SET_"X"

(DO NOT OPEN THIS QUESTION BOOKLET BEFORE TIME OR UNTIL YOU ARE ASKED TO DO SO)

(MPH/PHD/URS-EE-2020)

LIFE SCIENCE

10365 Sr. No.

Code A

Time: 1¼ Hours	Total Ques	tions: 100	Max. Marks : 100
Roll No.	(in figure)		(in words
Name :			ne :
Mother's Name:		THE THE ATT OF ACT THAT OFFE I	ination:
	Trans.		
(Signature of the candid	late)	(Sign	ature of the Invigilator)

CANDIDATES MUST READ THE FOLLOWING INFORMATION/ INSTRUCTIONS BEFORE STARTING THE QUESTION PAPER.

All questions are compulsory.

The candidates must return the Question book-let as well as OMR answer-sheet to the Invigilator concerned before leaving the Examination Hall, failing which a case of use of unfair-means / mis-behaviour will be registered against him / her, in addition to lodging of an FIR with the police. Further the answer-sheet of such a candidate will not be evaluated.

Keeping in view the transparency of the examination system, carbonless OMR Sheet is provided to the candidate so that a copy of OMR Sheet may be kept by

the candidate.

Question Booklet along with answer key of all the A,B,C and D code will be got uploaded on the university website after the conduct of Entrance Examination. In case there is any discrepancy in the Question Booklet/Answer Key, the same may be brought to the notice of the Controller of Examination in writing/through E-Mail within 24 hours of uploading the same on the University Website. Thereafter, no complaint in any case, will be considered.

The candidate MUST NOT do any rough work or writing in the OMR Answer-5. Sheet. Rough work, if any, may be done in the question book-let itself. Answers

MUST NOT be ticked in the Question book-let.

There will be no negative marking. Each correct answer will be awarded 6. one full mark. Cutting, erasing, overwriting and more than one answer in OMR Answer-Sheet will be treated as incorrect answer.

Use only Black or Blue **BALL POINT PEN** of good quality in the OMR Answer-7.

BEFORE ANSWERING THE QUESTIONS, THE CANDIDATES SHOULD 8. ENSURE THAT THEY HAVE BEEN SUPPLIED CORRECT AND COMPLETE BOOK-LET. COMPLAINTS, IF ANY, REGARDING MISPRINTING ETC. WILL NOT BE ENTERTAINED 30 MINUTES AFTER STARTING OF THE **EXAMINATION**.

Question No.	Questions
1.	Arithmetic mean of the two regression coefficients is
	(1) Equal to correlation coefficient
	(2) Greater than correlation coefficient
	(3) Less than correlation coefficient
	(4) Equal to or greater than correlation coefficient
2.	Retroviruses are capable of causing cancer because they
	(1) produce a very high number of progeny viruses per infected cell
	(2) often contain point mutations in their pol gene
	(3) transduce mutant versions of cellular genes that normally regulate
	cell growth
10	(4) infect cells more efficiently than other viruses
3.	Puccinia forms uredia and
	(1) Telia on wheat leaves
	(2) Aecia on barbery leaves
	(3) Pycnia on barbery leaves
	(4) Aecia on wheat leaves
4.	Bryophytes can be separated from algae, because they
	(1) Possess archegonia
((2) Contain chloroplast
	3) Are thalloid forms
	4) Have no conducting tissue

MPH/PHD/URS-EE-2020 (Life Science) Code-A

Question No.	Questions
5.	Sexual reproduction is absent in (1) Spirogyra (2) Nostoc (3) Ulothrix (4) Volvox
6.	Which of the following compound is not amphipathic? (1) Phosphotidylcholine (2) Cholesterol (3) Oleic acid (4) Succinate
7.	Pneumatophores are found in (1) Vegetation found in marshy and saline lake (2) Vegetation found in acidic soil (3) Xerophytes (4) Epiphytes
8.	Which of the following statement is true? (1) Vessels are multicellular with wide lumen (2) Tracheids are multicellular with narrow lumen (3) Vessels are unicellular with narrow lumen (4) Tracheids are unicellular with wide lumen
9.	The cells of quiescent centre are characterized by (1) Dense cytoplasm and prominent nuclei (2) Light cytoplasm and small nuclei (3) Dividing regularly to add to the corpus (4) Dividing regularly to add to the tunica

	Questio	ns	
Which of the following statement is false?			
(1) The ovaries in frogs are structurally and functionally connected with kidney			
(2) Mature female frog	can lay 25	00 to 3000 unfertilized ova at a	time
(3) In male frog there	are 10-12	vasa efferentia arise from tes	stes and
enter kidney on the	eir side and	open into bladder's canal	1161
(4) The eggs of frog are	e mesolecit	nal and telolecithal	
Which cranial nerve has the highest number of branches?			
(1) Vagus nerve	(2)	Trigeminal nerve	
(3) Facial nerve	(4)	None of the above	
Which of the following ion is an ethylene inhibitor?			
(1) Mg ²⁺	(2)	NH3+	
(3) Ag ⁺	(4)	Cr	
A bioinformatics tool use of hemoglobin is	d to find ou	t the sequence similarity in the s	subunit
(1) FASTA	(2)	BLAST	
(3) HUMMER	(4)	PSI:PLOT	
Which of the following development process in animals is more dependent on cellular movements?			
(1) Pattern formation	(2)	Morphogenesis	
(3) Cell differentiation	(4)	Growth	
	(1) The ovaries in frograkidney (2) Mature female frogrammes (3) In male frog there enter kidney on the enter kidney on the (4) The eggs of frog are Which cranial nerve has (1) Vagus nerve (3) Facial nerve Which of the following is (1) Mg²+ (3) Ag²+ A bioinformatics tool use of hemoglobin is (1) FASTA (3) HUMMER Which of the following do on cellular movements (2) (1) Pattern formation	Which of the following statement is (1) The ovaries in frogs are struct kidney (2) Mature female frog can lay 256 (3) In male frog there are 10-12 enter kidney on their side and (4) The eggs of frog are mesolecit! Which cranial nerve has the highest (1) Vagus nerve (2) (3) Facial nerve (4) Which of the following ion is an eth (1) Mg²+ (2) (3) Ag⁺ (4) A bioinformatics tool used to find out of hemoglobin is (1) FASTA (2) (3) HUMMER (4) Which of the following development on cellular movements? (1) Pattern formation (2)	(1) The ovaries in frogs are structurally and functionally connect kidney (2) Mature female frog can lay 2500 to 3000 unfertilized ova at a (3) In male frog there are 10-12 vasa efferentia arise from the enter kidney on their side and open into bladder's canal (4) The eggs of frog are mesolecithal and telolecithal Which cranial nerve has the highest number of branches? (1) Vagus nerve (2) Trigeminal nerve (3) Facial nerve (4) None of the above Which of the following ion is an ethylene inhibitor? (1) Mg²+ (2) NH³+ (3) Ag' (4) CΓ A bioinformatics tool used to find out the sequence similarity in the sof hemoglobin is (1) FASTA (2) BLAST (3) HUMMER (4) PSI:PLOT Which of the following development process in animals is more defoncellular movements? (1) Pattern formation (2) Morphogenesis

MPH/PHD/URS-EE-2020 (Life Science) Code-A (3)

Question No.	Questions	
15.	The organs radula and clitellum are found in (1) Coelenterata and Echinodermata, respectively (2) Echinodermata and Coelenterata, respectively (3) Annelida and Mollusca, respectively (4) Mollusca and Annelida, respectively	
16.	Which of the following is unfavourable for protein folding? (1) Hydrophobic interaction (2) Van der waals forces (3) Conformational entropy (4) Hydrogen bonding	
17.	The wings of insects and wings of bats represent a case of (1) Divergent evolution (2) Convergent evolution (3) Parallel evolution (4) Neutral evolution	
18.	Which one of the following features is common in silver fish, scorpion, dragon fly and prawn? (1) Three pairs of legs and segmented body (2) Chitinous cuticle and two pairs of antennae (3) Jointed appendages and chitinous skeleton (4) Cephalothorax and trachea	
19	 Which of the following pairs of animals is correctly matched with the kind of their body symmetry? (1) Hydra and shark-Bilateral symmetry (2) Tapeworm and octopus-Radial symmetry (3) Amoeba and sea urchin-Asymmetry (4) Jelly fish and star fish-Radial symmetry 	

Question No.	Questions				
20.	Which of the following statement is incorrect?				
	 (1) Circulating body fluids in insects serve to distribute oxygen to tissues (2) The principle of countercurrent flow facilitates efficient respiration in gills of fishes 				
	(3) The residual air in lung in birds	(3) The residual air in lungs slightly decreases the efficiency of respiration			
	(4) The presence of non-respiratory air sacs, increases the efficiency of respiration in birds				
21.	Pancreas is absent in which group of vertebrates?				
	(1) Reptiles	(2)	경기 가입니다 가입하다 하나는 집에 하는 것이 없는데 그리고 있다. 그 그 그 나는데		
	(3) Birds	(4)	Mammals		
22.	Cell wall is absent in				
	(1) Gametes	(2)	Amoeba		
	(3) Mycoplasma	(4)	All of these		
23.	Which is synthesized in G1 phase?				
	(1) DNA polymerase	(2)	Histones		
* 1	(3) Nucleolar DNA	(4)	Tubulin protein		
24.	Histone proteins found in the nuclei of eukaryotes are rich in which of the following amino acids?				
7	(1) Glycine and phenylalani	ne			
	(2) Lysine and arginine				
	(3) Glycine and arginine				
	(4) Phenylalanine and lysine				

MPH/PHD/URS-EE-2020 (Life Science) Code-A
(5)

Question No.	Questions		
25.	Random genetic drift in a population probably results from		
10 VIII 1	(1) Highly genetically variable individuals		
36733	(2) Interbreeding within this population		
	(3) Constant low mutation rate		
ACCISIO	(4) Large population size		
26.	The use of copper in copper releasing IUDs is		
	(1) It alters the reproductive cycle in females		
	(2) Copper decreases phagocytosis of sperms in the uterus		
	(3) Copper ions released suppress sperm motility and the fertilization of sperms		
	(4) Copper ions inhibits ovulation		
27.	Which of the following are true for electron microscopy?		
	(1) specimen should be thin and dry		
	(2) image is obtained on a phosphorescent screen		
	(3) electron beam must pass through evacuated chamber		
	(4) specimen should be thin and dry, image is obtained on a phosphorescent screen and electron beam must pass through evacuated chamber		
28.	Which one of the following pairs of plant structures has haploid number of		
	chromosomes?		
	(1) Egg nucleus and secondary nucleus		
	(2) Megaspore mother cell and antipodal cells		
	(3) Egg cell and antipodal cells		
	(4) Nucellus and antipodal cells		

Question No.	Questions				
29.	Apomictic embryos in Citrus arise from				
	(1) Diploid egg				
lana-	(2) Synergids				
	(3) Maternal sporophytic tissue in ovule				
	(4) Antipodal cells				
30.	Where will you look for the sporozoites of the malarial parasites?				
	(1) Salivary glands of freshly moulted female Anopheles mosquito				
	(2) Saliva of infected female Anopheles mosquito				
	(3) RBCs of humans suffering from malaria				
	(4) Spleen of infected humans				
31.	At which stage of HIV infection does one usually show symptoms of AIDS?				
	(1) Within 15 days of sexual contact with an infected person				
	(2) When the infected retrovirus enters host cells				
	(3) When viral DNA is produced by reverse transcriptase				
	(4) When HIV replicates rapidly in helper T-lymphocytes and damages				
	large number of these cells				
32.	During each cycle of chain elongation in translation, how many				
	conformational changes does the ribosomes undergo that are coupled to				
	GTP hydrolysis?				
	(1) Zero (2) One				
	(3) Two (4) Three				

Question No.	Questions		
33.	 Which one of the following about development of sea urchin embryos is true? (1) Each blastomere of a 4 cell stage possess a portion of the original animal-vegetal axis and if isolated and allowed to develop will form a complete but smaller size larva (2) Each blastomere of a 8-cell stage has the capacity to form a complete embryo but by the 16 cell stage, blastomere will develop by their 		
	presumptive fate (3) Any blastomere isolated till the pluteus larva formation will regulate to go on and develop into a full sized embryo (4) After an intricate recombination at the 16 cell stage, the resulting embryo loses its ability to form a complex larva		
34.	Discovery of Emerson effect showed the existence of (1) Photorespiration (2) Light and dark reaction in photosynthesis (3) Photophosphorylation (4) Two distinct photosystems		
35.	Which of the following statements is not correct about cyclic photophosphorylation? (1) It does not involve NADPH formation (2) It uses electrons supplied by photosystem 1 (3) It involves substrate level phosphorylation (4) It doesn't generate oxygen		

Question No.	Questions			
36.	All of following inhibits auxin transport except			
	(1) cytokinin (2) alpha napthylthalamic acid			
	(3) 2,3,5,-tri indo benzoic acid (4) ethylene			
37.	Under normal conditions, as electrons flow down the electron transport			
	chain of the mitochondria			
	(1) NADH and FADH ₂ are oxidized			
a water	(2) pH of the matrix increases			
	(3) an electrochemical gradient is formed			
e vitaro	(4) All of the above			
38.	Uncoupling of oxidative phosphorylation implies that			
	(1) the ATPase activity of mitochondria is abolished			
	(2) mitochondria ceases to oxidize succinate			
	(3) ATP formation ceases but respiration continues			
ma flai	(4) ATP formation continues but respiration ceases			
39.	The exonuclease activity of DNA polymerase functions to			
	(1) Remove the RNA primer sequence			
	(2) Proofread the new DNA strand and remove inappropriate nucleotides			
	(3) Maximize the fidelity of DNA replication			
	(4) All of the above			

