In 2 magnes en 20/2/2017

Total No. of Printed Pages: 13

(DO NOT OPEN THIS QUESTION BOOKLET BEFORE TIME OR UNTIL YOU ARE ASKED TO DO SO)

PG-EE-2013

SUBJECT: Chemistry

B		Sr. No. 11386
Time: 11/4 Hours	Max. Marks: 100	Total Questions: 100
Roll No. (in figures)	(in words)	
Name	Father's Name	
Mother's Name	Date of Examination _	
(Signature of the Candidate)		(Signature of the Invigilator)

CANDIDATES MUST READ THE FOLLOWING INFORMATION/INSTRUCTIONS BEFORE STARTING THE QUESTION PAPER.

- 1. All questions are compulsory and carry equal marks.
- 2. The candidates *must return* the question booklet as well as OMR Answer-Sheet to the Invigilator concerned before leaving the Examination Hall, failing which a case of use of unfair-means/misbehaviour will be registered against him/her, in addition to lodging of an FIR with the police. Further the answer-sheet of such a candidate will not be evaluated.
- 3. In case there is any discrepancy in any question(s) in the Question Booklet, the same may be brought to the notice of the Controller of Examinations in writing within two hours after the test is over. No such complaint(s) will be entertained thereafter.
- 4. The candidate *must not* do any rough work or writing in the OMR Answer-Sheet. Rough work, if any, may be done in the question booklet itself. Answers **Must Not** be ticked in the question booklet.
- 5. Use only black or blue ball point pen of good quality in the OMR Answer-Sheet.
- 6. There will be no **negative** marking. Each correct answer will be awarded **one** full mark. Cutting, erasing, overwriting and more than one answer in OMR Answer-Sheet will be treated as incorrect answer.
- 7. Before answering the questions, the candidates should ensure that they have been supplied correct and complete booklet, containing 100 questions (Sr. No. 1 to 100). Complaints, if any, regarding misprinting etc. will not be entertained 30 minutes after starting of the examination.

1.	Which reacts fastest with N-bromosuccinimide (NBS)?
	(1) Toluene (2) Methane (3) Pyridine (4) Benzene
2.	When vinyl cyanide reacts with ethylalcohol in presence of a base, what is formed?
	(1) $CH_2 = CH - OH$ (2) $C_2H_5O - CH_2 - CH_2CN$
	(3) CH_3CH_2OH (4) $C_2H_5 - O - C_2H_5$
3.	Which is the best leaving group?
	(1) Chloride (2) Fluoride (3) Tosylate (4) None
4.	With cis-alkenes, the triplet carbenes give :
	(1) cis-product (2) trans-product
	(3) no product (4) both cis and trans products
5.	DNFB is used to identify N-terminal amino acid of peptides. The reagent is called:
	(1) Van-Slyke reagent (2) Sorenson reagent
	(3) Sanger's reagent (4) Stephens reagent
6.	Continuous wave NMR spectroscopy involves:
	(1) sequential detection of resonances of nuclei
	(2) simultaneous detection of all resonances of nuclei
	(3) sometimes sequential and sometimes simultaneous detection of nuclei
	(4) None
7.	The addition of Br_2 to methyl acetylene to give trans-1, 2-dibromopropene is a :
	(1) Stereoselective reaction
	(2) Stereospecific reaction
	(3) Stereoselective and Stereospecific reaction
	(4) None

