Question No.	Questions
1.	Length of the arc of the curve $x^2 + y^2 - 2$ ax = 0 in the first quadrant is
	$(1) \frac{\pi a}{4} \qquad (2) \frac{\pi a}{2}$
	(3) πα (4) 2 πα
2.	Area between the parabolas $y^2 = 4$ ax and $x^2 = 4$ ay is
	(1) $\frac{16}{3}$ a^2 (2) $\frac{16}{5}$ a^2
	(3) $\frac{8}{3} a^2$ (4) $\frac{8}{5} a^2$
3.	The number of arbitrary constants in the equation of a sphere are
	(1) 2 (2) 3 (3) 4 (4) 6
4.	Angle between the lines represented by $x^2 + 2 bxy - y^2 = 0$ is
	(1) π (2) $\frac{\pi}{2}$
	$(3) \frac{\pi}{3} \qquad \qquad (4) \frac{\pi}{4}$
5.	If a right circular cone has three mutually perpendicular generators, then
	semi-vertical angle of the cone is
	(1) $\frac{\pi}{4}$ (2) $\tan^{-1}\left(\frac{1}{\sqrt{2}}\right)$
	(3) $\frac{\pi}{3}$ (4) $\tan^{-1}(\sqrt{2})$

Question No.	Questions
6.	If a/bc and (a, b) = 1, then a/c is the statement of (1) Gauss theorem (2) Wilson theorem (3) Fermat's theorem (4) Chinese Remainder theorem
7.	Which of the following congruences have solution? (1) $x^2 \equiv -2 \pmod{61}$ (2) $x^2 \equiv 2 \pmod{61}$ (3) $x^2 \equiv -2 \pmod{59}$ (4) $x^2 \equiv 2 \pmod{59}$
8.	The highest power of 2 dividing 533 is (2) 529 (3) 530 (4) 532
9.	If $\sin^{-1} x + \sin^{-1} y = \frac{2\pi}{3}$, then $\cos^{-1} x + \cos^{-1} y =$ (1) $\frac{\pi}{2}$ (2) $\frac{\pi}{3}$ (3) $\frac{\pi}{6}$ (4) $\frac{2\pi}{3}$
10.	If $\cosh x = 2$, then $x =$ (1) $\log (2 - \sqrt{5})$ (2) $\log (2 - \sqrt{3})$ (3) $\log (2 + \sqrt{5})$ (4) $\log (2 + \sqrt{3})$

PG-EE-2013-Maths & Maths with (2) Comp. Sc.-Code-C

Question No.	Questions
11.	Dimension of Q $\left(\sqrt{2}\right)$ over Q is
	(1) 4 (2) 2 (3) 1 (4) 3
12.	Which of the following is an orthogonal set?
	(1) $\{(1,0,1), (1,0,-1), (-1,0,1)\}$
	(2) $\{(1,0,1), (1,0,-1), (0,1,0)\}$
	(3) $\{(1,0,1), (1,0,-1), (0,2,3)\}$
	(4) none of these
13.	Let u, v be orthogonal set in an inner product space V. Then u-v is
	(1) 0 (2) $\sqrt{3}$ (3) 2 (4) $\sqrt{2}$
14.	Let $u = (1, 0, i), v = (2, 0, 1 + i)$. Then $< u, v > is$
	(1) $1+i$ (2) $1-i$ (3) $2+i$ (4) $-1+i$
15.	Tangential velocity of a particle at a point is
	$(1) \frac{dx}{dt} \qquad \qquad (2) \frac{dy}{dt}$
	$(3) \frac{dt}{ds} \qquad \qquad (4) \frac{ds}{dt}$
16.	A person weighing 70 Kg. is in a lift ascending with an acceleration of 1.4 m/sec ² . The thrust of his feet on the lift is
	(1) 584 N (2) 780 N (3) 784 N (4) 980 N

