(DO NOT OPENTHIS QUESTION BOOKLET BEFORETIME OR UNTIL YOU ARE ASKED TO DO SO)

PG-EE-2013 **Five Year Mathematics (Hons.)**

Code

Time: 1¼ hours	Max.	Marks: 100	Total Questions: 100
Roll No	_(in figure)_		(in words)
Name	the stress of s	Father's Name	
Mother's Name	31.3.7	Date of Examination	
(Signature of the candida	ate)	(Sign	nature of the Invigilator

CANDIDATES MUST READ THE FOLLOWING INFORMATION / INSTRUCTIONS BEFORE STARTING THE QUESTION PAPER.

- All questions are compulsory and carry equal marks.
- The candidate must return the Question book-let as well as OMR answer-sheet to the 2. Invigilator concerned before leaving the Examination Hall, failing which a case of use of unfair-means / misbehaviour will be registered against him / her, in addition to lodging of an FIR with the police. Further the answer-sheet of such a candidate will not be evaluated.
- In case there is any discrepancy in any question(s) in the Question Booklet, the same may be brought to the notice of the Controller of Examinations in writing within two hours after the test is over. No such complaint(s) will be entertained thereafter.
- The candidate MUST NOT do any rough work or writing in the OMR Answer-Sheet. Rough work, if any, may be done in the question book-let itself. Answers MUST NOT be ticked in the Question book-let.
- Use only blue or black BALL POINT PEN of good quality in the OMR Answer-Sheet.
- There will be no negative marking. Each correct answer will be awarded one full mark. 6. Cutting, erasing, overwriting and more than one answer in OMR Answer-Sheet will be treated as incorrect answer.
- BEFORE ANSWERING THE QUESTIONS, THE CANDIDATES SHOULD ENSURE THAT THEY HAVE BEEN SUPPLIED CORRECT AND COMPLETE BOOK-LET. COMPLAINTS, IF ANY, REGARDING MISPRINTING ETC. WILL NOT BE ENTERTAINED 30 MINUTES AFTER STARTING OF THE EXAMINATION.

Question No.	Questions
1.	If A, B, C are three non-empty sets such that $A \cap B = \phi$, $B \cap C = \phi$, then (1) $A = C$ (2) $A \subset C$ (3) $C \subset A$ (4) None of these
2.	Two finite sets have m and n elements respectively. The total number of subsets of second set is 112 more than the total number of subsets of the first set. The values of m and n respectively are (1) 7,8 (2) 4,7 (3) 6,8 (4) 3,7
3.	The set of all second elements of the ordered pairs in a relation R from a set A to set B is called the (1) domain of the relation R (2) Range of the relation R (3) co-domain of the relation R (4) None of these
4.	 Let R = {(x, y): x, y ∈ A, x + y = 7}, where A = {1, 2, 3, 4, 5, 6, 7}, then (1) R is symmetric but not reflexive and not transitive (2) R is an equivalence relation (3) R is reflexive, symmetric but not transitive (4) R is not reflexive, not symmetric but is transitive
	Domain and range respectively of the function $f(x) = \sqrt{4 - x^2}$ are (1) $\{x : -2 \le x \le 2\}$, $\{x : -2 \le x \le 2\}$ (2) $\{x : -2 \le x \le 2\}$, $\{x : 0 \le x \le 2\}$ (3) $\{x : 0 \le x \le 2\}$, $\{x : 0 \le x \le 2\}$ (4) $\{x : 0 \le x \le 2\}$, $\{x : 0 \le x \le 2\}$

