a a S

 a a

 (S S a S S a a a a) (S S a a S a a a a)

Hence G is ambiguous.

Example: Show that the grammar

 G = ({S}, {a, +}, S, P)

with production

 P = (S S + S, S a)

is ambiguous.

Solution: We note that word a + a + a can be generated in two ways :

(i) S S + S S

 S + S + S S S

 a + S + S a + a + S a S S

 a + a + a

(ii) S S + S S

 S + S + S S S

 S + S + a S S a

 a + S + a

 a + a + a

Thus, the word a + a + a has two derivation tree. Hence G is ambiguous.