Question No.	Questions	
17.	A particle is projected at such an angle that the horizontal range is three	
*	times the greatest height. Then the angle of projection is	
	(1) $\tan^{-1} \frac{2}{3}$ (2) $\tan^{-1} \frac{4}{3}$ (3) $\tan^{-1} \frac{3}{2}$ (4) $\tan^{-1} \frac{5}{3}$	
	(3) $\tan^{-1} \frac{3}{2}$ (4) $\tan^{-1} \frac{5}{3}$	
18.	A body of mass m has momentum M. Its Kinetic energy will be	
	(1) $\frac{M^2}{2 m}$ (2) $\frac{M^2}{m}$	
	(3) $\frac{1}{2} \text{ m M}^2$ (4) $\frac{1}{2} \text{ m M}$	
19.	The expression for frequency of a S. H. M. is	
	(1) $n = \frac{m}{\sqrt{2\pi}}$ (2) $n = \frac{\sqrt{m}}{2\pi}$	
1	(3) $n = \sqrt{\frac{m}{2\pi}}$ (4) $n = \frac{m}{2\pi}$	
20.	The law of force towards the pole under the curve $r^2 = 2$ ap is	
An and a	(1) $F \propto \frac{1}{r^2}$ (2) $F \propto \frac{1}{r^3}$	
	(3) $F \propto \frac{1}{r^5}$ (4) $F \propto \frac{1}{r^{\frac{3}{2}}}$	

Question No.	Questions	
21.	The number of abelian groups upto isomorphism of order 105 is	
	(1) 5 (2) 7 (3) 45 (4) 49	
22.	A communicative division ring is	
	(1) group (2) vector space	
	(3) field (4) integral domain	
23.	Ring of polynomial over a field is a	
	(1) prime field (2) unique factorization domain	
	(3) irreducible (4) integral domain	
24.	If integral domain D is of finite characteristic, then its characteristic is	
	(1) prime number (2) natural number	
	(3) even number (4) odd number	
25.	Number of prime ideals of Z ₁₀ is	
	(1) 4 (2) 3 (3) 2 (4) 1	
26.	Starting with $x_0 = 1$, the next approximation x_1 to $2^{\frac{1}{3}}$ obtained by	
	Newton's method is	
	(1) $\frac{4}{3}$ (2) $\frac{5}{3}$ (3) $\frac{5}{4}$ (4) $\frac{6}{5}$	
27.	In Simpson's $\frac{1}{3}$ rd rule, the curve $y = f(x)$ is assumed to be a	
	(1) circle (2) hyperbola	
	(3) parabola (4) straight line	

PG-EE-2013-Maths & Maths with (5) Comp. Sc.-Code-C

Question No.	Questions	
28.	Gauss quadrature formula is used for	
	(1) Numerical integration (2) Numerical differentiation	
	(3) Interpolation (4) Solution of equations	
29.	Let $f(0) = 1$, $f(1) = 2.72$, then the trapezoidal rule gives approximate value of $\int_0^1 f(x) dx$ as	
	(1) 3.72 (2) 1.86	
	(3) 1.76 (4) 0.92	
30.	Normal distribution becomes standard normal distribution when	
	(1) $\mu = 0, \ \sigma = 0$ (2) $\mu = 1, \ \sigma = 0$	
	(3) $\mu = 1, \ \sigma = 1$ (4) $\mu = 0, \ \sigma = 1$	
31.	$L\left\{e^{at} t^{n}\right\} = \frac{1}{2\pi} \left(e^{at} t^{n}\right) = \frac{1}{2\pi}$	
	(1) $\frac{n}{(s-a)^{n+1}}$ (2) $\frac{1(n)}{(s-a)^n}$	
	$(3) \frac{\underline{\mid n \mid}}{(s-a)^n} \qquad (4) \frac{\underline{\mid n \mid}}{(s-a)^{n+1}}$	
32.	$ \begin{bmatrix} 1 \\ \frac{1}{(s-4)^3} \\ 1 \\ \frac{1}{(s-4)^3} \\ 1 \\ \frac{1}{2} t^2 e^{4t} $ (2) $\frac{1}{2} t^2 e^{4t}$ (3) $\frac{1}{2} t e^{4t}$ (4) $t e^{4t}$	
	(1) $t^2 e^{4t}$ (2) $\frac{1}{2} t^2 e^{4t}$ (3) $\frac{1}{2} t e^{4t}$ (4) $t e^{4t}$	
	(3) $\frac{1}{2} \text{ t } e^{4t}$ (4) $\text{ t } e^{4t}$	