PG-EE-2013-Math (Hons) 5 Yrs. (1) Code-A

Question No.	Questions
6.	Let A = {1, 2, 3, 4}, B = {1, 5, 9, 11, 15, 16} and
	$f = \{(1, 5), (2, 9), (3, 1), (4, 5), (2, 11)\}.$
	Which of the following is true?
in un	(1) f is a relation from A to B
to salve.	(2) f is a function from A to B
	(3) f is a relation from B to A
	(4) f is a function from B to A
7.	The function $f: N \to N$ given by $f(x) = 3 \times is$
	(1) one-one and onto (2) one-one but not onto
	(3) onto but not one-one (4) Neither one-one nor onto
8.	Consider a binary operation $*$ on N defined as a $*$ b = $a^2 + b^2$. Choose the
	correct answer
	(1) * is both associative and commutative
	(2) * is associative but not commutative
	(3) * is commutative but not associative
	(4) * is neither commutative nor associative
9.	If cos 32° = m and cos x = 2 $m^2 - 1$; $\alpha_{\rm L} \beta$ are the values of x between 0° and 360°, then
	(1) $\alpha + \beta = 180^{\circ}$ (2) $\beta - \alpha = 200^{\circ}$
	(1) $\alpha + \beta = 180^{\circ}$ (2) $\beta - \alpha = 200^{\circ}$ (3) $\beta = 4 \alpha + 40^{\circ}$ (4) $\beta = 5 \alpha - 20^{\circ}$

PG-EE-2013-Math (Hons) 5 Yrs. (2) Code-A

Question No.	Questions		
10.	Which of the following is true for		
	$\tan (x+y) = \frac{\tan x + \tan y}{1 - \tan x \tan y}?$		
	(1) Angles x, y are odd multiple of $\frac{\pi}{2}$ and $(x + y)$ is multiple of π		
	(2) Angles x, y are multiple of π and $(x + y)$ is odd multiple of $\frac{\pi}{2}$		
	(3) None of the angles x, y and x + y is an odd multiple of $\frac{\pi}{2}$		
	(4) None of the angles x, y and $x + y$ is a multiple of π		
11.	For any real numbers x and y, cos x = cos y implies		
	(1) $x = n \pi + (-1)^n y$, where $n \in \mathbb{Z}$		
	(2) $x = n \pi \pm y$, where $n \in \mathbb{Z}$		
	(3) $x = n \pi + y$, where $n \in \mathbb{Z}$		
	(4) $x = (2 n + 1) \frac{\pi}{2} + y$, where $n \in \mathbb{Z}$		
12.	If the roots of the quadratic equation $x^2 + p + q = 0$ are tan 30° and tan 15°, then the value of $2 + q - p$ is		
	(1) 0 (2) 1 (3) 2 (4) 3		
The same of the sa	If $\cos^{-1} x + \cos^{-1} y = \frac{2\pi}{2}$, then $\sin^{-1} x + \sin^{-1} y$ is equal to		
	(1) $\frac{2\pi}{3}$ (2) $\frac{\pi}{3}$ (3) $\frac{\pi}{6}$ (4) π		
	$(3) \frac{\pi}{6} \qquad \qquad (4) \pi$		

PG-EE-2013-Math (Hons) 5 Yrs. (3) Code-A

Question No.	Questions
14.	Principal value of $\cot^{-1}\left(-\frac{1}{\sqrt{3}}\right)$ is
	$(1) \frac{2\pi}{3} \qquad (2) \frac{\pi}{3}$
i	(3) $-\frac{2\pi}{3}$ (4) $-\frac{\pi}{3}$
15.	$\tan^{-1}\left(\frac{x}{y}\right) - \tan^{-1}\frac{x-y}{x+y}$ is equal to
	(1) $\frac{\pi}{2}$ (2) $\frac{\pi}{3}$ (3) $\frac{\pi}{4}$ (4) $-\frac{3\pi}{4}$
16.	$3\cos^{-1}x - \pi x - \frac{\pi}{2} = 0$ has
	 (1) one solution (2) one and only one solution (3) no solution (4) more than one solution
17.	A set S is said to be an inductive set if (1) $x+1 \in S$ implies $x \in S$ and $1 \notin S$ (2) $x+1 \in S$ implies $x \in S$ and $1 \in S$ (3) $x \in S$ implies $1 \in S$ (4) $1 \in S$ and $x+1 \in S$ whenever $x \in S$
18.	If $\left(\frac{1+i}{1-i}\right)^x = 1$ and n is any positive integer then
	(1) $x = 2n$ (2) $x = 4n + 1$ (3) $3 = 2n + 1$ (4) $x = 4n$