Question No.	Questions		
40.	Transposons (1) insert into DNA by homologous recombination (2) can't be transferred by phage mediated transduction (3) contain the equivalent of insertion (IS) elements (4) can insert into plasmids but not the bacterial chromosomes		
41.	 Transcription termination of mRNA genes in eukaryotes occurs (1) at polyadenylation sites by the action of a terminator factor (2) by the formation of a strong hairpin structure in the vicinity of polyadenylation site (3) termination factor bound to the termination site in the vicinity of polyadenylation site (4) at pause sites following the polyadenylation sites 		
42.	GTP is required by which of the following steps in protein synthesis? (1) Aminoacyl tRNA synthetase activation of amino acids (2) Attachment of ribosomes to endoplasmic reticulum (3) Translocation of tRNA-nascent protein complex from A site to P site (4) Attachment of mRNA to ribosomes		
43.	Which of the following sequences is most likely to be a restriction enzyme recognition site? (1) CGGCTT (2) CGCCGC (3) GTAATG (4) GTCGAC		

Question No.	Questions		
44.	Polymerase chain reaction is considered as a revolutionary technology because all of the following, except (1) it enables an unlimited production of a DNA fragment in vitro (2) it is a highly sensitive technology (3) its experimental protocol is simple (4) it enables the direct production of a synthetic gene that did not exist before		
45.	If two genes are unlinked the recombination frequency will be (1) 25% (2) 50% (3) 75% (4) 100%		
46.	Which of the following is a kinetin derivative? (1) Adenine (2) Thymine (3) Uracil (4) Cytosine		
47.	ELISA utilizes enzymes that (1) have a high turnover rate (2) yield a stable coloured product (3) are stable on conjugation to proteins (4) all of the above		
48.	Which of the following disease is not an autoimmune disease? (1) Rheumatoid arthritis (2) Lupus erythematosus (3) Bovine spongiform encephalitis (4) Grave's disease		

MPH/PHD/URS-EE-2020 (Life Science) Code-A (11)

Question No.	Questions			
49.	Live vaccine is			
	(1) low dose of infectious bacteria administered as prophylactic			
	(2) a dose of bacterial strain in a modified form which retains immunogenicity but is not pathogenic			
	(3) a low dose of toxin that is produced by the bacterium			
	(4) a sample of cells from a patient who recently recovered from the diseases			
50.	The speed of migration of ions in an electric field depends upon			
	(1) magnitude of charge and mass of molecules			
	(2) magnitude of charge and shape of molecules			
	(3) shape and size of the molecules			
	(4) magnitude of charge, shape and mass of molecules			
51.	Ribozymes are also termed as			
	(1) Catalytic RNA (2) RNAzyme			
	(3) Nucleozyme (4) Both (1) and (2)			
52.	Which of the following statement is incorrect?			
	(1) Golden rice is rich in Vitamin-A			
	(2) Human protein (alpha-1 antitrypsin) obtained from transgenic animals is used to treat emphysema			
	(3) Human protein enriched milk, which contained the human alphalactalbumin was produced by cow molly			
	(4) Platelet derived growth factor which helps in wound healing is			
	synthesized by DNA recombinant technology			

Question No.	Questions
53.	Downstreaming process in biotechnology refers to (1) The process which include separation and purification of the product after the completion of the biosynthetic stage (2) Large scale production of the product by using bioreactors (3) The cells harbouring cloned genes of interest being grown on a small scale (4) The microbes which act upon the substrate are cultured and added into the fermenter
54.	Which of the following is correct match? (1) Reserpine—Tranquilizer (2) Cocaine—Opiate narcotic (3) Morphine—hallucinogenic (4) Bhang—Analgesic
55.	The pituitary gland's posterior lobe produces following two hormones (1) vasopressin and oxytocin (2) cortisone and corticosterone (3) progesterone and estradiol (4) testosterone and aldosterone
56.	Which of the following is most likely to occur if communication between the SA node and the AV node became blocked? (1) The rate of ventricular contraction will decrease (2) Afterload will increase (3) Stroke volume will increase to 5L/beat (4) None of the above

uestion No.	Questions				
57.	In the first phase of	enstrual cycle			
	(1) Oogonia differen	iate into primary oocytes			
	(2) Thickness of the	tratum basalis decreases dramatically			
	(3) Graafian follicle	uptures			
8.000	(4) The dominant for	icle is opsonized			
58.	Which of the following	statement is incorrect about small intestine?			
ouss i	(1) Site of carbohyo	ate, protein and fat digestion			
	(2) Site of majority of water absorption in the GI tract				
	(3) First site of protein hydrolysis				
	(4) Most rapid absor	otion of galactose			
59.	Which of the following is not an example of primary succession?				
	(1) Moss growing on mountain cliffs				
	(2) Grassland growing on the site of a previous rainforest				
	(3) Vegetation colonising old lava fields on a volcanic island				
	(4) Marsh vegetation on a mud flat				
60.	Which of the following	has maximum biodiversity?			
	(1) Mangroves	(2) Temperate forest			
	(3) Taiga	(4) Coral reef			
61.	The ozone layer protects us from harmful				
	(1) UV-A radiation	(2) UV-B radiation			
	(3) UV-C radiation	(4) Both (2) and (3)			

uestion No.	Ques		
62.	The one-horned rhinoceros is spe	cific	to which of the following sanctuaries?
02.		(2)	Vedanthangal
			Corbett Park
63.	Which of the following is not an in	nvas	sive alien species in the Indian context?
		(2)	Cynodon
		(4)	Eichhornia
64.	The entity was (1) The GloFish	sin	e first U.S. patent for a GM entity g the growth hormone gene egrade petroleum
65.	To which of the following residence and phosphate groups?	lues	of the protein, the protein kinases d
	(1) Serine	(2)	Cytosine
	(3) Threonine	(4)	Tyrosine
66.	Which of the following is not a	sec	ondary messanger?
00.	(1) Cyclic GMP		Diacyl glycerol
	(3) Inositol triphosphate	(4)	Phosphotidyl inositol
67.	Mutation in an oncogene falls under which of the following classes?		
	(1) Loss of function mutation		
	(2) Frame shift mutation		SORGE ATTACKS TO CONTRACT AND AND
	(3) Gain of function mutation	1	romin reserva montanes montanes (1881)
	(4) Dominant negative muta	01011	

Question No.	Questions
68.	Cytokines in the immune system
	(1) Are proteins or glycoproteins
	(2) Bind to cell surface receptors to mediate their effects
	(3) Are able to kill pathogens directly
	(4) Often act in synergy to induce immune response
69.	The different lineage of the lymphocytes can be distinguished by characterizing the expression of their membrane molecules called the cluster of differentiation (CD). Which of the following CD is only found in B-cells?
	(1) CD-4 (2) CD-8
	(3) CD-32 (4) CD-45
70.	Dendritic cells are characterized by (1) Their ability to release histamine
T SAN COMPANY OF THE SAN COMPANY	
	(2) Their interface between the innate and adaptive immune system (3) Expression of CD3
	(4) Expression of IgM molecules
71.	Applications of southern blotting includes (1) DNA fingerprinting (2) Preparation of RFLP maps
	(3) Identification of transferred genes
	(4) All of these

Question No.	Questions			
72.	Which of the following processes does not occur in prokaryotes?			
	(1) Transcription (2) Splicing			
	(3) Translation (4) Replication			
73.	Which of the following is not the cloning vector utilized in recombinant			
i de tor	DNA technology?			
	(1) Plasmid			
	(2) Cosmids			
	(3) Bacterial Artificial Chromosomes			
	(4) Yeast Intact chromosomes			
74.	Excess oxygen consumed after vigorous exercise is			
	(1) To pump out lactic acid from muscles			
i dinami	(2) To increase the concentration of lactic acid in muscles			
	(3) To reduce dissolved CO ₂ in blood			
	(4) To make ATP for gluconeogenesis			
75.	Which of the following is not true for cholesterol metabolism			
	(1) The key regulator in cholesterol biosynthesis is HMG-CoA reductase			
o dianigo	(2) Biosynthesis takes place in cytoplasm			
	(3) NADH is cofactor for reduction reactions			
	(4) Cholesterol is transported by LDL in plasma			
	to the second of			

Question No.	Questions				
76.	At zwitter ionic form, amino acid will act as				
	(1) Proton donor				
	(2) Proton acceptor				
	(3) Proton donor and acceptor				
	(4) None of these				
77.	Which of the following amino acid is likely to occupy the interior of the				
	globular protein?				
	(1) Methionine (2) Aspartate				
	(3) Lysine (4) Arginine				
78.	Negative staining is used for examining which of the following?				
	(1) virus particles				
	(2) protein molecules				
	(3) bacterial flagella				
	(4) virus particles, protein molecules and bacterial flagella				
79.	Which of this is/are examples of an organ containing a smooth muscle?				
	(1) Iris of eye (2) Bronchi only				
	(3) Uterus only (4) All of the above				
80.	Which is not an example of transmembrane transport between differen				
No. of the last of	subcellular compartments?				
	(1) Transport from the stroma into thylakoid space				
S PARKET	(2) Transport from the cytoplasm into the lumen of the endoplasm				
	reticulum				
	(3) Transport from the endoplasmic reticulum into the Golgi complex				
	(4) Transport from mitochondrial intermembrane space into the				
No.	mitochondrial matrix				

MPH/PHD/URS-EE-2020 (Life Science) Code-A (18)

uestion No.	Questions			
81.	Which is correct regarding the peptides in the Ramachandran Plot?			
	(1) The sequence of the peptide can be deduced			
	(2) It is not possible to conclude whether a peptide adopts entirely helix or entirely beta sheet conformation			
	(3) Peptides that are unstructured will have all the backbone dihedral angles in the disallowed regions			
	(4) The occurrence of a beta-turn conformation in a peptide can be deduced			
82.	Glycophorin is involved in which of the following disease?			
	(1) Viral fever (2) Malaria			
	(3) Common cold (4) Asthma			
83.	In crop movement programme, haploids are important because they			
	(1) require one half of nutrients			
	(2) are helpful in study of meiosis			
	(3) grow better under adverse conditions			
	(4) form perfect homozygous			
84.	Which among the following is the real product of the honey bee?			
	(1) Honey (2) Propolis			
X	(3) Pollen (4) Bee wax			
85.	In cheese manufacture, the microorganisms are important for			
arrivio	(1) the ripening only			
	(2) the souring of milk only			
	(3) the development of resistance to spoilage only			
The state of the s	(4) both the souring and the ripening processes			

Question No.	Questions			
86.	Coir is the commercial product of coconuts			
	(1) Endocarp	(2)	Endosperm	
flad yla	(3) Mesocarp	(4)	Pericarp	
87.	Which of the following is no	n-symb	iotic biofertilizer?	
	(1) Anabaena	(2)	Rhizobium	
in it	(3) VAM	(4)	Azotobacter	
88.	Which of the following is no	t a poin	t mutation?	
	(1) Substitution	(2)	Transposition	
	(3) Insertion	(4)	Transversion	
	 Organism will die Organism will develop its product Mild effect on the pher No effect 		hazards due to absence of the gene and	
90.	Identify a Mendelian disorder from the following			
	(1) Down's Syndrome	(2)	Klinefelter's Syndrome	
	(3) Turner's Syndrome	(4)	Phenylketonuria	
91.	Which of the following is he from another?	elpful in	distinguishing DNA of one individua	
	(1) PCR	(2)	Reverse transcriptase	
	(3) cDNA	(4)	RFLP	

MPH/PHD/URS-EE-2020 (Life Science) Code-A (20)

Question No.	Questions
92.	Short sub-sequence of a cDNA sequence is (1) Expressed sequence tag (2) Sequence tagged site (3) Contig (4) YAC
93.	In sickle-cell disease, a glutamate → valine substitution results in formation of HbS molecules, which (1) abnormally and cannot adequately carry O₂ (2) have abnormally high affinity for binding to O₂ (3) stabilize the wall of red blood cells against oxidative damage (4) cause high levels of repulsions between HbS molecules
94.	 Which property of p53 enables it to prevent the development of cancer? (1) It is a transcription factor that causes protein production which stimulates the cell cycle (2) It prevents replication of cells with damaged DNA (3) It prevents cells from triggering apoptosis (4) It stimulates synthesis of DNA repair enzymes that replace telomere sequence lost during cell division
95.	According to Shelford's law of tolerance and organism with wide tolerance limit for an environmental factor usually show (1) Wide distribution with low population size (2) Wide distribution with high population size (3) Narrow distribution with low population size (4) Narrow distribution with high population size

Question No.	Questions
96.	Which of the following is a non-parametric test? (1) F-test (2) Z-test (3) Wilcoxon test (4) All of the above
97.	 In NMR spectrum the nuclei in up field resonate at (1) High frequency (2) Low frequency (3) It is constant throughout the spectrum (4) It doesn't depends on chemical shift
98.	Which statement is correct with respect to the food chain? (1) Every component of food chain forms trophic level (2) Inter-relation between different food chains is known as a food web (3) All the chains formed by nutritional relations is used to understand energy flow (4) All of the above
99.	Which of the following would occur through specialized transduction? (1) acquisition of Hfr plasmid (2) transfer of genes for toxin production (3) transfer of genes for capsule formation (4) transfer of a plasmid with genes for degrading pesticides

Question No.		Questions	
100.	Ide	ntify the mismatched pair	
	(1)	Tundra-Permafrost	
	(2)	Savanna-Acacia trees	
	(3)	Prairie-Epiphytes	
	(4)	Coniferous forest-Evergreen trees	
and the second			COLUMN TO THE PERSON TO THE PE

SET-"X"

(DO NOT OPEN THIS QUESTION BOOKLET BEFORE TIME OR UNTIL YOU ARE ASKED TO DO SO)

(MPH/PHD/URS-EE-2020)

LIFE SCIENCE

Sr. No. 10362

Code B

Time: 11/4 Hours	Total Quest	ions : 100	Max. Marks: 100
Roll No.	(in figure)		(in words)
Name :		Father's Name :	
Mother's Name :		Date of Examination	on:

(Signature of the candidate)

(Signature of the Invigilator)

CANDIDATES MUST READ THE FOLLOWING INFORMATION/INSTRUCTIONS BEFORE STARTING THE QUESTION PAPER.