Question No.	Questions	
33.	Generating function for Bessel function J _n	(x) is
	$(1) e^{x} \left(\frac{1}{t} - t \right) \qquad (2) e^{\frac{x}{2}} \left(\frac{1}{t} - t \right)$	$-\mathbf{t}$
	(3) $e^{x}\left(t-\frac{1}{t}\right)$ (4) $e^{\frac{x}{2}}\left(t-\frac{1}{t}\right)$	$\left(\frac{1}{t}\right)$
34.	$\left\{J_{\frac{1}{2}}(x)\right\}^{2} + \left\{J - \frac{1}{2}(x)\right\}^{2} =$	macongues (6)
	$(1) \frac{\pi x}{2} \qquad (2) \frac{2}{\pi x}$	(a) + 5, (b)
	$(3) \frac{\sqrt{2}}{\pi x} \qquad (4) \frac{2}{\sqrt{\pi x}}$	THE STATE OF THE S
35.	If P _n (x) is Legendre polynomial of degree	e n, then $P_2(x) =$
1.	(1) $\frac{1}{2} (3 x^2 - 1)$ (2) $\frac{1}{2} (3 x^2 - 1)$	x^2+1
,	(3) $\frac{3}{2} x^2 - 1$ (4) $x^2 - 1$	
36.	Maximum size of a float variable is	Committee that which the
	(1) 2 bytes (2) 3 by	tes
	(3) 4 bytes (4) 8 by	
37	7. Which of following Keyword is used for	the storage class 2
	(1) auto (2) prir	ntf
	(3) external (4) scar	nf 3 . A in

PG-EE-2013-Maths & Maths with (7) Comp. Sc.-Code-C

O-ebob.

Question No.	Questions
38.	The continue statement cannot be used with
	(1) while (2) for
	(3) switch (4) do
39.	The bitwise AND operator is used for
	(1) shifting bits (2) sorting
	(3) comparison (4) masking
40.	Number of real roots of the equation $x^{2n} - 1 = 0$ is
	(1) 2 (2) n (3) 2 n (4) n-1
41.	The value of 'c' of Lagrange's mean value theorem for $f(x) = x(x-1)$
	in [1, 2] is given by
	(1) $\frac{2}{3}$ (2) $\frac{3}{4}$ (3) $\frac{3}{2}$ (4) $\frac{4}{3}$
42.	Which of the following functions is not uniformly continuous in $[2, \infty)$,
	(1) $\sin x$ (2) e^x (3) $\frac{1}{x}$ (4) $\frac{1}{x^2}$
43.	For what value of k, the function
	$f(x, y) = \begin{cases} \frac{\sin^{-1}(xy-2)}{\tan^{-1}(3xy-6)}, & (x, y) \neq (1, 2) \\ K, & (x, y) = (1, 2) \end{cases}$
	(x, y) = (1, 2)
# 4	is continuous?
	(1) 2 (2) $\frac{1}{2}$ (3) $\frac{1}{3}$ (4) $\frac{1}{4}$

PG-EE-2013-Maths & Maths with (8) Comp. Sc.-Code-C

Question No.	Questions	
44.	The function $f(x, y) = 2 x^4 - 3 x^2 y + y^2$ has	
	(1) maxima at (0, 0) (2) neither maxima nor minima at (0, 0)	
	(3) minima at (0, 0) (4) doubtful case at (0, 0)	
45.	A unit vector perpendicular to the tangent and normal at a point of a	
	space curve is called	
	(1) Principal normal (2) Involute	
	(3) Standard normal (4) Binormal	
46.	The partial differential equation of all spheres whose centre lies	
	on z-axis is	
	(1) $qx - py = 0$ (2) $px - qy = 0$	
	(3) $qx + py = 0$ (4) $px + qy = 0$	
47.	Solution of $px + qy = z$ is	
	(1) $f\left(\frac{x}{y}, \frac{y}{z}\right) = 0$ (2) $f(xy, yz) = 0$	
	(3) $f(x^2, y^2) = 0$ (4) $f(x, y + z) = 0$	
48.	The differential equation $f_{xx} + 2 f_{xy} + 4 f_{yy} = 0$	
	(1) parabolic (2) hyperbolic	
*	(3) linear (4) elliptic	