PG-EE-2013-Math (Hons) 5 Yrs. (4) Code-A

Question No.	Questions
19.	The argument of complex number $\frac{1}{1+i}$ is (1) $\frac{\pi}{4}$ (2) $-\frac{\pi}{4}$ (3) $\frac{\pi}{2}$ (4) $-\frac{\pi}{2}$
20.	A linear inequality in two variables is known as (1) boundary of the half plane
	(2) line(3) half plane(4) feasible region
21.	IQ of a person is given by the formula $IQ = \frac{MA}{CA} \times 100$, where MA is mental age and CA is chronological age. If $84 \le IQ \le 144$ for a group of 12 years old children, the range of their mental age is (1) $7 \le MA \le 12$ (2) $10.08 \le MA \le 17.28$ (3) $0 \le MA \le 12$
	Number of different signals that can be generated by arranging at least 3 flags in order (one below the other) on a vertical staff, if five different flags are available, is (1) 15 (2) 125 (3) 243 (4) 300

PG-EE-2013-Math (Hons) 5 Yrs. (5) Code-A

Question No.	Questions		
23.	The least positive integer n for which		
	$^{n-1}C_3 + ^{n-1}C_4 < ^{n}C_5$ is		
	(1) 4 (2) 5 (3) 9 (4) 10		
24.	If letters of the word RADHIK are arranged in all positive ways and are written out as in a dictionary, then the word RADHIK appears at serial number		
	(1) 600 (2) 601 (3) 120 (4) 121		
25.	For a positive integer n, the value of		
	${}^{n}C_{0} - {}^{n}C_{1} + {}^{n}C_{2} - \dots + (-1)^{n}. {}^{n}C_{n}$ is		
	(1) 0 (2) 1 (3) -1 (4) 2^n		
26.	The remainder when 2 ³⁰⁰ is divided by 9 is		
	(1) 0 (2) 1 (3) 2 (4) 8		
27.	If the length of sides of a right triangle are in A. P., then the sines of acute angles of the triangle are		
	(1) $\frac{1}{3}$, $\frac{2}{3}$ (2) $\sqrt{\frac{3}{5}}$, $\sqrt{\frac{2}{3}}$		
	(3) $\sqrt{\frac{1}{3}}, \sqrt{\frac{2}{3}}$ (4) $\frac{3}{5}, \frac{4}{5}$		
28.	If the sum of the series $3 + \frac{3}{x} + \frac{9}{x^2} + \frac{27}{x^3} + \cdots$ is finite, then		
	(1) -3 < x < 3 (2) -1 < x < 1		
	(3) $ x > 9$ (4) $ x > 3$		

PG-EE-2013-Math (Hons) 5 Yrs. (6) Code-A

Question No.	Questions	
29.	If three points (h, 0), (a, b) and (0, k) lie on a line, then	
	(1) $\frac{a}{h} - \frac{b}{k} = 1$ (2) $\frac{a}{h} + \frac{b}{k} = 1$	
	(3) $\frac{b}{k} - \frac{a}{h} = 1$ (4) $\frac{a}{h} + \frac{b}{k} = -1$	
30.	The value (s) of k for which the line $(k-3) x - (4 - k^2) y + k^2 - 7 k + 6 = 0$ is	
	parallel to y-axis is	
	(1) 3 (2) \pm 3 (3) 6, 1 (4) \pm 2	
31.	Let the generator of a double-napped right circular cone be inclined to its	
	vertical axis at an angle α. A plane cuts the nappe (other than the vertex)	
	of the cone making an angle β with the vertical axis of the cone. The	
	section so obtained on this intersection is parabola if	
	(1) $\beta = 90^{\circ}$ (2) $\alpha < \beta < 90^{\circ}$	
	(3) $\beta = \alpha$ (4) $0 \le \beta < \alpha$	
32.	In an ellipse, the distance between the foci is 6 and minor axis is 8, then	
	the eccentricity is	
	(1) $\frac{3}{4}$ (2) $\frac{3}{5}$ (3) $\frac{4}{5}$ (4) $\frac{2}{3}$	
33,	Length of latus rectum of the hyperbola $\frac{y^2}{9} - \frac{x^2}{27} = 1$ is	
	(1) 18 (2) $2\sqrt{3}$ (3) 6 (4) $\frac{2}{3}$	