8.	The reagent used in Edman degradation for N-terminal group analysis of peptides is :						
	(1) Phenyl isothiod	cyanate	(2)	Benzylchlorofo	rma	te	
	(3) DNFB		(4)	Di-t-butyl carbo	onat	e	
9.	Aspartic acid show	rs: «.1					
*	(1) pKa ₁ slee	Sun the Section	(2)	pKa ₂			
	(3) pKa_1 and pKa_2		(4)	pKa_1 , pKa_2 and	l pK	ca ₃	
10.		about grading of sug	ars ?	1			
	(1) Sucrose-1	(2) Fructose-1.75	(3)	Lactose-6	(4)	Saccharin-3500	
11.	The force constant	of a diatomic S.H.O.	can	be calculated by	emp	oloying relation :	
	$(1) k = 4\pi^2 c^2 \left(\overline{v}^2\right) \mu$		(2)	$k = 4\pi^2 c \left(\overline{v}^2\right) \mu$			
	(3) $k = 4\pi^2 c(\overline{v}) \mu^2$	norm ·	(4)	$k = 4\pi^2 \mu c$			
	where all the symb	ols have their usual r	near	ning.			
12.	Zero point energy	for diatomic molecule	e po	ssessing harmon	ic m	notion is:	
	(1) zero	(2) hv	(3)	$\frac{1}{2}hv$	(4)	$\frac{1}{3}hv$	
13.	The power output is:	of a laser in which 2	.0 J	pulse can be del	iver	ed in one nanosecond	
	(1) 2.0 GW	(2) 20.0 GW	(3)	0.20 GW	(4)	None of these	
14.	For Arhenius equal	tion, $A = e^{-E_a/RT}$, if	$\Gamma \rightarrow$	∞, then value of	E_a	will be:	
	(1) positive	(2) negative	(3)	zero	(4)	equal to A	
15.	The molarity of pur	re water is :					
	(1) 50	(2) 18	(3)	100	(4)	55.6	
16.	The degeneracy of is:	the rotational energy	lev	el with J = 4 for a	het	terodiatomic molecule	
	(1) 4	(2) 7	(3)	9	(4)	8	
G-EE	-2013/Chemistry/(B)						

17.	Mean	free	path	of a	gas	mol	ecul	e is	9
	TAICHLE	rice	pulle	OI a	Dun	11101	ccui	- 11	0

- (1) inversely proportional to pressure
- (2) directly proportional to pressure
- (3) independent of pressure
- (4) independent of temperature

In B.E.T. equation one of the following statement is *not* true. Select the one: 18.

- (1) It considers the multi layer adsorption
- (2) It doesn't use the concept of saturation of vapour pressure
- (3) It is not valid for porous adsorbent
- (4) It uses the concept of latent heat of condensation

19. No diffraction would result, if:

- (1) $\lambda < < 2d$
- (2) $\lambda \approx 2d$ (3) $\lambda < < d$
- (4) $\lambda > > 2d$

20.
$$11.2 \times 10^3$$
 m³ of a gas at STP requires 104.6 J to raise its temperature by 10 degree. The C_v for the gas is :

- (1) 20.92 J deg⁻¹ mole⁻¹
- (2) $10.46 \, J \, \text{deg}_{10}^{-1} \, \text{mole}^{-1}$

(3) 9.4 J deg⁻¹ mole⁻¹

(4) zero

- (1) zero
- (2) one
- (3) four
- (4) one and half

- (1) $\underset{P\to 0}{limit} \frac{p}{f} = 1$ (2) $\underset{P\to 0}{limit} \frac{f}{p} = 1$ (3) $\underset{f\to 0}{limit} \frac{p}{f} = 1$ (4) $\underset{P\to 0}{limit} \frac{p}{f} = 0$

23. Choose the correct relation:

 $(1) \quad (\partial A/\partial T)_p = \left(\frac{\partial G}{\partial T}\right)_{V}$

(2) $\left(\frac{\partial A}{\partial T}\right)_{V} = \left(\frac{\partial G}{\partial T}\right)_{P}$

(3) $\left(\frac{\partial T}{\partial S}\right)_{R} = \left(\frac{\partial V}{\partial S}\right)_{R}$

(4)
$$\left(\frac{\partial S}{\partial P}\right)_T = -\left(\frac{\partial T}{\partial V}\right)_P$$