Question No.	Questions
49.	The partial differential equation of the transverse vibrations of a
0.01	string is
	$(1) \frac{\partial^2 y}{\partial t^2} = c^2 \frac{\partial^2 y}{\partial x^2} $
16.10	$(2) \cdot \frac{\partial^2 y}{\partial t^2} = c^2 \frac{\partial y}{\partial x}$
	(3) $\frac{\partial^2 y}{\partial t^2} = c^2 \frac{\partial^3 y}{\partial x^3}$
	$(4) \frac{\partial y}{\partial t} = c^2 \frac{\partial y}{\partial x}$
50.	The solution of $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = \frac{z}{a}$ is
	(1) $z = e^{\frac{y}{a}} f(x + y)$ (2) $z = e^{\frac{y}{a}} f(x - y)$
	(3) $z = e^{a} f(x - y)$ (4) $z = e^{x/a} f(x + y)$
51.	If $x_r = \cos \frac{\pi}{2^r} + i \sin \frac{\pi}{2^r}$, then $x_1 x_2 x_3 \dots x_n \dots \infty =$
	(1) $\frac{\pi}{2}$ (2) $-\frac{\pi}{2}$
	(3) 1 (4) -1
52.	The value of Wronskion W (x, x², x³) is
	(1) $3 x^3$. (2) $3 x^2$
	(3) $2 \times x^3$ (4) $2 \times x^2$

PG-EE-2013-Maths & Maths with (10) Comp. Sc.-Code-C

Question No.	Questions
53.	Which of the following is not an integrating factor of $x dy = y dx$?
	(1) $\frac{x}{y}$ (2) $\frac{1}{xy}$ (3) $\frac{1}{x^2 + y^2}$
	X 32.
54.	The orthogonal trajectory of the family $x^2 - y^2 = c$ are given by
	$(1) \frac{x}{y} = c \qquad (2) xy = c$
	(1) $\frac{x}{y} = c$ (2) $xy = c$ (3) $x - y = c$ (4) $x^2 + y^2 = c$
55.	If $y(x) = x \cos 2x$ is a particular solution of $\frac{d^2y}{dx^2} + ay = -4 \sin 2x$
	then a =
	(1) 2 (2) -4 (3) 4 (4) 3
56.	The magnitude of maximum directional derivative of
	ϕ (x, y, z) = x ² - 2 y ² + 4 z ² at the point (1, 1, -1) is
	(1) $\sqrt{21}$ (2) $3\sqrt{21}$
	(3) $2\sqrt{21}$ (4) 21
57.	If \vec{f} and \vec{g} are irrotational, then $\vec{f} \times \vec{g}$ is
	(1) 0 (2) solenoidal
	(4) constant

PG-EE-2013-Maths & Maths with (11) Comp. Sc.-Code-C

Question No.	Questions
58.	If n is outward unit normal drawn to a closed surface S, having volume V,
	then $\iiint_{V} \operatorname{div}(\hat{n}) dV =$ (1) 2 V (2) V (3) 2 S (4) S
59.	In an orthogonal curvilinear system, which one of the following statements is correct? (1) $\operatorname{div}\left(\operatorname{curl}\vec{f}\right) = 0$ (2) $\operatorname{curl}\left(\operatorname{curl}\vec{f}\right) = \vec{0}$ (3) $\operatorname{curl}\left(\operatorname{div}\vec{f}\right) = 0$ (4) $\operatorname{div}\left(\operatorname{grad}\phi\right) = 0$
60.	Using Stoke's theorem, \oint_c (yz dx +xz dy + xy dz), where c is the curve $x^2 + y^2 = 1$, $z = y^2$; is (1) 2 (2) 1 (3) $\frac{1}{2}$ (4) 0
61.	Absolute units of moment in S. I. system is (1) Kg. m (2) Dyne centimeter (3) Newton meter (4) gm. cm.
62.	The centre of gravity of a thin uniform triangular lamina divides every median in the ratio (1) 2:1 (2) 1:2 (3) 2:3 (4) 3:2

