Total No. of Printed Pages: 21

(DO NOT OPEN THIS QUESTION BOOKLET BEFORE TIME OR UNTIL YOU ARE ASKED TO DO SO)

PG-EE-201/6

SUBJECT: Physics

A		11857 Sr. No.
Time: 11/4 Hours	Max. Marks: 100	otal Questions : 100
Roll No. (in figures)	_ (in words)	
Name	Father's Name	
Mother's Name	Date of Examination	
(Signature of the Candidate)	1000	ighature of the Invigilator)

CANDIDATES MUST READ THE FOLLOWING INFORMATION/INSTRUCTIONS BEFORE STARTING THE QUESTION PAPER.

- 1. All questions are compulsory.
- 2. The candidates *must return* the question booklet as well as OMR Answer-Sheet to the Invigilator concerned before leaving the Examination Hall, failing which a case of use of unfair-means/misbehaviour will be registered against him/her, in addition to lodging of an FIR with the police. Further the answer sheet of such a candidate will not be evaluated.
- 3. In case there is any discrepancy in any question(s) in the Question Booklet, the same may be brought to the notice of the Controller of Examinations in writing within two hours after the test is over. No such complaint(s) will be entertained thereafter.
- 4. The candidate **must not** do any rough work or writing in the OMR Answer-Sheet. Rough work, if any, may be done in the question booklet itself. Answers **must not** be ticked in the question booklet.
- 5. There will be no negative marking. Each correct answer will be awarded one full mark. Cutting, erasing, overwriting and more than one answer in OMR Answer-Sheet will be treated as incorrect answer.
- 6. Use only Black or Blue Ball Point Pen of good quality in the OMR Answer-Sheet.
- 7. Before answering the questions, the candidates should ensure that they have been supplied correct and complete booklet. Complaints, if any, regarding misprinting etc. will not be entertained 30 minutes after starting of the examination.

PG-EE-2016/(Physics)/(A)

2 E A L

- **1.** A body starts from rest and moves with a constant acceleration. The ratio of the distance covered in *n*th second to the distance covered in *n* seconds is :
 - (1) $\frac{2}{n} \frac{1}{n^2}$
- (2) $\frac{1}{n^2} \frac{1}{n}$
- (3) $\frac{2}{n^2} \frac{1}{n}$

- (4) $\frac{2}{n} + \frac{1}{n^2}$
- **2.** A particle moves in a straight line so that after 't' seconds, the distance from a fixed point O on the line is given as $x = (t-2)^2(t-5)$. Then:
 - (1) after 2 sec., velocity of particle is zero
 - (2) after 2 sec., the particle reaches O
 - (3) the acceleration is negative, for t < 3 sec.
 - (4) all the three before
- **3.** A solid body rotates about a stationery axis so that its angular velocity depends on the rotational angle φ as $\omega = \omega_0 k\varphi$; ω_0 and k being positive constants & at t = 0, $\varphi = 0$. The time dependence of the rotational angle is :
 - (1) $k\omega_0 e^{-kt}$

(2) $\frac{\omega_0}{k}e^{-kt}$

- $(3) \quad \frac{\omega_0}{k} \left(1 e^{-kt} \right)$
- $(4) \frac{k}{\omega_0} \left(e^{-kt} 1 \right)$
- **4.** A particle of mass m is moving in a horizontal circle of radius r under a centripetal force $\left(-k/r^2\right)$, k being a constant, then:
 - (1) the total energy is (-k/2r)
 - (2) the kinetic energy is (k/r)
 - (3) the potential energy is (k/2r)
 - (4) the kinetic energy is (-k/r)

5. An elastic string of length 'L' and force constant 'k' is stretched by a length x. Thereafter, it is further stretched by another small length 'y', then the work done in second stretching is:

(1)
$$ky^2/2$$

(2)
$$k(x^2+y^2)/2$$

(3)
$$k(x+y)^2/2$$

(4)
$$ky(2x + y)/2$$

6. A smooth steel ball strikes a fixed smooth steel plate at an angle ' θ ' with the vertical. If the coefficient of restitution is 'e', the angle of rebounce will be:

(2)
$$\tan^{-1}(\tan\theta/e)$$

(3)
$$e \tan \theta$$

(4)
$$\tan^{-1}(e/\tan\theta)$$

7. Four masses 1, 2, 3 and 4 kg. each are placed at the corners A, B, C and D of a square ABCD of edge 1 m. If A is taken as origin & AB and AD edges as x axis and y axis respectively, then the coordinates of the centre of mass in SI are:

8. A particle of mass 'm' rotating in a circle of radius 'a' with a uniform angular speed ω_0 is viewed from a frame rotating about z axis with a uniform angular speed ω . The centrifugal force on the particle is :

(1)
$$m\omega^2 a$$

(2)
$$m\omega_{0}^{2}a$$

(3)
$$m[(\omega + \omega_0)/2]^2 a$$

(4)
$$m\omega\omega_0 a$$

9. A particle of mass m is free to move along x-axis has a potential energy $U(x) = k(1 - e^{-x^2})$ for $-\infty \le x \le \infty$, k being a positive constant. Then:

(1) at points away from the origin, the particle is in unstable equilibrium

(2) for any non zero value of x, there is a force directed away from the origin

(3) if its total mechanical energy is k/2, it has the minimum kinetic energy at origin

(4) for small displacement from x = 0, it executes SHM

PG-EE-2016/(Physics)/(A)

10.	If for two rings of radius R and nR made up of same material, the ratio of moment of inertia about an axis passing through the centre is 1:8, then the value of 'n' is:					
	(1) 2	(2) $2\sqrt{2}$	(3) 4	(4) 1/2		

- 11. A highly rigid cubical block of mass 'm' and side 'L' is fixed rigidly on to another cubical block 'B' of same dimensions and lower modulus of rigidity η such that the lower face of 'A' completely covers the upper face of 'B'. The lower face of 'B' is held rigidly on a horizontal surface. A small force F is applied perpendicular to one of the side faces of 'A'. After the force is withdrawn, 'A' executes small oscillation with a time period:
 - (1) $2\pi(\eta mL)^{1/2}$

(1) 2

(2) $2\pi (m\eta/L)^{1/2}$

(3) $2\pi (mL/\eta)^{1/2}$

- (4) $2\pi (m/\eta L)^{1/2}$
- 12. In a steady incomprehensible flow of a liquid:

- (1) the speed does not change if the area of cross-section changes
- (2) the speed increases if the area of cross-section increases
- (3) the speed decreases if the area of cross-section increases
- (4) bubbles are produced when the area of cross-section increases
- 13. 10000 small balls, each weighing 1g, strike one square cm of area per second with a velocity 100 m/sec. in a normal direction and rebound with same velocity. The pressure exerted on the surface is:
 - (1) $2 \times 10^3 N/m^2$

(2) $2 \times 10^5 N/m^2$

(3) $10^7 N/m^2$

- (4) $2 \times 10^7 N/m^2$
- 14. A magnet of magnetic moment 20 CGS units is freely suspended in a uniform field of intensity 0.3 CGS units. The amount of work done in deflecting it by an angle of 30° in CGS units will be:
 - (1) 6
- (2) $3\sqrt{3}$
- (3) $3(2-\sqrt{3})$
- (4) 3

15. An electronic transition in hydrogen atom results in the formation of H_{α} line of hydrogen in Lyman series. The energies associated with the electron in each of the orbits involved in the transition (in kcal mol⁻¹) are:

(1) -313.6, 34.84

(2) -313.6, -78.38

(3) -78.4, -34.84

(4) -78.4, -19.6

16. In case two bubbles of radii r_1 and r_2 come in contact with each other to form a single bubble, the resulting radius of curvature 'r' will be :

 $(1) (r_1 + r_2)/2$

 $(2) (r_1 r_2)/(r_1-r_2)$

 $(3) (r_1 r_2)/(r_1+r_2)$

 $(4) (r_1r_2)^{1/2}$

17. If a transverse wave is represented as $y = y_0 \sin 2\pi \left(ft - \frac{x}{\lambda} \right)$, then for what value of '\lambda' the maximum particle velocity is equal to four times the wave velocity?

(1) $y_0\pi$

(2) $(y_0\pi)/2$

(3) $2y_0\pi$

 $(4) (3y_0\pi)/2$

18. A drilling machine of power 10 kW is used to drill a bore in a small aluminium block of mass 8 kg. If half of the power is used up in heating of the machine or to the surroundings, the rise of temperature of the block in 2.5 minutes will be [specific heat of aluminium = $0.91 \text{ J/g}^{\circ}\text{C}$]:

(1) 103°C

(2) 130°C

(3) 105°C

(4) 30°C

Assuming nil loss of energy, the temperature of the mixture 'T', when two perfect monoatomic gases with n_1 and n_2 number of moles at temperatures T_1 and T_2 are mixed will be:

(1) $(n_1 T_2 + n_2 T_1)/(n_1 + n_2)$

(2) $(n_1 T_2 - n_2 T_1)/(n_1 + n_2)$

(3) $(n_1 T_1 + n_2 T_2)/(n_1 + n_2)$ (4) $(n_1 T_1 - n_2 T_2)/(n_1 - n_2)$

PG-EE-2016/(Physics)/(A)

- 20. During an adiabatic process, the specific heat is:
 - (1) zero

(2) greater than zero

(3) less than zero

- (4) infinity
- **21.** Select the *incorrect* statement :
 - (1) The angular momentum is conserved for systems possessing rotational symmetry
 - (2) If the Lagrangian of a system is invariant under translation along a direction, the corresponding linear momentum is conserved
 - (3) If the Lagrangian of a system is invariant under translation along a direction, the corresponding linear momentum is conserved, nothing can be predicted about the corresponding linear momentum
 - (4) None of these
- **22.** A drop of water is placed on a glass plate. A double convex lens having radius of curvature of each surface 20 cm is placed on it. The focal length of the water lens in meters is ($\mu_{water} = 1.33$):
 - (1) -0.20
- (2) 0.60
- (3) -0.60
- (4) 0.20
- 23. If electric permittivity and magnetic permeability of free space are ϵ_0 and μ_0 respectively, the index of refraction of a medium with electric permittivity and magnetic permeability ϵ and μ will be :
 - (1) $(\epsilon \mu / \epsilon_0 \mu_0)$

(2) $(\epsilon \mu / \epsilon_0 \mu_0)^{1/2}$

(3) $(\epsilon_0 \mu_0 / \epsilon \mu)$

- (4) $(\epsilon_0 \mu_0 / \epsilon \mu)^{1/2}$
- **24.** A ray of light falls on a transparent glass slab of refractive index 1.62. If the reflected and refracted rays are mutually perpendicular, the angle of incidence is :
 - (1) tan^{-1} (1.62)

(2) $tan^{-1}(1/1.62)$

- (3) $1/\tan^{-1}(1.62)$
- (4) $\tan^2(1.62)$

PG-EE-2016/(Physics)/(A)

25. A point charge Q is placed at the centre of a hemisphere. The electric through the flat surface of hemisphere is:		
	(1) Q/ϵ_0 (2) zero (3) $Q/2\epsilon_0$ (4) $Q/4\epsilon_0$	
26.	A length $'l'$ of a wire is bent to form a circular coil of few turns. The maximum torquacting on the coil it is placed in a magnetic field B and a current I is passed through i will be:	
	(1) IBl^2 (2) $4\pi IBl^2$ (3) $IBl^2/4\pi$ (4) $I^2Bl/4\pi$	
27.	A non-relativistic proton beam passes without deviation through the region of space where there are uniform transverse mutually perpendicular electric and magnetifields with $E=120~\mathrm{kV/m}$ and $B=50~\mathrm{mT}$ respectively. The beam then strikes grounded target. If the beam current is $I=80\mathrm{mA}$, the force with which the beam strikes the target will be:	
	(1) $80 \mu\text{N}$ (2) $25 \mu\text{N}$ (3) $20 \mu\text{N}$ (4) $35 \mu\text{N}$	
28.	Magnetic field of an infinitely long ideal solenoid of radius R carrying current I:	
	(1) increases radially inside, zero outside	
	(2) is constant inside and zero outside	
	(3) is constant inside and decays as 1/r outside	
	(4) is constant inside and decays as $e^{-(1/r)}$ outside	
29.	A metal rod moves at a constant velocity in a direction perpendicular to its length. A constant uniform magnetic field exists in space in a direction perpendicular to the rod as well as its velocity. In such a situation:	
	(1) the entire rod is at same potential	
	(2) there is an electric field in the rod	
	(3) the electric potential is highest at the centre of the rod and decreases towards the ends	

(4) the electric potential is lowest at the centre of the rod and increases towards the ends

- **30.** The average value of electric energy density in an electromagnetic wave is:

- (1) $\epsilon_0 E^2 / 2$ (2) $E^2 / 2\epsilon_0$ (3) $\epsilon_0 E^2$ (4) $\epsilon_0 E^2 / 4$
- **31.** Which of the following statements is *correct*?
 - (1) the displacement current is produced only by varying magnetic field
 - (2) the displacement current is produced only by varying electric field
 - (3) the displacement current is produced by varying magnetic field as well as varying electric field
 - (4) the displacement current is produced neither by varying magnetic field nor by varying electric field
- Two wires one of copper and another of steel having the same cross-sectional area and lengths 1.0 and 0.5 m respectively, are fastened end to end and stretched by a load M. If copper wire is stretched by 1 mm, the total extension of the combination is:

$$[Y_{\text{copper}} = 1 \times 10^{11} \text{n/m}^2, Y_{\text{steel}} = 2 \times 10^{11} \text{n/m}^2]$$

- (1) 0.125 cm (2) 0.20 cm
- (3) 0.120 cm
- (4) 0.25 cm
- 33. If one litre of a perfect gas at a pressure of 72 cm of mercury is compressed isothermally to 900 cc, the resulting stress is:
 - (1) $9.88 \times 10^3 \text{ N/m}^2$
- (2) $10.88 \times 10^3 \,\mathrm{N/m^2}$
- (3) $1.088 \times 10^3 \text{ N/m}^2$

- (4) $4.48 \times 10^3 \,\mathrm{N/m^2}$
- Which of the following is correct order in respect of r.m.s. velocity (v_{rms}), average velocity (vay) and most probable velocity (vmp)?
 - $(1) \quad v_{mp} > v_{av} > v_{rms}$

 $(2) \quad v_{rms} > v_{av} > v_{mp}$

(3) $v_{av} > v_{mp} > v_{rms}$

(4) $v_{mp} > v_{rms} > v_{av}$

which the gas is heated is:

	(1) 1000 K	(2) 1400 K	(3) 1200 K	(4) 800 K
36.	If rest mass of an e	electron is 9.1 × 10	kg, then its mass	equivalent energy is:
	(1) 0.511 erg	(2) 0.511 J	(3) 0.511 eV	(4) 0.511 MeV
37.	A reference frame	attached to the ear	th:	ednike wyce Charle of 185 mulasiadakhi a fi 781.
	(1) is an inertial fr	came by definition		va bin Als snivay .
	(2) can not be an i	nertial frame becau	ise the earth is revol	ving round the sun
	(3) is an inertial fr	ame as Newton's la	aws are applicable	an anne finale at pare
	(4) can not be an i	nertial frame becau	se the earth is rotati	ng about its own axis
38.				ough the laboratory with a bserver in the laboratory is:
	(1) more than one	micro-second	(2) 1.0 μ sec	
	(3) less than one r	nicro-second	(4) 0.09 μ sec	
39.	In an L-C circuit:			
	(1) the energy stor	red in L as well as i	n C is magnetic ener	·gy
	(2) the energy stor	red in L is magnetic	but in C it is electri	cal energy
	(3) the energy stor	red in L is electrical	but in C it is magne	etic energy
	(4) the energy stor	red in L as well as i	n C is electrical ener	gy
40.	dissipated due to	current induced i	n the coil. If the n	etic field. Electrical power is number of turns were to be wer dissipated would be:
	(1) halved	(2) the same	(3) doubled	(4) quadrupled
PG-EE	-2016/(Physics)/(A)			Analysia de la company

35. 12 gms of a gas occupy a volume of 4×10^{-3} m³ at a temperature of 7°C. If the gas is heated at constant pressure, its density becomes 6×10^{-4} g/cm³. The temperature to