24.	For the combustion of one mole of CH ₃	COOH(l) at 298 K, Δn is:
	(1) 1 (2) -1	(3) zero (4) -1/2
25.	In the limit $T \rightarrow 0$, for a crystal:	
	(1) $S_T = 3C_p$ (2) $S_T = 2C_p$	(3) $S_T = C_p / 2$ (4) $S_T = C_p / 3$
	where C_P is the heat capacity at consta	
26.	The compressibility factors of Vander V	Vaal gas at critical point is:
	(1) 0.375 (2) 0.400	(3) zero (4) 0.512
27.	The Joule-Thomson expansion of an ide	eal gas is:
	(1) Adiabatic process	(2) an isentropic process
	(3) an isenthalpic process	(4) an isothermal process
28.		an orthorhombic unit cells having $a = 50$ pm
	(1) 2.9 pm (2) 29 pm	(3) 9.2 pm (4) 92 pm
29.	The cell potential is a !	
	(1) Colligative property	(2) Thermodynamic property
	(3) Intensive property	(4) Extensive property
30	The solubility of silver chloride in wa product will be:	ter at 298.15 K is $0.00179 \text{ g litre}^{-1}$. The solubilit
	(1) $156 \times 10^{-10} \mathrm{mol}^2 \mathrm{dm}^{-6}$	(2) $1.56 \times 10^{-9} \mathrm{mol}^2 \mathrm{dm}^{-6}$
	(3) $15.6 \times 10^{-12} \mathrm{mol}^2 \mathrm{dm}^{-6}$	(4) $1.56 \times 10^{-10} \mathrm{mol}^2 \mathrm{dm}^{-6}$
31	to the TT I was in alternated to	xidizing agent in water ?
31	$(1) F_2 \qquad (2) Cl_2$	(3) Br_2 (4) I_2
32	2. Which of the oxides is most acidic in	nature?
	(1) CO (2) CO ₂	(3) N_2O_5 (4) SO_3
PG-	EE-2013/Chemistry/(B)	TENZUAL MONTH OF THE TOP

PG-EE-2013/Chemistry/(B)

P. T. O.

33.	Which of the following is most stable?	Supply and to implete the second state of
	(1) Ce^{2+} (2) Eu^{2+} (3)	Sm^{2+} (4) Pr^{2+}
34.	Pitchblende is an Ore of :	(see 1.0 - 1
	(1) Lanthanum (2) Cerium (3)	Uranium (4) Thorium
35.	· How many Isomers are possible for the com	plex $K_2[Pt(NH_3)_4Cl_2]$?
	(1) One (2) Two (3)	Four (4) Six
36.	· What is the spin only magnetic moment of [$Fe(CN)_6$ ³⁻ ion?
	(1) 5.92 (2) 4.90 (3)	2.83 (4) 1.73
37.		
	$(1) d^3 (2) d^4 (3)$	$d^5 \qquad \qquad (4) d^8$
38.	· How many unpaired electrons are present in	$n \left[CoF_6 \right]^{3-}$ ion?
	(1) Zero (2) One (3)	Two (4) Four
39.	• Predict the type of isomerism in $[Co(NH_3)_6]$	$[Cr(CN)_6]$ and $[Cr(NH_3)_6][Co(CN)_6]$:
	(1) Linkage Isomerism (2)	Coordination Isomerism
	(3) Stereoisomerism (4)	Coordination position Isomerism
40.	Which of the following complex ions will no (1) $\left[Co(CN)_4\right]^{2-}$ (2) $\left[Ni(CN)_4\right]^{2-}$ (3)	[1] [1] [1] [1] [1] [1] [1] [1] [1] [1]
41.	. What is the decreasing order of chemical shi	fts for protons among these ?
	(1) Alkynes > Alkanes > Alkenes (2)	Alkanes > Alkenes > Alkynes
	(3) Alkynes > Alkenes > Alkanes (4)	Alkenes > Alkynes > Alkanes
42.	The singlet at about 4.0 ppm in the proton I which protons?	NMR spectrum of methylacetate is due to
	(1) Methyl (2)	Methoxy
	(3) Methyl and Methoxy (4)	None of these