PG-EE-2013-Maths & Maths with (12) Comp. Sc.-Code-C

Question No.			
63.	The line of action of a force such that axis of the couple is coincident with		
	this line, is called (1) screw (2) central line (3) wrench (4) central axis		
64.	The constant ratio which the limiting friction bears to the normal reaction is called		
	(1) Limiting Reaction (2) Co-efficient of Friction		
	(3) Statical Friction (4) Saturated Friction		
65.	Minimum distance between two forces which are equivalent to given system (R, K) and inclined at a given angle 2α is		
# F	$(1) \frac{K}{R} \sin \alpha \qquad (2) \frac{K}{R} \cos \alpha$		
	(3) $\frac{K}{R} \cot \alpha$ (4) $\frac{R}{K} \cot \alpha$		
66.	If p and q are positive real numbers, then the series $\frac{2 p}{1^{q}} + \frac{3 p}{2^{q}} + \frac{4 p}{3^{q}} + \cdots $ is convergent for		
	(1) $p < q + 1$ (2) $p < q - 1$		
	$(3) p = q \qquad (4) p < q$		

Question No.	Questions			
67.	If $a_n = \frac{\cos (n \pi/2)}{n}$, then the sequence $\{a_n\}$ is			
	(1) Convergent to 0 (2) Convergent to 1			
	(3) Convergent to $\frac{1}{2}$ (4) diverges			
68.	The limit superior and limit inferior of $\left\{\frac{(-1)^n}{n^2}\right\}$ are respectively equal to			
	(1) $1;0$ (2) $-1,1$			
	(3) 0, 0 (4) 0, 1			
69.	If δ_n denotes the sum of n terms of the series $1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \cdots + \frac{1}{\sqrt{n}} + \cdots$,			
	then			
	(1) $\delta_n > n$ (2) $\delta_n > n^{3/2}$			
	(3) $\delta_n > n^2$ (4) $\delta_n > n^{\frac{1}{2}}$			
70.	If m is fixed positive integer, then			
	$\lim_{n\to\infty}\frac{1}{n}\left[(m+1)\left(m+2\right)\cdots\cdot(m+n)\right]^{\frac{1}{n}}=$			
	(1) $\frac{1}{e}$ (2) e (3) $\frac{2}{e}$ (4) $\frac{3}{e}$			
71.	The integral $\int_0^1 x^{m-1} (1-x)^{n-1} dx$ is convergent, when			
	(1) $n > 0, m = 0$ (2) $m > 0, n = 0$			
	(3) $m > 0, n > 0$ (4) $m = 0, n > 1$			

PG-EE-2013-Maths & Maths with (14) Comp. Sc.-Code-C

Question No.	Questions		
72.	Let f be a bounded function defined on the bounded interval [a, b]. Then, f		
	is Riemann integral on [a, b] iff (1) $\int_a^b f \le \int_a^{\bar{b}} f$ (2) $\int_a^b f = \int_a^{\bar{b}} f$ (3) $\int_a^b f \ge \int_a^{\bar{b}} f$ (4) $\int_a^b f + \int_a^{\bar{b}} f = 0$		
73.	The integral $\int_{0}^{\infty} x^{n-1} e^{-x} dx$ is divergent, when		
	(1) $n > 0$ (2) $n \le 0$ (3) $n > 1$ (4) $n = \frac{1}{2}$		
74.	If A is an open set and B is a closed set in R ⁿ , then		
***	(1) B-A is null set (2) B-A is semi-open set		
	(3) B-A is open set (4) B-A is closed set		
75.	Which of the following is not correct about the cantor ternary set?		
	(1) It is dense (2) It is closed		
1,12	(3) It is uncountable (4) It is perfect set		
76.	The complement of non-empty open set of metric space is		
	(1) null set (2) open set		
	(3) closed set (4) semi-open set		
77.	If X is a complete metric space, E is non-empty open subset of X, then		
	(1) E is of first category (2) E is of second category		
	(3) E is a null set (4) None of these		

Question No.	Questions			
78.	If G is a set of integers and $a.b \equiv a - b$, then G is			
	(1) semi-group (2) non-group			
	(3) monoid (4) quasi-group			
79.	If $G = \{1, -1, i, -i\}$ is a multiplicative group, then order of $-i$ is			
	(1) 5 (2) 4 (3) 3 (4) 2			
80.	Every group of prime order is			
	(1) abelian (2) sub-group			
	(3) normal group (4) cyclic			
81.	The sum of the characteristic roots of the matrix			
	$\begin{bmatrix} 3 & 7 & 6 \\ 2 & 24 & 3 \\ 0 & 1 & -8 \end{bmatrix}$ is			
	(1) 17 (2) 19 (3) 21 (4) 25			
82.	If the given matix A is			
1	$A = \begin{bmatrix} 1 & 0 & 1 \\ \sin \theta & \cos \theta & -\sin \theta \\ -\cos \theta & \sin \theta & \cos \theta \end{bmatrix}, \text{ then } Adj A =$			
	(1) 3 (2) 4 (3) $\sin 2\theta$ (4) 0			