All questions are compulsory.

- 2. The candidates must return the Question book-let as well as OMR answer-sheet to the Invigilator concerned before leaving the Examination Hall, failing which a case of use of unfair-means / mis-behaviour will be registered against him / her, in addition to lodging of an FIR with the police. Further the answer-sheet of such a candidate will not be evaluated.
- 3. Keeping in view the transparency of the examination system, carbonless OMR Sheet is provided to the candidate so that a copy of OMR Sheet may be kept by the candidate.
- 4. Question Booklet along with answer key of all the A,B,C and D code will be got uploaded on the university website after the conduct of Entrance Examination. In case there is any discrepancy in the Question Booklet/Answer Key, the same may be brought to the notice of the Controller of Examination in writing/through E-Mail within 24 hours of uploading the same on the University Website. Thereafter, no complaint in any case, will be considered.
- 5. The candidate MUST NOT do any rough work or writing in the OMR Answer-Sheet. Rough work, if any, may be done in the question book-let itself. Answers MUST NOT be ticked in the Question book-let.
- 6. There will be no negative marking. Each correct answer will be awarded one full mark. Cutting, erasing, overwriting and more than one answer in OMR Answer-Sheet will be treated as incorrect answer.
- 7. Use only Black or Blue BALL POINT PEN of good quality in the OMR Answer-Sheet.
- 8. BEFORE ANSWERING THE QUESTIONS, THE CANDIDATES SHOULD ENSURE THAT THEY HAVE BEEN SUPPLIED CORRECT AND COMPLETE BOOK-LET. COMPLAINTS, IF ANY, REGARDING MISPRINTING ETC. WILL NOT BE ENTERTAINED 30 MINUTES AFTER STARTING OF THE EXAMINATION.

Question No.	Questions
1.	Applications of southern blotting includes
NEW TOWN	(1) DNA fingerprinting
	(2) Preparation of RFLP maps
	(3) Identification of transferred genes
	(4) All of these
2.	Which of the following processes does not occur in prokaryotes?
	(1) Transcription (2) Splicing
	(3) Translation (4) Replication
	Which of the following is not the cloning vector utilized in recombinan DNA technology? (1) Plasmid (2) Cosmids (3) Bacterial Artificial Chromosomes (4) Yeast Intact chromosomes
4.	Excess oxygen consumed after vigorous exercise is
(1) To pump out lactic acid from muscles
(2) To increase the concentration of lactic acid in muscles
(3) To reduce dissolved CO ₂ in blood
	4) To make ATP for gluconeogenesis

MPH/PHD/URS-EE-2020 (Life Science) Code-B

Question No.	Questions
5.	Which of the following is not true for cholesterol metabolism
	(1) The key regulator in cholesterol biosynthesis is HMG-CoA reductase
	(2) Biosynthesis takes place in cytoplasm
	(3) NADH is cofactor for reduction reactions
ŧ	(4) Cholesterol is transported by LDL in plasma
6.	At zwitter ionic form, amino acid will act as
	(1) Proton donor
	(2) Proton acceptor
	(3) Proton donor and acceptor
OSCIE	(4) None of these
7.	Which of the following amino acid is likely to occupy the interior of the globular protein?
	(1) Methionine (2) Aspartate
	(3) Lysine (4) Arginine
8.	Negative staining is used for examining which of the following?
	1) virus particles
(2) protein molecules
(3) bacterial flagella
(4) virus particles, protein molecules and bacterial flagella
9. V	Which of this is/are examples of an organ containing a smooth muscle?
(1) Iris of eye (2) Bronchi only
(3) Uterus only (4) All of the above
+	
	DAIDS EE 2020 Att. C.

MPH/PHD/URS-EE-2020 (Life Science) Code-B
(2)

Question No.	Questions
10.	Which is not an example of transmembrane transport between different subcellular compartments?
	(1) Transport from the stroma into thylakoid space
-	(2) Transport from the cytoplasm into the lumen of the endoplasmic reticulum
	(3) Transport from the endoplasmic reticulum into the Golgi complex
	(4) Transport from mitochondrial intermembrane space into the mitochondrial matrix
11.	Ribozymes are also termed as
	(1) Catalytic RNA (2) RNAzyme
1	(3) Nucleozyme (4) Both (1) and (2)
12.	Which of the following statement is incorrect?
1	(1) Golden rice is rich in Vitamin-A
	(2) Human protein (alpha-1 antitrypsin) obtained from transgenic animals is used to treat emphysema
	(3) Human protein enriched milk, which contained the human alphalactalbumin was produced by cow molly
	(4) Platelet derived growth factor which helps in wound healing is synthesized by DNA recombinant technology
13.	Downstreaming process in biotechnology refers to
	(1) The process which include separation and purification of the product after the completion of the biosynthetic stage
	(2) Large scale production of the product by using bioreactors
	(3) The cells harbouring cloned genes of interest being grown on a small scale
	(4) The microbes which act upon the substrate are cultured and added
	into the fermenter

Question No.	Questions
14.	Which of the following is correct match? (1) Reserpine—Tranquilizer (2) Cocaine—Opiate narcotic (3) Morphine—hallucinogenic (4) Bhang—Analgesic
15.	The pituitary gland's posterior lobe produces following two hormones (1) vasopressin and oxytocin (2) cortisone and corticosterone (3) progesterone and estradiol (4) testosterone and aldosterone
16.	Which of the following is most likely to occur if communication between the SA node and the AV node became blocked? (1) The rate of ventricular contraction will decrease (2) Afterload will increase (3) Stroke volume will increase to 5L/beat (4) None of the above
17.	In the first phase of menstrual cycle (1) Oogonia differentiate into primary oocytes (2) Thickness of the stratum basalis decreases dramatically (3) Graafian follicle ruptures (4) The dominant follicle is opsonized

Question No.	Questions
18.	Which of the following statement is incorrect about small intestine? (1) Site of carbohydrate, protein and fat digestion (2) Site of majority of water absorption in the GI tract (3) First site of protein hydrolysis (4) Most rapid absorption of galactose
20.	Which of the following is not an example of primary succession? (1) Moss growing on mountain cliffs (2) Grassland growing on the site of a previous rainforest (3) Vegetation colonising old lava fields on a volcanic island (4) Marsh vegetation on a mud flat Which of the following has maximum biodiversity? (1) Mangroves (2) Temperate forest (3) Taiga (4) Coral reef
21.	At which stage of HIV infection does one usually show symptoms of AIDS? (1) Within 15 days of sexual contact with an infected person (2) When the infected retrovirus enters host cells (3) When viral DNA is produced by reverse transcriptase (4) When HIV replicates rapidly in helper T-lymphocytes and damages large number of these cells

Questio No.	Questions
22.	During each cycle of chain elongation in translation, how many conformational changes does the ribosomes undergo that are coupled to GTP hydrolysis? (1) Zero (2) One (3) Two (4) Three
23.	Which one of the following about development of sea urchin embryos is true?
	(1) Each blastomere of a 4 cell stage possess a portion of the original animal-vegetal axis and if isolated and allowed to develop will form a complete but smaller size larva
	(2) Each blastomere of a 8-cell stage has the capacity to form a complete embryo but by the 16 cell stage, blastomere will develop by their presumptive fate
	(3) Any blastomere isolated till the pluteus larva formation will regulate to go on and develop into a full sized embryo
` .	(4) After an intricate recombination at the 16 cell stage, the resulting embryo loses its ability to form a complex larva
	Discovery of Emerson effect showed the existence of
	(1) Photorespiration (2) Light and dark reaction in photosynthesis
	3) Photophosphorylation
(4) Two distinct photosystems

Question No.	Questions
25.	Which of the following statements is not correct about cyclic photophosphorylation? (1) It does not involve NADPH formation (2) It uses electrons supplied by photosystem 1 (3) It involves substrate level phosphorylation
	(4) It doesn't generate oxygen
26.	All of following inhibits auxin transport except (1) cytokinin (2) alpha napthylthalamic acid (3) 2,3,5,-tri indo benzoic acid (4) ethylene
27.	Under normal conditions, as electrons flow down the electron transport chain of the mitochondria (1) NADH and FADH ₂ are oxidized
	(2) pH of the matrix increases
	(3) an electrochemical gradient is formed (4) All of the above
28.	Uncoupling of oxidative phosphorylation implies that (1) the ATPase activity of mitochondria is abolished (2) mitochondria ceases to oxidize succinate (3) ATP formation ceases but respiration continues (4) ATP formation continues but respiration ceases

Question No.	Questions
29.	The exonuclease activity of DNA polymerase functions to (1) Remove the RNA primer sequence (2) Proofread the new DNA strand and remove inappropriate nucleotides (3) Maximize the fidelity of DNA replication (4) All of the above
	Transposons (1) insert into DNA by homologous recombination (2) can't be transferred by phage mediated transduction (3) contain the equivalent of insertion (IS) elements (4) can insert into plasmids but not the bacterial chromosomes
(Which cranial nerve has the highest number of branches? 1) Vagus nerve (2) Trigeminal nerve (3) Facial nerve (4) None of the above
32. V	(2) NH*
33. A of (1) (3)	(2) BLAST

Question No.	Questions	
34.	Which of the following development process in animals is more dependent	
	on cellular movements?	
	(1) Pattern formation (2) Morphogenesis	
	(3) Cell differentiation (4) Growth	
35.	The organs radula and clitellum are found in	
	(1) Coelenterata and Echinodermata, respectively	
	(2) Echinodermata and Coelenterata, respectively	
	(3) Annelida and Mollusca, respectively	
	(4) Mollusca and Annelida, respectively	
36.	Which of the following is unfavourable for protein folding?	
norm	(1) Hydrophobic interaction (2) Van der waals forces	
	(3) Conformational entropy (4) Hydrogen bonding	
37.	The wings of insects and wings of bats represent a case of	
	(1) Divergent evolution (2) Convergent evolution	
jasarik I	(3) Parallel evolution (4) Neutral evolution	
38.	Which one of the following features is common in silver fish, scorpion,	
	dragon fly and prawn?	
	(1) Three pairs of legs and segmented body	
	(2) Chitinous cuticle and two pairs of antennae	
	(3) Jointed appendages and chitinous skeleton	
ALC: N	(4) Cephalothorax and trachea	

MPH/PHD/URS-EE-2020 (Life Science) Code-B
(9)

Question No.	Questions
39.	Which of the following pairs of animals is correctly matched with the kind of their body symmetry?
	(1) Hydra and shark-Bilateral symmetry
	(2) Tapeworm and octopus-Radial symmetry
	(3) Amoeba and sea urchin-Asymmetry
	(4) Jelly fish and star fish–Radial symmetry
40.	Which of the following statement is incorrect?
	(1) Circulating body fluids in insects serve to distribute oxygen to tissues
	(2) The principle of countercurrent flow facilitates efficient respiration
	in gills of fishes
	(3) The residual air in lungs slightly decreases the efficiency of respiration
	in birds
	(4) The presence of non-respiratory air sacs, increases the efficiency of respiration in birds
41.	Which of the following is helpful in distinguishing DNA of one individual
	from another?
anne a	(1) PCR (2) Reverse transcriptase
	(3) cDNA (4) RFLP
42.	Short sub-sequence of a cDNA sequence is
	(1) Expressed sequence tag (2) Sequence tagged site
	(3) Contig (4) YAC

MPH/PHD/URS-EE-2020 (Life Science) Code-B
(10)