PG-EE-2013-Math (Hons) 5 Yrs. (7) Code-A

Question No.	Questions
34.	Ratio in which the line segment joining the points $(4, 8, 10)$ and $(6, 10, -8)$ is divided by the xz-plane is
	(1) 2:3 externally (2) 2:3 internally
	(3) 4:5 externally (4) 5:4 internally
35.	If the origin is the centroid of a triangle PQR and the co-ordinates of its two vertices P and Q are $(-4, 2, 6)$ and $(-4, -16, -10)$ respectively, then the co-ordinates of the vertex R are
na San	(1) $\left(-\frac{8}{3}, -\frac{14}{3}, -\frac{4}{3}\right)$ (2) $(-8, -14, -4)$
	(3) $\left(\frac{8}{3}, \frac{14}{3}, \frac{4}{3}\right)$ (4) $(8, 14, 4)$
36.	$\lim_{x \to 0} \frac{\sqrt{1 - \cos 2x}}{\sqrt{2} x}$
	(1) exists and it equals to 1
	(2) exists and it equals to -1
	(3) exists and it equals to 0 (4) does not exist
37.	If $\lim_{x \to 0} \frac{\sin px}{\tan 3x} = 4$, then the value of p is
	(1) $\frac{3}{4}$ (2) $\frac{4}{3}$ (3) 12 (4) 4

PG-EE-2013-Math (Hons) 5 Yrs. (8) Code-A

Question No.	Questions	
38.	The derivative of an even function is always	
	(1) an odd function (2) an even function	
	(3) does not exist (4) None of these	
39.	If $f'(3) = 2$, then $\lim_{h \to 0} \frac{f(3+h^2) - f(3-h^2)}{2h^2}$ is	
	(1) 1 (2) 2 (3) 0 (4) $\frac{1}{2}$	
40.	Which of the following sentences is not a statement?	
	(1) There are 35 days in a month	
	(2) The sum of 5 and 7 is greater than 10	
	(3) Mathematics is difficult	
	(4) All real numbers are complex numbers	
41.	Negation of $p \rightarrow q$ is	
	(1) $\sim p \vee q$ (2) $p \wedge (\sim q)$	
	$(3) \sim q \rightarrow \sim p \qquad (4) p \vee (\sim q)$	
42.	Five observations are given as 25, 25, 25, 25 and 25. The mean and standard	
	deviation of these observations are respectively	
	(1) 5 and 5 (2) 25 and 5	
	(3) 25 and 25 (4) 25 and 0	

PG-EE-2013-Math (Hons) 5 Yrs. (9) Code-A

Question No.	Questions
43.	If the median of 11 observations is 20 and if the observations greater than the median are increased by 5, then the median of the new data will be (1) 20 (2) 25 (3) $25 + \frac{20}{11}$ (4) $25 - \frac{20}{11}$
44.	An event is called a simple event if it has (1) only two sample points of a sample space (2) more than two sample points of a sample space (3) only one sample point of a sample space (4) No sample point of a sample space
45.	If A and B are two mutually exclusive events, then which of the following may not be true (1) occurrence of any one of them excludes the occurrence of the other event. (2) A and B cannot occur simultaneously (3) A and B are disjoint (4) A and B are equally likely
46.	Which of the following probabilities are not consistently defined? (1) $P(A) = 0.5$, $P(B) = 0.7$, $P(A \cup B) = 0.6$ (2) $P(A) = 0.5$, $P(B) = 0.7$, $P(A \cap B) = 0.4$ (3) $P(A) = 0.5$, $P(B) = 0.4$, $P(A \cup B) = 0.8$ (4) $P(A) = 0.6$, $P(B) = 0.7$, $P(A \cup B) = 0.8$

PG-EE-2013-Math (Hons) 5 Yrs. (10) Code-A

Question No.	Questions	
47.	The probability that a student will pass the final examination in both English and Hindi is 0.5 and the probability of passing neither is 0.2. If the probability of passing the English examination is 0.75, the probability of passing the Hindi examination is	
	(1) 1 (2) 0.55 (3) 0.05 (4) 0.45	
48.	The number of all possible matrices of order 3 × 3 with each entry 1 or 2 is (1) 18 (2) 27 (3) 256 (4) 512	
49.	 Which of the following is not true for a square matrix A? (1) A can be expressed as the sum of a symmetric and a skew symmetric matrix (2) If A is skew symmetric matrix, then all its diagonal elements are zero (3) A + A' is a skew symmetric matrix (4) A is symmetric if A' = A. 	
50.	If $A = \begin{bmatrix} \cos 2\alpha & -\sin 2\alpha \\ \sin 2\alpha & \cos 2\alpha \end{bmatrix}$, then $A + A' = I$, if the value of α is (1) $\frac{\pi}{6}$ (2) $\frac{\pi}{3}$ (3) π (4) $\frac{3\pi}{6}$	