41.	The depletion region of a junction diode is formed:
	(1) when forward bias is applied to it
	(2) when the temperature of the junction is reduced
	(3) under reverse bias
	(4) during the manufacturing process
42.	In a full wave rectifier with R – C filter, the conduction angle of the diode is :
	(1) 0 (2) $<\pi$ (3) $>\pi$ (4) $=\pi$
43.	A BJT with h_{FE} value of 100 is found to be operating at I_B = 100 μA and I_C = 5 mA. The transistor is operating in the :
	(1) active region (2) active or saturation region
	(3) saturation region (4) cut-off region
44.	Faster switching OFF of a p-n junction:
	(1) requires zero current in the reverse direction
	(2) requires reverse saturation current in the reverse direction
	(3) requires a large current in the reverse direction
	(4) is independent of the reverse current
45.	The collector to base bias method in amplifier circuit:
	(1) requires low dc supply
	(2) requires high dc supply (3) makes operating point independent of variation in I _{co}
	(4) makes operating point independent of variation in β

46.	In a R-C coupled CE amplifier, emitter lead resistance R _E is used to:			
	(1) increase the load	(2) decrease the load		
	(3) attain proper stability factor	(4) decrease V _{CE} voltage		
47.	In a multi stage amplifier, on increproduct:	easing the number of stages, the gain-bandwidth		
	(1) remains constant	(2) increases		
	(3) decreases	(4) becomes zero		
48.	A common collector amplifier has :			
	(1) high voltage gain but low curre	nt gain		
	(2) low voltage gain and low current	nt gain		
	(3) high output impedance but low	input impedance		
	(4) low output impedance but high	input impedance		
49.	Which of the following is most suita	able for generating 1 kHz frequency?		
	(1) Wien bridge oscillator	(2) Colpitt's oscillator		
	(3) Hartley oscillator	(4) Tuned collector oscillator		
50.	During an isothermal expansion of a	an ideal gas :		
	(1) its internal energy decreases			
	(2) its internal energy does not char	nge		
	(3) the work done by the gas is equ	al to the quantity of heat absorbed by it		
	(4) both (2) and (3) are correct			
PG-EE	-2016/(Physics)/(A)	V/5 February (\$107) K-2/8-2/9		

P. T. O.

PG-EE-2016/(Physics)/(A)

51.	The inside and outside temperatures of a refrigerator are 270 K and 303 K respectively. Assuming the refrigerator cycle to be reversible, for every joule of work done, the heat delivered to the surrounding is:				
	(1) 10 J (2) 20 J	(3)	30 J	(4) 50 J	
52.	If a gas is heated at constant pressur used for up for external work [γ for g	e, then $a = 4/3$	what percenta 3]:	age of total heat supplied is	3
	(1) 25% (2) 50%	(3)	75%	(4) 57%	
53.	The enthalpy of vaporization of wat will be:	er is 186	5.5 J/mol. The	entropy of its vaporization	1
	(1) $0.5 \text{JK}^{-1} \text{mol}^{-1}$	(2)	1.0 JK ⁻¹ mol ⁻¹		
	(3) $1.5 \mathrm{JK}^{-1} \mathrm{mol}^{-1}$	(4)	2.0 JK ⁻¹ mol ⁻¹		
54.	In a biprism experiment, if the wave green light is 5.2×10^{-7} m, the vaccoincides with n th red bright band for	alue of	'n' for which	(n+1) th green bright band	f d
	(1) 2 (2) 3	(3)	4.	(4) 1	
55.	The contrast in the fringes in any int	erferenc	ce pattern dep	ends on :	
	(1) fringe width	(2)	wavelength		
	(3) intensity ratio of the sources	(4)	distance bety	veen the sources	
56.	Yellow light emitted by a sodium laby monochromatic blue light of the	amp in \ same in	Young's doubl tensity, then :	e slit experiment is replace	d
	(1) the fringe width will decrease				
	(2) the fringe width will increase				
	(3) the fringe width will be unchan	ged			
	(4) the intensity of the fringes will	decrease			

57.	Ratio of adiabatic ela	sticity to isotherma	al ela	sticity is:	William State Military	.645
	(1) 0	(2) 1	(3)	γ	(4) 1/γ	
58.	The enthalpy 'H' alor	ng an isothermal cu	ırve	for an ideal gas i	s:	-1
	(1) constant		(2)	variable		
	(3) infinite		(4)	unpredictable		
59.	A system of non-interproportional to $\sqrt{\epsilon}$, particle at T = 0 K is	where ϵ is the en				
	(1) $\varepsilon_f/6$		(2)	$\epsilon_f/5$		
	(3) $2\varepsilon_f/5$		(4)	$3\varepsilon_{\rm f}/5$		
60.	Gibb's potential rema	ains constant in wh	ich o	f the following?		
	(1) isothermal proce	SS	(2)	isobaric process		
	(3) both (1) and (2)		(4)	adiabatic proces	S	
61.	The coefficient of diff	fusion is:				
	(1) directly proportion	onal to pressure an	d inv	versely proportion	nal to (temperature) 2
	(2) inversely propor	tional to pressure a	and d	irectly proportion	nal to (temperature)) 2
	(3) directly proportion	onal to pressure an	d inv	versely proportion	nal to (temperature)	3/2
	(4) inversely propor	tional to pressure a	ind d	irectly proportio	nal to (temperature)	3/2
62.	The ratio of average $[M_{Br} = 80 M_{H}]$	speed of hydroger	n an	d bromine gas n	nolecules at 27°C w	ill be
	(1) $\sqrt{1/80}$		(2)	$\sqrt{80}$		
	(3) $\sqrt{40}$		(4)	$\sqrt{1/40}$	oscienski (i)	
PG-EE	-2016/(Physics)/(A)					

- **63.** Which of the following is the correct Clapeyron's latent heat relation?
 - $(1) \quad \frac{dP}{dT} = \frac{L}{T(V_2 V_1)}$

 $(2) \quad \frac{dL}{dT} = \frac{P}{T(V_1 - V_2)}$

 $(3) \quad \frac{dV}{dT} = \frac{L}{V(P_1 - P_2)}$

- (4) $\frac{dP}{dT} = \frac{L(V_2 V_1)}{T}$
- **64.** In Fresnel's biprism experiment, the distance between the biprism and the screen is 4 m. The angle of the prism is 2×10^{-3} radian and the refractive index is 1.5. If the fringewidth on screen is 15×10^{-4} m, the number of fringes is :
 - (1) 3
- (2) 2
- (3) 6
- (4) 8

- 65. Polarisation of light proves the:
 - (1) corpuscular nature of light
- (2) quantum nature of light
- (3) transverse nature of light
- (4) longitudinal nature of light
- **66.** For two coherent monochromatic light beams of intensities *I* and 4*I* super imposed on each other, the maximum and minimum possible intensities in the resulting beams are:
 - (1) 5I and I
- (2) 5I and 3I
- (3) 9I and I
- (4) 9I and 3I
- **67.** The first diffraction minimum due to single slit diffraction is θ for incident radiation of 5000 Å. If the width of the slit is 1×10^{-4} cm, the value of θ is :
 - (1) 30°
- (2) 45°
- (3) 60°
- (4) 15°
- **68.** Two points at a distance of 0.1 mm from each other can just be inspected in a microscope under incident radiation 6000 Å. If instead the radiation is changed to 4800 Å, the limit of resolution will be:
 - (1) 0.80 mm

(2) 0.12 mm

(3) 0.10 mm

(4) 0.08 mm

69.			glass plate at an angle of incidence equal efractive index of glass, the angle between
	(1) 90° + φ	(2)	$\sin^{-1}(\mu \cos \phi)$
	(3) 90°	(4)	$\sin^{-1}(\mu \sin \phi)$
70.	Two Nicol prisms are first crossed and percentage of light transmitted is :	the	n one of them is rotated through 60°. The
	(1) 1.25	(2)	25.0
	(3) 37.5	(4)	50.0
71.	The ratio of de-Broglie wavelength of energy is:	an	α -particle and a proton of same kinetic
	(1) 1:2	(2)	1:1
	(3) $1:\sqrt{2}$	(4)	4:1
72.	X-rays are used for structural analysis o	f cry	vstals as these:
	(1) have the wavelength of the order of	the	inter-atomic spacing
	(2) are highly penetrating radiations		
	(3) have the wavelength of the order of	the	nuclear size
	(4) are highly coherent in nature		
73.	A radioactive nuclide is emitting beta p heated to a very high temperature, the r		cles at a certain rate. When this nuclide is of emission will:
	(1) increase	(2)	decrease

(4) fluctuate

(3) remain the same

PG-EE-2016/(Physics)/(A)

74. The fission of uranium nuclide:

- (1) always leads to same pair of fission products, say barium and krypton
- (2) does not always produce barium and krypton but different pair of fission products
- (3) produces barium and any other fission product
- (4) always produces at least one radioactive fission product

75. Mirror nuclei are those which have:

- (1) the same number of protons
- (2) the same number of neutrons
- (3) the number of protons equal to the number of neutrons
- (4) the number of neutrons in one equal to the number of protons in the other

76. Beta rays emitted in a radioactive material are:

- (1) electromagnetic radiations
- (2) electrons orbiting around the nucleus
- (3) charged particles emitted by the nucleus
- (4) neutral particles in the nucleus
- 77. The radio active decay of an element X to elements Y and K is represented by the equation $\frac{A}{Z}X \to \frac{A}{Z+1}Y \to \frac{A-4}{Z-1}K \to \frac{A-4}{Z-1}K$. The sequence of emitted radiations is:
 - (1) α, β, γ

(2) β, α, γ

(3) γ, α, β

(4) β, γ, α

(3) 89Ac ²²⁵

PG-EE-2016/(Physics)/(A)

			-
78.	Atomic explosion is the result of :	PACE Steman State Commence of the Commence of	
	(1) uncontrolled chain reaction in fission	on	
	(2) controlled chain reaction in fusion		
	(3) uncontrolled chain reaction in fusion	on	
	(4) controlled chain reaction in fission	na na maranta da maran Maranta da maranta da m	
79.		on a crystal and the second order reflection of at an angle of 45°. The lattice constant of th	
	$(1) \lambda/\sqrt{2} $	(3) λ (4) 2λ	
80.	The amount of a substance that gives 3.	$.7 \times 10^7$ disintegration per second (dps) is :	
	(1) one becquerel	(2) one curie	
	(3) one mili-curie	(4) one rutherford	
81.	Only $1/8^{th}$ of the original amount of a The value of $t_{1/2}$ of the material is :	radioactive material remains after 96 minutes	s.
	(1) 12 minutes	(2) 32 minutes	
	(3) 24 minutes	(4) 48 minutes	
82.	The weight of 1 curie $_{82}\text{Pb}^{214}$ ($t_{1/2} = 26.8$	8 min.) in grams is:	
	(1) 3.1×10^{-8} g	(2) $1.55 \times 10^{-8} \text{ g}$	
	(3) $6.2 \times 10^{-8} \text{ g}$	(4) $3.1 \times 10^{-10} \mathrm{g}$	
83.	The final product, if $_{92}U^{235}$ emits two α	and one β particle, will be :	
	(1) $\operatorname{cr} A c^{221}$	(2) $m \wedge c^{235}$	

(4) 89Ac²²⁷

84.	Stern Gerlach experiment proves the ex-	ister	ace of:
	(1) electronic charge	(2)	electron dipole moment
	(3) electron spin	(4)	electron mass
85.	An electron with energy E incident upon thickness <i>l</i> , then the transmission coefficient		potential barrier of V such that V > E and
	(1) is zero		
	(2) proportional to <i>l</i> ²		
	(3) increases exponentially with thickn	ess	
	(4) decreases exponentially with thickr	ness	Sandy Sandyanik (i) the
86.	The probability of finding an electron in	n a h	ydrogen atom is:
	(1) independent of <i>r</i>	(2)	independent of θ
	(3) independent of φ	(4)	independent of all the three before
87.	In case of a rigid rotator, the rotational	freq	uency is given as:
	(1) $\hbar L^2/2\pi I$	(2)	$\hbar L/2\pi I$
	(3) $\hbar L/2\pi I^2$	(4)	$\hbar L/2\pi(2I+1)$
88.	The energy between two adjacent level	s is §	given by:
	(1) (2n + 1) times the zero point energy	7	
	(2) $(2n-1)$ times the zero point energy	7	
	(3) 2n ² times the zero point energy		Edicate etal opticulation, pr
	(4) n² times the zero point energy		

	(1) 13.6 eV	(2) 27.2 eV
	(3) 40.8 eV	(4) 122.4 eV
90.	The wave function considered to be $\psi(x) = \sqrt{2/L} \sin(\pi x/L)$ in the region 0 in the region $0 < x < L/2$ is:	be confined within a box of length L is $< x < L$. The probability of finding the particle
	(1) 0 (2) 1/2	(3) 1 (4) 0.66
91.	The axial parameter $a = b \neq c$ and $\alpha = system$:	$\beta = 90^{\circ}$, $\gamma = 120^{\circ}$ correspond to the following
	(1) Tetragonal	(2) Cubic
	(3) Hexagonal	(4) Rhombohedral
92.	If the Lagrangian L is not an explicit fur	nction of time, the Hamiltonian H is:
	(1) Zero	(2) Constant of motion
	(3) Infinity	(4) Variable with motion
93.	For Bose-Einstein condensation to happ	en, which of the following is true?
	(1) Number of particles decreases temperatures and low pressures	rapidly in lower energy levels at high
	(2) Number of particles increases rapid and low pressures	ly in lower energy levels at high temperatures
	(3) Number of particles decreases rapid and high pressures	dly in lower energy levels at low temperatures
	(4) Number of particles increases rapic and high pressures	lly in lower energy levels at low temperatures
PG-EE	-2016/(Physics)/(A)	

89. The ionization potential of Li^{+2} ions using Bohr's theory is :

- **94.** The value of radius of the Fermi sphere of a degenerate free electron gas at zero temperature, having N particles contained in volume V is given as:
 - (1) $(3\pi^2)^{1/3}(N/V)^{2/3}\hbar$

(2) $(3\pi^2)^{1/3}(N/V)^{1/6}\hbar$

(3) $(3\pi^2)^{1/3}(N/V)^{1/3}\hbar$

- (4) $(3\pi^2)^{1/3}(N/V)^{1/2}\hbar$
- 95. The hyperfine splitting of spectral lines of an atom is due to:
 - (1) coupling between spins of two or more electrons
 - (2) coupling between spins and orbital angular momenta of the electrons
 - (3) coupling between electron spins and the nuclear spins
 - (4) None of the above
- **96.** The energy separation between two consecutive stokes lines in Raman scattering depends on :
 - (1) Wavelength of the incident light
 - (2) Energy separation between vibrational levels in the excited states
 - (3) Intensity of the incident light
 - (4) Energy separation between vibrational levels in the ground state
- 97. The Debye theory of specific heat is valid at:
 - (1) room temperature

- (2) low temperature
- (3) intermediate temperature
- (4) all temperature
- 98. For a bcc crystal, the first Brillouin zone is a :s
 - (1) cube

- (2) Rectangular parallelepiped
- (3) Truncated octahedron
- (4) Regular rhombic dodecahedron

PG-EE-2016/(Physics)/(A)

- **99.** Which of the following is *not* the use of Hall's effect?
 - (1) Determination of the sign of charge carriers
 - (2) Determination of number density of charge carriers
 - (3) Measurement of potential difference
 - (4) Measurement of magnetic field
- **100.** What is the behaviour of the pure *Si* crystal at absolute zero temperature?

 - (1) behaves as perfect conductor (2) behaves as perfect insulator
 - (3) contains no electron (4) none of the above

The Cabre Medit of specific heat is valid of the

Total No. of Printed Pages: 21

(DO NOT OPEN THIS QUESTION BOOKLET BEFORE TIME OR UNTIL YOU ARE ASKED TO DO SO)

PG-EE-2016

SUBJECT: Physics

В	33	11894 Sr. No.
Time: 11/4 Hours	Max. Marks: 100	/ Total Questions : 100
Roll No. (in figures)	_ (in words)	
Name	Father's Name	No.
Mother's Name	Date of Examination	X.
(Signature of the Candidate)	(3)	gnature of the Invigilator)

CANDIDATES MUST READ THE FOLLOWING INFORMATION/INSTRUCTIONS BEFORE STARTING THE QUESTION PAPER.