· -n for

Question No.	Questions
43.	In sickle-cell disease, a glutamate \rightarrow valine substitution results in formation of HbS molecules, which (1) abnormally and cannot adequately carry O_2
	(2) have abnormally high affinity for binding to O,
	(3) stabilize the wall of red blood cells against oxidative damage (4) cause high levels of repulsions between HbS molecules
44.	Which property of p53 enables it to prevent the development of cancer? (1) It is a transcription factor that causes protein production which stimulates the cell cycle
	(2) It prevents replication of cells with damaged DNA
	(3) It prevents cells from triggering apoptosis
	(4) It stimulates synthesis of DNA repair enzymes that replace telomere sequence lost during cell division
45.	According to Shelford's law of tolerance and organism with wide tolerance limit for an environmental factor usually show
	(1) Wide distribution with low population size
	(2) Wide distribution with high population size
	(3) Narrow distribution with low population size (4) Narrow distribution with high population size
46.	Which of the following is a non-parametric test?
	(1) F-test (2) Z-test
	(3) Wilcoxon test (4) All of the above

No.	Questions
47.	In NMR spectrum the nuclei in up field resonate at
	(1) High frequency
	(2) Low frequency
	(3) It is constant throughout the spectrum
	(4) It doesn't depends on chemical shift
48.	Which statement is correct with respect to the food chain?
	(1) Every component of food chain forms trophic level
	(2) Inter-relation between different food chains is known as a food web
	(3) All the chains formed by nutritional relations is used to understand
	energy flow
	(4) All of the above
49.	Which of the following would occur through specialized transduction?
	(1) acquisition of Hfr plasmid
	(2) transfer of genes for toxin production
	(3) transfer of genes for capsule formation
	(4) transfer of a plasmid with genes for degrading pesticides
50.	Identify the mismatched pair
	(1) Tundra-Permafrost
	(2) Savanna-Acacia trees
	(3) Prairie-Epiphytes
	(4) Coniferous forest-Evergreen trees HD/URS-EE-2020 (Life Science) Code P

MPH/PHD/URS-EE-2020 (Life Science) Code-B
(12)

Question No.	Questions
51.	The ozone layer protects us from harmful
	(1) UV-A radiation (2) UV-B radiation
	(3) UV-C radiation (4) Both (2) and (3)
52.	The one-horned rhinoceros is specific to which of the following sanctuaries?
	(1) Bharatpur (2) Vedanthangal
	(3) Kaziranga (4) Corbett Park
53.	Which of the following is not an invasive alien species in the Indian context?
	(1) Lantana (2) Cynodon
	(3) Parthenium (4) Eichhornia
54.	Ananda Chakraborty received the first U.S. patent for a GM entity. The entity was
ASS CONTRACTOR	(1) The GloFish
	(2) A transgenic mouse expressing the growth hormone gene
	(3) Cloned E.Coli
	(4) Pseudomonas engineered to degrade petroleum
55.	To which of the following residues of the protein, the protein kinases do not add phosphate groups?
	(1) Serine (2) Cytosine
	(3) Threonine (4) Tyrosine
56.	Which of the following is not a secondary messanger?
	(1) Cyclic GMP
	(2) Diacyl glycerol
	(3) Inositol triphosphate
	(4) Phosphotidyl inositol

MPH/PHD/URS-EE-2020 (Life Science) Code-B (13)

Code-B

Question No.	Questions
57.	Mutation in an oncogene falls under which of the following classes? (1) Loss of function mutation (2) Frame shift mutation (3) Gain of function mutation (4) Dominant negative mutation
58.	Cytokines in the immune system (1) Are proteins or glycoproteins (2) Bind to cell surface receptors to mediate their effects (3) Are able to kill pathogens directly (4) Often act in synergy to induce immune response
59.	The different lineage of the lymphocytes can be distinguished by characterizing the expression of their membrane molecules called the cluster of differentiation (CD). Which of the following CD is only found in B-cells? (1) CD-4 (2) CD-8 (3) CD-32 (4) CD-45
	Dendritic cells are characterized by (1) Their ability to release histamine (2) Their interface between the innate and adaptive immune system (3) Expression of CD3 (4) Expression of IgM molecules

Question No.	Questions
61.	Which is correct regarding the peptides in the Ramachandran Plot? (1) The sequence of the peptide can be deduced (2) It is not possible to conclude whether a peptide adopts entirely helix or entirely beta sheet conformation
	 (3) Peptides that are unstructured will have all the backbone dihedral angles in the disallowed regions (4) The occurrence of a beta-turn conformation in a peptide can be deduced
62.	Glycophorin is involved in which of the following disease? (1) Viral fever (2) Malaria (3) Common cold (4) Asthma
63.	In crop movement programme, haploids are important because they (1) require one half of nutrients (2) are helpful in study of meiosis (3) grow better under adverse conditions (4) form perfect homozygous
64.	Which among the following is the real product of the honey bee? (1) Honey (2) Propolis (3) Pollen (4) Bee wax
65.	In cheese manufacture, the microorganisms are important for (1) the ripening only (2) the souring of milk only (3) the development of resistance to spoilage only (4) both the souring and the ripening processes

Questio No.	Questions
66.	Coir is the commercial product of coconuts
	(1) Endocarp (2) Endosperm
	(3) Mesocarp (4) Pericarp
67.	Which of the following is non-symbiotic biofertilizer?
	(1) Anabaena (2) Rhizobium
4	(3) VAM (4) Azotobacter
68.	Which of the following is not a point mutation?
	(1) Substitution (2) Transposition
	(3) Insertion (4) Transversion
69.	What will be the effect of the deletion mutation of a gene at the telomere?
	(1) Organism will die
	(2) Organism will develop serious hazards due to absence of the gene and
4.0	its product
	(3) Mild effect on the phenotype
	(4) No effect
70.	Identify a Mendelian disorder from the following
	(1) Down's Syndrome
	(2) Klinefelter's Syndrome
	(3) Turner's Syndrome
(4) Phenylketonuria
H/DU	ID/URS-EE-2020 (Life Science) C. 1

MPH/PHD/URS-EE-2020 (Life Science) Code-B (16)

Question No.	Questions
71.	Transcription termination of mRNA genes in eukaryotes occurs
	(1) at polyadenylation sites by the action of a terminator factor
	(2) by the formation of a strong hairpin structure in the vicinity of
	polyadenylation site
	(3) termination factor bound to the termination site in the vicinity of polyadenylation site
	(4) at pause sites following the polyadenylation sites
72.	GTP is required by which of the following steps in protein synthesis?
	(1) Aminoacyl tRNA synthetase activation of amino acids
	(2) Attachment of ribosomes to endoplasmic reticulum
	(3) Translocation of tRNA-nascent protein complex from A site to P site
	(4) Attachment of mRNA to ribosomes
73.	Which of the following sequences is most likely to be a restriction enzyme recognition site?
	(1) CGGCTT (2) CGCCGC
	(3) GTAATG (4) GTCGAC
74.	Polymerase chain reaction is considered as a revolutionary technology
Loren	because all of the following, except
	(1) it enables an unlimited production of a DNA fragment in vitro
	(2) it is a highly sensitive technology (3) its experimental protocol is simple
in street	 (3) its experimental protocol is simple (4) it enables the direct production of a synthetic gene that did not exist
	before

Question No.	Questions
75.	If two genes are unlinked the recombination frequency will be
	(1) 25% (2) 50%
	(3) 75% (4) 100%
76.	Which of the following is a kinetin derivative?
	(1) Adenine (2) Thymine
	(3) Uracil (4) Cytosine
77.	ELISA utilizes enzymes that
	(1) have a high turnover rate
	(2) yield a stable coloured product .
	(3) are stable on conjugation to proteins
later 9	(4) all of the above
78.	Which of the following disease is not an autoimmune disease?
	(1) Rheumatoid arthritis
	(2) Lupus erythematosus
	(3) Bovine spongiform encephalitis
	(4) Grave's disease
79.	Live vaccine is
	(1) low dose of infectious bacteria administered as prophylactic
	(2) a dose of bacterial strain in a modified form which retains
	immunogenicity but is not pathogenic
	(3) a low dose of toxin that is produced by the bacterium
	(4) a sample of cells from a patient who recently recovered from the
	diseases diseases

MPH/PHD/URS-EE-2020 (Life Science) Code-B
(18)

Question No.	Questions
80.	The speed of migration of ions in an electric field depends upon (1) magnitude of charge and mass of molecules (2) magnitude of charge and shape of molecules (3) shape and size of the molecules (4) magnitude of charge, shape and mass of molecules
81.	Pancreas is absent in which group of vertebrates? (1) Reptiles (2) Cyclostomates (3) Birds (4) Mammals
82.	Cell wall is absent in (1) Gametes (2) Amoeba (3) Mycoplasma (4) All of these
83.	Which is synthesized in G1 phase? (1) DNA polymerase (2) Histones (3) Nucleolar DNA (4) Tubulin protein
84.	Histone proteins found in the nuclei of eukaryotes are rich in which of the following amino acids? (1) Glycine and phenylalanine (2) Lysine and arginine (3) Glycine and arginine (4) Phenylalanine and lysine

Questio No.	Questions
85.	Random genetic drift in a population probably results from (1) Highly genetically variable individuals (2) Interbreeding within this population (3) Constant low mutation rate (4) Large population size
86.	The use of copper in copper releasing IUDs is (1) It alters the reproductive cycle in females (2) Copper decreases phagocytosis of sperms in the uterus (3) Copper ions released suppress sperm motility and the fertilization of sperms (4) Copper ions inhibits ovulation
87.	Which of the following are true for electron microscopy? (1) specimen should be thin and dry (2) image is obtained on a phosphorescent screen (3) electron beam must pass through evacuated chamber (4) specimen should be thin and dry, image is obtained on a phosphorescent screen and electron beam must pass through evacuated chamber
	Which one of the following pairs of plant structures has haploid number of chromosomes? (1) Egg nucleus and secondary nucleus (2) Megaspore mother cell and antipodal cells (3) Egg cell and antipodal cells (4) Nucellus and antipodal cells

MPH/PHD/URS-EE-2020 (Life Science) Code-B (20)

the same

Question No.	Questions
89.	Apomictic embryos in Citrus arise from
	(1) Diploid egg
	(2) Synergids
	(3) Maternal sporophytic tissue in ovule
	(4) Antipodal cells
90.	Where will you look for the sporozoites of the malarial parasites?
	(1) Salivary glands of freshly moulted female Anopheles mosquito
	(2) Saliva of infected female Anopheles mosquito
	(3) RBCs of humans suffering from malaria
	(4) Spleen of infected humans
91.	Arithmetic mean of the two regression coefficients is
	(1) Equal to correlation coefficient
	(2) Greater than correlation coefficient
	(3) Less than correlation coefficient
	(4) Equal to or greater than correlation coefficient
92.	Retroviruses are capable of causing cancer because they
	(1) produce a very high number of progeny viruses per infected cell
	(2) often contain point mutations in their pol gene
	(3) transduce mutant versions of cellular genes that normally regulate cell growth
	(4) infect cells more efficiently than other viruses

cupe -4 11

Question No.	Questions
93.	Puccinia forms uredia and
	(1) Telia on wheat leaves
	(2) Aecia on barbery leaves
	(3) Pycnia on barbery leaves
	(4) Aecia on wheat leaves
94.	Bryophytes can be separated from algae, because they
	(1) Possess archegonia
	(2) Contain chloroplast
	(3) Are thalloid forms
	(4) Have no conducting tissue
95.	Sexual reproduction is absent in
	(1) Spirogyra (2) Nostoc
	(3) Ulothrix (4) Volvox
96.	Which of the following compound is not amphipathic?
	(1) Phosphotidylcholine (2) Cholesterol
	(3) Oleic acid (4) Succinate
97.	Pneumatophores are found in
	(1) Vegetation found in marshy and saline lake
	(2) Vegetation found in acidic soil
(3) Xerophytes
	4) Epiphytes
H/PH	D/URS-EE-2020 (Life Science) Code-B

Question No.	0
	Questions
98.	Which of the following statement is true?
	(1) Vessels are multicellular with wide lumen
	(2) Tracheids are multicellular with narrow lumen
	(3) Vessels are unicellular with narrow lumen
	(4) Tracheids are unicellular with wide lumen
99.	The cells of quiescent centre are characterized by
	(1) Dense cytoplasm and prominent nuclei
	(2) Light cytoplasm and small nuclei
	(3) Dividing regularly to add to the corpus
	(4) Dividing regularly to add to the tunica
100.	Which of the following statement is false?
	(1) The ovaries in frogs are structurally and functionally connected with kidney
	(2) Mature female frog can lay 2500 to 3000 unfertilized ova at a time
	(3) In male frog there are 10-12 vasa efferentia arise from testes and
	enter kidney on their side and open into bladder's canal
	(4) The eggs of frog are mesolecithal and telolecithal
	THE COLUMN COLUM

SET_"X"

(DO NOT OPEN THIS QUESTION BOOKLET BEFORE TIME OR UNTIL YOU ARE ASKED TO DO SO)

(MPH/PHD/URS-EE-2020)

LIFE SCIENCE

10363 Sr. No.

Code C		Sr. No
Time: 1% Hours Roll No.	Total Questions: 100(in figure)	Max. Marks: 100
Name:		(in words)
Mother's Name:	Father's Name Date of Examin	

(Signature of the candidate)

(Signature of the Invigilator)

CANDIDATES MUST READ THE FOLLOWING INFORMATION/ INSTRUCTIONS BEFORE STARTING THE QUESTION PAPER.

1. All questions are compulsory.

The candidates must return the Question book-let as well as OMR answer-sheet to the Invigilator concerned before leaving the Examination Hall, failing which a case of use of unfair-means / mis-behaviour will be registered against him / her, in addition to lodging of an FIR with the police. Further the answer-sheet of such a candidate will not be evaluated.