PG-EE-2013-Math (Hons) 5 Yrs. (11) Code-A

Question No.	Questions
51.	A, B are symmetric matrices of same order, then BA – AB is a (1) symmetric matrix (2) skew-symmetric matrix (3) zero matrix (4) Identity matrix
52.	Let $A^2 - A + 1 = 0$ and $ A \neq 0$, the inverse of A is (1) $I - A$ (2) $A - I$ (3) $A + I$ (4) A
53.	If A and B are two matrices such that $AB = B$ and $BA = A$, then $A^2 - B^2$ is equal to (1) 0 (2) $A + B$ (3) $A - B$ (4) AB
54.	Let A be a square matrix of order 3×3 , then $ 5A $ is equal to (1) $5 A $ (2) $25 A $ (3) $125 A $ (4) $15 A $
55.	Let A be a non-singular square matrix of order 3×3 and $ A = 3$. Then $ adj A $ is equal to (1) 3 (2) 9 (3) 27 (4) 81
56.	If A is an invertible matrix of order 3 and det (A) = 3, then det (A ⁻¹) is equal to (1) $\frac{1}{3}$ (2) 3 (3) 9 (4) 0

PG-EE-2013-Math (Hons) 5 Yrs. (12) Code-A

Question No.	Questions
57.	The value of k for which the system of equations
	x + ky - 3z = 0
	3x + ky - 2z = 0
	2x + 3y - 4z = 0
	has a non-trival solution is
	(1) $\frac{21}{10}$ (2) 2 (3) $\frac{31}{10}$ (4) 4
58.	Minor of an element of a determinant of order 4 is a determinant
	of order
	(1) 4 (2) 3 (3) 2 (4) 1
59.	Let A and B are square matrices of the same order with $ A = 3$ and $ B = 5$ them $ AB $:
	B = -5, then $ AB $ is
	(1) $\frac{5}{3}$ (2) 15 (3) -15 (4) None of these
60.	Matrix equation of a system of linear equations is AX = B and A is a singular
1	natrix, then the system of equations is called inconsistent if
(1) $(adj A) B = 0$ (2) $Adj A = 0$
(3) $B = 0$ (4) $(adj A) B \neq 0$
61. L	Let h (x) = min $\{x, x^2\}$ for every real number x. Then
	l) h is continuous for all x
(2	
(3	h'(x) = 0 for all x > 1
(4	

PG-EE-2013-Math (Hons) 5 Yrs. (13) Code-A

Question No.	Questions			
62.	Let a function f be defined by $f(x) = \frac{x - x }{x}$ for $x \neq 0$ and $f(0) = 2$.			
	Then f is			
	(1) continuous nowhere			
	(2) continuous everywhere			
	(3) continuous for all x except at x = 1			
	(4) continuous for all x except at x = 0			
63.	$\frac{d}{dx} \left[\tan^{-1} \left(\sec x + \tan x \right) \right]$ is equal to			
in the second	$(1) 0 \qquad \qquad (2) \sec x - \tan x$			
	(3) $\frac{1}{2}$ (4) 2			
64.	If $x = \log t$ and $y = t^2 - 1$, then $\frac{d^2y}{dx^2}$ at $t = 2$ is			
	(1) 8 (2) 16 (3) 4 (4) 2			
65.	If $y = \sin^{-1}\left(\frac{1-x^2}{1+x^2}\right)$, $0 < x < 1$; then $\frac{dy}{dx}$ is equal to			
	(1) $\frac{2}{\sqrt{1-x^2}}$ $\frac{2}{\sqrt{1-x^2}}$			
	(3) $\frac{2}{1+x^2}$ (4) $\frac{-2}{1+x^2}$			