- 1. All questions are compulsory.
- 2. The candidates *must return* the duestion booklet as well as OMR Answer-Sheet to the Invigilator concerned before leaving the Examination Hall, failing which a case of use of unfair-means/misbehaviour will be registered against him/her, in addition to lodging of an FIR with the police. Further the answer sheet of such a candidate will not be evaluated.
- 3. In case there is any discrepancy in any question(s) in the Question Booklet, the same may be brought to the notice of the Controller of Examinations in writing within two hours after the test is over. No such complaint(s) will be entertained thereafter.
- 4. The candidate **must not** do any rough work or writing in the OMR Answer-Sheet. Rough work, if any, may be done in the question booklet itself. Answers **must not** be ticked in the question booklet.
- 5. There will be no negative marking. Each correct answer will be awarded one full mark. Cutting, erasing, overwriting and more than one answer in OMR Answer-Sheet will be treated as incorrect answer.
- 6. Use only Black or Blue Ball Point Pen of good quality in the OMR Answer-Sheet.
- 7. Before answering the questions, the candidates should ensure that they have been supplied correct and complete booklet. Complaints, if any, regarding misprinting etc. will not be entertained 30 minutes after starting of the examination.

PG-EE-2016/(Physics)/(B)

EAL

	(1) when forward bias is applied to	it	
	(2) when the temperature of the june	ction is reduced	idasi saraker rasaka (2).
	(3) under reverse bias		
	(4) during the manufacturing proces	SS	
2.	In a full wave rectifier with R – C filt	er, the conduction an	gle of the diode is:
	(1) 0 (2) $<\pi$	(3) > π	$(4) = \pi_{\text{exercise}} (0)$
3.	A BJT with h_{FE} value of 100 is four The transistor is operating in the :		$I_B = 100 \mu A$ and $I_C = 5 mA$.
	(1) active region	(2) active or satu	
	(3) saturation region	(4) cut-off region	
4.	Faster switching OFF of a p-n junction	on:	
	(1) requires zero current in the reve		
	(2) requires reverse saturation curre	ent in the reverse direct	ction
	(3) requires a large current in the re	verse direction	(I) Wien bridge oscill
	(4) is independent of the reverse cur	rrent	
5.	The collector to base bias method in	amplifier circuit :	
	(1) requires low dc supply		
	(2) requires high dc supply		
	(3) makes operating point independ	dent of variation in Ico	
	(4) makes operating point independ	dent of variation in β	en (School Gederation)
PG-EE	-2016/(Physics)/(B)		(fi) (e) (Finys) (fi) P. T. O

1. The depletion region of a junction diode is formed:

6.	In a R-C coupled CE amplifier, emitter lead resistance R _E is used to :				
	(1) increase the load	(2) decrease the load			
	(3) attain proper stability factor	(4) decrease V _{CE} voltage			
7.	In a multi stage amplifier, on incr product:	easing the number of stages, the gain-bandwidth			
	(1) remains constant	(2) increases			
	(3) decreases	(4) becomes zero			
8.	A common collector amplifier has:	and the constitution of the constitution of			
	(1) high voltage gain but low curre	nt gain			
	(2) low voltage gain and low current gain				
	(3) high output impedance but low input impedance				
	(4) low output impedance but high	input impedance			
9.	Which of the following is most suita	able for generating 1 kHz frequency?			
	(1) Wien bridge oscillator	(2) Colpitt's oscillator			
	(3) Hartley oscillator	(4) Tuned collector oscillator			
10.	During an isothermal expansion of	an ideal gas :			
	(1) its internal energy decreases				
	(2) its internal energy does not cha	nge			
	(3) the work done by the gas is equ	al to the quantity of heat absorbed by it			
	(4) both (2) and (3) are correct				
PG-EE	Z-2016/(Physics)/(B)				

11.	The ratio of de-Broglie wavelength of an α -particle and a proton of same kinetic energy is :	
	(1) 1:2 (2) 1:1 (3) $1:\sqrt{2}$ (4) 4:1	
12.	X-rays are used for structural analysis of crystals as these:	
	(1) have the wavelength of the order of the inter-atomic spacing	
	(2) are highly penetrating radiations	
	(3) have the wavelength of the order of the nuclear size	
	(4) are highly coherent in nature	
13.	A radioactive nuclide is emitting beta particles at a certain rate. When this nuclide is heated to a very high temperature, the rate of emission will:	
	(1) increase (2) decrease	
	(3) remain the same (4) fluctuate	
14.	The fission of uranium nuclide:	7
	(1) always leads to same pair of fission products, say barium and krypton	
	(2) does not always produce barium and krypton but different pair of fission products	
	(3) produces barium and any other fission product	
	(4) always produces at least one radioactive fission product	
15.	Mirror nuclei are those which have :	
	(1) the same number of protons	
	(2) the same number of neutrons	
	(3) the number of protons equal to the number of neutrons	
	(4) the number of neutrons in one equal to the number of protons in the other	
PG-E	E-2016/(Physics)/(B)).

16.	Beta rays emitted in a radioactive material are :			
	(1) electromagnetic radiations			
	(2) electrons orbiting around the nucleu	s		
	(3) charged particles emitted by the nuc	leus		
	(4) neutral particles in the nucleus			
17.		X to elements Y and K is represented by the X. The sequence of emitted radiations is:		
	(1) α, β, γ	(2) β, α, γ		
	(3) γ, α, β	(4) β, γ, α		
18.				
	(1) uncontrolled chain reaction in fission			
	(2) controlled chain reaction in fusion			
	(3) uncontrolled chain reaction in fusion			
	(4) controlled chain reaction in fission			
19.		a crystal and the second order reflection on at an angle of 45°. The lattice constant of the		
	(1) $\lambda/\sqrt{2}$ (2) $\sqrt{2}\lambda$			
20.		\times 10 ⁷ disintegration per second (dps) is :		
	(1) one becquerel	(2) one curie		
	(3) one mili-curie	(4) one rutherford		
PG-EE	E-2016/(Physics)/(B)	(Standard The foliable)		

21.	The		$\beta = 90^{\circ}$, $\gamma = 120^{\circ}$ correspond to the following
	(1)	Tetragonal	(2) Cubic
	(3)	Hexagonal	(4) Rhombohedral
22.	If th	e Lagrangian L is not an explicit fun	action of time, the Hamiltonian H is:
	(1)	Zero	(2) Constant of motion
	(3)	Infinity	(4) Variable with motion
23.	For	Bose-Einstein condensation to happe	en, which of the following is true?
		Number of particles decreases temperatures and low pressures	rapidly in lower energy levels at high
		Number of particles increases rapid and low pressures	ly in lower energy levels at high temperatures
		Number of particles decreases rapic and high pressures	dly in lower energy levels at low temperatures
		Number of particles increases rapid and high pressures	lly in lower energy levels at low temperatures
24.		value of radius of the Fermi sphe perature, having N particles contain	ere of a degenerate free electron gas at zero ed in volume V is given as:
	(1)	$(3\pi^2)^{1/3}(N/V)^{2/3}\hbar$	(2) $(3\pi^2)^{1/3}(N/V)^{1/6}\hbar$

(4) $(3\pi^2)^{1/3}(N/V)^{1/2}h$

(3) $(3\pi^2)^{1/3}(N/V)^{1/3}\hbar$

- **25.** The hyperfine splitting of spectral lines of an atom is due to :
 - (1) coupling between spins of two or more electrons
 - (2) coupling between spins and orbital angular momenta of the electrons
 - (3) coupling between electron spins and the nuclear spins
 - (4) None of the above
- **26.** The energy separation between two consecutive stokes lines in Raman scattering depends on :
 - (1) Wavelength of the incident light
 - (2) Energy separation between vibrational levels in the excited states
 - (3) Intensity of the incident light
 - (4) Energy separation between vibrational levels in the ground state
- 27. The Debye theory of specific heat is valid at:
 - (1) room temperature
 - (2) low temperature
 - (3) intermediate temperature
 - (4) all temperature
- 28. For a bcc crystal, the first Brillouin zone is a:
 - (1) cube
 - (2) Rectangular parallelepiped
 - (3) Truncated octahedron
 - (4) Regular rhombic dodecahedron

PG-EE-2016/(Physics)/(B)

- **29.** Which of the following is *not* the use of Hall's effect?
 - (1) Determination of the sign of charge carriers
 - (2) Determination of number density of charge carriers
 - (3) Measurement of potential difference
 - (4) Measurement of magnetic field
- **30.** What is the behaviour of the pure Si crystal at absolute zero temperature?
 - (1) behaves as perfect conductor
 - (2) behaves as perfect insulator
 - (3) contains no electron
 - (4) none of the above
- **31.** A body starts from rest and moves with a constant acceleration. The ratio of the distance covered in *n*th second to the distance covered in *n* seconds is :

(1)
$$\frac{2}{n} - \frac{1}{n^2}$$

(2)
$$\frac{1}{n^2} - \frac{1}{n}$$

(3)
$$\frac{2}{n^2} - \frac{1}{n}$$

(4)
$$\frac{2}{n} + \frac{1}{n^2}$$

- **32.** A particle moves in a straight line so that after 't' seconds, the distance from a fixed point O on the line is given as $x = (t-2)^2(t-5)$. Then:
 - (1) after 2 sec., velocity of particle is zero
 - (2) after 2 sec., the particle reaches O
 - (3) the acceleration is negative, for t < 3 sec.
 - (4) all the three before

- **33.** A solid body rotates about a stationery axis so that its angular velocity depends on the rotational angle φ as $\omega = \omega_0 k\varphi$; ω_0 and k being positive constants & at t = 0, $\varphi = 0$. The time dependence of the rotational angle is :
 - (1) $k\omega_0 e^{-kt}$

(2) $\frac{\omega_0}{k}e^{-kt}$

 $(3) \quad \frac{\omega_0}{k} \left(1 - e^{-kt} \right)$

- $(4) \quad \frac{k}{\omega_0} \left(e^{-kt} 1 \right)$
- **34.** A particle of mass m is moving in a horizontal circle of radius r under a centripetal force $\left(-k/r^2\right)$, k being a constant, then:
 - (1) the total energy is (-k/2r)
 - (2) the kinetic energy is (k/r)
 - (3) the potential energy is (k/2r)
 - (4) the kinetic energy is (-k/r)
- **35.** An elastic string of length 'L' and force constant 'k' is stretched by a length x. Thereafter, it is further stretched by another small length 'y', then the work done in second stretching is:
 - (1) $ky^2/2$

- (2) $k(x^2+y^2)/2$
- (3) $k(x+y)^2/2$
- (4) ky(2x + y)/2
- **36.** A smooth steel ball strikes a fixed smooth steel plate at an angle '0' with the vertical. If the coefficient of restitution is 'e', the angle of rebounce will be:
 - (1)
- (2) $\tan^{-1}(\tan\theta/e)$
- (3) $e \tan \theta$

(4) $\tan^{-1}(e/\tan\theta)$

PG-EE-2016/(Physics)/(B)

PG-EE-2016/(Physics)/(B)

P. T. O.

37.	Four masses 1, 2, 3 and 4 kg. each are placed at the corners A, B, C and D of a square ABCD of edge 1 m. If A is taken as origin & AB and AD edges as x axis and y axis respectively, then the coordinates of the centre of mass in SI are :
	(1) (1, 1) (2) (2.1, 3.9) (3) (0.5, 0.7) (4) (0.41, 0.93)
38.	A particle of mass m' rotating in a circle of radius a' with a uniform angular speed ω_0 is viewed from a frame rotating about z axis with a uniform angular speed ω . The centrifugal force on the particle is :
	$(1) m\omega^2 a \qquad (2) m\omega_0^2 a$
	(3) $m[(\omega + \omega_0)/2]^2 a$ (4) $m\omega\omega_0 a$
39.	A particle of mass m is free to move along x-axis has a potential energy $U(x) = k(1 - e^{-x^2})$ for $-\infty \le x \le \infty$, k being a positive constant. Then:
	(1) at points away from the origin, the particle is in unstable equilibrium
	(2) for any non zero value of x , there is a force directed away from the origin
	(3) if its total mechanical energy is $k/2$, it has the minimum kinetic energy at origin
	(4) for small displacement from $x = 0$, it executes SHM
40.	If for two rings of radius R and nR made up of same material, the ratio of moment of inertia about an axis passing through the centre is 1:8, then the value of 'n' is:
	(1) 2 (2) $2\sqrt{2}$ (3) 4 (4) $1/2$
41.	The inside and outside temperatures of a refrigerator are 270 K and 303 K respectively. Assuming the refrigerator cycle to be reversible, for every joule of work done, the heat delivered to the surrounding is:
	(1) 10 J (2) 20 J (3) 30 J (4) 50 J
42.	If a gas is heated at constant pressure, then what percentage of total heat supplied is used for up for external work [γ for gas = 4/3]:
	(1) 25% (2) 50% (3) 75% (4) 57%

43.	The enthalpy of vaporization of water is 186.5 J/mol. The entropy of its vaporization will be:		
	(1) 0.5 JK ⁻¹ mol ⁻¹	(2) $1.0 \mathrm{JK^{-1}mol^{-1}}$	
	(3) 1.5 JK ⁻¹ mol ⁻¹	(4) 2.0 JK ⁻¹ mol ⁻¹	
44.	In a biprism experiment, if the wavelength of red light used is 6.5×10^{-7} m and that green light is 5.2×10^{-7} m, the value of 'n' for which $(n+1)$ th green bright bar coincides with n th red bright band for the same setting is given by:		
	(1) 2 (2) 3	(3) 4 (4) 1	
45.	The contrast in the fringes in any inter-	ference pattern depends on :	
	(1) fringe width	(2) wavelength	
	(3) intensity ratio of the sources	(4) distance between the sources	
46.	6. Yellow light emitted by a sodium lamp in Young's double slit experiment is repla by monochromatic blue light of the same intensity, then:		
	(1) the fringe width will decrease	the and the united of the management	
	(2) the fringe width will increase		
	(3) the fringe width will be unchanged		
	(4) the intensity of the fringes will dec	rease	
47.	Ratio of adiabatic elasticity to isotherm	nal elasticity is:	
	(1) 0 (2) 1	(3) γ (4) 1/γ	
48.	The enthalpy 'H' along an isothermal curve for an ideal gas is:		
	(1) constant	(2) variable	
	(3) infinite	(4) unpredictable	
G-FF	-2016/(Physics)/(B)		

- **49.** A system of non-interacting Fermi particles with Fermi energy ε_f has density of states proportional to $\sqrt{\varepsilon}$, where ε is the energy of a particle. The average energy per particle at T = 0 K is :
 - (1) $\epsilon_f/6$

(2) $\varepsilon_f/5$

(3) $2\varepsilon_f/5$

- (4) $3\varepsilon_f/5$
- 50. Gibb's potential remains constant in which of the following:
 - (1) isothermal process

(2) isobaric process

(3) both (1) and (2)

- (4) adiabatic process
- **51.** The coefficient of diffusion is:
 - (1) directly proportional to pressure and inversely proportional to (temperature)²
 - (2) inversely proportional to pressure and directly proportional to (temperature)²
 - (3) directly proportional to pressure and inversely proportional to (temperature) 3/2
 - (4) inversely proportional to pressure and directly proportional to (temperature)^{3/2}
- **52.** The ratio of average speed of hydrogen and bromine gas molecules at 27° C will be $[M_{Br} = 80 \text{ M}_{H}]$
 - (1) $\sqrt{1/80}$

(2) $\sqrt{80}$

(3) $\sqrt{40}$

- (4) $\sqrt{1/40}$
- **53.** Which of the following is the correct Clapeyron's latent heat relation?
 - $(1) \quad \frac{dP}{dT} = \frac{L}{T(V_2 V_1)}$

 $(2) \quad \frac{dL}{dT} = \frac{P}{T(V_1 - V_2)}$

 $(3) \quad \frac{dV}{dT} = \frac{L}{V(P_1 - P_2)}$

(4) $\frac{dP}{dT} = \frac{L(V_2 - V_1)}{T}$

54.	In Fresnel's biprism experiment, the distance between the biprism and the screen is 4 m. The angle of the prism is 2×10^{-3} radian and the refractive index is 1.5. If the fringewidth on screen is 15×10^{-4} m, the number of fringes is :				
	(1) 3 (2) 2	(3)	6	(4) 8	
55.	Polarisation of light proves the:				
	(1) corpuscular nature of light	(2)	quantum i	nature of light	
	(3) transverse nature of light	(4)	longitudir	al nature of light	
56.	For two coherent monochromatic light each other, the maximum and minim are:			*	
	(1) $5I$ and I (2) $5I$ and $3I$	(3)	9I and I	(4) 9I and 3I	
57.	The first diffraction minimum due to single slit diffraction is θ for incident radiation of 5000 Å. If the width of the slit is 1×10^{-4} cm, the value of θ is :			n	
	(1) 30° (2) 45°	(3)	60°	(4) 15°	
58.	Two points at a distance of 0.1 mm microscope under incident radiation 4800 Å, the limit of resolution will be	6000			
	(1) 0.80 mm	(2)	0.12 mm		
	(3) 0.10 mm	(4)	0.08 mm		
59.	A ray of light is incident on the surface of a glass plate at an angle of incidence equa to Brewster's angle ϕ . If μ represents the refractive index of glass, the angle between the reflected and refracted rays is :				
	(1) 90° + φ	(2)	sin-1(μ cos	(φ)	