PG-EE-2013-Maths & Maths with (16) Comp. Sc.-Code-C

Question No.	n Questions			
83.	Determinant of an orthogonal matrix is			
	(1) -1 (2) 1 (3) 0 (4) ±1			
84.	The quadratic form ax ² + 2 h xy + by ² is positive definite iff			
	(1) $a > 0, b > 0, h > 0$ (2) $a > 0, b^2 - ab > 0$			
	(2) $a > 0$, $h^2 - ab > 0$ (3) $a > 0$, $ab - h^2 > 0$			
	(4) $a > 0$, $h^2 - ab = 0$			
85.	If α , β , γ are the roots of the equation $x^3 - px^2 + qx - r = 0$,			
	then $\sum \alpha^2 \beta^2 = (2 - \alpha) \alpha (3)$			
	(1) $q^2 - 2 pr$ (2) $p^2 - 2 qr$			
3	(3) $r^2 - 2 pq$ (4) 0			
86.	The least number of imaginary roots of the equation $x^8 + 5x^3 + 2x - 3 = 0$ is			
	(1) 6 (2) 4 (3) 2 (4) 0			
87.	$\lim_{x \to -\infty} \left(\sqrt{9 x^2 - x} + 3 x \right) = \dots$			
	(1) $\frac{1}{3}$			
	(3) $\frac{1}{4}$ (4) $\frac{1}{6}$			

PG-EE-2013-Maths & Maths with (17)
Comp. Sc.-Code-C

0.eheQ

Question No.	Questions				
88.	If $f(x) = a \sin x + b e + c x ^3$ and $f(x)$ is differentiable at $x = 0$, then				
	(1) $a = 0; b \in \mathbb{R}, c = 0$				
	(2) $a = 0, b = 0; c \in \mathbb{R}$				
	(3) $a \in R; b = 0, c = 0$				
	(4) $a = 0, b = 0; c = 0$				
89.	If a curve of nth degree has n asymptotes, then they cut the curve in how				
	many points?				
	(1) $n(n-1)$ (2) $n-2$				
20	(3) n (n-2) (4) n				
90.	For the curve $r = a \sin n\theta$, radius of curvature at the pole is				
	(1) na (2) $\frac{\text{na}}{3}$				
	(3) 2 na (4) $\frac{\text{na}}{2}$				
91.	In Binomial distribution the parameter n ranges over the				
	(1) positive real numbers				
	(2) positive rational numbers				
	(3) positive integers (4) integers				

Question	Questions		
No. 92.	The Jacobi's iteration method for the set of equations $x_1+ax_2=2$,		
	$ax_1 + x_2 = 7\left(a \neq \frac{1}{\sqrt{2}}\right)$ converges for		
	(1) $a = 1$ (2) $ a < \frac{1}{\sqrt{2}}$ (3) $a = \frac{1}{\sqrt{2}}$ (4) $\frac{1}{\sqrt{2}} < a < \frac{3}{\sqrt{2}}$		
	(3) $a = \frac{1}{\sqrt{2}}$ (4) $\frac{1}{\sqrt{2}} < a < \frac{3}{\sqrt{2}}$		
93.	$\int_0^2 (8-x^3)^{-\frac{1}{3}} dx =$		
	(1) $\beta\left(\frac{1}{3}, \frac{2}{3}\right)$ (2) $\frac{1}{2}\beta\left(\frac{1}{3}, \frac{2}{3}\right)$		
	$\int_{0}^{2} (8 - x^{3})^{-\frac{1}{3}} dx =$ (1) $\beta \left(\frac{1}{3}, \frac{2}{3}\right)$ (2) $\frac{1}{2} \beta \left(\frac{1}{3}, \frac{2}{3}\right)$ (3) $\frac{2}{3} \beta \left(\frac{1}{3}, \frac{2}{3}\right)$ (4) $\frac{1}{3} \beta \left(\frac{1}{3}, \frac{2}{3}\right)$		
94	If f (x) is an even function of x in $[-\pi, \pi]$, then Fourier series of f (x)		
0 (62, 3)	consists of terms (1) with sines only (2) with cosines only (3) with constants (4) with sines and cosines both		
9	5.		
	$(1) \frac{\pi}{\sin n\pi} \qquad (2) \frac{\sin n\pi}{\pi}$		
	$(3) \frac{2}{\sin n\pi} \qquad (4) \frac{\pi}{\sin \frac{n\pi}{2}}$		