43.	Which is <i>not</i> an anti-cancer drug?		
	(1) Vincristine	(2) Cyclophospha	mide
	(3) Doxorubicin	(4) Gabapentin	
44.	Hexene-1 after reaction with metachlo lithium aluminium hydride and then	oro-perbenzoic acid for with water in acidic n	ollowed by treatment with nedium gives:
	(1) Hexane (2) Hexan-1-ol	(3) Hexan-2-ol	(4) None
45.	Write the symbol of atomic orbital if n	l = 3, l = 2 and $m = -2$	2, -1, 0, +1, +2:
	(1) 2s (2) 3s	(3) 3p	(4) 3d
46.	An element with atomic number 72 be	elongs to:	
	(1) s-block (2) p-block	(3) d-block	(4) f-block
47.	Which of the following metals has lov	vest ionization potent	rial?
	(1) Lithium (2) Sodium	(3) Berylium	(4) Magnesium
48.	Which cation has highest polarizing p	oower?	2.
		(3) K ⁺	(4) Al^{3+}
49.	How many lone pairs of electrons are	present in ICl ₂ ion?	more at appointd (1)
	(1) Zero (2) One	(3) Two	(4) Three
50.	Which of the following molecules/io	ns has smallest O - C	bond?
	(1) O_2 (2) O_2^+	(3) O ₂	(4) O_2^{2-}
51.	Which is a local anaesthetic?		
	(1) Cocaine (2) Quinine	(3) Morphine	(4) None
52.	Which enhances the absorption of Vi	tamin A?	
	(1) Vit. K (2) Vit. C	(3) DMG	(4) None
53.	. By which of the following reaction, a	cetophenone can be	converted to phenol?
	(1) m-CPBA followed by base cataly		
+	(2) Conc. HNO ₃		
	(3) Iodine and NaOH		
	(4) Singlet oxygen followed by hyd	rolysis	
PG-E	EE-2013/Chemistry/(B)		

54.	Diazomethane with acetylene gives:
	(1) Pyrazole (2) Pyrazoline (3) Piperidine (4) Pyrimidine
55.	Cinnamoyl alcohol with lead tetraacetate gives :
	(1) Cinnamic acid (2) Cinnamoyl acetate
	(3) Cinnamaldehyde (4) Acetophenone
56.	Betaine is an intermediate in :
	(1) Wittig reaction (2) Stobbe reaction
	(3) Stephenson reduction (4) MPV reduction
57.	If the migrating group in Beckman rearrangement is chiral, then:
	(1) Its configuration will change
	(2) Its configuration will be retained
	(3) Both
	(4) None
58.	Which reduces only the carbonyl group in the presence of nitro, carboxyl, double bond and ester functional groups?
	(1) LAH (2) Na/NH_3 (3) $NaBH_4$ (4) H_2/Ni
59.	Which is the correct decreasing order of reactivity towards electrophilic aromatic substitution?
	(1) Indole > Pyrrole > Pyridine (2) Pyrrole > Pyridine > Indole
	(3) Pyrrole > Indole > Pyridine (4) Indole > Pyridine > Pyrrole
60.	OH signal of alcohol appears at what ppm range?
	(1) $0.5 - 5.0$ (2) $0.1 - 8.0$ (3) $0.3 - 4.0$ (4) $0.3 - 10.0$
61.	In Rutile structure, the coordination number of Titanium atoms is:
	(1) Six (2) Four (3) Two (4) Eight
PG-EE	F. T. O.