(4) $\sin^{-1}(\mu \sin \phi)$

PG-EE-2016/(Physics)/(B)

(3) 90°

					1
60.		ns are first crossed tht transmitted is :	and then one of th	em is rotated through (60°. The
	(1) 1.25	(2) 25.0	(3) 37.5	(4) 50.0	
61.	Select the incorre	ect statement :		dasan da ka kata pa	
	(1) The angular	momentum is cons	served for systems p	oossessing rotational syn	mmetry

- (2) If the Lagrangian of a system is invariant under translation along a direction, the corresponding linear momentum is conserved
- (3) If the Lagrangian of a system is invariant under translation along a direction, the corresponding linear momentum is conserved, nothing can be predicted about the corresponding linear momentum
- (4) None of these
- **62.** A drop of water is placed on a glass plate. A double convex lens having radius of curvature of each surface 20 cm is placed on it. The focal length of the water lens in meters is ($\mu_{water} = 1.33$):
 - (1) -0.20
- (2) 0.60
- (3) -0.60
- (4) 0.20
- **63.** If electric permittivity and magnetic permeability of free space are ϵ_0 and μ_0 respectively, the index of refraction of a medium with electric permittivity and magnetic permeability ϵ and μ will be :
 - (1) $(\epsilon \mu / \epsilon_0 \mu_0)$

(2) $(\epsilon \mu / \epsilon_0 \mu_0)^{1/2}$

(3) $(\epsilon_0\mu_0/\epsilon\mu)$

- (4) $(\epsilon_0 \mu_0 / \epsilon \mu)^{1/2}$
- **64.** A ray of light falls on a transparent glass slab of refractive index 1.62. If the reflected and refracted rays are mutually perpendicular, the angle of incidence is :
 - (1) tan^{-1} (1.62)

(2) $tan^{-1}(1/1.62)$

(3) $1/\tan^{-1}(1.62)$

 $(4) \tan^2(1.62)$

*				
65.		e Q is placed at the at surface of hemispl		nere. The electric flux passing
	(1) Q/ε ₀	(2) zero	(3) $Q/2\varepsilon_0$	(4) $Q/4\varepsilon_0$
66.				v turns. The maximum torque current <i>I</i> is passed through it,

67. A non-relativistic proton beam passes without deviation through the region of space where there are uniform transverse mutually perpendicular electric and magnetic fields with E = 120 kV/m and B = 50 mT respectively. The beam then strikes a grounded target. If the beam current is I = 80mA, the force with which the beam strikes the target will be:

(2) $4\pi IBl^2$ (3) $IBl^2/4\pi$ (4) $I^2Bl/4\pi$

- (1) $80 \,\mu\text{N}$ (2) $25 \,\mu\text{N}$ (3) $20 \,\mu\text{N}$ (4) $35 \,\mu\text{N}$
- 68. Magnetic field of an infinitely long ideal solenoid of radius R carrying current I:
 - (1) increases radially inside, zero outside
 - (2) is constant inside and zero outside
 - (3) is constant inside and decays as 1/r outside
 - (4) is constant inside and decays as $e^{-(1/r)}$ outside
- **69.** A metal rod moves at a constant velocity in a direction perpendicular to its length. A constant uniform magnetic field exists in space in a direction perpendicular to the rod as well as its velocity. In such a situation :
 - (1) the entire rod is at same potential
 - (2) there is an electric field in the rod
 - (3) the electric potential is highest at the centre of the rod and decreases towards the ends
 - (4) the electric potential is lowest at the centre of the rod and increases towards the ends

PG-EE-2016/(Physics)/(B)

(1) IBl^2

- 70. The average value of electric energy density in an electromagnetic wave is:
 - (1) $\varepsilon_0 E^2/2$

(2) $E^2/2\varepsilon_0$

(3) $\varepsilon_0 E^2$

- (4) $\varepsilon_0 E^2 / 4$
- 71. A highly rigid cubical block of mass 'm' and side 'L' is fixed rigidly on to another cubical block 'B' of same dimensions and lower modulus of rigidity η such that the lower face of 'A' completely covers the upper face of 'B'. The lower face of 'B' is held rigidly on a horizontal surface. A small force F is applied perpendicular to one of the side faces of 'A'. After the force is withdrawn, 'A' executes small oscillation with a time period:
 - (1) $2\pi(\eta mL)^{1/2}$

(2) $2\pi (m\eta/L)^{1/2}$

(3) $2\pi (mL/\eta)^{1/2}$

- (4) $2\pi (m/\eta L)^{1/2}$
- In a steady incomprehensible flow of a liquid:
 - (1) the speed does not change if the area of cross-section changes
 - (2) the speed increases if the area of cross-section increases
 - (3) the speed decreases if the area of cross-section increases
 - (4) bubbles are produced when the area of cross-section increases
- 73. 10000 small balls, each weighing 1g, strike one square cm of area per second with a velocity 100 m/sec. in a normal direction and rebound with same velocity. The pressure exerted on the surface is:
 - (1) $2 \times 10^3 N/m^2$

(2) $2 \times 10^5 N/m^2$

 $(3) 10^7 N/m^2$

- (4) $2 \times 10^7 N/m^2$
- 74. A magnet of magnetic moment 20 CGS units is freely suspended in a uniform field of intensity 0.3 CGS units. The amount of work done in deflecting it by an angle of 30° in CGS units will be:
- (2) $3\sqrt{3}$ (3) $3(2-\sqrt{3})$ (4) 3

An electronic transition in hydrogen atom results in the formation of H_{α} line of hydrogen in Lyman series. The energies associated with the electron in each of the orbits involved in the transition (in kcal mol⁻¹) are:

(1) -313.6, 34.84

(2) -313.6, -78.38

(3) -78.4, -34.84

(4) -78.4, -19.6

76. In case two bubbles of radii r_1 and r_2 come in contact with each other to form a single bubble, the resulting radius of curvature 'r' will be :

(1) $(r_1 + r_2)/2$

(2) $(r_1 r_2)/(r_1-r_2)$

(3) $(r_1 r_2)/(r_1+r_2)$

 $(4) (r_1r_2)^{1/2}$

If a transverse wave is represented as $y = y_0 \sin 2\pi \left(ft - \frac{x}{\lambda} \right)$, then for what value of '\lambda' the maximum particle velocity is equal to four times the wave velocity?

(1) $y_0\pi$

(2) $(y_0\pi)/2$

(3) $2y_0\pi$

(4) $(3y_0\pi)/2$

78. A drilling machine of power 10 kW is used to drill a bore in a small aluminium block of mass 8 kg. If half of the power is used up in heating of the machine or to the surroundings, the rise of temperature of the block in 2.5 minutes will be [specific heat of aluminium = $0.91 \text{ J/g}^{\circ}\text{C}$]:

(1) 103°C

(2) 130°C

(3) 105°C

(4) 30°C

79. Assuming nil loss of energy, the temperature of the mixture 'T', when two perfect monoatomic gases with n_1 and n_2 number of moles at temperatures T_1 and T_2 are mixed will be:

(1) $(n_1 T_2 + n_2 T_1)/(n_1 + n_2)$

(2) $(n_1 T_2 - n_2 T_1)/(n_1 + n_2)$

(3) $(n_1 T_1 + n_2 T_2)/(n_1 + n_2)$ (4) $(n_1 T_1 - n_2 T_2)/(n_1 - n_2)$

PG-EE-2016/(Physics)/(B)

80.	During an adiabatic process, the specific	c hea	at is:
	(1) zero	(2)	greater than zero
	(3) less than zero	(4)	infinity
81.	Only $1/8^{th}$ of the original amount of a The value of $t_{1/2}$ of the material is :	radi	oactive material remains after 96 minutes.
	(1) 12 minutes	(2)	32 minutes
	(3) 24 minutes	(4)	48 minutes
82.	The weight of 1 curie $_{82}\text{Pb}^{214}$ ($t_{1/2} = 26.8$	min	.) in grams is :
	(1) 3.1×10^{-8} g	(2)	$1.55 \times 10^{-8} \text{ g}$
	(3) $6.2 \times 10^{-8} \text{ g}$	(4)	$3.1 \times 10^{-10} \text{ g}$
83.	The final product, if $92U^{235}$ emits two α	and	one β particle, will be :
	(1) 87Ac ²²¹	(2)	89Ac ²³⁵
	(3) 89Ac ²²⁵	(4)	89Ac ²²⁷
84.	Stern Gerlach experiment proves the ex	ister	nce of:
	(1) electronic charge	(2)	electron dipole moment
	(3) electron spin	(4)	electron mass
85.	An electron with energy E incident upon thickness <i>l</i> , then the transmission coefficients		potential barrier of V such that V > E and
	(1) is zero		
	(2) proportional to l^2		et militar steam original specific
	(3) increases exponentially with thickn	ess	
	(4) decreases exponentially with thickr	ness	
G-FF	-2016/(Physics)/(B)		PTO

	(1) independent of r	2) independent of	fθ						
	(3) independent of φ	independent of	f all the three before						
87.	In case of a rigid rotator, the rotational fre	quency is given as	11						
	(1) $\hbar L^2/2\pi I$ (2) $\hbar L/2\pi I$ (3)	3) $\hbar L/2\pi I^2$	(4) $\hbar L/2\pi(2I+1)$						
88.	The energy between two adjacent levels is	given by :							
	(1) (2n + 1) times the zero point energy								
	(2) (2n – 1) times the zero point energy								
	(3) 2n ² times the zero point energy								
	(4) n² times the zero point energy								
	,								
89.	The ionization potential of Li+2 ions using	Bohr's theory is:							
	(1) 13.6 eV (2) 27.2 eV (3	6) 40.8 eV	(4) 122.4 eV						
90.	The wave function considered to be $\psi(x) = \sqrt{2/L} \sin(\pi x/L)$ in the region $0 < x$ in the region $0 < x < L/2$ is:								
	(1) 0 (2) 1/2 (3) 1	(4) 0.66						
91.	Which of the following statements is corre	ct?							
	(1) the displacement current is produced	only by varying m	nagnetic field						
	(2) the displacement current is produced	only by varying el	ectric field						
	(3) the displacement current is produced by varying magnetic field as well as varying electric field								
	(4) the displacement current is produced varying electric field	neither by varyi	ing magnetic field nor by						
PG-EE	E-2016/(Physics)/(B)		in News Charles Co. Co. Co.						

86. The probability of finding an electron in a hydrogen atom is:

92. Two wires one of copper and another of steel having the same cross-sectional area and lengths 1.0 and 0.5 m respectively, are fastened end to end and stretched by a load M. If copper wire is stretched by 1 mm, the total extension of the combination is:

[$Y_{\text{copper}} = 1 \times 10^{11} \text{n/m}^2$, $Y_{\text{steel}} = 2 \times 10^{11} \text{n/m}^2$]

(1) 0.125 cm

(2) 0.20 cm

(3) 0.120 cm

- (4) 0.25 cm
- **93.** If one litre of a perfect gas at a pressure of 72 cm of mercury is compressed isothermally to 900 cc, the resulting stress is :
 - (1) $9.88 \times 10^3 \text{ N/m}^2$
- (2) $10.88 \times 10^3 \text{ N/m}^2$
- (3) $1.088 \times 10^3 \text{ N/m}^2$

- $(4) 4.48 \times 10^3 \text{ N/m}^2$
- **94.** Which of the following is correct order in respect of r.m.s. velocity (v_{rms}) , average velocity (v_{av}) and most probable velocity (v_{mp}) ?
 - $(1) \quad v_{mp} > v_{av} > v_{rms}$

 $(2) \quad v_{rms} > v_{av} > v_{mp}$

(3) $v_{av} > v_{mp} > v_{rms}$

- $(4) \quad v_{mp} > v_{rms} > v_{av}$
- **95.** 12 gms of a gas occupy a volume of 4×10^{-3} m³ at a temperature of 7°C. If the gas is heated at constant pressure, its density becomes 6×10^{-4} g/cm³. The temperature to which the gas is heated is:
 - (1) 1000 K
- (2) 1400 K
- (3) 1200 K

- (4) 800 K
- **96.** If rest mass of an electron is 9.1×10^{-31} kg, then its mass equivalent energy is :
 - (1) 0.511 erg

(2) 0.511 J

(3) 0.511 eV

(4) 0.511 MeV

)	
97.	A reference frame attached to the earth:
	(1) is an inertial frame by definition
	(2) can not be an inertial frame because the earth is revolving round the sun
	(3) is an inertial frame as Newton's laws are applicable
	(4) can not be an inertial frame because the earth is rotating about its own axis
98.	A particle with a mean proper life of 1 μ s moves through the laboratory with a velocity 2.7×10^{10} cm/sec. Its lifetime as measured by an observer in the laboratory is :
	(1) more than one micro-second (2) $1.0 \mu sec$
	(3) less than one micro-second (4) $0.09 \mu \text{ sec}$
99.	In an L-C circuit:
	(1) the energy stored in L as well as in C is magnetic energy
	(2) the energy stored in L is magnetic but in C it is electrical energy
	(3) the energy stored in L is electrical but in C it is magnetic energy
	(4) the energy stored in L as well as in C is electrical energy
100.	A short circuited coil is placed in a time-varying magnetic field. Electrical power is dissipated due to current induced in the coil. If the number of turns were to be quadrupled and the wire radius halved, the electrical power dissipated would be:
	(1) halved (2) the same

(4) quadrupled

(3) doubled

Total No. of Printed Pages: 21

(DO NOT OPEN THIS QUESTION BOOKLET BEFORE TIME OR UNTIL YOU ARE ASKED TO DO SO)

PG-EE-2016 V

SUBJECT: Physics

C		11895 Sr. No
Time: 11/4 Hours	Max. Marks: 100	Total Questions : 100
Roll No. (in figures)	(in words)	1
Name	Father's Name	0
Mother's Name	Date of Examination	
(Signature of the Candidate)	1, 1 / 12	nature of the Invigilator)

CANDIDATES MUST READ THE FOLLOWING INFORMATION/INSTRUCTIONS BEFORE STARTING THE QUESTION PAPER.

- 1. All questions are compulsory
- 2. The candidates *must return* the question booklet as well as OMR Answer-Sheet to the Invigilator concerned before leaving the Examination Hall, failing which a case of use of unfair-means/misbehaviour will be registered against him/her, in addition to lodging of an FIR with the police. Further the answer-sheet of such a candidate will not be evaluated.
- 3. In case there is any discrepancy in any question(s) in the Question Booklet, the same may be brought to the notice of the Controller of Examinations in writing within two hours after the test is over. No such complaint(s) will be entertained thereafter.
- 4. The candidate **must not** do any rough work or writing in the OMR Answer-Sheet. Rough work, if any, may be done in the question booklet itself. Answers **must not** be ticked in the question booklet.
- 5. There will be no negative marking. Each correct answer will be awarded one full mark. Cutting, erasing, overwriting and more than one answer in OMR Answer-Sheet will be treated as incorrect answer.
- 6. Use only Black or Blue Ball Point Pen of good quality in the OMR Answer-Sheet.
- 7. Before answering the questions, the candidates should ensure that they have been supplied correct and complete booklet. Complaints, if any, regarding misprinting etc. will not be entertained 30 minutes after starting of the examination.