PG-EE-2013-Math (Hons) 5 Yrs. (14) Code-A

Questio No.	Questions				
66.	Let A and B be two points on the graph of function y = f(x) corresponding				
	tox	to $x = a$ and $x = b$. If Lagrange's mean value theorem is applicable over the			
	inte	interval [a, b], then there exists at least one point on the graph between A			
	and	B, the tangent a	at which is par	rallel to	
	(1)	x-axis	(2)	2) y-axis	
	(3)	the chord AB	(4)	l) line $y = x$	
67.	The	The rate of change of the volume of a sphere with respect to its radius r			
	at r	= 6 cm is			
	(1)	144 π.	(2)) 48 π	
	(3)	432 π	(4)) 12 π	
68.	The	points on the cu	$rve y = x^3 at w$	which the slope of the tangent is equal to	
	the y	v-coordinate of ti	he point are		
	(1)	(0, 0), (1, 3)	(2)	(0, 0), (2, 8)	
	(3)	(0, 0), (3, 27)	(4)	(0, 0), (4, 48)	
69.	The point on the curve $x^2 = 2$ y in the second quadrant which is nearest to				
	the p	oint (0, 5) is		A LANGE OF THE STATE OF THE STA	
	(1)	(-2, 2)	(2)	$\left(-2\sqrt{2},4\right)$	
	(3)	$\left(-1,\frac{1}{2}\right)$	(4)	$\left(-\sqrt{2},1\right)$	

PG-EE-2013-Math (Hons) 5 Yrs. (15) Code-A

Question No.	Questions
70.	If $\frac{d}{dx} f(x) = \sin 2 x - 4 e^{3x}$ such that $f(0) = \frac{7}{6}$, then $f(x)$ is
	(1) $-\frac{1}{2}\cos 2x - \frac{4}{3}e^{3x} + 3$ (2) $\cos 2x - 4e^{3x} - \frac{11}{6}$
	(3) $\frac{1}{2}\cos 2x - \frac{4e^{3x}}{3} - 3$ (4) $-\frac{1}{2}\cos 2x - \frac{4}{3}e^{3x} - 3$
71.	Choose the correct answer:
	$\int \frac{20 x^{19} + 20^x \log_e 20}{x^{20} + 20^x} dx equals$
	(1) $x^{20} + 20^x + c$
	(2) $\log \left(\frac{1}{x^{20} + 20^x} \right) + c$
11.4	(3) $\log \left(20 x^{19} + 20^x \log_e 20\right) + c$
	(4) $\log (x^{20} + 20^x) + c$
72.	The value of $\sqrt{2} \int \frac{\sin x}{\sin \left(x - \frac{\pi}{4}\right)} dx$ is
	(1) $x + \log \left \cos \left(x - \frac{\pi}{4} \right) \right + c$ (2) $-x - \log \left \sin \left(x - \frac{\pi}{4} \right) \right + c$
	(3) $x + \log \left \sin \left(x - \frac{\pi}{4} \right) \right + c$ (4) $x - \log \left \cos \left(x - \frac{\pi}{4} \right) \right + c$

PG-EE-2013-Math (Hons) 5 Yrs. (16) Code-A

Question No.	Questions
73.	The function $f(x) = \int \frac{x-2}{x^2 - 7x + 12} dx$ (1) decreases on R
	(1) decreases on R (2) increases on R – (2, 3)
	(3) increases on $(2, 3) \cup (4, \infty)$
	(4) (2, ∞)
74.	$f(x) = \int \frac{dx}{\sin^4 x} is a$
	(1) polynomial of degree 3 in cot x
	(2) polynomial of degree 4 in cot x
	(3) polynomial of degree 4 in cosec x
	(4) polynomial of degree 3 in cosec x
75.	The value of the integral $\int_{-\frac{1}{2}}^{\frac{1}{2}} \left([x] + \log \frac{1+x}{1-x} \right) dx$, where [x] is the greates integral function of x, is
	(1) $\frac{1}{2}$ (2) 0
((4) $2 \log \frac{1}{2}$
76.	The value of $\int_0^1 \cot^{-1} \left(\frac{2x-1}{1+x-x^2} \right) dx$ is
(1) 1 (2) 0 (3) $\frac{\pi}{4}$ (4) $\frac{\pi}{2}$