62.	Which of the following metal ion pairs have similar ionic radii?						
	(1) Ti^{4+} and Zr^{4+}	workings Tr(6)	(2)	V^{5+} and Nb^{5+}		SERVICE AND	
*	(3) Cr^{3+} and Mn^3	+	(4)	Zr^{4+} and Hf^{4+}	OPIC		
63.	Which of the follow	ving solid will behav	e as p	-type semicond	ucto	or?	
	(1) NaCl	(2) ZnS	(3) I	FeS	(4)	AgCl	
64.	Which metal has hi	ighest cohesion ener	gy?	e Vallationer			
	(1) Cobalt	(2) Nickel	(3) (Copper	(4)	Zinc	
65.	The aqueous soluti	on of which metal io	n will	be colourless?			
	(1) Ti ³⁺	(2) Cr^{3+}	(3)	Cu ⁺	(4)	Cu^{2+}	
66.	Which of the follow	ving is a Lanthanide	eleme	ent?		m Aconodisti)	
	(1) Francium	(2) Europium	(3)	Tungsten	(4)	Polonium	
67.	In the reaction HC	$1O_4 + HF \rightleftharpoons H_2F^+ +$	-ClO ₄	the base is:			
	(1) HClO ₄	(2) HF	(3)	H_2F^+	(4)	ClO ₄	
68.	Which of the follow	wing will behave as a	a Lewi	s acid?			
	(1) NH ₃	(2) NH ₄ ⁺	(3)	BF ₃	(4)	CH ₄	
69.	If you titrate an aq	ueous solution of bo	rax wi	th HCl, indicate	or us	sed will be:	
	(1) Phenolphthale	in	(2)	Methyl orange			
	(3) Methyl red			Eriochrome bla			
70.		ept, the hardest acid					
	(1) Fe^{3+}	(2) Zn^{2+}	(3)	Ag^+	(4)	Hg^{2+}	
71.	How many peaks	are observed in UV-	visible	absorption spe	ectra	of $[Ni(H_2O)_6]^{2+}$?	
	(1) One	(2) Two	(3)	Three	(4)	Four	
72.		Term of Cr^{3+} :					
		(2) 4 _F	(3)	2 _D	(4)	3 _P	
PG-EI	E-2013/Chemistry/(B	5)					

Predict the Point Group in $Fe(CO)_5$:

- (1) O_h
- (2) C_{3V}
- (3) C_{2V} (4) D_{3h}

74. Nitrogenase enzyme consists of :

- (1) Co
- (2) Se
- (3) Mo, Fe (4) Mg

75. Vitamin B_{12} consists of:

- (1) Fe
- (2) Co
- (3) Mn
- (4) V

76. Complete the reaction:

$$\frac{235}{92}U + \frac{1}{0}n \rightarrow \frac{141}{56}Ba + \frac{92}{36}Kr + \dots$$

- $(1) \ 2 \ {}_{0}^{1} n$
- $(2) \frac{1}{1}H$
- (3) ${}_{1}^{2}H$ (4) ${}_{2}^{4}He$

Bhopal Tragedy which killed thousands of people, was due to air pollution of :

(1) CO

(2) SO₂

(3) Nitrogen oxides

(4) Methyl Isocyanate

The cartesian components of angular momentum in a direction parallel to x-axis is given by:

- (1) $\hat{L}_x = i\hbar \left[x \cdot \frac{\partial}{\partial x} z \cdot \frac{\partial}{\partial z} \right]$
- (2) $-i\hbar \left[y \cdot \frac{\partial}{\partial z} z \cdot \frac{\partial}{\partial y} \right]$
- (3) $\hat{L}_x = i\hbar \left[y \cdot \frac{\partial}{\partial z} z \cdot \frac{\partial}{\partial u} \right]$ (4) $-i\hbar \left[x \cdot \frac{\partial}{\partial z} z \cdot \frac{\partial}{\partial x} \right]$

Operators \hat{A} and \hat{B} are said to be commutative, if :

(1) $\hat{A} - \hat{B} = 0$

(2) $\hat{A} + \hat{B} = 0$

(3) $\hat{A} \hat{B} - \hat{B} \hat{A} = 0$

(4) $\hat{A} \hat{B} + \hat{B} \hat{A} = 0$

The wave function for a particle in one dimensional box is expressed as:

- (1) $\frac{\sqrt{2}}{a} \sin \frac{n\pi x}{a}$ (2) $\sqrt{\frac{2}{a}} \frac{n\pi x}{a}$ (3) $\sqrt{\frac{2}{a}} \sin \frac{\pi x}{a}$ (4) $\sqrt{\frac{2}{a}} \sin \frac{n\pi x}{a}$

91	C = C frequency in	Oct-4-ene	appears	at:
01.	C = C frequency in	Oct 1 che	appears	

- (1) 1680-1600 cm⁻¹ (very weak)
- (2) 1680-1600 cm⁻¹ (strong)
- (3) 1680-1600 cm⁻¹ (m)
- (4) No peak in this region of 1680-1600 cm⁻¹