PG-EE-2016/(Physics)/(C)

SEAL

- 1. Select the *incorrect* statement:
 - (1) The angular momentum is conserved for systems possessing rotational symmetry
 - (2) If the Lagrangian of a system is invariant under translation along a direction, the corresponding linear momentum is conserved
 - (3) If the Lagrangian of a system is invariant under translation along a direction, the corresponding linear momentum is conserved, nothing can be predicted about the corresponding linear momentum
 - (4) None of these
- **2.** A drop of water is placed on a glass plate. A double convex lens having radius of curvature of each surface 20 cm is placed on it. The focal length of the water lens in meters is ($\mu_{water} = 1.33$):
 - (1) -0.20
- (2) 0:60
- (3) -0.60
- (4) 0.20
- 3. If electric permittivity and magnetic permeability of free space are ϵ_0 and μ_0 respectively, the index of refraction of a medium with electric permittivity and magnetic permeability ϵ and μ will be :
 - (1) $(\epsilon \mu / \epsilon_0 \mu_0)$

(2) $(\epsilon \mu / \epsilon_0 \mu_0)^{1/2}$

(3) $(\epsilon_0 \mu_0 / \epsilon \mu)$

- (4) $(\epsilon_0 \mu_0 / \epsilon_\mu)^{1/2}$
- **4.** A ray of light falls on a transparent glass slab of refractive index 1.62. If the reflected and refracted rays are mutually perpendicular, the angle of incidence is:
 - (1) tan^{-1} (1.62)

(2) $tan^{-1}(1/1.62)$

- (3) $1/\tan^{-1}(1.62)$
- (4) $\tan^2(1.62)$
- **5.** A point charge Q is placed at the centre of a hemisphere. The electric flux passing through the flat surface of hemisphere is:
 - (1) Q/ϵ_0

(2) zero

(3) $Q/2\varepsilon_0$

(4) $Q/4\varepsilon_0$

will be:

(1) IBl^2

	fields with $E = 120 \text{ kV/m}$ and $B = 50 \text{ mT}$ respectively. The beam then strikes a grounded target. If the beam current is $I = 80\text{mA}$, the force with which the beam strikes the target will be:
	(1) $80 \mu\text{N}$ (2) $25 \mu\text{N}$ (3) $20 \mu\text{N}$ (4) $35 \mu\text{N}$
8.	Magnetic field of an infinitely long ideal solenoid of radius R carrying current I:
	(1) increases radially inside, zero outside
	(2) is constant inside and zero outside
	(3) is constant inside and decays as $1/r$ outside
	(4) is constant inside and decays as $e^{-(1/r)}$ outside
9.	A metal rod moves at a constant velocity in a direction perpendicular to its length. A constant uniform magnetic field exists in space in a direction perpendicular to the rod as well as its velocity. In such a situation:
	(1) the entire rod is at same potential
	(2) there is an electric field in the rod
	(3) the electric potential is highest at the centre of the rod and decreases towards the ends
	(4) the electric potential is lowest at the centre of the rod and increases towards the ends
10.	The average value of electric energy density in an electromagnetic wave is:
	(1) $\epsilon_0 E^2 / 2$ (2) $E^2 / 2\epsilon_0$ (3) $\epsilon_0 E^2$ (4) $\epsilon_0 E^2 / 4$
PG-EE	-2016/(Physics)/(C)

6. A length '*l*' of a wire is bent to form a circular coil of few turns. The maximum torque acting on the coil it is placed in a magnetic field *B* and a current *I* is passed through it,

7. A non-relativistic proton beam passes without deviation through the region of space where there are uniform transverse mutually perpendicular electric and magnetic

(2) $4\pi IBl^2$ (3) $IBl^2/4\pi$ (4) $I^2Bl/4\pi$

								3
1.	The inside and respectively. Assudone, the heat del	iming th	ne refrigerator	cycl	e to be reversib	are 270 ble, for ever	K and 303 y joule of wo	K
	(1) 10 J	(2) 20	0 Ј	(3)	30 J	(4) 50 J	nakas od I	
2.	If a gas is heated used for up for ex					ge of total h	neat supplied	is
	(1) 25%	(2) 50	0%	(3)	75%	(4) 57%		
3.	The enthalpy of v will be:	aporizat	tion of water is	186	6.5 J/mol. The 6	entropy of i	its vaporizatio	n
	(1) 0.5 JK ⁻¹ mol ⁻¹			(2)	1.0 JK ⁻¹ mol ⁻¹			
	(3) $1.5 \mathrm{JK}^{-1} \mathrm{mol}^{-1}$			(4)	2.0 JK ⁻¹ mol ⁻¹	e (15) _{Los} Establica		
4.	In a biprism exper green light is 5.2 coincides with n th	$\times 10^{-7}$	m, the value	of	'n' for which ((n+1) th gree	⁻⁷ m and that en bright bar	of nd
	(1) 2	(2) 3		(3)	4	(4) 1		
5.	The contrast in the	e fringes	s in any interfer	enc	e pattern deper	nds on:	kans in	
	(1) fringe width		allendos (a)	(2)	wavelength			
	(3) intensity ratio	of the se	ources	(4)	distance betwe	en the sour	ces	
6.	Yellow light emitt by monochromati	ed by a	sodium lamp ght of the same	in Y	oung's double ensity, then :	slit experim	nent is replace	ed
	(1) the fringe wid	th will d	decrease					

- (2) the fringe width will increase
- (3) the fringe width will be unchanged
- (4) the intensity of the fringes will decrease

17.	Ratio of adiabatic elasticity to isothermal elasticity is:					
	(1)	0	(2) 1	(3)	γ	(4) 1/γ
18.	The	e enthalpy 'H' al	ong an isothermal cu	ırve	for an ideal gas i	is:
	(1)	constant	in a second disconsistence	(2)	variable	
	(3)	infinite	Little 10	(4)	unpredictable	
19.	pro	ystem of non-in portional to \sqrt{s} ticle at T = 0 K i	ε , where ε is the en	icles nerg	with Fermi ener y of a particle.	gy ϵ_f has density of state. The average energy pe
	(1)	$\epsilon_{\rm f}/6$	(2) ε _f /5	(3)	$2\epsilon_{\rm f}/5$	(4) 3ε _f /5
20.	Gib	b's potential rer	nains constant in wh	ich (of the following :	
	(1)	isothermal prod	cess	(2)	isobaric process	
	(3)	both (1) and (2)	ldg-back one at a	(4)	adiabatic proces	ss · · · · · · · · · · · · · · · · · ·
21.	Onl The	y $1/8^{th}$ of the or value of $t_{1/2}$ of	riginal amount of a the material is:	radi	oactive material	remains after 96 minutes
	(1)	12 minutes		(2)	32 minutes	
	(3)	24 minutes		(4)	48 minutes	rice state on
22.	The	weight of 1 cur	ie $_{82}\text{Pb}^{214}$ ($t_{1/2} = 26.8$ s	min.) in grams is:	
	(1)	$3.1 \times 10^{-8} \text{ g}$		(2)	$1.55 \times 10^{-8} \text{ g}$	
	(3)	$6.2 \times 10^{-8} \text{ g}$		(4)	$3.1 \times 10^{-10} \text{ g}$	
23.	The	final product, if	$f_{92}U^{235}$ emits two α a	nd c	one β particle, wi	ll be :
	(1)	₈₇ Ac ²²¹		(2)	89Ac ²³⁵	
	(3)	₈₉ Ac ²²⁵		(4)	89Ac ²²⁷	
G-EE	2016	/(Physics)/(C)		3		

24.	Stern	Gerlach	experiment	proves	the	existence	of:	
	CCCTTC	CLITTCH	C'I CTITICITE	P10.00		CHICKETTE	O	

(1) electronic charge

(2) electron dipole moment

(3) electron spin

- (4) electron mass
- **25.** An electron with energy E incident upon a potential barrier of V such that V > E and thickness *l*, then the transmission coefficient :
 - (1) is zero
 - (2) proportional to l^2
 - (3) increases exponentially with thickness
 - (4) decreases exponentially with thickness
- **26.** The probability of finding an electron in a hydrogen atom is:
 - (1) independent of r

(2) independent of θ

(3) independent of φ

- (4) independent of all the three before
- 27. In case of a rigid rotator, the rotational frequency is given as:
 - (1) $\hbar L^2/2\pi I$

(2) $\hbar L/2\pi I$

(3) $\hbar L/2\pi I^2$

- (4) $\hbar L/2\pi(2I + 1)$
- **28.** The energy between two adjacent levels is given by :
 - (1) (2n + 1) times the zero point energy
 - (2) (2n-1) times the zero point energy
 - (3) 2n² times the zero point energy
 - (4) n² times the zero point energy

29.	The ionization potential of Li ⁺² ions using Bohr's theory is:									
	(1) 13.6 eV	(2) 27.2 eV								
	(3) 40.8 eV	(4) 122.4 eV								
30.	The wave function considered to be confined within a box of length L is $\psi(x) = \sqrt{2/L} \sin(\pi x/L)$ in the region $0 < x < L$. The probability of finding the particle in the region $0 < x < L/2$ is :									
	(1) 0	(2) 1/2								
	(3) 1	(4) 0.66								
31.	The ratio of de-Broglie wavelength or energy is:	f an α -particle and a proton of same kinetic								
	(1) 1:2	(2) 1:1								
	(3) $1:\sqrt{2}$	(4) 4:1								
32.	X-rays are used for structural analysis of	of crystals as these :								
	(1) have the wavelength of the order of	f the inter-atomic spacing								
	(2) are highly penetrating radiations									
	(3) have the wavelength of the order of	f the nuclear size								
	(4) are highly coherent in nature									
33.	A radioactive nuclide is emitting beta particles at a certain rate. When this nuclide is heated to a very high temperature, the rate of emission will:									
	(1) increase	(2) decrease								
	(3) remain the same	(4) fluctuate								
PG-EE	-2016/(Physics)/(C)									

- 34. The fission of uranium nuclide:
 - (1) always leads to same pair of fission products, say barium and krypton
 - (2) does not always produce barium and krypton but different pair of fission products
 - (3) produces barium and any other fission product
 - (4) always produces at least one radioactive fission product
- 35. Mirror nuclei are those which have:
 - (1) the same number of protons
 - (2) the same number of neutrons
 - (3) the number of protons equal to the number of neutrons
 - (4) the number of neutrons in one equal to the number of protons in the other
- 36. Beta rays emitted in a radioactive material are:
 - (1) electromagnetic radiations
 - (2) electrons orbiting around the nucleus
 - (3) charged particles emitted by the nucleus
 - (4) neutral particles in the nucleus
- **37.** The radio active decay of an element X to elements Y and K is represented by the equation $\frac{A}{Z}X \to \frac{A}{Z+1}Y \to \frac{A-4}{Z-1}K \to \frac{A-4}{Z-1}K$. The sequence of emitted radiations is:
 - (1) α, β, γ

(2) β, α, γ

(3) γ, α, β

(4) β, γ, α

- 38. Atomic explosion is the result of:
 - (1) uncontrolled chain reaction in fission
 - (2) controlled chain reaction in fusion
 - (3) uncontrolled chain reaction in fusion
 - (4) controlled chain reaction in fission
- X-rays of wavelength λ are incident on a crystal and the second order reflection on diffraction from the crystal is observed at an angle of 45°. The lattice constant of the crystal is:
 - (1) $\lambda/\sqrt{2}$ (2) $\sqrt{2}\lambda$
- $(3) \lambda$
- (4) 2λ
- The amount of a substance that gives 3.7×10^7 disintegration per second (dps) is:
 - (1) one becquerel
- (2) one curie

(3) one mili-curie

- (4) one rutherford
- A body starts from rest and moves with a constant acceleration. The ratio of the distance covered in *n*th second to the distance covered in *n* seconds is :
 - (1) $\frac{2}{n} \frac{1}{n^2}$

(2) $\frac{1}{n^2} - \frac{1}{n}$

(3) $\frac{2}{n^2} - \frac{1}{n}$

- (4) $\frac{2}{n} + \frac{1}{n^2}$
- A particle moves in a straight line so that after 't' seconds, the distance from a fixed point O on the line is given as $x = (t-2)^2(t-5)$. Then:
 - (1) after 2 sec., velocity of particle is zero
 - (2) after 2 sec., the particle reaches O
 - (3) the acceleration is negative, for t < 3 sec.
 - (4) all the three before

PG-EE-2016/(Physics)/(C)

- 43. A solid body rotates about a stationery axis so that its angular velocity depends on the rotational angle φ as $\omega = \omega_0 - k\varphi$; ω_0 and k being positive constants & at t = 0, $\varphi = 0$. The time dependence of the rotational angle is:
 - (1) $k\omega_0 e^{-kt}$

(3) $\frac{\omega_0}{k} \left(1 - e^{-kt} \right)$

- (2) $\frac{\omega_0}{k}e^{-kt}$ (4) $\frac{k}{\omega_0}\left(e^{-kt}-1\right)$
- A particle of mass m is moving in a horizontal circle of radius r under a centripetal force $(-k/r^2)$, k being a constant, then:
 - (1) the total energy is (-k/2r)
- (2) the kinetic energy is (k/r)
- (3) the potential energy is (k/2r)
- (4) the kinetic energy is (-k/r)
- An elastic string of length L' and force constant k' is stretched by a length x. Thereafter, it is further stretched by another small length 'y', then the work done in second stretching is:
 - (1) $ky^2/2$

(2) $k(x^2 + y^2)/2$ (4) ky(2x + y)/2

(3) $k(x+y)^2/2$

- **46.** A smooth steel ball strikes a fixed smooth steel plate at an angle 'θ' with the vertical. If the coefficient of restitution is 'e', the angle of rebounce will be:
 - $(1) \theta$

(2) $\tan^{-1}(\tan\theta/e)$

(3) $e \tan \theta$

- (4) $\tan^{-1}(e/\tan\theta)$
- Four masses 1, 2, 3 and 4 kg. each are placed at the corners A, B, C and D of a square ABCD of edge 1 m. If A is taken as origin & AB and AD edges as x axis and y axis respectively, then the coordinates of the centre of mass in SI are:
 - (1) (1,1)

(2) (2.1, 3.9)

(3) (0.5, 0.7)

(4) (0.41, 0.93)

0	
48.	A particle of mass 'm' rotating in a circle of radius 'a' with a uniform angular speed ω_0 is viewed from a frame rotating about z axis with a uniform angular speed ω . The centrifugal force on the particle is :
	$(1) m\omega^2 a \qquad \qquad (2) m\omega_0^2 a$
	(3) $m[(\omega + \omega_0)/2]^2 a$ (4) $m\omega\omega_0 a$
49.	A particle of mass m is free to move along x-axis has a potential energy $U(x) = k(1 - e^{-x^2})$ for $-\infty \le x \le \infty$, k being a positive constant. Then:

- (1) at points away from the origin, the particle is in unstable equilibrium
- (2) for any non zero value of x, there is a force directed away from the origin
- (3) if its total mechanical energy is k/2, it has the minimum kinetic energy at origin
- (4) for small displacement from x = 0, it executes SHM
- **50.** If for two rings of radius R and nR made up of same material, the ratio of moment of inertia about an axis passing through the centre is 1 : 8, then the value of 'n' is :
 - (1) 2
- (2) $2\sqrt{2}$
- (3) 4
- (4) 1/2
- **51.** Which of the following statements is *correct*?
 - (1) the displacement current is produced only by varying magnetic field
 - (2) the displacement current is produced only by varying electric field
 - (3) the displacement current is produced by varying magnetic field as well as varying electric field
 - (4) the displacement current is produced neither by varying magnetic field nor by varying electric field

[
$$Y_{\text{copper}} = 1 \times 10^{11} \text{n/m}^2$$
, $Y_{\text{steel}} = 2 \times 10^{11} \text{n/m}^2$]

(1) 0.125 cm

(2) 0.20 cm

(3) 0.120 cm

(4) 0.25 cm

53. If one litre of a perfect gas at a pressure of 72 cm of mercury is compressed isothermally to 900 cc, the resulting stress is:

- (1) $9.88 \times 10^3 \text{ N/m}^2$
- (2) $10.88 \times 10^3 \text{ N/m}^2$
- (3) $1.088 \times 10^3 \text{ N/m}^2$

(4) $4.48 \times 10^3 \text{ N/m}^2$

54. Which of the following is correct order in respect of r.m.s. velocity (v_{rms}) , average velocity (v_{av}) and most probable velocity (v_{mp}) ?