PG-EE-2013-Math (Hons) 5 Yrs. (17) Code-A

Question No.	Questions				
77.	Suppose that the graph of $y = f(x)$ contains the points $(0, 4)$ and $(2, 7)$.				
	If f' is continuous, then $\int_{0}^{2} f'(x) dx$ is equal to				
	(1) 11 (2) 7 (3) 4 (4) 3				
78.	The area of the region bounded by the curves $y = x-2 $, $x = 1$, $x = 3$ and the x-axis is				
	(1) 4 (2) 3 (3) 2 (4) 1				
79.	Area lying in the first quadrant bounded by the circle $x^2 + y^2 = 4$ and the lines $x = 0$ and $x = 2$ is				
	(1) π (2) $\frac{\pi}{2}$ (3) $\frac{\pi}{3}$ (4) $\frac{\pi}{4}$				
80.	Let $f(x) = \int_{1}^{x} e^{-t^{2}/2} (1-t^{2}) dt$, then f has				
	(1) maximum at $x = 0$ (2) maximum at $x = -1$				
	(3) maximum at $x = -1$ (4) no critical point				
81.	The degree of the differential equation				
	$\left(\frac{\mathrm{d}^2 y}{\mathrm{d} x^2}\right)^{3/2} - \left(\frac{\mathrm{d} y}{\mathrm{d} x}\right)^{1/2} - 4 = 0 \text{ is}$				
	(1) 6 (2) 4 - (3) 3 (4) 2				
82.	The number of arbitrary constants in the particular solution of a differential equation of second order is				
	(1) 3 (2) 2 (3) 1 (4) 0				

PG-EE-2013-Math (Hons) 5 Yrs. (18) Code-A

Question No.	Questions	34	
83.	The general solution of the differential equation $\frac{dy}{dx} = e^{x-y}$ is	110	
	(1) $e^x - e^y = c$ (2) $e^x - e^{-y} = c$		
	(3) $e^{-x} - e^{y} = c$ (4) $e^{x} + e^{y} = c$		
84.	Direction cosines of the vector $\hat{\mathbf{i}} + \hat{\mathbf{j}} - 2 \hat{\mathbf{k}}$ are	1 68 1	
	(1) (1, 1, -2)		
	(2) $\left(\frac{1}{2}, \frac{1}{2}, -1\right)$		
	(3) $\left(\frac{1}{2\sqrt{2}}, \frac{1}{2\sqrt{2}}, -\frac{1}{\sqrt{2}}\right)$		
	(4) $\left(\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, -\frac{2}{\sqrt{6}}\right)$		
85.	Projection of vector $2\hat{i} + 3\hat{j} + 2\hat{k}$ on the vector $\hat{i} + 2\hat{j} + \hat{k}$ is	A BE I	
	(1) $\frac{2\sqrt{15}}{3}$ (2) $\frac{5}{3}\sqrt{6}$		
	(3) 10		
86.	36. If \vec{a} and \vec{b} are two unit vectors and θ is the angle between the		
	a - b is a unit vector if		
	(1) $\theta = \frac{\pi}{4}$ (2) $\theta = \frac{\pi}{3}$		
	(3) $\theta = \frac{\pi}{2}$ $(4) \theta = \frac{2\pi}{3}$		