3. Keeping in view the transparency of the examination system, carbonless OMR Sheet is provided to the candidate so that a copy of OMR Sheet may be kept by

4. Question Booklet along with answer key of all the A,B,C and D code will be got uploaded on the university website after the conduct of Entrance Examination. In case there is any discrepancy in the Question Booklet/Answer Key, the same may be brought to the notice of the Controller of Examination in writing/through E-Mail within 24 hours of uploading the same on the University Website. Thereafter, no complaint in any case, will be considered.

5. The candidate MUST NOT do any rough work or writing in the OMR Answer-Sheet. Rough work, if any, may be done in the question book-let itself. Answers

MUST NOT be ticked in the Question book-let.

6. There will be no negative marking. Each correct answer will be awarded one full mark. Cutting, erasing, overwriting and more than one answer in OMR Answer-Sheet will be treated as incorrect answer.

7. Use only Black or Blue BALL POINT PEN of good quality in the OMR Answer-Sheet.

8. BEFORE ANSWERING THE QUESTIONS, THE CANDIDATES SHOULD ENSURE THAT THEY HAVE BEEN SUPPLIED CORRECT AND COMPLETE BOOK-LET. COMPLAINTS, IF ANY, REGARDING MISPRINTING ETC. WILL NOT BE ENTERTAINED 30 MINUTES AFTER STARTING OF THE EXAMINATION.

Qu	estion No.	Questions
		Transcription termination of mRNA genes in eukaryotes occurs (1) at polyadenylation sites by the action of a terminator factor (2) by the formation of a strong hairpin structure in the vicinity of polyadenylation site (3) termination factor bound to the termination site in the vicinity of polyadenylation site 4) at pause sites following the polyadenylation sites
3.	(1) (2) (3) (4) Whi	
	(1)	CGGCTT (2) CGCCGC GTAATG (4) GTCGAC
	ecaus) it) it) its	see all of the following, except enables an unlimited production of a DNA fragment in vitro is a highly sensitive technology experimental protocol is simple enables the direct production of a synthetic gene that did not exist ore

MPH/PHD/URS-EE-2020 (Life Science) Code-C (1)

Question No.	Questions
5.	If two genes are unlinked the recombination frequency will be (1) 25% (2) 50% (3) 75% (4) 100%
6.	Which of the following is a kinetin derivative? (1) Adenine (2) Thymine (3) Uracil (4) Cytosine
7.	ELISA utilizes enzymes that (1) have a high turnover rate (2) yield a stable coloured product (3) are stable on conjugation to proteins (4) all of the above
8.	Which of the following disease is not an autoimmune disease? (1) Rheumatoid arthritis (2) Lupus erythematosus (3) Bovine spongiform encephalitis (4) Grave's disease
9.	Live vaccine is (1) low dose of infectious bacteria administered as prophylactic (2) a dose of bacterial strain in a modified form which retains immunogenicity but is not pathogenic (3) a low dose of toxin that is produced by the bacterium (4) a sample of cells from a patient who recently recovered from the diseases

MPH/PHD/URS-EE-2020 (Life Science) Code-C (2)

Question No.	Questions
10.	The speed of migration of ions in an electric field depends upon (1) magnitude of charge and mass of molecules (2) magnitude of charge and shape of molecules (3) shape and size of the molecules (4) magnitude of charge, shape and mass of molecules
11.	Pancreas is absent in which group of vertebrates? (1) Reptiles (2) Cyclostomates (3) Birds (4) Mammals
12.	Cell wall is absent in (1) Gametes (2) Amoeba (3) Mycoplasma (4) All of these
13.	Which is synthesized in G1 phase? (1) DNA polymerase (2) Histones (3) Nucleolar DNA (4) Tubulin protein
14.	Histone proteins found in the nuclei of eukaryotes are rich in which of the following amino acids? (1) Glycine and phenylalanine (2) Lysine and arginine (3) Glycine and arginine (4) Phenylalanine and lysine

MPH/PHD/URS-EE-2020 (Life Science) Code-C
(3)

Question No.	Questions
15.	Random genetic drift in a population probably results from (1) Highly genetically variable individuals (2) Interbreeding within this population (3) Constant low mutation rate (4) Large population size
16.	The use of copper in copper releasing IUDs is (1) It alters the reproductive cycle in females (2) Copper decreases phagocytosis of sperms in the uterus (3) Copper ions released suppress sperm motility and the fertilization of sperms (4) Copper ions inhibits ovulation
17.	Which of the following are true for electron microscopy? (1) specimen should be thin and dry (2) image is obtained on a phosphorescent screen (3) electron beam must pass through evacuated chamber (4) specimen should be thin and dry, image is obtained on a phosphorescent screen and electron beam must pass through evacuated chamber
18.	Which one of the following pairs of plant structures has haploid number of chromosomes? (1) Egg nucleus and secondary nucleus (2) Megaspore mother cell and antipodal cells (3) Egg cell and antipodal cells (4) Nucellus and antipodal cells

MPH/PHD/URS-EE-2020 (Life Science) Code-C
(4)

Question No.	Questions
19.	Apomictic embryos in Citrus arise from
	(1) Diploid egg
	(2) Synergids
	(3) Maternal sporophytic tissue in ovule
	(4) Antipodal cells
20.	Where will you look for the sporozoites of the malarial parasites?
	(1) Salivary glands of freshly moulted female Anopheles mosquito
	(2) Saliva of infected female Anopheles mosquito
	(3) RBCs of humans suffering from malaria
	(4) Spleen of infected humans
21.	Arithmetic mean of the two regression coefficients is
	(1) Equal to correlation coefficient
	(2) Greater than correlation coefficient
	(3) Less than correlation coefficient
	(4) Equal to or greater than correlation coefficient
22.	Retroviruses are capable of causing cancer because they
	(1) produce a very high number of progeny viruses per infected cell
	(2) often contain point mutations in their pol gene
	(3) transduce mutant versions of cellular genes that normally regulate cell growth
	(4) infect cells more efficiently than other viruses

Question No.	Questions
23.	Puccinia forms uredia and
	(1) Telia on wheat leaves
	(2) Aecia on barbery leaves
	(3) Pycnia on barbery leaves
	(4) Aecia on wheat leaves
24.	Bryophytes can be separated from algae, because they
	(1) Possess archegonia
	(2) Contain chloroplast
	(3) Are thalloid forms
	(4) Have no conducting tissue
25.	Sexual reproduction is absent in
	(1) Spirogyra (2) Nostoc
	(3) Ulothrix (4) Volvox
26.	Which of the following compound is not amphipathic?
	(1) Phosphotidylcholine (2) Cholesterol
	(3) Oleic acid (4) Succinate
27.	Pneumatophores are found in
7	(1) Vegetation found in marshy and saline lake
	(2) Vegetation found in acidic soil
	(3) Xerophytes
	(4) Epiphytes

MPH/PHD/URS-EE-2020 (Life Science) Code-C (6)

Question No.	Questions
28.	Which of the following statement is true?
	(1) Vessels are multicellular with wide lumen
	(2) Tracheids are multicellular with narrow lumen
	(3) Vessels are unicellular with narrow lumen
	(4) Tracheids are unicellular with wide lumen
29.	The cells of quiescent centre are characterized by
	(1) Dense cytoplasm and prominent nuclei
	(2) Light cytoplasm and small nuclei
	(3) Dividing regularly to add to the corpus
	(4) Dividing regularly to add to the tunica
30.	Which of the following statement is false?
	(1) The ovaries in frogs are structurally and functionally connected with kidney
	(2) Mature female frog can lay 2500 to 3000 unfertilized ova at a time
	(3) In male frog there are 10-12 vasa efferentia arise from testes and enter kidney on their side and open into bladder's canal
	(4) The eggs of frog are mesolecithal and telolecithal
31.	Which is correct regarding the peptides in the Ramachandran Plot?
	(1) The sequence of the peptide can be deduced
	(2) It is not possible to conclude whether a peptide adopts entirely helix or entirely beta sheet conformation
	(3) Peptides that are unstructured will have all the backbone dihedral angles in the disallowed regions
	(4) The occurrence of a beta-turn conformation in a peptide can be deduced
MDH	PHD/IIRS FF 2020 (I if Science) C. 1. C.

uestion No.	Questions	
32.	Glycophorin is involved in which of the following disease?	
	(1) Viral fever (2) Malaria	
	(3) Common cold (4) Asthma	
33.	In crop movement programme, haploids are important because they	
	(1) require one half of nutrients	
	(2) are helpful in study of meiosis	
	(3) grow better under adverse conditions	
	(4) form perfect homozygous	
34.	Which among the following is the real product of the honey bee?	
	(1) Honey (2) Propolis	
	(3) Pollen (4) Bee wax	
35.	In cheese manufacture, the microorganisms are important for	
	(1) the ripening only	
	(2) the souring of milk only	
	(3) the development of resistance to spoilage only	
	(4) both the souring and the ripening processes	
36.	Coir is the commercial product of coconuts	
	(1) Endocarp (2) Endosperm	
	(3) Mesocarp (4) Pericarp	
37.	Which of the following is non-symbiotic biofertilizer?	
	(1) Anabaena (2) Rhizobium	
The state of the	(3) VAM (4) Azotobacter	

MPH/PHD/URS-EE-2020 (Life Science) Code-C (8)

Question No.	Questions	
38.	Which of the following is not a point mutation?	
	(1) Substitution (2) Transposition	
	(3) Insertion (4) Transversion	
39.	What will be the effect of the deletion mutation of a gene at the telomere?	
	(1) Organism will die	
	(2) Organism will develop serious hazards due to absence of the gene and its product	
	(3) Mild effect on the phenotype	
	(4) No effect	
40.	Identify a Mendelian disorder from the following	
	(1) Down's Syndrome (2) Klinefelter's Syndrome	
	(3) Turner's Syndrome (4) Phenylketonuria	
41.	The ozone layer protects us from harmful	
	(1) UV-A radiation (2) UV-B radiation	
	(3) UV-C radiation (4) Both (2) and (3)	
42.	The one-horned rhinoceros is specific to which of the following sanctuaries?	
	(1) Bharatpur (2) Vedanthangal	
	(3) Kaziranga (4) Corbett Park	
43.	Which of the following is not an invasive alien species in the Indian context?	
	(1) Lantana (2) Cynodon	
	(3) Parthenium (4) Eichhornia	
MPH/	PHD/IRS_FF 2020 (I : G Science) G I G	

MPH/PHD/URS-EE-2020 (Life Science) Code-C (9)

Question No.	Questions	
44.	Ananda Chakraborty received the first U.S. patent for a GM ent	
	The entity was	
	(1) The GloFish	
	(2) A transgenic mouse expressing the growth hormone gene	
	(3) Cloned E.Coli	
	(4) Pseudomonas engineered to degrade petroleum	
45.	To which of the following residues of the protein, the protein kinases do	
	not add phosphate groups?	
	(1) Serine (2) Cytosine	
	(3) Threonine (4) Tyrosine	
46.	Which of the following is not a secondary messanger?	
	(1) Cyclic GMP (2) Diacyl glycerol	
	(3) Inositol triphosphate (4) Phosphotidyl inositol	
47.	Mutation in an oncogene falls under which of the following classes?	
	(1) Loss of function mutation	
	(2) Frame shift mutation	
	(3) Gain of function mutation	
	(4) Dominant negative mutation	
48.	Cytokines in the immune system	
	(1) Are proteins or glycoproteins	
1	(2) Bind to cell surface receptors to mediate their effects	
	(3) Are able to kill pathogens directly	
	(4) Often act in synergy to induce immune response	

Question No.	Questions
49.	The different lineage of the lymphocytes can be distinguished by
	characterizing the expression of their membrane molecules called the
levig	cluster of differentiation (CD). Which of the following CD is only found in
A 2250	B-cells?
	(1) CD-4 (2) CD-8
2004.300	(3) CD-32 (4) CD-45
50.	Dendritic cells are characterized by
41.44.64	(1) Their ability to release histamine
	(2) Their interface between the innate and adaptive immune system
artitle.	(3) Expression of CD3
	(4) Expression of IgM molecules
51.	At which stage of HIV infection does one usually show symptoms of AIDS?
	(1) Within 15 days of sexual contact with an infected person
	(2) When the infected retrovirus enters host cells
	(3) When viral DNA is produced by reverse transcriptase
	(4) When HIV replicates rapidly in helper T-lymphocytes and damages
William V	large number of these cells
52.	During each cycle of chain elongation in translation, how many
	conformational changes does the ribosomes undergo that are coupled to
	GTP hydrolysis?
	(1) Zero (2) One
	(3) Two (4) Three

MPH/PHD/URS-EE-2020 (Life Science) Code-C (11)

Question No.	Questions
53.	Which one of the following about development of sea urchin embryos is true? (1) Each blastomere of a 4 cell stage possess a portion of the original animal-vegetal axis and if isolated and allowed to develop will form a complete but smaller size larva (2) Each blastomere of a 8-cell stage has the capacity to form a complete stage has the capacity sta
	embryo but by the 16 cell stage, blastomere will develop by their presumptive fate (3) Any blastomere isolated till the pluteus larva formation will regulate to go on and develop into a full sized embryo (4) After an intricate recombination at the 16 cell stage, the resulting embryo loses its ability to form a complex larva
54.	Discovery of Emerson effect showed the existence of (1) Photorespiration (2) Light and dark reaction in photosynthesis (3) Photophosphorylation (4) Two distinct photosystems
55.	Which of the following statements is not correct about cyclic photophosphorylation? (1) It does not involve NADPH formation (2) It uses electrons supplied by photosystem 1 (3) It involves substrate level phosphorylation (4) It doesn't generate oxygen

Question No.	Questions
56.	All of following inhibits auxin transport except (1) cytokinin (2) alpha parthall 1 : : : : :
	(1) cytokinin (2) alpha napthylthalamic acid (3) 2,3,5,-tri indo benzoic acid (4) ethylene
57.	Under normal conditions, as electrons flow down the electron transport chain of the mitochondria
	(1) NADH and FADH ₂ are oxidized
	(2) pH of the matrix increases
	(3) an electrochemical gradient is formed
	(4) All of the above
58.	Uncoupling of oxidative phosphorylation implies that
	(1) the ATPase activity of mitochondria is abolished
	(2) mitochondria ceases to oxidize succinate
	(3) ATP formation ceases but respiration continues
	(4) ATP formation continues but respiration ceases
59.	The exonuclease activity of DNA polymerase functions to
	(1) Remove the RNA primer sequence
	(2) Proofread the new DNA strand and remove inappropriate nucleotides
	(3) Maximize the fidelity of DNA replication
	(4) All of the above
MPH/P	PHD/URS_EE_2020 (I if Science) C. 1. C.