 $(1) \quad v_{mp} > v_{av} > v_{rms}$

 $(2) \quad v_{rms} > v_{av} > v_{mp}$

 $(3) \quad v_{av} > v_{mp} > v_{rms}$

 $(4) \quad v_{mp} > v_{rms} > v_{av}$

55. 12 gms of a gas occupy a volume of 4×10^{-3} m³ at a temperature of 7°C. If the gas is heated at constant pressure, its density becomes 6×10^{-4} g/cm³. The temperature to which the gas is heated is:

(1) 1000 K

(2) 1400 K

(3) 1200 K

(4) 800 K

56. If rest mass of an electron is 9.1×10^{-31} kg, then its mass equivalent energy is :

(1) 0.511 erg

(2) 0.511 J

(3) 0.511 eV

(4) 0.511 MeV

PG-EE-2016/(Physics)/(C)

P. T. O.

_									
57.	A reference frame attached to the earth:								
	(1) is an inertial frame by definition								
	(2) can not be an inertial frame because the earth is revolving round the sun								
	(3) is an inertial frame as Newton's laws are applicable								
	(4) can not be an inertial frame because the earth is rotating about its own axis								
58.	A particle with a mean proper life of 1 μ s moves through the laboratory with a velocity 2.7×10^{10} cm/sec. Its lifetime as measured by an observer in the laboratory is :								
	(1) more than one micro-second (2) $1.0 \mu sec$								
	(3) less than one micro-second (4) $0.09 \mu \text{ sec}$								
59.	In an L-C circuit:								
	(1) the energy stored in L as well as in C is magnetic energy								
	(2) the energy stored in L is magnetic but in C it is electrical energy								
	(3) the energy stored in L is electrical but in C it is magnetic energy								
	(4) the energy stored in L as well as in C is electrical energy								
60.	A short circuited coil is placed in a time-varying magnetic field. Electrical power is dissipated due to current induced in the coil. If the number of turns were to be quadrupled and the wire radius halved, the electrical power dissipated would be:								
	(1) halved (2) the same (3) doubled (4) quadrupled								
61.	A highly rigid cubical block of mass 'm' and side 'L' is fixed rigidly on to another cubical block 'B' of same dimensions and lower modulus of rigidity η such that the								

61. A highly rigid cubical block of mass m' and side L' is fixed rigidly on to another cubical block 'B' of same dimensions and lower modulus of rigidity η such that the lower face of 'A' completely covers the upper face of 'B'. The lower face of 'B' is held rigidly on a horizontal surface. A small force E is applied perpendicular to one of the side faces of 'A'. After the force is withdrawn, 'A' executes small oscillation with a time period:

(1) $2\pi(\eta mL)^{1/2}$ (2) $2\pi(m\eta/L)^{1/2}$ (3) $2\pi(mL/\eta)^{1/2}$ (4) $2\pi(m/\eta L)^{1/2}$

PG-EE-2016/(Physics)/(C)

- **62.** In a steady incomprehensible flow of a liquid:
 - (1) the speed does not change if the area of cross-section changes
 - (2) the speed increases if the area of cross-section increases
 - (3) the speed decreases if the area of cross-section increases
 - (4) bubbles are produced when the area of cross-section increases
- **63.** 10000 small balls, each weighing 1g, strike one square cm of area per second with a velocity 100 m/sec. in a normal direction and rebound with same velocity. The pressure exerted on the surface is:

(1)
$$2 \times 10^3 N/m^2$$

(2)
$$2 \times 10^5 N/m^2$$

(3)
$$10^7 N/m^2$$

(4)
$$2 \times 10^7 N/m^2$$

64. A magnet of magnetic moment 20 CGS units is freely suspended in a uniform field of intensity 0.3 CGS units. The amount of work done in deflecting it by an angle of 30° in CGS units will be:

(2)
$$3\sqrt{3}$$

(3)
$$3(2-\sqrt{3})$$

65. An electronic transition in hydrogen atom results in the formation of H_{α} line of hydrogen in Lyman series. The energies associated with the electron in each of the orbits involved in the transition (in kcal mol⁻¹) are:

$$(1)$$
 $-313.6, 34.84$

$$(2)$$
 $-313.6, -78.38$

$$(3)$$
 $-78.4, -34.84$

$$(4)$$
 $-78.4, -19.6$

66. In case two bubbles of radii r_1 and r_2 come in contact with each other to form a single bubble, the resulting radius of curvature r will be:

(1)
$$(r_1 + r_2)/2$$

(2)
$$(r_1 r_2)/(r_1-r_2)$$

(3)
$$(r_1 r_2)/(r_1+r_2)$$

(4)
$$(r_1r_2)^{1/2}$$

67. If a transverse wave is represented as $y = y_0 \sin 2\pi \left(ft - \frac{x}{\lambda} \right)$, then for what value of '\lambda' the maximum particle velocity is equal to four times the wave velocity?

(1) $y_0\pi$

(2) $(y_0\pi)/2$

(3) $2y_0\pi$

(4) $(3y_0\pi)/2$

68. A drilling machine of power 10 kW is used to drill a bore in a small aluminium block of mass 8 kg. If half of the power is used up in heating of the machine or to the surroundings, the rise of temperature of the block in 2.5 minutes will be [specific heat of aluminium = $0.91 \text{ J/g}^{\circ}\text{C}$]:

(1) 103°C

(2) 130°C

(3) 105°C

(4) 30°C

69. Assuming nil loss of energy, the temperature of the mixture T, when two perfect monoatomic gases with n_1 and n_2 number of moles at temperatures T_1 and T_2 are mixed will be:

(1) $(n_1 T_2 + n_2 T_1)/(n_1 + n_2)$

(2) $(n_1 T_2 - n_2 T_1)/(n_1 + n_2)$

(3) $(n_1 T_1 + n_2 T_2)/(n_1 + n_2)$

(4) $(n_1 T_1 - n_2 T_2)/(n_1 - n_2)$

70. During an adiabatic process, the specific heat is:

(1) zero

(2) greater than zero

(3) less than zero

(4) infinity

71. The depletion region of a junction diode is formed:

(1) when forward bias is applied to it

(2) when the temperature of the junction is reduced

(3) under reverse bias

(4) during the manufacturing process

PG-EE-2016/(Physics)/(C)

						15
72.	In a full wave rectifier with R – C filter,	the	conduction angle	of the	he diode is:	
	(1) 0 (2) $<\pi$	(3)	> π	(4)	$=\pi$	
73.	A BJT with h_{FE} value of 100 is found to The transistor is operating in the :	o be	e operating at I _B	= 10	$00 \mu A$ and $I_C = 5 r$	nA.
	(1) active region	(2)	active or saturat	ion	region	
	(3) saturation region	(4)	cut-off region			
74.	Faster switching OFF of a p-n junction :				Self court	
	(1) requires zero current in the reverse	dire	ction			
	(2) requires reverse saturation current i	n th	e reverse directio	n		
	(3) requires a large current in the revers	se di	irection			
	(4) is independent of the reverse curren	nt				
75.	The collector to base bias method in amp	plifi	er circuit :			
	(1) requires low dc supply					
	(2) requires high dc supply					
	(3) makes operating point independent	of v	variation in Ico			
	(4) makes operating point independent	of v	variation in β			
76.	In a R-C coupled CE amplifier, emitter l	ead	resistance R _E is t	ısed	l to:	
	(1) increase the load	(2)	decrease the load	d		
	(3) attain proper stability factor	(4)	decrease V _{CE} vo	oltag	ge	
77.	In a multi stage amplifier, on increasir product:	ng tl	ne number of sta	ges,	, the gain-bandwi	dth
	(1) remains constant	(2)	increases			

(4) becomes zero

PG-EE-2016/(Physics)/(C)

(3) decreases

78.	3. A common collector amplifier has :		
	(1) high voltage gain but low current gain		C
	(2) low voltage gain and low current gain		
	(3) high output impedance but low input i	mpedance	
	(4) low output impedance but high input impedance		
79.	Which of the following is most suitable for generating 1 kHz frequency?		
	(1) Wien bridge oscillator (2)	Colpitt's oscillator	
	(3) Hartley oscillator (4)	Tuned collector oscillator	un (42)
80.	During an isothermal expansion of an ideal gas :		
	(1) its internal energy decreases		
	(2) its internal energy does not change		
	(3) the work done by the gas is equal to the quantity of heat absorbed by it		it
	(4) both (2) and (3) are correct		
81.	The axial parameter $a = b \neq c$ and $\alpha = \beta = 90^{\circ}$, $\gamma = 120^{\circ}$ correspond to the following system :		
	(1) Tetragonal (2)	Cubic	
	(3) Hexagonal (4)	Rhombohedral	
82.	If the Lagrangian L is not an explicit function of time, the Hamiltonian H is:		s:
	(1) Zero (2)	Constant of motion	orificing
	(3) Infinity (4)	Variable with motion	
PG-EF	EE-2016/(Physics)/(C)		

- 83. For Bose-Einstein condensation to happen, which of the following is true?
 - (1) Number of particles decreases rapidly in lower energy levels at high temperatures and low pressures
 - (2) Number of particles increases rapidly in lower energy levels at high temperatures and low pressures
 - (3) Number of particles decreases rapidly in lower energy levels at low temperatures and high pressures
 - (4) Number of particles increases rapidly in lower energy levels at low temperatures and high pressures
- **84.** The value of radius of the Fermi sphere of a degenerate free electron gas at zero temperature, having N particles contained in volume V is given as:
 - (1) $(3\pi^2)^{1/3}(N/V)^{2/3}\hbar$

(2) $(3\pi^2)^{1/3}(N/V)^{1/6}\hbar$

(3) $(3\pi^2)^{1/3}(N/V)^{1/3}\hbar$

- (4) $(3\pi^2)^{1/3}(N/V)^{1/2}\hbar$
- 85. The hyperfine splitting of spectral lines of an atom is due to:
 - (1) coupling between spins of two or more electrons
 - (2) coupling between spins and orbital angular momenta of the electrons
 - (3) coupling between electron spins and the nuclear spins
 - (4) None of the above
- **86.** The energy separation between two consecutive stokes lines in Raman scattering depends on :
 - (1) Wavelength of the incident light
 - (2) Energy separation between vibrational levels in the excited states
 - (3) Intensity of the incident light
 - (4) Energy separation between vibrational levels in the ground state

87.	The Debye theory of specific heat is val	id at:
	(1) room temperature	. (2) low temperature
	(3) intermediate temperature	(4) all temperature
88.	For a bcc crystal, the first Brillouin zone	e is a:
	(1) cube	(2) Rectangular parallelepiped
	(3) Truncated octahedron	(4) Regular rhombic dodecahedron
89.	Which of the following is <i>not</i> the use of	f Hall's effect ?
	(1) Determination of the sign of charge	carriers
	(2) Determination of number density of	of charge carriers
	(3) Measurement of potential difference	ce control of the con
	(4) Measurement of magnetic field	
90.	What is the behaviour of the pure Si cry	ystal at absolute zero temperature ?
	(1) behaves as perfect conductor	
	(2) behaves as perfect insulator	and the company of the broad of the broad of the company of the broad
	(3) contains no electron	tions and a rough term of the spoker of the
	(4) none of the above	The second secon
91.	The coefficient of diffusion is:	est a na 196 nationale (grade gi)
	(1) directly proportional to pressure an	nd inversely proportional to (temperature) 2
	(2) inversely proportional to pressure	and directly proportional to (temperature) ²
	(3) directly proportional to pressure as	nd inversely proportional to (temperature) 3/

(4) inversely proportional to pressure and directly proportional to (temperature)^{3/2}

PG-EE-2016/(Physics)/(C)

- 92. The ratio of average speed of hydrogen and bromine gas molecules at 27°C will be $[M_{Br} = 80 \text{ M}_{H}]$
 - (1) $\sqrt{1/80}$

(2) $\sqrt{80}$

(3) $\sqrt{40}$

- (4) $\sqrt{1/40}$
- 93. Which of the following is the correct Clapeyron's latent heat relation?
 - $(1) \quad \frac{dP}{dT} = \frac{L}{T(V_2 V_1)}$

 $(2) \quad \frac{dL}{dT} = \frac{P}{T(V_1 - V_2)}$

(3) $\frac{dV}{dT} = \frac{L}{V(P_1 - P_2)}$

- $(4) \quad \frac{dP}{dT} = \frac{L(V_2 V_1)}{T}$
- **94.** In Fresnel's biprism experiment, the distance between the biprism and the screen is 4 m. The angle of the prism is 2×10^{-3} radian and the refractive index is 1.5. If the fringewidth on screen is 15×10^{-4} m, the number of fringes is :
 - (1) 3
- (2) 2
- (3) 6
- (4) 8

- 95. Polarisation of light proves the:
 - (1) corpuscular nature of light
- (2) quantum nature of light
 - (3) transverse nature of light
- (4) longitudinal nature of light
- **96.** For two coherent monochromatic light beams of intensities *I* and 4*I* super imposed on each other, the maximum and minimum possible intensities in the resulting beams are:
 - (1) 5I and I

(2) 5I and 3I

(3) 9I and I

- (4) 9I and 3I
- **97.** The first diffraction minimum due to single slit diffraction is θ for incident radiation of 5000 Å. If the width of the slit is 1×10^{-4} cm, the value of θ is:
 - (1) 30°
- (2) 45°
- (3) 60°
- (4) 15°

- **98.** Two points at a distance of 0.1 mm from each other can just be inspected in a microscope under incident radiation 6000 Å. If instead the radiation is changed to 4800 Å, the limit of resolution will be:
 - (1) 0.80 mm

(2) 0.12 mm

(3) 0.10 mm

(4) 0.08 mm

- **99.** A ray of light is incident on the surface of a glass plate at an angle of incidence equal to Brewster's angle ϕ . If μ represents the refractive index of glass, the angle between the reflected and refracted rays is :
 - (1) $90^{\circ} + \varphi$

(2) $\sin^{-1}(\mu \cos \phi)$

(3) 90°

(4) $\sin^{-1}(\mu \sin \varphi)$

100. Two Nicol prisms are first crossed and then one of them is rotated through 60°. The percentage of light transmitted is:

(1) 1.25

(2) 25.0

(3) 37.5

(4) 50.0

Total No. of Printed Pages: 21

(DO NOT OPEN THIS QUESTION BOOKLET BEFORE TIME OR UNTIL YOU ARE ASKED TO DO SO)

PG-EE-2016

SUBJECT: Physics

D	3 11892 Sr. No.
Time: 11/4 Hours	Max. Marks: 100 Total Questions: 100
Roll No. (in figures)	(in words)
Name	Father's Name
Mother's Name	Date of Examination
(Signature of the Candidate)	(Signature of the Invigilator)

CANDIDATES MUST READ THE FOLLOWING INFORMATION INSTRUCTIONS BEFORE STARTING THE QUESTION PAPER.

- 1. All questions are compulsory.
- 2. The candidates *must return* the question booklet as well as OMR Answer-Sheet to the Invigilator concerned before leaving the Examination Hall, failing which a case of use of unfair-means/misbehaviour will be registered against him/her, in addition to lodging of an FIR with the police. Further the answer-sheet of such a candidate will not be evaluated.
- 3. In case there is any discrepancy in any question(s) in the Question Booklet, the same may be brought to the notice of the Controller of Examinations in writing within two hours after the test is over. No such complaint(s) will be entertained thereafter.
- 4. The candidate **must not** do any rough work or writing in the OMR Answer-Sheet. Rough work, if any, may be done in the question booklet itself. Answers **must not** be ticked in the question booklet.
- 5. There will be no negative marking. Each correct answer will be awarded one full mark. Cutting, erasing, overwriting and more than one answer in OMR Answer-Sheet will be treated as incorrect answer.
- 6. Use only Black or Blue Ball Point Pen of good quality in the OMR Answer-Sheet.
- 7. Before answering the questions, the candidates should ensure that they have been supplied correct and complete booklet. Complaints, if any, regarding misprinting etc. will not be entertained 30 minutes after starting of the examination.