PG-EE-2013-Math (Hons) 5 Yrs. (19) Code-A

Question No.	Questions				
87.	$\left(\vec{a} + \vec{b}\right) \cdot \left(\vec{a} + \vec{b}\right) = \left \vec{a}\right ^2 + \left \vec{b}\right ^2$ if and only if				
	(1) $\vec{a} = \vec{b}$ (2) \vec{a} is parallel to \vec{b}				
	(3) \vec{a} , \vec{b} are perpendicular (4) $\vec{a} + \vec{b} = 0$				
88.	If a line makes angles 90°, 135°, 45° with the x, y and z-axis respectively, then its direction cosines are				
	(1) $0, \frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}$ (2) $0, \frac{1}{2}, \frac{\sqrt{3}}{2}$				
	(3) 1, 0, 0 (4) 0, $-\frac{1}{\sqrt{2}}$, $\frac{1}{\sqrt{2}}$				
89.	Distance of the point $(0, 0, 0)$ from the plane $3 \times 4 \times 12 = 3$ is				
	(1) 0 (2) $\frac{1}{3}$ (3) $\frac{3}{13}$ (4) $\frac{3}{11}$				
90.	The angle between the lines $2 x = 3 y = -z$ and $6 x = -y = -4 z$ is				
	(1) $\frac{\pi}{4}$ (2) $\frac{\pi}{6}$ (3) 0 (4) $\frac{\pi}{2}$				
91.	If $\vec{r} = x \hat{i} + y \hat{j} + z \hat{k}$, the equation of the plane through (3, 4, -1) which is parallel to the plane $2x - 3y + 5z + 7 = 0$ is (1) $\vec{r} \cdot (2 \hat{i} - 3 \hat{j} + 5 \hat{k}) + 11 = 0$				
	(2) $\vec{r} \cdot (3 \hat{i} + 4 \hat{j} - \hat{k}) + 11 = 0$				
	(3) $\vec{\mathbf{r}} \cdot (3 \hat{\mathbf{i}} - 4 \hat{\mathbf{j}} - \hat{\mathbf{k}}) + 7 = 0$ (4) $\vec{\mathbf{r}} \cdot (2 \hat{\mathbf{i}} - 3 \hat{\mathbf{j}} + 5 \hat{\mathbf{k}}) - 7 = 0$				

PG-EE-2013-Math (Hons) 5 Yrs. (20) Code-A

Question No.	Questions			
92.	The constants in a linear programming problem are			
	(1) linear (2) quadratic			
	(3) cubic (4) biquadratic			
93.	The common region determined by all the constants including non-negationstraints of a linear programming problem is called the (1) optimal solution			
2 then	(2) feasible solution			
	(3) infeasible solution			
	(4) unbounded solution			
94.	The corner points of the feasible region determined by the following system of linear inequalities:			
	$2 x + y \le 10$, $x + 3 y \le 15$; $x, y \ge 0$ are $(0, 0)$, $(5, 0)$, $(3, 4)$ and $(0, 5)$. Let			
	Z = px + qy, where p, $q > 0$. Condition on p and q so that the maximum of Z			
par en	occurs at both (3, 4) and (0, 5) is			
	(1) $p = q$ (2) $p = 2q$			
	(3) $q = 3 p$ (4) $p = 3 q$			
95.	If A and B be two events such that $P(A) = 0.4$, $P(A \cup B) = 0.8$. If A and B are independent events, then the probability $P(B)$ is			
	(1) $\frac{2}{5}$ (2) $\frac{3}{5}$			
	(3) $\frac{1}{5}$ (4) $\frac{2}{3}$			

PG-EE-2013-Math (Hons) 5 Yrs. (21) Code-A

A-oboD

Question No.	Questions	Question No.		
96.	If A and B are two events such that $0 < P(B) < 1$, then becomes T . (1) $P(A \overline{B}) + P(\overline{A} \overline{B}) = 1$. (2) $P(A B) + P(A \overline{B}) = 1$			
	 (3) P(A B)+P(A B)=1 (4) None of these 			
97.	If the standard deviation of the binomial distribution $(q + p)^{16}$ is mean of the distribution is (1) 6 (2) 8 (3) 10 (4) 12	2, then		
98.	A fair coin is tossed repeatedly. If head and tail appear altern on first 5 tosses, then the probability that head appears on th toss is (1) $\frac{1}{2}$ (2) $\frac{1}{32}$ (3) $\frac{1}{64}$ (4) $\frac{5}{64}$	PROPERTY AND ADDRESS OF THE PARTY OF THE PAR		
99.	A and B toss a coin alternatively till one of them gets a head and w game. If A begins the game, the probability that B wins the game is $(1) \frac{1}{2} \qquad (2) \frac{1}{3} \qquad (3) \frac{1}{4} \qquad (4) \frac{2}{3}$			
100.	Posteriori probability for an event is obtained using (1) Additive law of probability (2) Multiplication theorem of probability (3) Bayes' theorem (4) Classical definition of probability	7.60		

PG-EE-2013-Math (Hons) 5 Yrs. (22) Code-A