Question No.	Questions
60.	Transposons
	(1) insert into DNA by homologous recombination
	(2) can't be transferred by phage mediated transduction
	(3) contain the equivalent of insertion (IS) elements
	(4) can insert into plasmids but not the bacterial chromosomes
61.	Applications of southern blotting includes
	(1) DNA fingerprinting
	(2) Preparation of RFLP maps
	(3) Identification of transferred genes
	(4) All of these
62.	Which of the following processes does not occur in prokaryotes?
	(1) Transcription (2) Splicing
	(3) Translation (4) Replication
63.	Which of the following is not the cloning vector utilized in recombinant
	DNA technology?
	(1) Plasmid
	(2) Cosmids
	(3) Bacterial Artificial Chromosomes
	(4) Yeast Intact chromosomes
•.	TOUD JUDG EE 2020 (Life Science) Code C

MPH/PHD/URS-EE-2020 (Life Science) Code-C (14)

Question No.	Questions
64.	Excess oxygen consumed after vigorous exercise is
	(1) To pump out lactic acid from muscles
	(2) To increase the concentration of lactic acid in muscles
	(3) To reduce dissolved CO ₂ in blood
	(4) To make ATP for gluconeogenesis
65.	
	Which of the following is not true for cholesterol metabolism
	(1) The key regulator in cholesterol biosynthesis is HMG-CoA reductase
tropou.	(2) Biosynthesis takes place in cytoplasm
	(3) NADH is cofactor for reduction reactions
SUMBRIL	(4) Cholesterol is transported by LDL in plasma
66.	At zwitter ionic form, amino acid will act as
Telf ((1) Proton donor
अस्ति अन्ति। जन्म	(2) Proton acceptor
	(3) Proton donor and acceptor
ignitia	(4) None of these
67.	Which of the following amino acid is likely to occupy the interior of the
	globular protein?
i	(1) Methionine
	(2) Aspartate
	(3) Lysine
	(4) Arginine
MDIL	PHD/IDS EE 2020 (I : S S) S S

MPH/PHD/URS-EE-2020 (Life Science) Code-C (15)

Question No.	Questions
68.	Negative staining is used for examining which of the following?
	(1) virus particles
	(2) protein molecules
	(3) bacterial flagella
	(4) virus particles, protein molecules and bacterial flagella
69.	Which of this is/are examples of an organ containing a smooth muscle?
	(1) Iris of eye (2) Bronchi only
	(3) Uterus only (4) All of the above
70.	Which is not an example of transmembrane transport between differen
	subcellular compartments?
	(1) Transport from the stroma into thylakoid space
	(2) Transport from the cytoplasm into the lumen of the endoplasmi
	reticulum
	(3) Transport from the endoplasmic reticulum into the Golgi complex
	(4) Transport from mitochondrial intermembrane space into the
	mitochondrial matrix
71.	Which of the following is helpful in distinguishing DNA of one individual
	from another?
	(1) PCR (2) Reverse transcriptase
	(3) cDNA (4) RFLP
72.	Short sub-sequence of a cDNA sequence is
	(1) Expressed sequence tag (2) Sequence tagged site
	(3) Contig (4) YAC

MPH/PHD/URS-EE-2020 (Life Science) Code-C

Question No.	Questions
73.	In sickle-cell disease, a glutamate \rightarrow valine substitution results in formation of HbS molecules, which
	(1) abnormally and cannot adequately carry O ₂
	(2) have abnormally high affinity for binding to O ₂
	(3) stabilize the wall of red blood cells against oxidative damage
	(4) cause high levels of repulsions between HbS molecules
74.	Which property of p53 enables it to prevent the development of cancer?
	(1) It is a transcription factor that causes protein production which
	stimulates the cell cycle
	(2) It prevents replication of cells with damaged DNA
	(3) It prevents cells from triggering apoptosis
	(4) It stimulates synthesis of DNA repair enzymes that replace telomere
	sequence lost during cell division
75.	According to Shelford's law of tolerance and organism with wide tolerance
	limit for an environmental factor usually show
	(1) Wide distribution with low population size
	(2) Wide distribution with high population size
	(3) Narrow distribution with low population size
	(4) Narrow distribution with high population size
76.	Which of the following is a non-parametric test?
	(1) F-test . (2) Z-test
	(3) Wilcoxon test (4) All of the above

MPH/PHD/URS-EE-2020 (Life Science) Code-C (17)

Question	Questions
No. 77.	In NMR spectrum the nuclei in up field resonate at (1) High frequency (2) Low frequency (3) It is constant throughout the spectrum (4) It doesn't depends on chemical shift
78.	Which statement is correct with respect to the food chain? (1) Every component of food chain forms trophic level (2) Inter-relation between different food chains is known as a food web (3) All the chains formed by nutritional relations is used to understand energy flow (4) All of the above
79.	Which of the following would occur through specialized transduction? (1) acquisition of Hfr plasmid (2) transfer of genes for toxin production (3) transfer of genes for capsule formation (4) transfer of a plasmid with genes for degrading pesticides
80.	Identify the mismatched pair (1) Tundra-Permafrost (2) Savanna-Acacia trees (3) Prairie-Epiphytes (4) Coniferous forest-Evergreen trees

MPH/PHD/URS-EE-2020 (Life Science) Code-C

Question No.	Questions
81.	Which cranial nerve has the highest number of branches?
	(1) Vagus nerve (2) Trigeminal nerve
	(3) Facial nerve (4) None of the above
82.	Which of the following ion is an ethylene inhibitor?
	(1) Mg ²⁺ (2) NH ³⁺
Local Agric	(3) Ag ⁺ (4) Cl ⁻
83.	A bioinformatics tool used to find out the sequence similarity in the subunits of hemoglobin is
	(1) FASTA (2) BLAST
	(3) HUMMER (4) PSI;PLOT
84.	Which of the following development process in animals is more dependent on cellular movements?
	(1) Pattern formation (2) Morphogenesis
	(3) Cell differentiation (4) Growth
85.	The organs radula and clitellum are found in
disjon	(1) Coelenterata and Echinodermata, respectively
	(2) Echinodermata and Coelenterata, respectively
	(3) Annelida and Mollusca, respectively
	(4) Mollusca and Annelida, respectively

MPH/PHD/URS-EE-2020 (Life Science) Code-C (19)

Question No.	Questions
86.	Which of the following is unfavourable for protein folding? (1) Hydrophobic interaction (2) Van der waals forces (3) Conformational entropy (4) Hydrogen bonding
87.	The wings of insects and wings of bats represent a case of (1) Divergent evolution (2) Convergent evolution (3) Parallel evolution (4) Neutral evolution
88.	Which one of the following features is common in silver fish, scorpion dragon fly and prawn?
	(1) Three pairs of legs and segmented body
	(2) Chitinous cuticle and two pairs of antennae
	(3) Jointed appendages and chitinous skeleton
	(4) Cephalothorax and trachea
89.	Which of the following pairs of animals is correctly matched with the kind of their body symmetry? (1) Hydra and shark-Bilateral symmetry
	(2) Tapeworm and octopus-Radial symmetry
	(3) Amoeba and sea urchin-Asymmetry
	(4) Jelly fish and star fish-Radial symmetry
90.	Which of the following statement is incorrect? (1) Circulating body fluids in insects serve to distribute oxygen to tissues (2) The principle of countercurrent flow facilitates efficient respiration in gills of fishes
	(3) The residual air in lungs slightly decreases the efficiency of respiration in birds
	(4) The presence of non-respiratory air sacs, increases the efficiency of respiration in birds

uestion No.	Questions
91.	Ribozymes are also termed as
	(1) Catalytic RNA (2) RNAzyme
	(3) Nucleozyme (4) Both (1) and (2)
92.	Which of the following statement is incorrect?
	(1) Golden rice is rich in Vitamin-A
rung art	(2) Human protein (alpha-1 antitrypsin) obtained from transgenic animal
	is used to treat emphysema
	(3) Human protein enriched milk, which contained the human alpha lactalbumin was produced by cow molly
	(4) Platelet derived growth factor which helps in wound healing i synthesized by DNA recombinant technology
93.	Downstreaming process in biotechnology refers to
	(1) The process which include separation and purification of the product after the completion of the biosynthetic stage
	(2) Large scale production of the product by using bioreactors
	(3) The cells harbouring cloned genes of interest being grown on a small scale
	(4) The microbes which act upon the substrate are cultured and added
	into the fermenter
94.	Which of the following is correct match?
	(1) Reserpine-Tranquilizer (2) Cocaine-Opiate narcotic
	(3) Morphine-hallucinogenic (4) Bhang-Analgesic

Question No.	Questions
95.	The pituitary gland's posterior lobe produces following two hormones
	(1) vasopressin and oxytocin
	(2) cortisone and corticosterone
	(3) progesterone and estradiol
	(4) testosterone and aldosterone
96.	Which of the following is most likely to occur if communication between
00.	the SA node and the AV node became blocked?
	(1) The rate of ventricular contraction will decrease
	(2) Afterload will increase
12 48	(3) Stroke volume will increase to 5L/beat
	(4) None of the above
97.	In the first phase of menstrual cycle
	(1) Oogonia differentiate into primary oocytes
	(2) Thickness of the stratum basalis decreases dramatically
	(3) Graafian follicle ruptures
	(4) The dominant follicle is opsonized
98.	Which of the following statement is incorrect about small intestine?
	(1) Site of carbohydrate, protein and fat digestion
	(2) Site of majority of water absorption in the GI tract
	(3) First site of protein hydrolysis
	(4) Most rapid absorption of galactose

uestion No.	Questions
99.	Which of the following is not an example of primary succession? (1) Moss growing on mountain cliffs (2) Grassland growing on the site of a previous rainforest (3) Vegetation colonising old lava fields on a volcanic island (4) Marsh vegetation on a mud flat
100.	Which of the following has maximum biodiversity?
	(1) Mangroves (2) Temperate forest
	(3) Taiga (4) Coral reef

SET-"X"

(DO NOT OPEN THIS QUESTION BOOKLET BEFORE TIME OR UNTIL YOU ARE ASKED TO DO SO)

(MPH/PHD/URS-EE-2020)

LIFE SCIENCE

Sr. No. 10364

Code

Time: 1¼ Hours	Total Questions : 100 (in figure)	Max. Marks: 10	
Roll No	Father's Na	me:	
Mother's Name :	Date of Exam	nination:	

(Signature of the candidate)

(Signature of the Invigilator)

CANDIDATES MUST READ THE FOLLOWING INFORMATION/ INSTRUCTIONS BEFORE STARTING THE QUESTION PAPER.

All questions are compulsory.

The candidates must return the Question book-let as well as OMR answer-sheet to the Invigilator concerned before leaving the Examination Hall, failing which a case of use of unfair-means / mis-behaviour will be registered against him / her, in addition to lodging of an FIR with the police. Further the answer-sheet of such a candidate will not be evaluated.

Keeping in view the transparency of the examination system, carbonless OMR Sheet is provided to the candidate so that a copy of OMR Sheet may be kept by

the candidate.

4. Question Booklet along with answer key of all the A,B,C and D code will be got uploaded on the university website after the conduct of Entrance Examination. In case there is any discrepancy in the Question Booklet/Answer Key, the same may be brought to the notice of the Controller of Examination in writing/through E-Mail within 24 hours of uploading the same on the University Website. Thereafter, no complaint in any case, will be considered.

The candidate MUST NOT do any rough work or writing in the OMR Answer-Sheet. Rough work, if any, may be done in the question book-let itself. Answers

MUST NOT be ticked in the Question book-let.

6. There will be no negative marking. Each correct answer will be awarded one full mark. Cutting, erasing, overwriting and more than one answer in OMR Answer-Sheet will be treated as incorrect answer.