PG-EE-2016/(Physics)/(D)

1.	
	system: special in of the months for each of own to entry the array group (1)
	(1) Tetragonal (2) Cubic
	(3) Hexagonal (4) Rhombohedral
2.	If the Lagrangian L is not an explicit function of time, the Hamiltonian H is:
	(1) Zero (2) Constant of motion
	(3) Infinity (4) Variable with motion
3.	For Bose-Einstein condensation to happen, which of the following is <i>true</i> ?
	(1) Number of particles decreases rapidly in lower energy levels at high temperatures and low pressures
	(2) Number of particles increases rapidly in lower energy levels at high temperatures
	and low pressures
	(3) Number of particles decreases rapidly in lower energy levels at low temperatures and high pressures
	and high pressures
r	(4) Number of particles increases rapidly in lower energy levels at low temperatures and high pressures
	But the agent comes and a some minutes that are a some and a soft a
4.	The value of radius of the Fermi sphere of a degenerate free electron gas at zero temperature, having N particles contained in volume V is given as:
	(1) $(3\pi^2)^{1/3}(N/V)^{2/3}\hbar$ (2) $(3\pi^2)^{1/3}(N/V)^{1/6}\hbar$

(3) $(3\pi^2)^{1/3}(N/V)^{1/3}\hbar$

(4) $(3\pi^2)^{1/3}(N/V)^{1/2}\hbar$

- 5. The hyperfine splitting of spectral lines of an atom is due to:
 - (1) coupling between spins of two or more electrons
 - (2) coupling between spins and orbital angular momenta of the electrons
 - (3) coupling between electron spins and the nuclear spins
 - (4) None of the above
- 6. The energy separation between two consecutive stokes lines in Raman scattering depends on:
 - (1) Wavelength of the incident light
 - (2) Energy separation between vibrational levels in the excited states
 - (3) Intensity of the incident light
 - (4) Energy separation between vibrational levels in the ground state
- 7. The Debye theory of specific heat is valid at:
 - (1) room temperature
 - (2) low temperature
 - (3) intermediate temperature
 - (4) all temperature
- **8.** For a bcc crystal, the first Brillouin zone is a :
 - (1) cube the series of the series of the series of the series to suite
 - (2) Rectangular parallelepiped
 - (3) Truncated octahedron
 - (4) Regular rhombic dodecahedron

PG-EE-2016/(Physics)/(D)

- **9.** Which of the following is *not* the use of Hall's effect?
 - (1) Determination of the sign of charge carriers
 - (2) Determination of number density of charge carriers
 - (3) Measurement of potential difference
 - (4) Measurement of magnetic field
- **10.** What is the behaviour of the pure *Si* crystal at absolute zero temperature?
 - (1) behaves as perfect conductor
 - (2) behaves as perfect insulator
 - (3) contains no electron
 - (4) none of the above
- 11. Which of the following statements is correct?
 - (1) the displacement current is produced only by varying magnetic field
 - (2) the displacement current is produced only by varying electric field
 - (3) the displacement current is produced by varying magnetic field as well as varying electric field
 - (4) the displacement current is produced neither by varying magnetic field nor by varying electric field
- **12.** Two wires one of copper and another of steel having the same cross-sectional area and lengths 1.0 and 0.5 m respectively, are fastened end to end and stretched by a load M. If copper wire is stretched by 1 mm, the total extension of the combination is:

[
$$Y_{\text{copper}} = 1 \times 10^{11} \text{n/m}^2$$
, $Y_{\text{steel}} = 2 \times 10^{11} \text{n/m}^2$]

(1) 0.125 cm

(2) 0.20 cm

(3) 0.120 cm

(4) 0.25 cm

- **13.** If one litre of a perfect gas at a pressure of 72 cm of mercury is compressed isothermally to 900 cc, the resulting stress is :
 - (1) $9.88 \times 10^3 \text{ N/m}^2$

(2) $10.88 \times 10^3 \text{ N/m}^2$

(3) $1.088 \times 10^3 \,\text{N/m}^2$

- (4) $4.48 \times 10^3 \text{ N/m}^2$
- 14. Which of the following is correct order in respect of r.m.s. velocity (v_{rms}) , average velocity (v_{av}) and most probable velocity (v_{mp}) ?
 - $(1) \quad v_{mp} > v_{av} > v_{rms}$

 $(2) \quad v_{rms} > v_{av} > v_{mp}$

 $(3) \quad v_{av} > v_{mp} > v_{rms}$

- $(4) \quad v_{mp} > v_{rms} > v_{av}$
- **15.** 12 gms of a gas occupy a volume of 4×10^{-3} m³ at a temperature of 7°C. If the gas is heated at constant pressure, its density becomes 6×10^{-4} g/cm³. The temperature to which the gas is heated is :
 - (1) 1000 K

(2) 1400 K

(3) 1200 K

- (4) 800 K
- **16.** If rest mass of an electron is 9.1×10^{-31} kg, then its mass equivalent energy is :
 - (1) 0.511 erg

(2) 0.511 J

(3) 0.511 eV

- (4) 0.511 MeV
- **17.** A reference frame attached to the earth:
 - (1) is an inertial frame by definition
 - (2) can not be an inertial frame because the earth is revolving round the sun
 - (3) is an inertial frame as Newton's laws are applicable
 - (4) can not be an inertial frame because the earth is rotating about its own axis

PG-EE-2016/(Physics)/(D)

18.		f 1 μs moves through the laboratory with a
	velocity 2.7 × 10 ⁻² cm/sec. Its lifetime as	measured by an observer in the laboratory is:
	(1) more than one micro-second	(2) 1.0 μ sec
	(3) less than one micro-second	(4) 0.09 μ sec
19.	In an L-C circuit:	
	(1) the energy stored in L as well as in	
	(2) the energy stored in L is magnetic b	out in C it is electrical energy
	(3) the energy stored in L is electrical b	ut in C it is magnetic energy
	(4) the energy stored in L as well as in	C is electrical energy
20.	A short circuited coil is placed in a time-varying magnetic field. Electrical power is dissipated due to current induced in the coil. If the number of turns were to be quadrupled and the wire radius halved, the electrical power dissipated would be:	
	(1) halved	(2) the same
	(3) doubled	(4) quadrupled
21.	The ratio of de-Broglie wavelength of energy is:	f an α -particle and a proton of same kinetic
	(1) 1:2	(2) 1:1
	(3) $1:\sqrt{2}$	(4) 4:1
22.	X-rays are used for structural analysis of	of crystals as these:
	(1) have the wavelength of the order of	
		the fitter atomic spacing
**	(2) are highly penetrating radiations	i yan acam te fearat as iliku in masa ng i
	(3) have the wavelength of the order of	the nuclear size
	(4) are highly coherent in nature	
G-EE	-2016/(Physics)/(D)	P. T. O.

- **23.** A radioactive nuclide is emitting beta particles at a certain rate. When this nuclide is heated to a very high temperature, the rate of emission will:
 - (1) increase

(2) decrease

(3) remain the same

- (4) fluctuate
- 24. The fission of uranium nuclide:
 - (1) always leads to same pair of fission products, say barium and krypton
 - (2) does not always produce barium and krypton but different pair of fission products
 - (3) produces barium and any other fission product
 - (4) always produces at least one radioactive fission product
- 25. Mirror nuclei are those which have:
 - (1) the same number of protons
 - (2) the same number of neutrons
 - (3) the number of protons equal to the number of neutrons
 - (4) the number of neutrons in one equal to the number of protons in the other
- **26.** Beta rays emitted in a radioactive material are:
 - (1) electromagnetic radiations
 - (2) electrons orbiting around the nucleus
 - (3) charged particles emitted by the nucleus
 - (4) neutral particles in the nucleus

PG-EE-2016/(Physics)/(D)

27.	The radio active decay of an element X to elements Y and K is represented by the
	equation $\frac{A}{Z}X \to \frac{A}{Z+1}Y \to \frac{A-4}{Z-1}K \to \frac{A-4}{Z-1}K$. The sequence of emitted radiations is:

- (1) α, β, γ
- (2) β, α, γ
- (3) γ , α , β
- (4) β, γ, α

Atomic explosion is the result of:

- (1) uncontrolled chain reaction in fission
- (2) controlled chain reaction in fusion
- (3) uncontrolled chain reaction in fusion
- (4) controlled chain reaction in fission
- X-rays of wavelength λ are incident on a crystal and the second order reflection on diffraction from the crystal is observed at an angle of 45°. The lattice constant of the crystal is:
 - (1) $\lambda/\sqrt{2}$ (2) $\sqrt{2}\lambda$
- $(3) \lambda$
- (4) 2λ

The amount of a substance that gives 3.7×10^7 disintegration per second (dps) is:

(1) one becquerel

(2) one curie

(3) one mili-curie

(4) one rutherford

31. Select the *incorrect* statement:

- (1) The angular momentum is conserved for systems possessing rotational symmetry
- (2) If the Lagrangian of a system is invariant under translation along a direction, the corresponding linear momentum is conserved
- (3) If the Lagrangian of a system is invariant under translation along a direction, the corresponding linear momentum is conserved, nothing can be predicted about the corresponding linear momentum
- (4) None of these

- **32.** A drop of water is placed on a glass plate. A double convex lens having radius of curvature of each surface 20 cm is placed on it. The focal length of the water lens in meters is ($\mu_{water} = 1.33$):
 - (1) -0.20
- (2) 0.60
- (3) -0.60
- (4) 0.20
- **33.** If electric permittivity and magnetic permeability of free space are ϵ_0 and μ_0 respectively, the index of refraction of a medium with electric permittivity and magnetic permeability ϵ and μ will be :
 - (1) $(\epsilon \mu / \epsilon_0 \mu_0)$

(2) $(\epsilon \mu / \epsilon_0 \mu_0)^{1/2}$

(3) $(\epsilon_0 \mu_0 / \epsilon \mu)$

- (4) $(\epsilon_0 \mu_0 / \epsilon \mu)^{1/2}$
- **34.** A ray of light falls on a transparent glass slab of refractive index 1.62. If the reflected and refracted rays are mutually perpendicular, the angle of incidence is :
 - (1) tan^{-1} (1.62)

(2) $tan^{-1}(1/1.62)$

(3) $1/\tan^{-1}(1.62)$

- $(4) \tan^2(1.62)$
- **35.** A point charge Q is placed at the centre of a hemisphere. The electric flux passing through the flat surface of hemisphere is :
 - (1) Q/ϵ_0
- (2) zero
- (3) $Q/2\varepsilon_0$
- (4) $Q/4\varepsilon_0$
- **36.** A length '*l*' of a wire is bent to form a circular coil of few turns. The maximum torque acting on the coil it is placed in a magnetic field *B* and a current *I* is passed through it, will be:
 - (1) IBl^2
- (2) $4\pi IBl^2$
- (3) $IBl^2/4\pi$
 - (4) $I^2Bl/4\pi$
- **37.** A non-relativistic proton beam passes without deviation through the region of space where there are uniform transverse mutually perpendicular electric and magnetic fields with E = 120 kV/m and B = 50 mT respectively. The beam then strikes a grounded target. If the beam current is I = 80mA, the force with which the beam strikes the target will be:
 - (1) 80 μN
- (2) 25 μN
- (3) .20 μN
- (4) 35 μN

PG-EE-2016/(Physics)/(D)

- **38.** Magnetic field of an infinitely long ideal solenoid of radius R carrying current I:
 - (1) increases radially inside, zero outside
 - (2) is constant inside and zero outside
 - (3) is constant inside and decays as 1/r outside
 - (4) is constant inside and decays as $e^{-(1/r)}$ outside
- A metal rod moves at a constant velocity in a direction perpendicular to its length. A constant uniform magnetic field exists in space in a direction perpendicular to the rod as well as its velocity. In such a situation:
 - (1) the entire rod is at same potential
 - (2) there is an electric field in the rod
 - (3) the electric potential is highest at the centre of the rod and decreases towards the ends
 - (4) the electric potential is lowest at the centre of the rod and increases towards the ends
- The average value of electric energy density in an electromagnetic wave is:
 - (1) $\varepsilon_0 E^2 / 2$ (2) $E^2 / 2\varepsilon_0$ (3) $\varepsilon_0 E^2$
- (4) $\varepsilon_0 E^2 / 4$

- The coefficient of diffusion is:
 - (1) directly proportional to pressure and inversely proportional to (temperature)²
 - (2) inversely proportional to pressure and directly proportional to (temperature) 2
 - (3) directly proportional to pressure and inversely proportional to (temperature) 3/2
 - (4) inversely proportional to pressure and directly proportional to (temperature)^{3/2}
- The ratio of average speed of hydrogen and bromine gas molecules at 27°C will be $[M_{Br} = 80 M_{H}]$
 - (1) $\sqrt{1/80}$ (2) $\sqrt{80}$

- (3) $\sqrt{40}$ (4) $\sqrt{1/40}$

- **43.** Which of the following is the correct Clapeyron's latent heat relation?
 - (1) $\frac{dP}{dT} = \frac{L}{T(V_2 V_1)}$

 $(2) \quad \frac{dL}{dT} = \frac{P}{T(V_1 - V_2)}$

(3) $\frac{dV}{dT} = \frac{L}{V(P_1 - P_2)}$

- (4) $\frac{dP}{dT} = \frac{L(V_2 V_1)}{T}$
- 44. In Fresnel's biprism experiment, the distance between the biprism and the screen is 4 m. The angle of the prism is 2×10^{-3} radian and the refractive index is 1.5. If the fringewidth on screen is 15×10^{-4} m, the number of fringes is :
 - (1) 3
- (2) 2
- (3) 6 (4) 8

- Polarisation of light proves the:
 - (1) corpuscular nature of light
- (2) quantum nature of light
- (3) transverse nature of light
- (4) longitudinal nature of light
- For two coherent monochromatic light beams of intensities I and 4I super imposed on each other, the maximum and minimum possible intensities in the resulting beams are:
 - (1) 5I and I
- (2) 5I and 3I
- (3) 9I and I
- (4) 9I and 3I
- The first diffraction minimum due to single slit diffraction is θ for incident radiation of 5000 Å. If the width of the slit is 1×10^{-4} cm, the value of θ is :
 - (1) 30°
- (2) 45°
- (3) 60°
- (4) 15°
- 48. Two points at a distance of 0.1 mm from each other can just be inspected in a microscope under incident radiation 6000 Å. If instead the radiation is changed to 4800 Å, the limit of resolution will be:
 - (1) 0.80 mm

(2) 0.12 mm

(3) 0.10 mm

(4) 0.08 mm

49.			glass plate at an angle of incidence equal fractive index of glass, the angle between
	(1) 90° + φ	(2)	$\sin^{-1}(\mu \cos \phi)$
	(3) 90°	(4)	$\sin^{-1}(\mu \sin \phi)$
50.	Two Nicol prisms are first crossed and percentage of light transmitted is:	the	n one of them is rotated through 60°. The
	(1) 1.25	(2)	25.0
	(3) 37.5	(4)	50.0
51.	Only $1/8^{th}$ of the original amount of a The value of $t_{1/2}$ of the material is :	radi	oactive material remains after 96 minutes.
	(1) 12 minutes	(2)	32 minutes
	(3) 24 minutes	(4)	48 minutes
52.	The weight of 1 curie $_{82}\text{Pb}^{214}$ ($t_{1/2} = 26.8$	min	.) in grams is :
	(1) 3.1×10^{-8} g	(2)	$1.55 \times 10^{-8} \mathrm{g}$
	(3) $6.2 \times 10^{-8} \text{ g}$	(4)	$3.1 \times 10^{-10} \text{ g}$
53.	The final product, if $_{92}U^{235}$ emits two α	and	one β particle, will be :
	(1) 87Ac ²²¹		89Ac ²³⁵
	(3) 89Ac ²²⁵	(4)	89Ac ²²⁷
54.	Stern Gerlach experiment proves the ex	ciste	nce of:
	(1) electronic charge	(2)	electron dipole moment

(4) electron mass

(3) electron spin

- An electron with energy E incident upon a potential barrier of V such that V > E and thickness *l*, then the transmission coefficient : (1) is zero (2) proportional to l^2 (3) increases exponentially with thickness (4) decreases exponentially with thickness The probability of finding an electron in a hydrogen atom is: (1) independent of r(2) independent of θ (3) independent of φ (4) independent of all the three before In case of a rigid rotator, the rotational frequency is given as: (1) $\hbar L^2/2\pi I$ (2) $\hbar L/2\pi I$ (3) $\hbar L/2\pi I^2$ (4) $\hbar L/2\pi(2I+1)$ The energy between two adjacent levels is given by: (1) (2n + 1) times the zero point energy (2) (2n-1) times the zero point energy (3) 2n² times the zero point energy (4) n² times the zero point energy
- The ionization potential of Li⁺² ions using Bohr's theory is: 59.
 - (1) 13.6 eV

(2) 27.2 eV

(3) 40.8 eV

(4) 122.4 eV

60.	The wave function considered to be confined within a box of length L is $\psi(x) = \sqrt{2/L} \sin(\pi x/L)$ in the region $0 < x < L$. The probability of finding the particle in the region $0 < x < L/2$ is :
	(1) 0 (2) 1/2 (3) 1 (4) 0.66
61.	The depletion region of a junction diode is formed:
	(1) when forward bias is applied to it
	(2) when the temperature of the junction is reduced
	(3) under reverse bias
	(4) during the manufacturing process
62.	In a full wave rectifier with R – C filter, the conduction angle of the diode is :
	(1) 0 (2) $<\pi$ (3) $>\pi$ (4) $=\pi$
63.	A BJT with h_{FE} value of 100 is found to be operating at I_B = 100 μA and I_C = 5 mA. The transistor is operating in the :
	(1) active region (2) active or saturation region
	(3) saturation region (4) cut-off region
64.	Faster switching OFF of a p-n junction:
	(1) requires zero current in the reverse direction
	(2) requires reverse saturation current in the reverse direction
	(3) requires a large current in the reverse direction
	(4) is independent of the reverse current
G-EE	E-2016/(Physics)/(D)