PG-EE-2013-Maths & Maths with (19) Comp. Sc.-Code-C

Question No.	Questions		
96.	The function $f(z) = z ^2$ is		
	(1) everywhere analytic (2) nowhere analytic		
	(3) analytic at $z = 0$ (4) not defined at $z = 0$		
97.	If $f(z) = u(x, y) + i v(x, y)$ is analytic, then $f'(z) =$		
	(1) $\frac{\partial \mathbf{u}}{\partial \mathbf{x}} - \mathbf{i} \frac{\partial \mathbf{u}}{\partial \mathbf{y}}$ (2) $\frac{\partial \mathbf{u}}{\partial \mathbf{x}} - \mathbf{i} \frac{\partial \mathbf{v}}{\partial \mathbf{x}}$		
*	(3) $\frac{\partial \mathbf{u}}{\partial \mathbf{y}} + \mathbf{i} \frac{\partial \mathbf{v}}{\partial \mathbf{x}}$ (4) $\frac{\partial \mathbf{u}}{\partial \mathbf{y}} - \mathbf{i} \frac{\partial \mathbf{v}}{\partial \mathbf{x}}$	400	
98.	Fixed point of the mapping $w = \frac{3z-4}{z-1}$ is		
	(1) $z = 2$ (2) $z = 4$		
	(3) $z = 3$ (4) $z = 1$		
99.	If V is the vector space of all polynomials of degree ≤ n over R, then		
	dim V is		
	(1) n-1 (2) n		
	(3) $n+1$ (4) n^2		
100.	A bijective linear transformation is called		
	(1) monomorphism (2) homomorphism		
	(3) isomorphism (4) epimorphism		

PG-EE-2013-Maths & Maths with (20) Comp. Sc.-Code-C

Total No. of Printed pages: 21

(DO NOT OPENTHIS QUESTION BOOKLET BEFORETIME OR UNTIL YOU ARE ASKED TO DO SO)

PG-EE-2013

Mathematics & Math with Computer Sc.

Time: 11/4 hours	Max. Marks: 100	Total Questions: 100
Roll No	(in figure)	(in words)
Name	Father's Nan	ne
Mother's Name	Date of Exam	nination:

(Signature of the candidate)

(Signature of the Invigilator)

CANDIDATES MUST READ THE FOLLOWING INFORMATION/INSTRUCTIONS BEFORE STARTING THE QUESTION PAPER.

- All questions are compulsory and carry equal marks.
- The candidate must return the Question book-let as well as OMR answer-sheet to the Invigilator concerned before leaving the Examination Hall, failing which a case of use of unfair-means / misbehaviour will be registered against him / her, in addition to lodging of an FIR with the police. Further the answer-sheet of such a candidate will not be evaluated.
- In case there is any discrepancy in any question(s) in the Question Booklet, the same may be brought to the notice of the Controller of Examinations in writing within two hours after the test is over. No such complaint(s) will be entertained thereafter.
- The candidate MUST NOT do any rough work or writing in the OMR Answer-Sheet. Rough work, if any, may be done in the question book-let itself. Answers MUST NOT be ticked in the Question book-let.
- Use only blue or black **BALL POINT PEN** of good quality in the OMR Answer-Sheet. 5.
- There will be no negative marking. Each correct answer will be awarded one full mark. 6. Cutting, erasing, overwriting and more than one answer in OMR Answer-Sheet will be treated as incorrect answer.
- BEFORE ANSWERING THE QUESTIONS, THE CANDIDATES SHOULD ENSURE THAT THEY HAVE BEEN SUPPLIED CORRECT AND COMPLETE BOOK-LET. COMPLAINTS, IF ANY, REGARDING MISPRINTING ETC. WILL NOT BE ENTERTAINED 30 MINUTES AFTER STARTING OF THE EXAMINATION.