7. Use only Black or Blue BALL POINT PEN of good quality in the OMR Answer-

8. BEFORE ANSWERING THE QUESTIONS, THE CANDIDATES SHOULD ENSURE THAT THEY HAVE BEEN SUPPLIED CORRECT AND COMPLETE BOOK-LET. COMPLAINTS, IF ANY, REGARDING MISPRINTING ETC. WILL NOT BE ENTERTAINED 30 MINUTES AFTER STARTING OF THE EXAMINATION.

Questio	Questions		
No.	Which cranial nerve has the highest number of branches?		
1.	(1) Vagus nerve (2) Trigeminal nerve		
	(3) Facial nerve (4) None of the above		
2.	Which of the following ion is an ethylene inhibitor?		
	(1) Mg ²⁺ (2) NH ³⁺		
	(3) Ag ⁺ (4) Cl ⁻		
3.	A bioinformatics tool used to find out the sequence similarity in the subunits		
	of hemoglobin is		
	(1) FASTA (2) BLAST		
	(3) HUMMER (4) PSI:PLOT		
4.	Which of the following development process in animals is more dependent		
	on cellular movements?		
	(1) Pattern formation (2) Morphogenesis		
	(3) Cell differentiation (4) Growth		
5.	The organs radula and clitellum are found in		
	(1) Coelenterata and Echinodermata, respectively		
ATT TO STATE OF	(2) Echinodermata and Coelenterata, respectively		
not the	(3) Annelida and Mollusca, respectively		
	(4) Mollusca and Annelida, respectively		

Question No.	Questions
6.	Which of the following is unfavourable for protein folding? (1) Hydrophobic interaction (2) Van der waals forces (3) Conformational entropy (4) Hydrogen bonding
7.	The wings of insects and wings of bats represent a case of (1) Divergent evolution (2) Convergent evolution (3) Parallel evolution (4) Neutral evolution
8.	Which one of the following features is common in silver fish, scorpion, dragon fly and prawn? (1) Three pairs of legs and segmented body (2) Chitinous cuticle and two pairs of antennae (3) Jointed appendages and chitinous skeleton (4) Cephalothorax and trachea
9.	Which of the following pairs of animals is correctly matched with the kind of their body symmetry? (1) Hydra and shark—Bilateral symmetry (2) Tapeworm and octopus—Radial symmetry (3) Amoeba and sea urchip—Asymmetry (4) Jelly fish and star fish—Radial symmetry
10.	 Which of the following statement is incorrect? (1) Circulating body fluids in insects serve to distribute oxygen to tissues (2) The principle of countercurrent flow facilitates efficient respiration in gills of fishes (3) The residual air in lungs slightly decreases the efficiency of respiration in birds (4) The presence of non-respiratory air sacs, increases the efficiency of respiration in birds

Question No.	Questions
11.	Which of the following is helpful in distinguishing DNA of one individual from another?
	(1) PCR (2) Reverse transcriptase
	(3) cDNA (4) RFLP
12.	Short sub-sequence of a cDNA sequence is
	(1) Expressed sequence tag (2) Sequence tagged site
	(3) Contig (4) YAC
13.	In sickle-cell disease, a glutamate \rightarrow valine substitution results in formation of HbS molecules, which
	(1) abnormally and cannot adequately carry O ₂
	(2) have abnormally high affinity for binding to O ₂
	(3) stabilize the wall of red blood cells against oxidative damage
	(4) cause high levels of repulsions between HbS molecules
14.	Which property of p53 enables it to prevent the development of cancer?
	(1) It is a transcription factor that causes protein production which
	stimulates the cell cycle
-ēnsa k	(2) It prevents replication of cells with damaged DNA
l merani	(3) It prevents cells from triggering apoptosis
	(4) It stimulates synthesis of DNA repair enzymes that replace telomere
	sequence lost during cell division
7	

Questio No.	Questions		
15.	According to Shelford's law of tolerance and organism with wide tolerance limit for an environmental factor usually show (1) Wide distribution with low population size (2) Wide distribution with high population size (3) Narrow distribution with low population size (4) Narrow distribution with high population size		
16.	Which of the following is a non-parametric test?		
	(1) F-test (2) Z-test		
	(3) Wilcoxon test (4) All of the above		
17.	In NMR spectrum the nuclei in up field resonate at		
	(1) High frequency		
	(2) Low frequency		
	(3) It is constant throughout the spectrum		
	(4) It doesn't depends on chemical shift		
18.	Which statement is correct with respect to the food chain?		
	(1) Every component of food chain forms trophic level		
	(2) Inter-relation between different food chains is known as a food web		
	(3) All the chains formed by nutritional relations is used to understand		
	energy flow		
	(4) All of the above		
	PUD/IDC EE 2020 (I to Colons) Codo D		

vestion No.	Questions
19.	Which of the following would occur through specialized transduction?
	(1) acquisition of Hfr plasmid
	(2) transfer of genes for toxin production
	(3) transfer of genes for capsule formation
	(4) transfer of a plasmid with genes for degrading pesticides
20.	Identify the mismatched pair
	(1) Tundra-Permafrost
	(2) Savanna-Acacia trees
	(3) Prairie-Epiphytes
	(4) Coniferous forest-Evergreen trees
21.	Applications of southern blotting includes
	(1) DNA fingerprinting
one of	(2) Preparation of RFLP maps
	(3) Identification of transferred genes
	(4) All of these
22.	Which of the following processes does not occur in prokaryotes?
	(1) Transcription
	(2) Splicing
	(3) Translation
	(4) Replication

MPH/PHD/URS-EE-2020 (Life Science) Code-D
(5)

Which of the following is not the cloning vector utilized in recombinant DNA technology? (1) Plasmid (2) Cosmids (3) Bacterial Artificial Chromosomes
(1) Plasmid (2) Cosmids
(2) Cosmids
(3) Bacterial Artificial Chromosomes
(4) Yeast Intact chromosomes
Excess oxygen consumed after vigorous exercise is
(1) To pump out lactic acid from muscles
(2) To increase the concentration of lactic acid in muscles
(3) To reduce dissolved CO ₂ in blood
(4) To make ATP for gluconeogenesis
Which of the following is not true for cholesterol metabolism
(1) The key regulator in cholesterol biosynthesis is HMG-CoA reductase
(2) Biosynthesis takes place in cytoplasm
(3) NADH is cofactor for reduction reactions
(4) Cholesterol is transported by LDL in plasma
At zwitter ionic form, amino acid will act as
(1) Proton donor
(2) Proton acceptor
(3) Proton donor and acceptor
(4) None of these

MPH/PHD/URS-EE-2020 (Life Science) Code-D
(6)

Question No.	Questions
27.	Which of the following amino acid is likely to occupy the interior of the globular protein?
	(1) Methionine (2) Aspartate
	(3) Lysine (4) Arginine
28.	Negative staining is used for examining which of the following?
	(1) virus particles
	(2) protein molecules
	(3) bacterial flagella
	(4) virus particles, protein molecules and bacterial flagella
29.	Which of this is/are examples of an organ containing a smooth muscle?
	(1) Iris of eye (2) Bronchi only
	(3) Uterus only (4) All of the above
30.	Which is not an example of transmembrane transport between different subcellular compartments?
	(1) Transport from the stroma into thylakoid space
	(2) Transport from the cytoplasm into the lumen of the endoplasmic reticulum
	(3) Transport from the endoplasmic reticulum into the Golgi complex
	(4) Transport from mitochondrial intermembrane space into the
	mitochondrial matrix
31.	Ribozymes are also termed as
	(1) Catalytic RNA (2) RNAzyme
	(3) Nucleozyme (4) Both (1) and (2)

Question No.	Questions
32.	Which of the following statement is incorrect?
	(1) Golden rice is rich in Vitamin-A
	(2) Human protein (alpha-1 antitrypsin) obtained from transgenic animals is used to treat emphysema
	(3) Human protein enriched milk, which contained the human alphalactalbumin was produced by cow molly
	(4) Platelet derived growth factor which helps in wound healing is synthesized by DNA recombinant technology
33.	Downstreaming process in biotechnology refers to
Y sta	(1) The process which include separation and purification of the product after the completion of the biosynthetic stage
	(2) Large scale production of the product by using bioreactors
	(3) The cells harbouring cloned genes of interest being grown on a small scale
Are all	(4) The microbes which act upon the substrate are cultured and added into the fermenter
34.	Which of the following is correct match?
	(1) Reserpine-Tranquilizer (2) Cocaine-Opiate narcotic
1	(3) Morphine-hallucinogenic (4) Bhang-Analgesic
35.	The pituitary gland's posterior lobe produces following two hormones
	(1) vasopressin and oxytocin
	(2) cortisone and corticosterone
	(3) progesterone and estradiol
	(4) testosterone and aldosterone

Question No.	Questions
36.	Which of the following is most likely to occur if communication between
	the SA node and the AV node became blocked?
	(1) The rate of ventricular contraction will decrease
	(2) Afterload will increase
AIDS	(3) Stroke volume will increase to 5L/beat
	(4) None of the above
37.	In the first phase of menstrual cycle
	(1) Oogonia differentiate into primary oocytes
	(2) Thickness of the stratum basalis decreases dramatically
MANA	(3) Graafian follicle ruptures
103 5814	(4) The dominant follicle is opsonized
38.	Which of the following statement is incorrect about small intestine?
	(1) Site of carbohydrate, protein and fat digestion
li sov	(2) Site of majority of water absorption in the GI tract
	(3) First site of protein hydrolysis
Luarge a grad	(4) Most rapid absorption of galactose
39.	Which of the following is not an example of primary succession?
	(1) Moss growing on mountain cliffs
	(2) Grassland growing on the site of a previous rainforest
sersist,	(3) Vegetation colonising old lava fields on a volcanic island
	(4) Marsh vegetation on a mud flat

Question No.	Questions	
40.	Which of the following has maximum biodiversity? (1) Mangroves (2) Temperate forest (3) Taiga (4) Coral reef	
41.	At which stage of HIV infection does one usually show symptoms of AIDS (1) Within 15 days of sexual contact with an infected person (2) When the infected retrovirus enters host cells (3) When viral DNA is produced by reverse transcriptase (4) When HIV replicates rapidly in helper T-lymphocytes and damages large number of these cells	
42.	During each cycle of chain elongation in translation, how many conformational changes does the ribosomes undergo that are coupled to GTP hydrolysis?	
3	(1) Zero (2) One (3) Two (4) Three	
	Which one of the following about development of sea urchin embryos is true? (1) Each blastomere of a 4 cell stage possess a portion of the origina animal-vegetal axis and if isolated and allowed to develop will form a complete but smaller size is	
	complete but smaller size larva (2) Each blastomere of a 8-cell stage has the capacity to form a complete embryo but by the 16 cell stage, blastomere will develop by their presumptive fate	
	(3) Any blastomere isolated till the pluteus larva formation will regulate to go on and develop into a full sized embryo	
((4) After an intricate recombination at the 16 cell stage, the resulting embryo loses its ability to form a complex larva	

Question No.	Questions	ma of
44.	Discovery of Emerson effect showed the existence of (1) Photorespiration (2) Light and dark reaction in photosynthesis (3) Photophosphorylation	
	(4) Two distinct photosystems	
45.	Which of the following statements is not correct about cyphotophosphorylation? (1) It does not involve NADPH formation	clic
a shirton	(2) It uses electrons supplied by photosystem 1 (3) It involves substrate level phosphorylation	
	(4) It doesn't generate oxygen	
46.	All of following inhibits auxin transport except (1) cytokinin (2) alpha napthylthalamic acid (3) 2,3,5,-tri indo benzoic acid (4) ethylene	
47.	Under normal conditions, as electrons flow down the electron transchain of the mitochondria	sport
	(1) NADH and FADH ₂ are oxidized	
	(2) pH of the matrix increases	
	(3) an electrochemical gradient is formed	
	(4) All of the above	

Question No.	Questions		
48.	Uncoupling of oxidative phosphorylation implies that		
	(1) the ATPase activity of mitochondria is abolished		
	(2) mitochondria ceases to oxidize succinate		
	respiration continues		
	(4) ATP formation continues but respiration ceases		
49.	The exonuclease activity of DNA polymerase functions to		
	(1) Remove the RNA primer sequence		
	(2) Proofread the new DNA strand and remove inappropriate nucleotide		
	(3) Maximize the fidelity of DNA replication		
	(4) All of the above		
50.	Transposons		
	(1) insert into DNA by homologous recombination		
	(2) can't be transferred by phage mediated transduction		
	(3) contain the equivalent of insertion (IS) elements		
	(4) can insert into plasmids but not the bacterial chromosomes		
51.	Pancreas is absent in which group of vertebrates?		
	(1) Reptiles (2) Cyclostomates		
	(3) Birds (4) Mammals		
52.	Cell wall is absent in		
	1) Gametes (2) Amoeba		
(3) Mycoplasma (4) All of these		

MPH/PHD/URS-EE-2020 (Life Science) Code-D (12)