65.	The collector to base bias method in amp	Dlifter circuit:
	(1) requires low dc supply	Province and the Communication of the Communication
	(2) requires high dc supply	
	(3) makes operating point independent	of variation in I _{co}
	(4) makes operating point independent	of variation in β
66.	In a R-C coupled CE amplifier, emitter le	ead resistance R _E is used to:
	(1) increase the load	(2) decrease the load
	(3) attain proper stability factor	(4) decrease V _{CE} voltage
67.	In a multi stage amplifier, on increasir product:	ng the number of stages, the gain-bandwidth
	(1) remains constant	(2) increases
	(3) decreases	(4) becomes zero
68.	. A common collector amplifier has:	
	(1) high voltage gain but low current ga	ain
	(2) low voltage gain and low current ga	tin
	(3) high output impedance but low inp	ut impedance
	(4) low output impedance but high inp	ut impedance
69.	. Which of the following is most suitable	for generating 1 kHz frequency?
	(1) Wien bridge oscillator	(2) Colpitt's oscillator
	(3) Hartley oscillator	(4) Tuned collector oscillator
G-EI	EE-2016/(Physics)/(D)	

70.	During an isomermal expansion of an i	deai	gas:	angerian special up and								
	(1) its internal energy decreases											
	(2) its internal energy does not change											
	(3) the work done by the gas is equal to the quantity of heat absorbed by it											
	(4) both (2) and (3) are correct											
71.	The inside and outside temperature respectively. Assuming the refrigerator done, the heat delivered to the surround	r cyc	ele to be reversible									
	(1) 10 J (2) 20 J	(3)	30 J	(4) 50 J								
72.	If a gas is heated at constant pressure, used for up for external work [γ for gas			e of total heat supplied is								
	(1) 25% (2) 50%	(3)	75%	(4) 57%								
73.	The enthalpy of vaporization of water will be:	is 18	66.5 J/mol. The en	ntropy of its vaporization								
	(1) 0.5 JK ⁻¹ mol ⁻¹	(2)	1.0 JK ⁻¹ mol ⁻¹									
	(3) $1.5 \mathrm{JK^{-1}mol^{-1}}$	(4)	2.0 JK ⁻¹ mol ⁻¹									
74.	In a biprism experiment, if the wavelengreen light is 5.2×10^{-7} m, the value coincides with n th red bright band for the	e of	'n' for which (1	1+1)th green bright band								
	(1) 2 (2) 3	(3)	4	(4) 1								
75.	The contrast in the fringes in any interfe	eren	ce pattern depend	ds on:								
	(1) fringe width	(2)	wavelength									
	(3) intensity ratio of the sources	(4)	distance betwee	en the sources								
G-EE	-2016/(Physics)/(D)			P. T. O.								

- **76.** Yellow light emitted by a sodium lamp in Young's double slit experiment is replaced by monochromatic blue light of the same intensity, then:
 - (1) the fringe width will decrease
 - (2) the fringe width will increase
 - (3) the fringe width will be unchanged
 - (4) the intensity of the fringes will decrease
- 77. Ratio of adiabatic elasticity to isothermal elasticity is:
 - (1) 0
- (2) 1
- (3) y
- $(4) 1/\gamma$
- 78. The enthalpy 'H' along an isothermal curve for an ideal gas is:
 - (1) constant
- (2) variable
- (3) infinite
- (4) unpredictable
- **79.** A system of non-interacting Fermi particles with Fermi energy ε_f has density of states proportional to $\sqrt{\varepsilon_f}$ where ε_f is the energy of a particle. The average energy per particle at T=0 K is :
 - (1) $\epsilon_f/6$
- (2) $\varepsilon_f/5$
- (3) $2\varepsilon_f/5$
- (4) $3\varepsilon_f/5$
- **80.** Gibb's potential remains constant in which of the following:
 - (1) isothermal process

(2) isobaric process

(3) both (1) and (2)

- (4) adiabatic process
- **81.** A body starts from rest and moves with a constant acceleration. The ratio of the distance covered in *n*th second to the distance covered in *n* seconds is:
 - (1) $\frac{2}{n} \frac{1}{n^2}$

(2) $\frac{1}{n^2} - \frac{1}{n}$

(3) $\frac{2}{n^2} - \frac{1}{n}$

(4) $\frac{2}{n} + \frac{1}{n^2}$

- **82.** A particle moves in a straight line so that after 't' seconds, the distance from a fixed point O on the line is given as $x = (t-2)^2(t-5)$. Then:
 - (1) after 2 sec., velocity of particle is zero
 - (2) after 2 sec., the particle reaches O
 - (3) the acceleration is negative, for t < 3 sec.
 - (4) all the three before
- **83.** A solid body rotates about a stationery axis so that its angular velocity depends on the rotational angle φ as $\omega = \omega_0 k\varphi$; ω_0 and k being positive constants & at t = 0, $\varphi = 0$. The time dependence of the rotational angle is :
 - (1) $k\omega_0 e^{-kt}$

 $(2) \quad \frac{\omega_0}{k} e^{-kt}$

 $(3) \quad \frac{\omega_0}{k} \left(1 - e^{-kt} \right)$

- $(4) \quad \frac{k}{\omega_0} \left(e^{-kt} 1 \right)$
- **84.** A particle of mass m is moving in a horizontal circle of radius r under a centripetal force $\left(-k/r^2\right)$, k being a constant, then:
 - (1) the total energy is (-k/2r)
 - (2) the kinetic energy is (k/r)
 - (3) the potential energy is (k/2r)
 - (4) the kinetic energy is (-k/r)
- **85.** An elastic string of length L' and force constant L' is stretched by a length L'. Thereafter, it is further stretched by another small length L', then the work done in second stretching is:
 - (1) $ky^2/2$

 $(2) k(x^2+y^2)/2$

(3) $k(x+y)^2/2$

(4) ky(2x + y)/2

- **86.** A smooth steel ball strikes a fixed smooth steel plate at an angle ' θ ' with the vertical. If the coefficient of restitution is 'e', the angle of rebounce will be :
 - $(1) \theta$

(2) $\tan^{-1}(\tan\theta/e)$

(3) $e \tan \theta$

- (4) $\tan^{-1}(e/\tan\theta)$
- **87.** Four masses 1, 2, 3 and 4 kg. each are placed at the corners A, B, C and D of a square ABCD of edge 1 m. If A is taken as origin & AB and AD edges as x axis and y axis respectively, then the coordinates of the centre of mass in SI are:
 - (1) (1,1)

(2) (2.1, 3.9)

(3) (0.5, 0.7)

- (4) (0.41, 0.93)
- **88.** A particle of mass 'm' rotating in a circle of radius 'a' with a uniform angular speed ω_0 is viewed from a frame rotating about z axis with a uniform angular speed ω . The centrifugal force on the particle is:
 - (1) $m\omega^2 a$

(2) $m\omega_0^2 a$

(3) $m[(\omega + \omega_0)/2]^2 a$

- (4) $m\omega\omega_0 a$
- **89.** A particle of mass m is free to move along x-axis has a potential energy $U(x) = k(1 e^{-x^2})$ for $-\infty \le x \le \infty$, k being a positive constant. Then:
 - (1) at points away from the origin, the particle is in unstable equilibrium
 - (2) for any non zero value of x, there is a force directed away from the origin
 - (3) if its total mechanical energy is k/2, it has the minimum kinetic energy at origin
 - (4) for small displacement from x = 0, it executes SHM
- **90.** If for two rings of radius R and nR made up of same material, the ratio of moment of inertia about an axis passing through the centre is 1:8, then the value of 'n' is:
 - (1) 2
- (2) $2\sqrt{2}$
- (3) 4
- (4) 1/2

91. A highly rigid cubical block of mass m' and side L' is fixed rigidly on to another cubical block 'B' of same dimensions and lower modulus of rigidity η such that the lower face of 'A' completely covers the upper face of 'B'. The lower face of 'B' is held rigidly on a horizontal surface. A small force F is applied perpendicular to one of the side faces of 'A'. After the force is withdrawn, 'A' executes small oscillation with a time period :

(1) $2\pi(\eta mL)^{1/2}$

(2) $2\pi (m\eta/L)^{1/2}$

(3) $2\pi (mL/\eta)^{1/2}$

(4) $2\pi (m/\eta L)^{1/2}$

- 92. In a steady incomprehensible flow of a liquid:
 - (1) the speed does not change if the area of cross-section changes
 - (2) the speed increases if the area of cross-section increases
 - (3) the speed decreases if the area of cross-section increases
 - (4) bubbles are produced when the area of cross-section increases
- **93.** 10000 small balls, each weighing 1g, strike one square cm of area per second with a velocity 100 m/sec. in a normal direction and rebound with same velocity. The pressure exerted on the surface is:

(1) $2 \times 10^3 N/m^2$

(2) $2 \times 10^5 N/m^2$

(3) $10^7 N/m^2$

(4) $2 \times 10^7 N/m^2$

94. A magnet of magnetic moment 20 CGS units is freely suspended in a uniform field of intensity 0.3 CGS units. The amount of work done in deflecting it by an angle of 30° in CGS units will be:

(1) 6

(2) $3\sqrt{3}$

(3) $3(2-\sqrt{3})$

(4) 3

95. An electronic transition in hydrogen atom results in the formation of H_{α} line of hydrogen in Lyman series. The energies associated with the electron in each of the orbits involved in the transition (in kcal mol⁻¹) are:

(1) -313.6, 34.84

(2) -313.6, -78.38

(3) -78.4, -34.84

(4) -78.4, -19.6

PG-EE-2016/(Physics)/(D)

P. T. O.

96.	In case two bubbles of radii r_1 and r_2 come in contact with each other to form a
	single bubble, the resulting radius of curvature 'r' will be:

- (2) $(r_1 r_2)/(r_1-r_2)$
- (3) $(r_1 r_2)/(r_1+r_2)$ (4) $(r_1 r_2)^{1/2}$

97. If a transverse wave is represented as $y = y_0 \sin 2\pi \left(ft - \frac{x}{\lambda} \right)$, then for what value of '\lambda' the maximum particle velocity is equal to four times the wave velocity?

- (1) $y_0\pi$

- (2) $(y_0\pi)/2$ (3) $2y_0\pi$ (4) $(3y_0\pi)/2$

A drilling machine of power 10 kW is used to drill a bore in a small aluminium block of mass 8 kg. If half of the power is used up in heating of the machine or to the surroundings, the rise of temperature of the block in 2.5 minutes will be [specific heat of aluminium = $0.91 \text{ J/g}^{\circ}\text{C}$]:

- (1) 103°C (2) 130°C (3) 105°C (4) 30°C

99. Assuming nil loss of energy, the temperature of the mixture 'T', when two perfect monoatomic gases with n_1 and n_2 number of moles at temperatures T_1 and T_2 are mixed will be:

- (1) $(n_1 T_2 + n_2 T_1)/(n_1 + n_2)$
- (2) $(n_1 T_2 n_2 T_1)/(n_1 + n_2)$
- (3) $(n_1 T_1 + n_2 T_2)/(n_1 + n_2)$ (4) $(n_1 T_1 n_2 T_2)/(n_1 n_2)$

100. During an adiabatic process, the specific heat is:

(1) zero

(2) greater than zero

- (3) less than zero
- (4) infinity (1) The same of the street of t

							-===	====			===	====	
1.	1	16.	2	31.	3	46.	3	61.	4	76.	3	91.	3
2.	4	17.	2	32.	1	47.	1	62.	2	77.	2	92.	2
3.	3	18.	1	33.	2	48.	4	63.	1	78.	1	93.	4
4.	1	19.	3	34.	2	49.	1	64.	3	79.	2	94.	1
5.	4	20.	1	35.	2	50.	4	65.	3	80.	3	95.	3
6.	2	21.	3	36.	4	51.	1	66.	3	81.	2	96.	2
7.	3	22.	3	37.	1	52.	1	67.	1	82.	1	97.	2
8.	2	23.	2	38.	1	53.	1	68.	4	83.	4	98.	4
9.	4	24.	1	39.	2	54.	3	69.	3	84.	3	99.	3
10.	1	25.	3	40.	4	55.	3	70.	4	85.	1	100.	2
11.	4	26.	3	41.	4	56.	1	71.	1	86.	3		
12.	3	27.	3	42.	2	57.	3	72.	1	87.	2		
13.	4	28.	2	43.	3	58.	1	73.	3	88.	1		
14.	3	29.	2	44.	3	59.	4	74.	2	89.	4		
15.	2	30.	1	45.	3	60.	3	75.	4	90.	2		

SET : B

====	====				====	====	-===			-===	===	=====	
1.	4	16.	3	31.	1	46.	1	61.	3	76.	2	91.	3
2.	2	17.	2	32.	4	47.	3	62.	3	77.	2	92.	1
3.	3	18.	1	33.	3	48.	1	63.	2	78.	1	93.	2
4.	3	19.	2	34.	1	49.	4	64.	1	79.	3	94.	2
5.	3	20.	3	35.	4	50.	3	65.	3	80.	1	95.	
6.	3	21.	3	36.	2	51.	4	66.	3	81.	2	96.	4
7.	1	22.	2	37.	3	52.	2	67.	3	82.	1	97.	1
8.	4	23.	4	38.	2	53.	1	68.	2	83.	4	98.	1
9.	1	24.	1	39.	4	54.	3	69.	2	84.	3	99.	2
10.	4	25.	3	40.	1	55.	3	70.	1	85.	1	100.	4
11.	1	26.	2	41.	1	56.	3	71.	4	86.	3		
12.	1	27.	2	42.	1	57.	1	72.	3	87.	2		
13.	3	28.	4	43.	1	58.	4	73.	4	88.	1		
14.	2	29.	3	44.	3	59.	3	74.	3	89.	4		
15.	4	30.	2	45.	3	60.	4	75.	2	90.	2		

M.SC. PHYSICS Page: 3

SET : C

====:	====	====	====	====	====	====	====	====	====	====	===	=====	
1.	3	16.	1	31.	1	46.	2	61.	4	76.	3	91.	4
2.	3	17.	3	32.	1	47.	3	62.	3	77.	1	92.	2
3.	2	18.	1	33.	3	48.	2	63.	4	78.	4	93.	1
4.	1	19.	4	34.	2	49.	4	64.	3	79.	1	94.	3
5.	3	20.	3	35.	4	50.	1	65.	2	80.	4	95.	3
6.	3	21.	2	36.	3	51.	3	66.	2	81.	3	96.	3
7.	3	22.	1	37.	2	52.	1	67.	2	82.	2	97.	1
8.	2	23.	4	38.	1	53.	2	68.	1	83.	4	98.	4
9.	2	24.	3	39.	2	54.	2	69.	3	84.	1	99.	3
10.	1	25.	1	40.	3	55.	2	70.	1	85.	3	100.	4
11.	1	26.	3	41.	1	56.	4	71.	4	86.	2		
12.	1	27.	2	42.	4	57.	1	72.	2	87.	2		
13.	1	28.	1	43.	3	58.	1	73.	3	88.	4		
14.	3	29.	4	44.	1	59.	2	74.	3	89.	3		
15.	3	30.	2	45.	4	60.	4	75.	3	90.	2		

M.SC. PHYSICS Page: 4

SET : D

=====							====	====		====		====:	
1.	3	16.	4	31.	3	46.	3	61.	4	76.	1	91.	4
2.	2	17.	1	32.	3	47.	1	62.	2	77.	3	92.	3
3.	4	18.	1	33.	2	48.	4	63.	3	78.	1	93.	4
4.	1	19.	2	34.	1	49.	3	64.	3	79.	4	94.	3
5.	3	20.	4	35.	3	50.	4	65.	3	80.	3	95.	2
6.	2	21.	1	36.	3	51.	2	66.	3	81.	1	96.	2
7.	2	22.	1	37.	3	52.	1	67.	1	82.	4	97.	2
8.	4	23.	3	38.	2	53.	4	68.	4	83.	3	98.	1
9.	3	24.	2	39.	2	54.	3	69.	1	84.	1	99.	3
10.	2	25.	4	40.	1	55.	1	70.	4	85.	4	100.	1
11.	3	26.	3	41.	4	56.	3	71.	1	86.	2		
12.	1	27.	2	42.	2	57.	2	72.	1	87.	3		
13.	2	28.	1	43.	1	58.	1	73.	1	88.	2		
14.	2	29.	2	44.	3	59.	4	74.	3	89.	4		
15.	2	30.	3	45.	3	60.	2	75.	3	90.	1		