82. I for C-13 is:

- (1) 1
- (2) 1/2 (3) 3/2

- (1) 1

- (4) 3

- (1) $J^1 > J^2 > J^3$ (2) $J^3 > J^2 > J^1$ (3) $J^1 = J^2 = J^3$ (4) None of these

- (1) Primary (2) Secondary (3) Tertiary
- (4) None

86. Which is a better Diels Alder Diene for reaction with maleic anhydride?

- (1) Furan
- (2) Pyrrole
- (3) Thiophene
- (4) Pyridine

87. Which is a strong base?

(1) Aniline

(2) Cyclohexylamine

(3) Pyrrole

(4) Quinoline

88. Which is the right decreasing order of nucleophilicity?

(1)
$$CH_3 - CH_2 > NH_2 > CH = \overset{\odot}{C} > \overset{\odot}{OH}$$

(2)
$$CH \equiv \overset{\Theta}{C} > \overset{\Theta}{NH_2} > CH \equiv \overset{\Theta}{C} > \overset{\Theta}{OH}$$

(3)
$$\overset{\Theta}{OH} > \overset{\Theta}{NH_2} > CH = \overset{\Theta}{C} > CH_3 - \overset{\Theta}{CH_2}$$

(4)
$$\stackrel{\Theta}{NH_2} > CH \equiv \stackrel{\Theta}{C} > OH > CH_3 - \stackrel{\Theta}{CH_2}$$

89.	Which gives single r	nononitroderivativ	re?	
	(1) Naphthalene		(2) O-xylene	
	(3) Ethylbenzene		(4) p-xylene	
90.	Which one is most e	ffective in an SN^2	displacement on meth	yl bromide?
	(1) $C_2H_5\overset{\Theta}{O}$	(2) HO	(3) $C_6H_5\overset{\Theta}{O}$	(4) CH ₃ COOO
91.	In the lead acid batt	ery during chargin	g, the cathode reaction	n is:
	(1) reduction of Pb	⁺² to Pb	(2) formation of Pl	bSO ₄
	(3) formation of Pb	02	(4) None of these	
92.	When a radioactive	element loses one	'α' and two 'β' particle	es, it yields :
	(1) Isobar	(2) Isomer	(3) Isotope	(4) Allotrope
93.	50 ml of 0.1 NaOH a	re added to 49 ml	of 0.1 HCl. The pH of t	the resulting solution is:
	(1) 12	(2) 11	(3) 10	(4) 9
94.	The heat of reaction	is independent of		
	(1) Pressure		(2) Temperature	
	(3) Physical state		(4) The path by w	hich product is formed
95.	Which of the follow	ring will show ESR	spectra?	and the state of the state of
	(1) C_6H_6	(2) CH ₃	(3) CH ₄	(4) H ₂
96.	What is the frequen	cy of radiation pos	ssessing wave length	400 nm ?
			(3) $7.5 \times 10^9 \text{ S}^{-1}$	
97.	In aerosol, the disp	ersion medium is:		
	(1) Gas	(2) Solid	(3) Liquid	(4) Mixture of all
98.	The polymers cons	ist of coil like poly	mer chain are:	
	(1) Thermoplasts	(2) Elastomers	(3) Thermosets	(4) None of these
PC EI	E-2013/Chemistry/(B			P. T. C

- Which of the following is a state function?
 - (1) E-PV
- (2) E + PV (3) Q/W

TOPOTO MAN TO THE TOPOTO TO THE TOPOTO THE T

- (4) Q W
- The ilkovic equation for diffusion current is expressed as:

 - (1) $\vec{I}_d = 607n DC m^{2/3} t^{1/6}$ (2) $\vec{I}_d = 607n D^{1/2} C m^{2/3} t^{1/6}$

 - (3) $\vec{I}_d = 607nC D^{1/2} m^{2/3} t^{1/6}$ (4) $\vec{I}_d = 607n D^{1/2} C^{1/2} m^{1/3} t^{1/6}$