Question No.	Questions	
53.	Which is synthesized in G1 phase? (1) DNA polymerase (2) Histones (3) Nucleolar DNA (4) Tubulin protein	
54.	Histone proteins found in the nuclei of eukaryotes are rich in which of the following amino acids? (1) Glycine and phenylalanine (2) Lysine and arginine (3) Glycine and arginine (4) Phenylalanine and lysine	
55.	Random genetic drift in a population probably results from (1) Highly genetically variable individuals (2) Interbreeding within this population (3) Constant low mutation rate (4) Large population size	
56.	The use of copper in copper releasing IUDs is (1) It alters the reproductive cycle in females (2) Copper decreases phagocytosis of sperms in the uterus (3) Copper ions released suppress sperm motility and the fertilization of sperms (4) Copper ions inhibits ovulation	

uestion No.	Questions	
57.	Which of the following are true for electron microscopy?	
	(1) specimen should be thin and dry	
	(2) image is obtained on a phosphorescent screen	
	(3) electron beam must pass through evacuated chamber	
	(4) specimen should be thin and dry, image is obtained on a phosphoresce	
	screen and electron beam must pass through evacuated chamber	
58.	Which one of the following pairs of plant structures has haploid number chromosomes?	
	(1) Egg nucleus and secondary nucleus	
	(2) Megaspore mother cell and antipodal cells	
	(3) Egg cell and antipodal cells	
	(4) Nucellus and antipodal cells	
59.	Apomictic embryos in Citrus arise from	
	(1) Diploid egg	
	(2) Synergids	
	(3) Maternal sporophytic tissue in ovule	
	(4) Antipodal cells	
CO		
	Where will you look for the sporozoites of the malarial parasites?	
	(1) Salivary glands of freshly moulted female Anopheles mosquito	
	(2) Saliva of infected female Anopheles mosquito	
	(3) RBCs of humans suffering from malaria	
	(4) Spleen of infected humans	

Question No.	Questions			
61.	Transcription termination of mRNA genes in eukaryotes occurs			
1	(1) at polyadenylation sites by the action of a terminator factor			
	(2) by the formation of a strong hairpin structure in the vicinity of			
	polyadenylation site			
	(3) termination factor bound to the termination site in the vicinity of			
	polyadenylation site			
-	(4) at pause sites following the polyadenylation sites			
62.	GTP is required by which of the following steps in protein synthesis?			
4	(1) Aminoacyl tRNA synthetase activation of amino acids			
	(2) Attachment of ribosomes to endoplasmic reticulum (3) Translocation of tRNA-nascent protein complex from A site to P site			
	(4) Attachment of mRNA to ribosomes			
63.	Which of the following sequences is most likely to be a restriction enzyme			
	recognition site?			
	(1) CGGCTT (2) CGCCGC			
	(3) GTAATG (4) GTCGAC			
64.	Polymerase chain reaction is considered as a revolutionary technology			
	because all of the following, except			
871.55	(1) it enables an unlimited production of a DNA fragment in vitro			
	(2) it is a highly sensitive technology			
	(3) its experimental protocol is simple			
	(4) it enables the direct production of a synthetic gene that did not exist before			
	HD/IDS FF 2020 (Life Science) Code D			

No.	Questions			
65.	If two genes are unlinked the recombination frequency will be			
	(1) 25% (2) 50%			
	(3) 75% (4) 100%			
66.	Which of the following is a kinetin derivative?			
	(1) Adenine (2) Thymine			
	(3) Uracil (4) Cytosine			
67.	ELISA utilizes enzymes that			
	(1) have a high turnover rate			
	(2) yield a stable coloured product			
	(3) are stable on conjugation to proteins			
	(4) all of the above			
68.	Which of the following disease is not an autoimmune disease?			
	(1) Rheumatoid arthritis			
SEC. S	(2) Lupus erythematosus			
	(3) Bovine spongiform encephalitis			
	(4) Grave's disease			
69.	Live vaccine is			
	(1) low dose of infectious bacteria administered as prophylactic			
	(2) a dose of bacterial strain in a modified form which retain immunogenicity but is not pathogenic			
	(3) a low dose of toxin that is produced by the bacterium			
	(4) a sample of cells from a patient who recently recovered from the diseases			

Question No.	Questions			
70.	The speed of migration of ions in an electric field depends upon			
lo Benedit	(1) magnitude of charge and mass of molecules			
	(2) magnitude of charge and shape of molecules (3) shape and size of the molecules			
	(4) magnitude of charge, shape and mass of molecules			
71.	The ozone layer protects us from harmful			
	(1) UV-A radiation (2) UV-B radiation			
	(3) UV-C radiation (4) Both (2) and (3)			
72.	The one-horned rhinoceros is specific to which of the following sanctuaries:			
	(1) Bharatpur (2) Vedanthangal			
	(3) Kaziranga (4) Corbett Park			
73.	Which of the following is not an invasive alien species in the Indian context?			
	(1) Lantana (2) Cynodon			
	(3) Parthenium (4) Eichhornia			
74.	Ananda Chakraborty received the first U.S. patent for a GM entity			
	The entity was			
yd ball	(1) The GloFish			
adt coll	(2) A transgenic mouse expressing the growth hormone gene			
ni bago	(3) Cloned E.Coli			
	(4) Pseudomonas engineered to degrade petroleum			

Question No.	Questions
75.	To which of the following residues of the protein, the protein kinases do not add phosphate groups? (1) Serine (2) Cytosine (3) Threonine (4) Tyrosine
76.	Which of the following is not a secondary messanger? (1) Cyclic GMP (2) Diacyl glycerol (3) Inositol triphosphate (4) Phosphotidyl inositol
77.	Mutation in an oncogene falls under which of the following classes? (1) Loss of function mutation (2) Frame shift mutation (3) Gain of function mutation (4) Dominant negative mutation
78.	Cytokines in the immune system (1) Are proteins or glycoproteins (2) Bind to cell surface receptors to mediate their effects (3) Are able to kill pathogens directly (4) Often act in synergy to induce immune response
	The different lineage of the lymphocytes can be distinguished by characterizing the expression of their membrane molecules called the cluster of differentiation (CD). Which of the following CD is only found in B-cells? (1) CD-4 (2) CD-8 (3) CD-32 (4) CD-45

MPH/PHD/URS-EE-2020 (Life Science) Code-D (18)

Question No.	Questions
80.	Dendritic cells are characterized by
	(1) Their ability to release histamine
	(2) Their interface between the innate and adaptive immune system
	(3) Expression of CD3
	(4) Expression of IgM molecules
81.	Arithmetic mean of the two regression coefficients is
	(1) Equal to correlation coefficient
	(2) Greater than correlation coefficient
	(3) Less than correlation coefficient
	(4) Equal to or greater than correlation coefficient
82.	Retroviruses are capable of causing cancer because they
	(1) produce a very high number of progeny viruses per infected cell
	(2) often contain point mutations in their pol gene
	(3) transduce mutant versions of cellular genes that normally regulate
	cell growth
	(4) infect cells more efficiently than other viruses
83.	Puccinia forms uredia and
	(1) Telia on wheat leaves
	(2) Aecia on barbery leaves
	(3) Pycnia on barbery leaves
	(4) Aecia on wheat leaves

Question No. Questions		
84.	Bryophytes can be separated from algae, because they (1) Possess archegonia (2) Contain chloroplast (3) Are thalloid forms (4) Have no conducting tissue	
85.	Sexual reproduction is absent in (1) Spirogyra (2) Nostoc (3) Ulothrix (4) Volvox	
86.	Which of the following compound is not amphipathic? (1) Phosphotidylcholine (2) Cholesterol (3) Oleic acid (4) Succinate	
87.	Pneumatophores are found in (1) Vegetation found in marshy and saline lake (2) Vegetation found in acidic soil (3) Xerophytes (4) Epiphytes	
	Which of the following statement is true? (1) Vessels are multicellular with wide lumen (2) Tracheids are multicellular with narrow lumen (3) Vessels are unicellular with narrow lumen (4) Tracheids are unicellular with wide lumen	

Question No.	Questions
89.	The cells of quiescent centre are characterized by
V 10	(1) Dense cytoplasm and prominent nuclei
	(2) Light cytoplasm and small nuclei
	(3) Dividing regularly to add to the corpus
	(4) Dividing regularly to add to the tunica
90.	Which of the following statement is false?
	(1) The ovaries in frogs are structurally and functionally connected with kidney
	(2) Mature female frog can lay 2500 to 3000 unfertilized ova at a time
	(3) In male frog there are 10-12 vasa efferentia arise from testes and enter kidney on their side and open into bladder's canal
	(4) The eggs of frog are mesolecithal and telolecithal
91.	Which is correct regarding the peptides in the Ramachandran Plot?
	(1) The sequence of the peptide can be deduced
	(2) It is not possible to conclude whether a peptide adopts entirely helix or entirely beta sheet conformation
	(3) Peptides that are unstructured will have all the backbone dihedral angles in the disallowed regions
	(4) The occurrence of a beta-turn conformation in a peptide can be deduced
92.	Glycophorin is involved in which of the following disease?
	(1) Viral fever (2) Malaria
	(3) Common cold (4) Asthma

Question No.	Questions		
93.	In crop movement programme, (1) require one half of nutrier (2) are helpful in study of med (3) grow better under adverse (4) form perfect homozygous	osis	
94.	Which among the following is to (1) Honey (3) Pollen	ne real product of the honey bee? (2) Propolis (4) Bee wax	
95.	In cheese manufacture, the mid (1) the ripening only (2) the souring of milk only (3) the development of resista (4) both the souring and the ri	nce to spoilage only	
96.		of coconuts 2) Endosperm 4) Pericarp	
on in the		nbiotic biofertilizer ? 2) Rhizobium 4) Azotobacter	
		oint mutation? 2) Transposition 4) Transversion	

Questions		
 What will be the effect of the deletion mutation of a gene at the telome (1) Organism will die (2) Organism will develop serious hazards due to absence of the gene a its product (3) Mild effect on the phenotype (4) No effect 		
Identify a Mendelian disorder from the following (1) Down's Syndrome (2) Klinefelter's Syndrome (3) Turner's Syndrome (4) Phenylketonuria		

MPH/PHD/URS-EE-2020 (Life Science) Code-D (23)

. –	 :.		111	il		1111.			
	, .	¥							
			11	11.	1 4 5	1 1			
Q.No. Answer key Life Science Ph.D Entrance Exam 2020									
4	1	A	В	411	C	D			
	2	2	- 4		+ 3	1 1			
	3	3	2		3	3			
	4	1	1 4		4	2			
	5	2	A		4	2			
	6	4	3		2	4			
	7	1	1		1	3			
	8	1	4		3	2			
	9	2	4	_		3			
	10	1 '	3		2	4			
	11	1	ا (ا	17	2	1			
	12	3		- '-		4			
	13	2	3		4	1			
	14	2	1		1	1			
	15	4	1/(1/1	-,.	2	2			
	16	3		-		2			
	17	2	1		3	3			
	18	3	4		4	'2			
	19		3		3	4			
	20	4	2		3	2			
	21	1 1	4		2	3'			
	22	4	h A	11	- 2				
	23	1	3	-	3	2 '			
	24	2	1 1		1	4'			
	25	2		-	1	4.			
	26	3	3	-	2	3			
	27	4	1			3			
	28		3 1		!	1			
	29	3	4		1	4			
	30	2	3		1	3			
	31	4	, 1.1:1		4	3 '41			
	32	3	3		2	3			
	33	1	2	-	4	1			
	34	4	1 2		4	1			
	35	3	4"	- ::	4	1			
	36	1	3		3	1			
	37	4	. 5.		4	4			
	3.8	3	3		5	3			
	39	4	4		4	3,			
	40	3	- 1		3	4.			
	41	3 '	6		1 1 4 7	1 7 4! 1 - 1 1			
	42	3	1		3	3			
	43	4	1		1	1			
	44	4	, , 5		4	4			
	45	2	7	\Box	2	3			
	46	1	1 3	\Box	4	1			
	47	4	: 12		3	4			
	48	3	4		3	3			
	49	2	5		3	4			
	50	2	. 3		3	3:			

Maken

Noval.

m

	1	1		ì
	,			
	1	;		
51	4 .	- 4	<i>y</i> 4	1
52	3	13.	3	2
'53	1	2	1	1
54	i	4	4	2
55	i	2	3	2.
56	i	4	1	3
57	4	3	4	4
58	3	3	3	3
59	2	3	4	3
60	4	. ~ 2	3	2;
61	4	4	4	3 !
62	3	2	2	3
63	2	4	4	4
64	. 4	4	4	4
65	. 2	4	3	2
66	4	3	3	1
67	. 3	4	1	4
68	3	, 2	4	3
69	3	4	4	2'
.70	2	2	3	. 2
71	14:	× 3	4	4
72	7	3	1	31
73	4	4	1	2
'74	4	4	2	4'
75	3	1 2	2 '	2.
	3	17	3	4
77	1	4	2	3
78	4	3	. 4	3,
79 80	4	- 7	2	3
81	3	2	3	2.
82		- 7	71271	. 21
83	2	4	3	3
84	4	2	2	1
85		2	2	2
86		3	3	4!
87		4	2	1'
88		3:1	3	1
189		11 11 31 1 1 1	4	1 21 1
90	2	2	11.	1
- 91	1 4 1	2 - 2	4	4
92		3 -	3	2
'93		1::	1	4.
94		1	1	4.
95		2	1	-4
'96		4	1 1 1	3'
97	<u> </u>	11	4	4 .
198		1	3	2
99		2	2	4.
100	' 3	1	4	2

Muhut

Nevall.

Pr

Ste